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This example shows a weakness of the approach using n-rational Z-algebras. These
investigations are left for further research. -
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THE INFORMATION-THEORETIC BOUND IS GOOD FOR MERGING*
NATHAN LINIALt

Abstract. Let A=(a;> -+ >gq,) and B=(b>--->b,) be given ordered lists: also let there be
given some order relations between g,’s and b’s. Suppose that an-unknown total order exists on AU B
which is consistent with all these relations (= a linear extension of the partial order) and we wish to find
out this total order by comparing pairs of elements a,:b,. If the partial order has N linear extensions, then
the Information Theoretic Bound says that log, N steps will be required in the worst case from any such
algorithm. In this paper we show that there exists an algorithm which will take no more than Clog, N
comparisons where C = (log, :,\ 5+1)/2))"'. The computation required to determine the pair a,:b, to be
compared has length polynomial in (m+n). The constant C is best possible. Many related results are
reviewed.

Key words. theoretic bound, partially ordered sets, order ideals, lattice paths, convex polygons

1. Introduction and review. This paper is a part of an effort to answer the question
“How good is the Information Theoretic Lower Bound.” This question had already
received considerable attention, e.g., [FrIlGYY1]. For many algorithmic problems,
the quest of an answer is equivalent to searching a certain space whose elements are
referred to as “‘compatible solutions” in the sense that they do not contradict the
presently available information concerning the solution. Let us assume that our queries
concerning the solution are such that they permit exactly two answers (the generaliz-
ation to other cases is obvious). Thus the space of compatible solutions is split into
two parts according to the answer. Assuming answers are given by an adversary, we
may assume that the actual answers are always such that we are left with the majority
of the compatible solutions after each query. The best one can do is to make such a
query for which the space of compatible solutions is split into two equal parts. For
this optimal strategy the number of steps will thus be log, Ny where N, is the initial
number of compatible solutions. The problem is of course that in many situations such
an efficient query which splits the compatible solutions into two sets of equal size does
not exist. The purpose of this paper is to investigate the quality of the ITB under such
circumstances,

This general model of a problem encompasses a great variety of search—sort
problems and the situation varies from one problem to another. In many interesting
families of problems which are included in this model the following situation occurs:
although in general one cannot always find an optimal query which splits the space of
compatible solutions into two equal parts, one can find a constant 1z o >0 such that
2 query can always be found for which the smaller subspace has size at least o times
the size of whole compatible solution space. (So the size of the large subspace is at
most (1 —a) times the size of the whole space.) In this case it is clear that the solution
<an be found in log Ny/log (1—a) steps (N, again being the initial size of the space
of compatible solutions). In such cases the ITB gives the right order of magnitude for
the optimal number of steps. Sometimes a somewhat more complicated result can be
stated: there is an integer k and a constant 0<p <1 so that one can always find k
Queries with the property that no matter what answers one receives the size of the
Temaining subspace is at most 8 times the size of the space before these queries were
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de. Clearly the ITB gives here, too, the correct order of magnitude for the optima]
made.
e e i i is situation has been shown to occur;
i i ork in which this situa | . :
levn MMWM,MMM\A%-MW%M M<~~MM“08Q at r. The space of ooBum:E.m mom:_o“mo.n:o%wﬂm
, i : in T is picked an sks
. The queries are: a node x in
of all subtrees of T rooted at r. ° X in
hosen subtree. One proves ere: ,
i:oﬁomﬂﬂmwm_w% WNMMM%M MOM@ which belongs to a fraction « of the compatible trees
a
: .
where $5 e <3 i =queries) so that after these queries are
Ilways find k =3 vertices (=qu ¢ queries a
b) Mu:oranNM of mrm compatible solution space drops to at most >m of :w initiaj
mﬂimﬁo _.,o~>nlmu:u The constant A is best possible and the cases of equality are
size whe = -
noau_nﬁm_w Mﬁnwwaﬂw,wam::m poset and consider the space of its :c:.m_:u«.w _ﬂam_m
= 2) nmw. U»un P is an ideal if xc A, y <x implies ye x:.. A query is %mﬂn ere
Tn_o*%“ mﬂrmﬁnl_. an element x of P belongs to the chosen amm_%m ﬂS mzo_,”. hwﬂnrﬂ
anw_mmﬁ_oam to a large variety of search vao!maw AmnM _“Wmuv.ﬁmﬁaw_mw MO:MM shown & wc
. X tion to posets of height =k, then the ! S <}
;ro:n _.Mmm.m_.nﬂam””wwh"m”mown .«MEHN query) such .:z: the r‘mnm_o: OA Hw%wamm_n%m_‘
Maww_wmoasminm x is between ay and 1—a,. A major open problem in thi is
ing: L thap t
e mW_‘_%hM:Sm.u [Sa]. [LS]. Prove that there is a universal constant 0 < a <! so that in
any finite poset P there is an element x for which

no. of ideals in P containing X
1ma> no. of ideals in P

ted graph roots at r. Let the space of
LS] Let G=(V, E,r) be a connec et the
u“mm_—An mou__::ozw be the collection of all no==.nn8a subgraphs nosﬂw_:_ﬁzm M=>c m”w_.._w
.oanao by picking a vertex x€ V and asking if it belongs to the connec ”w_ e w: .o.“
m. ”Mw ?3«2 assumption is made on the mn..v: G, ~Mamowwn Mm_w W_MM\ MMH._ w«anmmwas.&
to be C,—the circuit on n ver — igr
nowEMMMM m“ommoOmAmuv is the number of connected mzcm_.wnrm.om G noaw””“:msn
MNMM«Q for omﬂSE connected subgraphs, like the whole graph minus one vertex,
i ire n—1 queries. i )
wom:w e Ma%.”:a mmm:mnmm that all vertices in G have degree at least SSR_H.”M“.:
by o«NM“S ,_uﬁ\wu that Ny = 2"/* and so the ITB must be good Amo_\rquﬂ”mm nmm&ns.
Mw._x Momm&_u_m queries). Not much is known, though, about how to find the
queries and how efficient they are.

. i em [Kn), 4
2. The problem and the main theorem. In the standard m%:_wm %hmcu_rﬁﬂﬁm_ ow._aq
; is gi and one has to
s, one is given n elements X Xy o tape
m<nmwo=oc§owﬂ_vm:.=m Em:—,m x;: x. The ITB implies that at _m.mmﬂ _OWNONMN_ v,L_Mw.aoi o
an _.MMJ:_‘MQ and that this bound can be more-or-less achieved.
are )

i eneral problem: ) e+ x. together
mo__o%._::mm _MMHMW sorting WSEQ:. The input consists % n munanz.»mﬂw_a u _ oan‘_—. i"_&_ r
with moBM order relations between them. One is 849m8<o_‘ their
known to be compatible with the input order relations. Grite ooset. There is # ineaf

Formal restatement of the problem. FQ.AN z)bea :_r P S o o Ut Tk
der on P compatible with = (an extension of =) c.cr_ow_wimnz s of clemeats i
ann:mmos is to be discovered by querying the order relations be .
x, y€ P where x, y are unrelated by =.

T
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The ITB implies that any algorithm which solves this problem requires at le:
log: Ny steps where Ny is the number of extensions of =, We conjecture that the I

gives the right order of magnitude, ‘Namely, we make the following
CONJECTURE 1. There is a universal constant ¢ > 1 such that the general son
problem can be solved in ¢ log, N, steps where N is the number

of extensions of (P, =
We want to make an even sharper conjecture asserting that one can always fin
an efficient query. To this end we make the following

DEFINITION. Let (P,z)bea poset, x, ye P.

Pr(x>y)= no. of extensions oQN Z) in which x> w.
no. of extensions of (P z
. The quantities Pr (x> y) received much attention recently [Gr], [Sh], [GYY2], [KS]
We want to make: )
CONIECTURE 2. There is a universal constan; > a>0 such that if (P,
finite poset in which the order = ;

=) is ¢
T Z s not total, then there exists x, ye P such that

HIQWPA\«VEWF

In fact we know of no counterexample even for o = i
3 Now we can state and

Prove our main results. We can show the validity of
: conjectures 1 and 2 in the casi

. “. [ TheoREm 1. Any algorithm whic

¢ where (P, =) can be cove
§ case is well known as the merging problem, see (Kn]. On
glists A=(a;>... >an) and B=(h,> - .. >b,) and
Eelements of A and elements of B, We want
where the linear order on AUB is an exte

red by two chains. This special
e is given two linearly ordered
some order relations between
to merge A and B into one ordered list
nsion of the partial order just described.

1 can merge A and B will require log: N, steps
ber of extensions of the partial order on AUB.
n algorithm exists which merg

es A and B in no more than C, log, N, where C =
Rlog: (1+v5)/2))™". This pou

nd is best possible. The computation needed for finding
K appropriate queries can be done in time polynomial in | A J m_.

' THEOREM 2. Wirh A, B as above one can always find x < A, Y€ B for which

wWFAaVEWW.

tin the worst case where Ny is the num

Bhe constanss &,
lauB.

¥ Let us start with

> Proof of Theorem 2L
82 Where A=(q,
b2>a; (mz

% are best possible. The elements X, y can be found in time polynomial

et us show first why 4, 2 are best possible. Consider the
> e >a), W”A?V

> by, ;> by, (m-1zj21) and
JZ2). It is easily verified that

0, k=22,
b k=2,
Pr(a,> b,)={> / (mzjz12mzkz])
3 »HN\,
1 kz2j+1,
Now Jet us

turn to the proof of the existence 5=
=1 we Mmay assume w.l.o.g. that a, and b, are incomparable. If a; > by,
B then a, s the unique maximal element in AUB and so it remains the maximal
PNt in any extension of the partial order.

Therefore, nothing will change if ais
fed from the poset. We prove our claim by contradiction and We assume again

of x€A,ye B for which 2z
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w.l.o.g. that
Pr{a,>b) <}
Define now the following quantities
q,=Pr(a;> b)),
g =Pr(b_,>a>b)nziz2),

Gue1 =Pr(b,>ay).

We prove the following: .

LemMa. The real numbers g(n+1z iz 1) satisfy:

D izqz--

DI a=1 . A

Proof. Since qy,- -+, qn- is a probability &m:._v::o:, all we have to show is that
g1 Z  * * Zqn.y. Toshow this we exhibita 1:1 mapping ?oi the event whose v:.v?_?_.
ity is g, into the event with probability g,(1=i= n). ZE._nm :::,_: an extension for
which b,_, > a, > b; not only does a, come after b;_, but it must immediately follow
it: Of course none of the a, can precede a, and none o.q the P:nw: come between b, |
and b, The mapping from those extensions in which a, _Bana_m.n:. ?.:_:s.m b, 8.:_95
where b,., > a, > b, is obtained by permuting a, and b;_,. This mapping clearly is well
defined and 1:1.

The theorem can be proved now: let r be defined by

r—1 r

Since ¥, q=Pr(a,>b_)=h it mo_=oiw that T a A_% m_H:EJ. Yog=
Pr(a, > b,) must be >1. Therefore g, > 3, but this contradicts 3> =4 o

Complexity. The last claim of the theorem -m.aconm now to proving that the index
r of the above proof can be found in time which is polynomial in _,.> U B|. ,.DE ?w.:..n..
should be aware that two separate complexity measures are cﬂsmno:zaﬁﬁ_. the
main one is a count of the number of gueries that have to be mw.r.mm in order to m.:_«n
the merging problem, and the other one, e<En.: we waannw.m now, is the H.:s.m. M_cavw..x_mw_
of the computations which are required to design the queries. Givena mr,_:_.. ,u\.,: lrwﬁ
set on n elements (P, =) which can be covered by two n:m:&,. there is a a.i.i:.:: _z,
formula giving the number of extensions of Z, see [Mo, p. 32]. m_zn.a :_amm aln‘q:::,.:_.__”
are computable in polynomial time and we need to compute _un_w:c-:E:v\ _.:,_:.Q. zwr
determinants to implement our algorithm, this proves our assertion. For nc:._v.i,r:rmw.
let us recite the determinant counting formula: Let P=AUB, ;rr.? \. \
(a,>--->a,), B={(b>--->b,), and assume mz=n . Uam:om bawr_w”“.q
g,y Ay By, -ty B as follows: B, =min T_SA b}, @, =max {1{b,> a,} ..5 L
the minimum and maximum of an empty set are taken to be n + 1 and zero respectively.
The number of extensions of (P, =) is given by

B —a+ —v
det A j-itl mzijzl}
see [Mo] for the details. O

The following theorem is equivalent with Theorem ! but states the .:.;::7:._%
more convenient way. We remind the reader about the definition of ﬂ_cc:.,..cn_ ﬂ:___::..cm:w
. = 9 t
This is the sequence defined by: Fy=1. F;=2, F,.,=F,+F,_((n = 1}. The fo
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explicit formula also exists for these integers

F,=AA"+B-(-A)™",
where

_Js5+1 JUEEENE g5
27 10 10
THEOREM 1.1. A merging problem which cannot be solved by less than n querie
must have at least F, compatible solutions. For each n = 1 there exists a unique mergin
problem which requires n queries and has exactly F, compatible solutions The appropriat
queries can be found in time polynomial in the size of the poset.

-Proof. Let us start by exhibiting the extreme cases. We describe the mergin,
problems which are referred to as the special merging problems. For n=2m—1, le
A=(a,>-->a,), B=(b> -->b,) and the relations a,> b (m-1zjz1)
bh>arimi-22k=1). For n=2m let A=(a,>--- >am), B=(b>:-->b,,
and a;> b \(m—-1=j21), b > a,s(m~1Z k= 1). In either case a; is incomparabk
with only b,_\ and b. Whenever a;: b, are compared, the answer is a;>b; and th
- answerona;:b_,isb,_, > a; These answers supply nofurther information on incompar
% able pairs: therefore all n queries have to be made to solve these merging problems
To show that the number of compatiblie solutions in these merging problems are giver
by Fibonacci numbers, let us consider the case n = 2m. We split the compatible solution:
into two parts according to whether a, > b, or b,>a,. If a,> b,, then a, is the unique
maximal element and so can be deleted altogether. For the rest of the elements we
make the following renaming b/ =a,, (i=1,- - -, m)a;=b(i=1, -, m) which show:
that the remaining problem is the special problem for n=2m ~1.1f a, < b, then a,. b,
are the maximal elements of the poset so they can be deleted. The remaining problem
& is again the special one for n =2m—2. We have thus shown that F, = F,_,+F,_, for
W even n=1. The rest of the details can be easily filled in by the reader.

h
f
¢
)

A

PRSI SR b o T N

: Now we turn to the actual proof of the theorem and of the uniqueness of the
f special problems: We'll show that if a merging problem is given with Ny= F, compatible
- solution and n steps are needed to solve it, then the problem is special. For n =3 the
cases are few and can be checked each in itself. The general case is done by inductior
on n. Without loss of generality we assume that q,=Pr(a,>b))=% As in the lemma
¥ we define g, to be Pr(b,_,>a,>b)}m+1=iz1). Consider the index r for which

9 1

Pr(a,>b)=Y

i=1

g=i< M_ g, =Pr(a,>b5,).

*

fPr(a,>b,)<F,_;/F,, then comparing a,: b, we remain with a problem which has
: .,_am than F,_; compatible solutions and so can be solved in n—2 steps, contradiction.

Similarly if Pr(a,>b,_,)> F,_,/F,, then on comparing a,:b,_, we remain with a
& problem with less than F,— F,_, = »-1 compatible solutions and the same argument
‘ kapplies. If follows, therefore, that q-zF, \/F,—F,_,/F,=F,_/F, This implies now

P hat r = 2. because otherwise

Fuos
F,

2F, 3
F,

contradiction if n=4. On the other hand r#1 because. by assumption q =
Br(a,>5,)=1,

Sor=2q,=F, o/F.q+ q:Z F,_,/F,. Make the comparison a, : b, to which we
3y assume the answer is a, > b,. This is followed by the comparison a, : b; to which

r—1
27y qz=q,+q.22,2 8
1

!
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ini t most F,_. compatible
maining problem has a :

assume a reply a,> b,. The rel ; ! 7 compatible
Mm:ﬂwwm and so can either be solved in n—3 ocozm_m wa._m_m Mﬁ a MMHWM&EQ mom.. wric
i iti ial problem with F,,_» .

i roblem, or else it is the specia n wi ; ati .
for :—M OHMM_HM”M< now that the problem we started with is special. d:m Lm www MWMWMJQ
mammnwm\ and the details are omitted. The complexity argument is the n

Theorem2. O

j is, of course, to show that Theorems |
blems. The major problem is, 0 : s 1
Nu.rO_MM“—._.—.M:mE_ sorting probliems. These problems were mS:,xm_ wwown _Mxn"w“ m_wn
and 1 ow To mw“:n other problems let us make the no__oiﬂ%m aomE:ﬁ:.m M:G i %:
of 2 par i :1 order-preservin 4 ‘P
i =) can be described as 1 .
m : nw_nhw_ _..n”.WMnm Muwfnvawmzo h(x) to be the average omqv:v nm<n._... w_v_\wzﬁ._w%%:q
P2). L hen Y, .p h(x)=n(n /2. e
z P} = n be the order of the vommr" : .
o AW o _.m_ohu_o%m:ﬁ, of has V(P)=Y _,h'(x).1fp,q€ P are 585@5%_@ a_vm_.:nﬂs.wm..
the MnnMMR by P(p, q) the poset which is obtained by wa.a_nm ﬂ.\m _M_wm,o: p>qto
M:mm Mm course, taking transitive closure of the new relation). We %:Sw
" “ﬂ:mmeZ,u. Let P be a poset, p.q€ P incomparable elements.

V(P) = max{V(P(p.q)), V(P(q, P}

i i is i lity is geometrically: To any
st convenient way to view Eﬂm inequa
w:“%\.vw_.ﬂw W%:oanw:% assign an n-dimensional convex polyhedron ~m; AAG:i:aﬂ.n
nomm” ( ‘_,.ru ssignment is as follows: If P has no order relations, then M» ) _v.m a ==~__“
s n.w.m. m )1 = x; = 0}. Let us say that C(P) has been defined or novwﬁu im:
Mccwaﬁw_n,m_wnwzm o_,lwmm_m (kz0). Then on Eﬁoacomnwﬂpra _.v_wwi RWMM—”%W% ME:M
. ty C{P(ps» p;)), is obtai
of the new poset P(p;, p;), namely : ned by tak
nm=<mx%w_w %@mv which lies in the half-space x;> x; >nno_..9=m_$ MM« P ;Aﬁnﬂm_nunmoﬁdw
. .Mﬁ _uma C(P) is a simplex X, <Xm2< """ < X,(n Notice that Hl ese m._. .n v have
wm_mﬂn .H\i each, and that if (P, Z) is any _uw:._w_ o%ﬂuowv”_.l_% m“n &E.vﬂ;na.m hen
the extensions =
there is a 1: 1 correspondence between O O 1731 times the fumber o
. In particular the volume of quals 1/ ,
e d Oﬁmuvﬁv :W% Notice also that since all these win:oam have mp_mw___ <M:MM.
nlxﬁnwmﬁ%.f:m%m ),++, h(p,)) is the center of gravity of C(P). o:“ s ha
ﬁ%vl._m the square o_m .::w distance from the center of mn.wSQ OM\ C M%V"M—M e cm
that we have established the geometric 53%3690: of V(P), A
”.MA:SRB follows at once: C(P)is the &&o,:: cs—ﬂ.ﬁﬂAO%w%"wn%MﬂE ol :‘.E_.‘a
ioin and the centers of gravity for Do s ] » Pd) .
Hrm.,io__%wﬁw Hﬂ_.m—mn_maa_. of gravity of C m.vv lies on the edge connecting Ew_.wio m«:
um:._wswz The theorem now follows from obvious facts of plane mooqmm:.m tronger
° mnmocw.ﬁrﬁ we have established Theorem 3, we are ready to as
mESMﬂM”“MMMNWm 3. Let P be a poset and let p,qe P be incomparable. Then

V(P(p.q))z V(P).

See the U~OG~0=_ session of [OXN P 806] for a related discussion
)
Note added in E~QQ\. Problem 1 has been Hmnmbﬁ_w answered affirmat <W: G% the

is @ =3(3—log: 5)-
author and M. Saks. The constant that was found is a =3z(3—1og: )

it is hard t0
n = i ity i ow that it is har ;
An interesting problem in noavr:w:o:m_ complexity is to sh
1

W is roblem
i j that this p

unt the number of linear extensions of a finite ﬁmen. € nO—SmnnCnm

CO'

- R. Karp and by 4
is # P-complete. This conjecture has apparently been made also by 1. this
i - .

T i t of of Theoret
me other researchers. Cm._:m the construction made in the pro
SO
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no&mQE.nno:EvnwnoanoﬁnmﬁmﬁiaaSﬂromnann that evaluating the volume
polyhedra is a hard computational problem.
Also, counting the number of order ideals in posets can be shown to
# P-complete. This was shown also by R. Karp (private communication, March 19
It has been brought to our attention that Conjecture 2 has been independe

made by a number of researchers, some time ago. In particular we know that M. Fr
man and R. Stanley had thought about it.
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