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p bi ics be
According to § 7, patterns that are in the list (26) but not in (29) correspond to hanging Abstract. A number of natural enumeration problems in geometry and combin torics wa shown to b
keyblocks—in this case all three do. Likewise, all three patterns in (27), and hence 3 complete in the class #P introduced by Valiant. Among others this is

also those in (28), also correspond to hanging keyblocks.
Finally, we observe that if the excavation is below, rather than above, the sloping
excavation face, so that (26) is replaced by the list

UL LU
(30) UL L L
U UL U,
then there is no overlap with (27), so that in this case no blocks that intersect the

corner are keyblocks. The pattern U L L L is the only one from (30} that is not in
(29), and hence it represents the only hanging keyblock in this case.

nd of facets of a polytope, acyclic orientations of a graph and satisfying assignments of implicativ
k. vertices a s .
‘boolean formulas.
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Introduction. This article contains a contribution to the n.moonwuom wﬂm g__-._BMMM..NM
, , i thi i liant [ Val], who
foundations of this area were laid by Val .
D P o i bl and the subclass of problems complete in 4P
the class #P of enumeration prol ems ) > complete in + ¥
§ i i i Its is the #P completeness of computing p
The most interesting of his resu o erio
i i Iso be stated as the problem of en
of 0-1 matrices. This problem cana st o ns + borfoc
. ings in biparti While deciding whether a bipartite graph ha
matchings in bipartite graphs. hile b e ommion
; i i 1 time [ H] the enumeration pro
matching can be done in polynomial ! e o o
: iant’s pi i d by a recent article o
Valiant’s pioneering work was continue e e
3 - leteness of a number of natural enumer: P
e v e &._“w bl i sociated decision problem. Instead o
. With every enumeration problem there is an as ) . Instead o
i j i tion we ask whether this num|
asking for the number of objects in ques 1 . nber Is zero <
isi iated with the computation of the perm: 1 !
- not. The decision problem associate : p e e th
i i i bipartite graph has a perfect ma 8.
is the question whether a given ite rfe tohing. e
decision i i ial ti by no means trivial. Notice, st
decision is solvable in polynomial time, it is no mean s o
, i in [PB] the situation is even more extreme:
for many of the problems discussed in | °B] tt oo th
ting independent sets in a bip: ,
for example the problem of enumera I i, Buory oot
- decision problem associated with this o::Eo_,wn.Sn proble
Mmm_wﬂwvwnagn set of vertices. So an enumeration maov_oa can be #w.oo_un,-.,am‘nwm_
‘ e il the ce problem 1s trivial. |
he gt i mem, s ' EMMMMM.&« Mmmcaom acquaintance with the theory of # 1-83%_238” as thMKMM
. i t a number of natural enu .
in [Val], [PB] and [GJ]. Our purpose is to presen
M__.nmzonwm Hirmow belong to the class of #m.u-ooBv_Qo problems. The problems ar
geometric, combinatorial and from propositional calculus.

Here is our main theorem: .
TueoreM. The following enumeration problems are # P-complete.

Appendix—Statement of Tucker’s Theorem of the Alternative. For the convenience
of readers we give a statement of Tucker’s Theorem of the Alternative, as presented
in [3, p.29].

Let B, C and D be given matrices, with B being nonvacuous. Then either the system
Bx =0 but not all zero, Cx = 0, Dx =0 has a solution xorthesystemA'B+'C+v'D = 0,
A>0, p =0 has a solution A, u, v, but never both,

This theorem was first given by Tucker in [71.

Acknowledgments. The authors are grateful to Messrs W. N. Merten, W: L. van
Heerden and F. A. Vreede of the National Mechanical Engineering Research Institute
of the CSIR, Pretoria for stimulating discussions on the practical importance of the

Shi-Goodman work, and for prompting our interest in in the keyblock identification
problem.

[1] S. A. CARTNEY, The ubiquitous joint method, in Cavern Design at Dinorwic Power Station, Tunnels
and Tunneling, 1977, pp. 54-57.

[2] G.F. HADLEY, Linear Programming, Addison-Wesley, Reading, MA, 1962.

(3] 0. L. MANGASARIAN, Nonlinear Programming, McGraw-Hill, New York, 1969.

[4) R T. ROCKAFELLAR, Convex Analysis, Princeton Univ. Press, Princeton, NJ, 1970.

[5]1 G. H. SHr AND R. E. GOODMAN, Underground support design using block theory to determine keyblock
bolting requirements, Proc. SANGORM Symposium on Rock Mechanics in the Design of Tunnels,

Pretoria, 1963, pp. 81-105. (1) Vertices in a polytope.

- ; <R"
[61 » A new concept for support of underground and surface ions in di i rocks based Input: A system of linear inequalities Ax=b defining a polytope P<R
on a keystone principle, Proc. 22nd U.S. Symposium on Rock Mechanj , M. h Institute Output: The number of vertices of P.

of Technology, Cambridge, MA, 1981, pPp- 290-296. «
[7] A. W. TuckEeR, Dual Y of homog linear relations, in H. W. Kuhn and A. W. Tucker, Linear

(2) d-dimensional faces of a polytope ( fixed d).
Input: As in (1). ] )
Output: The number of d-dimensional faces of P.

Inequalities and Related Systems, Annals of Mathematics Studies No. 38, Princeton Univ. Press,
Princeton, NJ, 1956.

* jved by the editors December 10, 1984, o )
t “w_.“ﬂ_““ o%!u:.ﬂ.:»:% and Computer Science, Hebrew University, Jerusalem 91904, Israe

331

.




NATHAL LINIAL

(3) Facers of a polytope.
W__Ez A finite set of points in R",
utput: The number of facets {(n—1)-dimensional faces) of P.

(4) Components of slotted space.
M“_,.n..z A set {H,li€ I} of hyperplanes in R".

utput: The number of connected components of {R"\U H,)ie I}
(5) Acyclic orientations of a graph. .
M.v._:.n A graph G=(V, E).

utput: The number of orientations of G with no directed circuit
(6) u-SFJ.:m.,. of a bipartite graph. .
W._Es A bipartite graph G=(A, B, E ).

utput: The number of ways to properly color G with 3 colors

(7) Satisfying assignments of an implicative Boolean Jormula.

In| t: A B olea fo: V. I Xyt v, X, [¢] orm =
PU 0ol n rmula B on ariab €S 1 " f 90 fo B ]
] ’

wr_ (%1 v %2).
utput: Number of truth assignments for Xy, * * +, X, which makes B true

Proof. (1) W {
of. - (1) We use the fact from [PB] that enumerating order ideals is #P-complete :

Q?nbmvomo:ww‘z. .. .
mo:oim“ .vzrﬁl?uio wmmoo_nan with P a polytope B= B(P) in R" as
wuﬁkmz..:WBW.o.k.Vx\ ifizjin P}. ,

(See «mwm_ E_,.s :Gh Wwhere use is made of this polytope.)
aim that the vertices of B are in 1: .
of (P, £). Fi \re in 1:1 correspondence wi :
monmm cAvkqu.m_n Mm prove that all vertices of B have 0-1 ooon&“_”u_“ :“% .”aanw_ﬂo&m
ateorbya ...m SM M»ﬂwwm M_MQMM Amw. aﬁan >y replacing all oooa.iwnom Mu aww.w
of B. This impli .
correspondence between vertices and ideals __mm m_”- M_w_hwmﬂ.z * 1o mota vertex of B The

x € vert ANvAvaH:M\.Ma_k\.How.

It is easi i i i .
easily verified that S is an ideal and that this correspondence is bijectivi
(X

(2) Suppose that for som
ome fixed d we can find £ (X)
- }thenumber of d-dithensiona

*Taces of a polytope K. Consi ;
one finds onsider r-fold pyramids P, with K as basis. In [Gru, p. 55]

*
*) 5=z ( va-bc.

If we write (*) for r=0,
. =0,---,dand
of equations in unknown have all fo(F.) evaluated, then we obtain a system

JoAK), -+ -, il K).

This system of equations ha: i
S a triangular matrix and

s syst ; 2 I nd so they can be sol i
and %Monv J:Mo.aoﬂaa_soa in polynomial time. Since evaluatin Jo MMon_lm:ooomeo_w

P .—w.r of K is #P-complete by (1), our claim follows 8/olK) = the number

& \;_w is just the m_cm_ of (1): See [Gru, p. 46] for v.c_vgo e duali

o ¢ proof here is based on two observations pe ually

POSITIO = y
N [St1]. Let G=(V,E) be a graph with n vertices and let P(G, A) be

its chromatic polynomial. Then (~1)"
i en (~1)"P(G, 1) equals the number of acyclic orientations

k 6=(V,, E), H=(Vy, E,) where VN V,=@. The joi

[ set and

.o;«:ﬁ:o._w is equivalent to
f values of P(G+K, ~1) for t=1,

 But P is a monic polynomial of degree n so from
E P(G, 1), the chromatic polynomial of G. This is a #
} reduction to coloring is parsimonious

#P-complete and on the following result of Greene. Hjy
by {(xeR"x; =x}.

b of S(G) equals the numb.

: find I(G) the number of independent sets. C

HARD ENUMERATION PROBLEMS

operation of join of two graphs

For the other observation we have to define the
n G+ H has V, U V, as its vertex

E,UE,U{ix, ylixe vy, ye Vi)
on is immediate.

E 45 its edge set. The following observati
—-1),- - .C,li:wa.»l;.

ProposITION. P(G+ K, A)=A(A )
Now we can combine these two facts as follows. Being able to enumerate acyclic

computing P(G;—1) for the graph. But if we have the
- -, n, that means we can calculate the integers

P(G, -j) (n+1Zjz2).

these numbers we can compute

P-complete problem because the

[GJ, p. 169].

(4) The proof here makes use of (5) that enumerating acyclic orientations is
cR" is the hyperplane given

ProposiTion [Gre). Let G=(V,E) bea graph on n vertices and consider

S(G)=R™\U Hy

where the union is over all i, j such that [i, j1€ E. The number of connected component.

er of acyclic orientations of G.
f on the 4 P-completeness of enumerating independent set
be a partite graph for which we want t
onsider a graph H which is obtained b;
" adding two new vertices 4, b with a being adjacent to all vertices in BU{b} and b t
all vertices of AU {a}. Now let us compute x(H, 3), the number of 3-colorings of E
Suppose w. L.o.g. that a, b are colored 1, 2 respectively. The 3-coloring is now uniquet
defined by the set of vertices colored 3. This can be any independent set of G and s

x(H,3)=6I(G).

This proves the #P-completeness of computing x(H, 3).
..... (7)_This follows from #P-completeness of cnumerating ideals in posets [PB]: L«
(P, =) be a poset with P={p,," " ", pn}. Associate with it the Boolean expression

B=a{x;v %|p;>p:in P}.

It is fairly easy to verify that the set of x, which are assigned a true value in ar

assignment satisfying B is an ideal in (P, =) and that all ideals are obtained in this wa
Let us mention in closing a most intriguing problem in this field: For a pos

(P, =) a linear extension is a 1:1 mapping f:P=>{1,---,|P|} such that if x<y in

then f(x) <f(y). Consider the problem:

Enumeration of linear extensions.

Input: A poset (P, =).

Output: L(P), the number of linear extensions of (P, =).

Conjecture. The enumeration of linear extensions is a # P-complete problem.

A proof of this conjecture will provide a first explicit statement to the effect th
computing the volume of a convex polytope is a hard computational problem. To s
this we remind the reader about the polytope B(P) which was used in proving part
of our main theorem. We quote without proof of the

(6) We base this proo
in bipartite graphs [PB). Let G=(A,B,E)

following fact from [Li}:
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3 ic orientati iscrete Math., 5 (1973), pp. 171-178.
Am:_ R. P. STANLEY, \».Qn:a e.:m::...zodn of wﬂﬂ_w .U_uo—.uo » Fenchel inequalities, J. Combin. Theory, ser.
_HME , Two b 9

A, 31 (1981), pp. 56-65. of ing the per
L(P)=plvol (B(P)). %«“M e <>.“.u__”””.='§n~u.n“.€ em enumeration and reliability problems, SIAM J. Compu
The connection between the #P-completeness of enumerating linear extensions | 3
and the complexity of evaluating the volume of a convex polytope is now clear. .‘
Let us also comment about the relationship between the number of linear
extensions of a poset and enumerating order ideals. We use I(P) to denote the number #
of ideals in the poset P. For posets P, Q we define their product P x Q to be a partial
order on the cartesian product of P and Q with (x;, y,) = (x,, y5) if ;= x; in P and =
N Zy; in Q A mapping f: P Q is order preserving if x=y in P implies f(x)Z=f(y) §
in Q . 3
ProrosiTiON. Let (P, Z) be a poset and let C, be the chain on t elements. Then v.
I(Px C,} equals the number of order preserving maps f: P->{0,1, - -, t}. L
Proof. With an ideal J < P we associate a function f: P-{0,- -, t} as follows:
For every xe P there is unique tZj=0 such that (x,j)eJ and (xj~1)eJ Let
S(x)=t—j for that value j. Since J is an ideal, f is well defined and easily seen to be
order preserving. It is also a routine matter verifying that this correspondence is
bijective. ] :
Now we come to the expression for the number of linear extensions of a poset.
THEOREM. For a poset (P, Z) on |P|=n elements, the number of linear extensions
L(P) satisfies

ProrosITION. For a poset (P, =) on |P|=p elements L(P) the number of linear §

extensions of P satisfies  Theor. Comput. Sci., 8 {1979), pp. 189-201.

t.,8(1979), pp. 410-421.

_ L(P)=I(PX Cy_y)—nI(PX Cy_y) + @:wx C._s)

..+...HA:HNV,HAWXO_VﬂA:mHv. . .

Proof. This follows from the previous proposition and Inclusion-Exclusion.
Classify order preserving maps f: P~{0,---,n—1} according to their range. There 3
are I(Px C,.;) such mappings altogether. Say f has property t(n—1=¢=0) if tis ° i
__not in the range of £ L(P) is the number of order preserving-maps-which are onto,~ g

i.e., have no property and there are

AU I(P+C,_;y)

maps having a given set of j properties.
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