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Abstract

A set, V, of poiats in the plane is triangulated
by a subset T, of the straight-line segments whose
endpoints are in V, 1f T is a maximal subset such
that the line segments in T intersect only at their
endpoints. The weight of any triangulation is the
Sum of the Euclidean lengths of the 1ime segaents in
the triangulation. We examine two probleas involving
triangulations. We discuss the problea of finding &
aininun weight triangulation among all triangulations
of & set of points and give counterexamples to two
published solutions to this problea. Secondly, we
shov that the problea of deteraining the existence of
4 triangulation, in a given subset of the lime
segmonts vhose endpoints are in V, 1s NP-Complete.

1. Introduction

A recent development in complexaty theory has been
vork dealing with computational geometry. A large
portion of this work bas been done by M. Shanmos
[10, 11, 12], who has given efficient algorithas for a
nusber of fundamental geonetric problems. These
problems are important because many of the probleas
encountered in real-world circusstances involve sets
of points in the Plane. In the past, these probleas
bave usually been abstracted out of the geometric
domain into the resls of graph theory. These
abstractions have potentially altered the essential
nature of the probless, with the geometric
constraints being lost. For instance, consider the
problem of finding the uinimum veight spanning tree
of a set of points in the plane and the corresponding
graph-theoretic problem of finding & minimum weight
spanning tree of an arbitrary graph. It has been
shown that the geometric problems, for n points in the
plane, can be solved in time O(n log n), whereas the
best algoritha for the graph-theoretic version
requires time O(nz) for a graph with n vertices (in
the vorst-case) [1,10]. This suggests that the
algebraic and geometric versions of a problea may
have substantially different complexities. In
contrast, both the algebraic and geometric versions
of the Traveling Salesperson Probles and the Steiner
Tree Problea have been shown to be NP-Complete
6,7,9). Work in computationa] geometry is aimed at
uncovering the aystery about what geometry
contributes to a problem, as well as provide insights
on the general nature of computation.

Our sajor result is ap NP-Completeness proof
involving the existence of triangulations. To our
knovledge, with the exception of the results on
Steiner Trees and Traveling Salesperson Tours, this
is the only NP-Completeness result iavolving &
prodlea specifically set in the plane.

2. The Triangulation Probleams

The concept of & set of points in the plane being
triangulated may be formulated as follows: Let V be
4 sot of n distinct points in the plase. The points
in V are yertices. Let L be the set of all straight-
line segments betveen vertices in V. The elements of
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L are edges. Tvo edges, e and f, properly intersect
if they intersect at a point which %s not an endpoint
of each, and e » £. A triangulation of V is a
saximal subset T, of L, such that no two edges of T
properly intersect. This jmplies that each face of
the straight-line planar graph determined by Vand T
is & triangle.

The minimum weight triangulation prodblem is as
follows: Given a set of vertices, V, and the set of
edges, L, whose endpoints are in V, a veight can be
assigned to each edge ia 1, the weight of an edge
being equal to the Euclidean distance tween its
endpoints. The weight of a trisngulation, T, is thea
defined to be the sum of the weights of all of the
edges in T. Ve are interested in an efficient
algoritha for fimding a triangulation of sinimua
vweight among all of the triangulations of V. This
problea will be referred 1o as MAWT.

Triangulations have an application in the
approxisation of function values for & function of
tvo variables when the value of the function is known
at some number of ardbitrary points {4]. The ainimua
wveight triangulation prodlea has been studied
previously by Duppe and Gottschalk [5) and Shamos and
Hoey (10]. We note that other criteria for the
“goodness” of a triangulation might be better suited
to certain applications and say be easier to find.
Criteria concerning the size of the maximus or
minisus angles in a triangulation and how they apply
to the finite element method are discussed by Babuska
and Aziz (2] and Bramble and Zlamal (3).

The triangulation existence problem 1s: Given a
set of vertices, V, and a subset E of L, does there
exist a subset T, of E, such that T is &
triangulation of VI This problem will be referred to
as TRI. An efficient algoriths for solving this
problem might be useful in attacking other problems
involving triangulations. For instance, in our work
on MWT, we considered a matroid approach to the
problen. A desirable property was to be able to tell
efficiently if & subset of L contained -a
triangulation of V. It appears reasonable that other
applications of triangulaticns msy also bave cause to
use such an algoritham.

In section 3, we present counterexamples to two
published algorithms for soiving MWT. In section 4,
we show that TRI is NP-Complete. The question of
whether MWT is NP-Complete remains open.

3. _The MWT Problea

This section presents counterexaaples to two

algorithas conjectured to solve MWT. ’
The first of the algorithms is & classical

"greedy” slgoritha. This algoritha is as follows:

1. Let ].o be the set of all edges with endpoints
in V.

2 Set Tegandied.

3. While Ly g o
31. Let v be an edge of least weight in "l
32. T « TU(W) )
3% Li,y « Ly - (v) - (melyIn and v properly

intersect.)

34. 1« 44}
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HMgure 1: Counterexaspl

c, (80,30)

B, (50,29

e to the "greedy” algorithe.

B, (125,29

A (0,0

Bdge lengths of interior edges:

Edge BD: 75 units
Edge CE: <86 units
Bdge AC: <86 units
Bdge BE: >112 units
Bdge AD: >127 units

The claim is that T is a min

of V. In Figure 1 we give & set of

shows that the triangul

B, (160,0)

imus veight trisngulation

vertices which

ation produced is not

necessarily a ainisus veight triangulation. The
edges not on the convex hull in the trisngulation
produced by this algoritha are BD and BE whick have
combined weight over 187 units.
interjor edges in the sininun veight triangulation

are CE and AC vhich hav
172 units.

The algoriths vas indepe

Rivest.

However, the

e & cosbined weight of under

A variant of this slgoritha was published
as a solution to MVWT by Duppe and Cottschalk (S}

ndently suggested by R. L.

The second algoritha purported to find ainimum
welight triangulations wvas given by Shamos and Hoey
(10]. The essence of this algoriths 1s that the
edges in the straight-line dusl ©

diagran of
V. Figure

Figure 2:

¢ the Voronol

Vv fora a minimum wveight trisngulation of
2 exhibits & set of vertices which shov
that this is not always the case. The minisum weight
triangulation is shown in 2a and the trisngulation
produced by the Shamos-Hoey slgoriths
The Voronol edges are given &s broken
Several additional observations concerning sininus
veight triangulations are given 10 (8. 7

Counterexample to the Shamo

is given in 2b.
1ines in 2b.

. ’

g—loey algorithn

4. TRI 13 NP-Cowpleto

fa this section we shov that TRI is NP-Complete.
The major portion of the section 1s devoted to
showing that the prodles of conjunctive sormal fora
satisfiability (CNE-SAT) 1s polynonully reducible to
TRI. CNP-SAT is NP-Complets (7).

4.1 Intuition and Qverview

4.1 Intuition &nc To=2°2"

Assume that we have tclauses c,.cz,....ck each of
which is & sum of literals drawvn from the variables
RyoXgrooor ¥pe The problem is to deteraine if there

1
is a truth assignsent to the variables such that each
clause is satisfied. Prom the k clauses we will

 construct a set of vertices, V, and a set of edges,
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E, whose endpoints are ip ¥, such that there is &
subset T, of E, triangulating V 1f and only if the
set of clauses is satisfiable. Throughout this
section & tri ulation of V will refer to & subset
T, of B, vhose es are & trisngulation of Y.

The bullding block in our construction will be &
set of vertices and edges which we will refer to as '
switch. A rectangular array of these switches will
be employed, with one switch for each clause-varisble
pair. This array of svitches vill also be called the
network. We let S” represent the svitch for
variable x4 and clause C;. Each svitch S“ will be
one of three types depending on whether Xy is in C’
or Xy is 1n Cy or peither is in Cy. Ve pote that the
switches are pusbered in an x-y fashion as opposed to
standard matrix pusbering.

1o any triangulation of this array of svitches, we
may regard two streams of inforsation to be flovwing
through each svitch, one streaa floving vertically
and the other froa jeft to right horizontally.
vertical stream of inforsation floving through sll
carries & truth value for variable X4 . For each Xy
the same truth value sust be floving vertically
through each switch Sgq o 1) Sk The horizontal
streas of information l’uﬂu switch su on the right
indicates vhether or pot clause C, is satisfied by
the assignment of the truth values (as deternined by
vertically floving inforasation for each variable) to
the variables Xgye.esXye This information may then
flov into the left side of switch Sy.q 9 Our
construction forces the inforsation floving lnto the
left side of each switch S“ to be “not satisfied®
and the information flowing out of tbe right side of
each switch Syy to be "satisfied”. Thus, the
norizontal t{nforsation for clause C; can flov
completely across the network only 11 the truth
assignment to some X4 satisfies c,, causing the
porizontal floving {nforsation about C, to change
from "not satistied® to *gatisfied” 1in svltcl s,,.

4,2 Description of a Switch

Before giving & formal specification of the sets ¥
and E wve vill describe the structure of a switch.
Each switch will consist of the vertices and edges
given in Figure 3. Note that the coordipates are
given relative to Ey as the origin. In Pigure 414s 8
pictorial representation of a svitch. An enlarged
;tev otsthe center portioa of & switch is showmn ia

gure 3.

Various vertices of each switch are classified as
follows:
Frame _vertices:
Ep‘p‘;-‘pl.&ll.J.l-“-l-’.Q:los
Teraipals: Aqohp By By Cy Coe Dys 9,
Matched pair of terninals: Ay and Ay By and By
Cy ud Cx» Dy and Dy

.




Pigure 3: Switch Specificatioas

Bach swvitch consists of the folloviag vertices. The coordimates of each vertsx ¢
are given relative to &,. A
A
l‘ L J 33 .'./2:
(0, 100) (37, 100) (63,100) (100, 100) 2
N s 2 1 &
€0, 63) Q7,63) €63, 63) (100, 63) ’
A ®
wén  oyin #
B c ¥
2 1 £
(43,53) 7,53 3
c, >
D, A "
42, 43) (53, 43)
N ? Q B S
©,3n a7,3n 63,3n (100,37) -
5, P c 5, ‘
(0, 0) 7,0 (63,0) (100, 0)

"Bach switch consists of the following edges:

Frase Edges: E,F, E\N, F?, FN, NP, B,G, BoH, GH, 6Q, HQ,
E3l, ByJ, 1J, IR, JR, E,L, EM, LK LS, NS

m-frrne_ Edges: FR, G5, BN, HS, IN, IP, JP, 1Q, WQ, MR,
Al Aiq. Aiﬂ, All, Aicl. A Az' AIS. Ax'zg A1C2. Albz. A1’. Al,’
346, B4Q, ByH, Byl, ByR, Bil, ByDy, ByAy ByM, B4Cy B4N, ByDy, B4P, BN,
C1Q CyH, CiI, CR CyJ, Cil, CyS, C4h, CoM, CyB,, c,r'x. ) c,}.
D4R, Dyl, DR, DyJ, D4L, DyS, DyAy 5,5;. b,cz. Ds?, DyD,,
AQ AR Axd, AoL, AgS, A, AN, AxCy
B, Byl, Bk, B3, Bl BjS, B, BN, DY, 3G, ByDy
c35, y €6

€ G, Gl €3, €5, T4 Ch, Gy, Cof, C
6 130 B o B e, F
When it 1is appropriate we vill su gncrlpt the 1. Bach swvitch s“, contains a special vertex,
vertices of & svitch. For exasple, N*J is vertex N 1 -
1o switch Sy, Note that each svitch is symsetric ia TV, with coordiaates (0, "{?‘:5}’;}5?)’
structure vul respect to the 1ines x = S0 and y = 50 and the edges (T°7)x(M™7, N7, A%%,

(the linmes relative to E;). The notatioms AB and

‘ 1al ve!
TA.B] will sach be used to refer to an edge vhose 2. Bach svitch Sy, comtaias & spec rtex,

, o:dpoln:t are v:rt:::s 3‘;-4 % If Q ‘:': ) mf.:lz: uit, vtt:lmu:l‘ut‘c‘a “:”‘x“’f“it” and the
of vertices ia n represents set o cil all git cil plly
edges {q,7) such that q 13 i Qesd r is da R edges (U )x(F, 'i'i's'

3. Bach svitch s.,. contains a special vertex,

. lcation of tho Sets ¥ ' V0), with coordinates (1004, 100-(J-1)+50) aad
4.3.] The Basics the edges (Vhyx®), 18),cP, 03 '
As previously stated, our comstructioa coasists of 4. Bach svitch Sy, coataias a special vertex,

a rectangular array of svitches with one switch §; WiK, with coordinates (100-(1-1)+50, 100

for sach variable x4, clause C, pair. Adjacen 1k 1k 1% ik aik o3k ik
svitches 1n this metvork vill coiacide om appropriste and the edges (WNxaik, 1%, K, 8%, cf ,0}%)
frame vertices. Vertéx §; of switch Su vill bave 1s defined to be & set comsistimg of the

The fra
coordimates (100-(1-1), 100-(-1)). each as well as ..
To issure that the comvex hull of ¥ is 1a B ve IR CESC °% O vors VBICh has & frase vortex as
sodify the svitches in the outermost rows and columns one endpoiat asd a special vertex as the other

of the metwork. These svitches will be ideatical to
tche endpoint. Ve mote that mo edge with & teraminal as aa
regular swi s except they will have ose additjonal endpoint is iacluded im the frase.

vertex (called a ecial vertex) amd several
agdditional sdges. i'i'ou iii%[ﬂ svitches are
specified as follows: :
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Higure 4 A Switch

(7]
-]

,".

B F ¢

The eight unlabeled vertices ia the ceater portioas of tbe switch are the
tersinals. Figures 3 and S shov the labsls of these verticss.
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Figure S: an snlarged viev of the center portion of a switch




4.3.2 The Interswitch Bdges

Io addition to the edges
are edges in E vhose endpoints lie
svitches. These edges vill be called iate switch
tcd_;g_g. Only terminals vill be endpoints of
ntersvitch edges and these edges will 1ie only
between adjacent svitches. It will be shown later
that betwveen any (horizontally or vertically)
adjacent palr of switches, exactly one interswitch
edge will be preseant in any triangulation of V.
intuitively, the chosen edge will carry inforsation
from one switch to the other. ;

vitbin each switch there
in different

Vertical intersvitch edges are specified as follows:
For each § and ] pair, with 1<i<n and 1<3¢k, _the
following edges are placed in E

A, cihxal ek I e
(;p' plxl)x(nin Jo1, ns' L2 Y

Intuitively, these edges will carry the vertical
flowing information about the truth values of the
varisbles, wvith the A-C edges carrying egglse” and
the B-D edges carrying *true”.

The horizontal interswitch sdges between two adjacent
switches su and 5101. [ will vary depending on the

pature of switch su. For this reason ve classity
each switch as being one of three possible types:

543 is a peutral switch if x,cc, and i‘cc’

e ——

SU is a positive svitch if x‘ccj
Syy s 8 negative svitch if ii‘cj
Horizontal {ntersvwitch edges may be specified as

follows:
1. For each i and § pair, with 1<icn and 1€J<k,
such that SU is a neutral switch the folloving

edges are placed in B

o), sfhxaa i d stk d) ant
s, ofyxeched 4ot D e
We define terminals Ag and By to be Cl;'gge-!q:e
and terainals C4 and Dy to be Clsuse-true in &

Clause-tiuT
peutral switch. intuitively , these intersvitch

edges and the edges specified below, will carty
“the horizontal flowing {nforsation about the
clauses, vith edges vith a Clause-false endpoint
carrying *not satisfied® and edges with a Clause-
true endpoint carrying wgatisfied.”

2. Por each i and j pair, with 1$icn and 1535k,
such that Sg4 13 & positive svitch the following
edges are pliced in B

(A%,’)X (A%‘l' j, 3%’1- J) and
(‘P' Ci’- 0{’):(«:5"- ’, ns"o )

we define terainpal Ay toO be Clause-false snd
terminals B4, Cy and h to be Clasuse-true in 8
positive switch.

3. For each i and ) pair, with 1i¢«n and 1<)<k,
such that §y 1s a negative svitch the folloving

edges are placed in B
aihxayeh i sl aa

wil,c), oihixccild, ol b d)
Ve defipe terminal By

terainals Al' c‘ and D‘
negative svitch.

to be Clause-false and
to be Clause-true in 8
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This sesns that

Additionally, based on the type
or neutral) of each switch s,,.

are included in s,,:

1. Por each §, vith 1)<k, such that s,, is &
positive switch, edge v, 83) 1s placed 1o B

(positive, negative
the folloving edges

2. Por each j, vith 1$J<k, such that Su is &
pegative svitch, edge N".A‘{’l is placed in E

N

Set V contains all frame vertices, terminals and
special vertices of each switch in the network.

Set B contains all of the edges of each switch in
the netvork, as wvell as the jatersvitch edges as
specified in the previous section. We nmote that the
frame is included in t and that mo edge in E properly
intersects any edge of the frase. This means that
any triangulation of V sust contain all of the edges
in the frase.

Finally, we mote that the construction can be done
in time polynomial inn and k. There are sk svitches
in the network. Bach svitch may be constructed in &
constant amount of time. {ntersvitch edges exist
only between adjacent pairs of svitches. There are
O(n-k) such pairs. ‘The vertical intersvitch edges
are the same for each adjacent pair of switches,
hence, they can be constructed in constant time for
any given pair. The horizontal intersvwitch edges for
any pair of adjacent switches depend only on the type
of the left switch in the pair and, hence, cab be
constructed in constant time for amy given pair of
switches. Thus, the sets V and E can be constructed
in timse 0(nK).

4.4 Proof that 8 solution to TRI yields a solution to

In this section we assuse that T 1s a subset of E
and is a triangulation of V. Ve show that there is a
truth assignsent to the variables Zgseec0Xp such that
esch clause C,.....Ck is satisfied. This truth

assigoment will be obtained fros T.
4.4.1 Preliminaries

PRI SR AR

As stated earlier tbe framse sust be included in T.
the non-frame edges in T must:

1. Complete the triangulation of each svwitch in
the netvork.

2. Connect the switches ‘together in & manner wvhich -

triangulates V.

As we shall show, T sust fulfill these conditions
with a very particular structure.

A terainal, e, i switch 81 is defined to be
BEast-connected 1n triangulation T if and only 1f
There exists an edge e# in T such that «f properly
jntersects edge [ §1 ’.II“]. Now consider edge
(l“.!”l. Since this edge is not in E, hence not i1
T, thers must be an edge in T which properly
intersects [l‘ .ll”l. By our construction, each such
edge has & terninal of Sgq 83 AR endpoint. This
seans that there aust be at least one East-connected
terainal per switch in any triangulation of v.
Similarly, ve can deflne and imply the existence of

at least one Vest-connected, one North-connected and
one South-conmected terainal per svitch in any

trunguiauon of V. A connected terainal is &
terainal that is at least ‘one O st-connected,
Vest-connected, North-connected oOT Soutb-connected.

In the proof of the switch triangulatiea theoren

we will make use of the folloving property of
triangulations:

P

. N
N t
|
|
!




If edge Y172 is in triangulation T and is not on
the convex hull of V, then Y4Y3 is an edge in the
boundary between two of the triangular faces of the
straight-line planar graph determined by Vaod T (one
face in each half-plane as determined by the line
through Yy and y5).

This property will be used in the following proof
as follows: In general, there will be an edge Y372
in T and a specified balf-plane. Consider the set of
vertices, P, such thet for each vertex v in P:

1. v lies fin the specified half-plane.

2. Edges yy¥ and y,v are io E

3. No other vertex of V lies on, or faterior to,
triangle YYav. .

If there is only one vertex ¥, in P, then edge 7172
in T forces edges yyv and yov to be in T by the
property of triangulations stated above. This is
denoted by Y1Y2 * TyT¥.

If there are two vertices, z; and z,, in P then we
will use the following notation:

Y47, = choice
L.y

2. ny7a2;

Typically, the first choice of Y1224 vill lead to &
situation where an edge r is forced to be in T and
yet there is already an edge s in T such that rand s
properly intersect. Such a contradiction will be
denoted "# to s". In the proof in the next section

an edge is said to be fuullz enumerated 1f 1t
doesn't lead to a contradiction 1 placed in T. It
may be that IP| > 2 and no vertex in P leads to '
contradiction, but, that there exists a vertex 73 0
V such that for each v in P, Yi¥ - yyvyy.
Intuitively, edge Y172 1o T forces edge yq7y lato T
but the “"force" requires two steps. In this case we
vrite yoy, 4 Y473 cre

[

4.4.2 The Svitch Triangulation Theores .y

Theorea i: Given any triangulation of V there are
exactly two comnected terminals in each switch and,
furthersore, for sach switch those two termimals are
a satched pair of teraimals.

Proof -

Consider any triangulation T, of V, and amy switch
s“ in the metwork. At least one terminal of S 3 is
Ea3t-connected. Ouly terminals Ay 'l' Cy and p 1a
SU Bay be Eazst-connected.

Sase 1: Suppose terainal ‘l is Bast-connected in le‘
Then there 1s a vertex Z in V such that A.Z is 12°’T
snd A,z properly intersects lime segmeat {H of S‘i.

3y our coastructioe Z 1s ome of A}”' ’. l&"' »

:i"" or DS“" 1t caoris V) 124 u g Then,
ta Su.

342 =~ AZR
\H « AJHQ
142 =+ Ag21
yql < AgIP ¢
ylP < AgPP
234

A1Q and AJF force AG

IP « IPB,
P8y « PByD,
I8, + choice
L. IBgR
ByR < B,RF # to PB,
2 IyC,
8,C; + choice
1. B,CH # to PB,
2 3,CoN
BN + ByND,
ND, + ND,P
IC; « IC,N
IN « INC,
L R NC,B,
CyB, < choice
1. C\B.M
CiM + CyMA,

CiAy + CyAsS

CyS = C4SH & to Al
2 Cg3,1

Byl - ByID,

B,0; «+ B,0,2

ByR « B RN

BN < BNA,

RAy « Ay

AN A

AM = Aps

A;S and AyJ force AL

a1t Aq 1s Bast-comnscted thenm A‘ is South-
connected and A; is North-conmected and West-
Connected. FPurthermore, A; and A, are the only
connected terminals ia Su.

Becauss of the si-etrlos of the svitch we also have:

1. 1t Dy is Rast-comnected thea '1 is North-
connected and bz 13 South-consected and Vest-
connected.

2 It A; is Vest-commected thea A 1s North-
connected and Aq 13 South-connec and Bast-
connected.

3 It D; 1s Vest-commected thea D; is South-

connected and Dy 13 North-comnected ead Bast-
coanected.



Furthersors, im sach of the above three cases, the
terninals in the matched pair of conpected tersinals
are the only conmected terainals 1o sll‘

The non-intersvitch edges wvhich are finally
enuserated in the above proof (along with the frame
edges of Sy ) coastitute a triangulation of Su.

Tnis triangulation 1s called an A-tri ulation add
is pictured in Figure 6. In an A-triangulation ve say
that tersinal Aq is East-exposed and s_outh-exposed

and terminal ‘2 is Vest-exposed and North-exposed.
Anslogously, correspondiag to Dy and Dy being the
connected terminals of SU' there 1s a set of mon-

intersvitch edges called & p-triangulation. This
triangulation is shown in Figure /. n & D-
trisngulation terminal Dy is East-exposed and North-

exposed and tersinal B, ts VWest-exposed and South-
exposed.

Case 2: Suppose terminal By is East-connected 1n SU.
Then there is & vertex 2 ia V such that 8,2 s 10T
and B2 properly intersects line segnent 1H of sti.

’

pecause of our comstruction Z is ome of Al

pi*ded, ci*hd or pj*1) 12 1ca or 1s V) 1t ten.
Then, in svitch su. ByZ By2Zl. Now comsider vhich
terminal 1is West-connscted 11 SU' Ffrom case 1,
since By is East-coanected 1t caunot be Ay or Dy.
Suppose it is Ca. Then czu and Czll sust be 12 T.
Then,

CM - cholce
1. CMBy
MB; - MB,H # to Kl
2. Cis
C,S « €56
By1 - choice
1. B4IC, ,e
IC;» ICN # T cHM “
2,z
B4R < B0F & to .SG

= Cy 1s mot Vest-commected, hemce, B3 is Vest-
connected.

Nov, 1a switch Sy4
3,2 3421
32y
341 » choice
1. }IC
1Cy » ICN
CoN + choice
1 ce
C,? « choice

L C;P0, # 10 1C;
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2. C,PF

C,F 3 C6

C,6 « €65 # to 1C;
2. Ny

NBy + NBsD;
3,0y + ByDP
B, < ByPL # to ByH
2. Ik
B,R « ByRF
B,F 4 3,6
B,G + 3R

& By is the only East-connected and the only South-
connected terminal.

Furthersmore, since B, {s West-connected, by the
sysmetries of the switch, analogously to the above,
we can shov that B, is the only VWest-connected and
the only North-connected terminal. This shows that
pon-frame edges B, B,S, B,L, 8, BoN, B, and PJ
are also in T. All that resains is to shov that the
region bordered by the vertices P, J, R and F can
indeed be triangulated. This can be done with edges
3B, JCyp 7] Cahp Ay, AgDg, Dy4J, D4R, D402 D,R,
D,Cqs ity CyF, Cyhys AqF, AgDy D,P, PR, DM, DyP

OO § 38 71 1s Bast-connected then By is South-
connected and By ts North-connected and VWest-
conpected. Furthersore, ‘1 and B, are the oaly
copnected terainsls in Su.

The mon-imterswitch sdges which are finally
enuserated in the proof of case 2 (slong with the
frame edges of su) constitute & p-triangulation.
This triangulation is shown in Figure g. In a B-
triangulatios, terainsl B, is Rast-exposed and South~
exposed and tersinal B, i3 West-exposed and North-
exposed.

Because of the symmetry of the svitch ve also
bave: 1f Cg is Bast-copaected then Cy is North-
connected and C; 1s Vest-connected and South-
copnected. Furthermore, Cy and C, the only connected
terainals 1a su. Correspondingly, there is a set of
non-intersvitch edges called & gitﬂugulat;on. Thi
trisngulation 1is shova 18- . Ia 8 C~-
triangulation, terainal C, is Bast-exposed and North-
exposed and terainal C; 18 VWest-exposed aad South-
exposed. )

s Given any triangulation of ¥ there are oxactly tvo
conpected terainals per switch and they are & satched
palr of terainals. : Q

The folloving corollary follows immediatsly from
the above theoream apd our sarlier ressrks sbout the
non-frame edges ia T

Corollary 1: If S, and §; are adjacent svitches i
the network and T is a triangulation of ¥, then there
is exactly ome {ntersvitch edge in T vbose endpoints
arc a teraisal 1z S; and & teraisal 18 Sy




Rigure 6: The A-trisagulation

The edges in an A-triengulation sre:

Bach
AP,
B,1,
I,
01,
A,
B2
C,l,
BN,

frane edge,

A, MG, AQ, A, AL
BiCx ByN, By0, B,2,
Cy8y CyN,

D4R, DyB,,

Axdy Agl AgS, At AgK,
BN, B,1,

)

D,P,

1P, N2, IN

Figure 72:

The D-triangulation

The edges in a D-trisngulation are:
Each frame edge,
AQ AE, MGy,
B, 3yM, B.Cp -
Cif ;S CM, Cihp CyB,,
D4R, D41, DR, Dyd, D4l DS,
AgS, AN,
BN, BN,
CM CQ CN,
D4 D% D, DR, DG, DR,
ES, W, WL

L
E,
H
M
A —0m >
' —
P
Ey F
5, L
T,
S
DZ \.,
P
By o - F
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v Figure & The B-triangulation

The edges in & B-triangulation are:
Bach frase edge,
AP, A1Cyo AgD2,
B,F, B4G, B,Q, ByH, B4l B4R,
CyF, CqRy CyDa _
D4R, DyJ, DyAz DyCp DyP, DyD
Ay ACy
B3, Byl, ByS, B BN, BoR,
Cy3, CoPy
DR, D?, DoF,
m, Jr.

Figure 9: The C-triangulation

The edges im a C-triangulation are:
Bach frame edge,
MG AgQ Aghy AgS, AgBy ADp
3,Q Byl, 3405, ByAp
C1Q Cyf, Cyl, Cib Cydy Cils
Dyly DyAp
ALy AgS: AQ
B;S, 36 B0y
€25 S G, Ch CoF, G
D%
es, Q.

T L
S
M
32-—————>
N
—7]
! r
— L
By
S
"
Cp —m—m >
T ¥
|5
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4.4.3 The Main Result

In the specifications of imtersvitch edges ve
defined various termizals to be Clause-true and
Clause-false. For convenience, those definitions are
restated here:

4.5 Proof that & solution to CNP-Satisflabil
ylelds a _solution to IRl :

Assume that lll.....ln is a truth assignment to
XqseoesXy SUCh that each of the clauses Cpoeeery 18
satisfied. We will show that there is a subset T, of
B, such that the edges in T triangulate ¥. Initially

{ In a neutral switch, tersinals A; and B, are ::,“gte; lt::tln.; t::;“‘l;.r ::::::ﬂ'lltl :f&d‘t::c:':?l{
-]
Clause-false and tersinals Cy and Dy are Clause- triangulation of V. It is clear that T need oaly
true. include:
In & positive swvitch, termimal A is Clause-false 1. The edges in the frame. -
and tersinals By, C; and Dy are Clause-true.
2. The edges in a triangulation of each switch ia
In a negative svitch, teraimal By is Clause-false the network. That is, for each switch, the edges
and terminals A,, C; and D; are Clause-true. in either an A, B, C or D-triangulation.
The following three lessas are useful im proving the 3. For each adjaceat pair of svitches an edge .
main result and follov directly from our . vhose endpoints are the appropriate exposed
constructions, Theorea 1 and Corollary 1: tersainals of those switches. (The exposed
e terminals having been determined by the
e Lemna 1: In any given triangulation of V, for each i, triangulations specified in 2.)
9@,@4«(6 of 1 <1 < 8, either the connected terminals are B's
ok and D's for all 544, OT the connected terminals are 4. For each special vertex in V, an edge vhose
vu"}” L endpoints are the special vertex and the

YeneS A's and C's for all Sip 1S3 Sk

yo EWY asppropriate exposed terminal of the switch in

1

mma 2: In any given triangulation of V, the West-
connected terminal in each switch su is A}’ or ly
and the East-connected terminal in each switch s., is
Clause-true, for 1 < J < k.

ans 3: In any given triangulation of V, for each J,
< ) < k, there exists an 1, vith 1 < 1 { 0, such
that the Esast-connected terainal of Su is either A;

or 31 and it is Clause-true.

Nov consider the following truth assignseats to the
variadles L STRRTTR #4)

Xy is true if the South-connected terminal in S;4
is By or D

x; is false 1f the South-connected teraminal im Sg4
is Al or Cz.

Theoren 2: For each J, 1 S §J S k, the clause € 1s
satisfied by this truth assigament to the -variables.

Proof A

Consider any jJ such that 1 < J < k. By Lemma 3,
there is an i such that the East-conpected terainal
of Syy is either A; or 3y and 1t is Clause-true.

Case ]: The connected terminal is B;. Since it s
Clause-true this sust be & positive switch, so x; is
ia C;. But thea By is the South-connected teraimal
ndayl.c-nt. the South-consected teraimal of S;4
is 'l or Thea by our assignsent x; is true and 3
1s satisfied.

Case 2: The coanected tersimal is Ay. Simce it 1is
Clause-true this must be a megative svitch, so X; is
iz C4. But thea A, is the South-coanected terainal
and lemma 1, the South-comnected terminal of Sg4
1s Aq or Co. Then, by our assignmeat x; is false and
C, is satisfied. (=]

Therefore, from a triangulatioa T, of V, with T a
subset of &, we have obtajned a truth assigameat to
the variables x4, ... such that each of the

clauses Cyy ..o Cy s satistied. OK

P
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which the special vertex is located.

The resainder of this section is devoted to
specifying a set of edges vhich meets the above
requirements. Initially we place the frame in T and
again note that no edgs iz B properly intersects aay
edge in the frame. The frame edges thus preseat no
further difficulty. :

4.5.1 The Triangulation of Each Switch

For each clause, c,. ve define W, to be the least 1
such that x; is in C, or X, is {n Cy and the truth
assigneent of Hy to x; causes C; to be satisfied.
Then, swvitch su is triangulated {n T as follows:

Por i £ H,. if Hy is true
then Si is B-triangulated

else §;) is A-triangulated. <& (RRT AT

’Ol")". if Hl is true R
then su is D-triangulated
slse su is C-triangulated.

The exposed termimals of a switch are deteraired by
the triangulation specified for that switch. .

4. 5.2 Interswitch Edges in T

ores 3: For each { and j pair, with 1 S § < » and
; < J < k-1, there is an edge 1z’ B whose endpoimts
are tbe North-exposed termimal of su and the South-

exposed terainal of Sy 4.4.

Proof

The result follows directly fros our comstruction of
vertical interswitch edges and the specifications
given above for the triangulations of uclq svgch.

Theoren 4: For each | and ) pair, vith 1 < {1 < n-1
udisisk. there is an edge in E vhose endpoints
are the East-exposed terminal of Su and the Vest-

exposed teraisal of sl‘,x' (5

Proof

Consider any 1 asd J palr such that 1 S & < a-1 and
1)<k .

AN



Case 1: 1> ¥ ]
Because { > ‘j' the East-exposed terainal of SU

is either Ci’ or D}’ and the Vest-exposed terainal
of Sy,q 4 1s either c§’1-5 or D%’l' J. But, by our
1ntersv\{ch edge sjpectﬁutlons each of the four
eages: (e}, cil 0y, il ofthdy, mpd,chth i,
and 0}, 031 s 0 E

Case 2: 1 = \ij

Subcase 1: The East-exposed terainal of S“ is Bi’.
By the definition of W this svitch is either a

positive or negative sv tch. Assume that it is a-

negative switch, bence X; is in €. put since

l{j is the East-exposed terminal, ll is true.
This contradicts the definition of VW,.
Therefore, this is a positive switch. Since f{+1
» W, the West-exposed terminal of Sy,q y 18
either C%’l'j or D%“' 3. put, by our inmterswitch
edge specifications both of the edges
), ci* 19} ans o), 0i*h )1 are 0 B

Subcase 2: The East-ezposed terminal of Sy4 1 A}j.
Similarly to subcase 1 we can shovw that {Ms is a
negative svitch and that the desired edge oxists
fn B

Case 3: 1« H’
Subcase 1: The East-exposed terminal of su is Bi’.

Subcase &: Switch Sy is a npeutral switch.
Because 1¢1 £ H,. the West-exposed terminal of

Syeq,y 18 either A}“" or B}"". By the
interswitch specifications both of the edges
ol), al*b)) e i), 04001 are 0 B

Subcase b: Switch S, 1s a positive switch.
15

This means that x; 1s in C,. Because li’ is
the h;t-exposed tersinal of sl , the truth
value of H; 1s true. But this means that C; is
satisfied by the assignment of B, to X,. 1s
1s a contradiction of the detlhtlon of Hj.
Hence, su is not a positive switch.

Subcase c: Switch su is a npegative svitch.
Because i1 < vj. the West-exposed terminal of

Sy.q, 9 15 etther Aj*h) or picl ). But, by our
interswitch edge specifications involving su.
a negative svitch, each of the edges:

o), Ai*h)) s o}), si*hh s

Subcase 2: The East-exposed terminal of Sy4 13 Al
The proof is anslogous to that of subcasé 1, vith
the roles of subcases b and ¢ reversed.

Hence, for each pair of adjacest svitches there is an
edge in E vhose endpoints are the appropriate exposed
terainals of those switches. Bach of these edges 1is
placed into T.

4.5.3 Additiona] Special Switch Edges in T

Theorea S: For each specisl vertex is v
edge in b whose endpoints sre the special
the appropriste exposed terainsl of the
which the special vertex is located.

there is an
vertex and

svitch in
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Proot

Case 1: The special vertex is vil vith1 < § Sk

Subcase 1: n > HJ

Because 0 > H’, the Bast-exposed terainal of Sn,
is either C"" or D2J. By our basic specifications
of special svitches each of the edges [V“J,Cf’l

and (V“’.n'{’l is in E. Thus, vhichever terainal 1is
East-exposed in Sn, the desired edge is in E.

Subcase 2: n-= H,

Subcase a: The East-exposed terainal of switch Su

1s l‘l’j. Then, from case 2 of the proof of Theorea
4, this is a positive switch. But by our
additional edge specifications im section 4.3.2,
the edge [V®J, l'l"l is tn E

Subcase b: The East-exposed terminal of switch S“

is ADJ. Them, from case 2 of the proof of Theorem
4, this is a negative switch. But by our
additional edge specifications im section 4.3.2,
the edge (v0,A})] is tn E.

Case 2: The special vertex is Uu. wik o TH, 1t
follows directly from our basic specifications of
special switches that the desired edge is im E.

a

Hence, for each special vertex im V there is an edge
in E whose endpoints are the special vertex and the
appropriate exposed terminal of the switch that the
special vertex 1s a part of. Each of these edges is
placed in T.

We have now specified a set of edges T, which is &
subset of E and vhich satisfies the four requirements
given as being sufficient for a triangulation of V.
Hence, the set T is & triangulation of V.

This completes the proof that CNE-Satisfiability
is polynomially reducible to TRI. .

4.6 Finishing Up
Theorem 6: TRI is NP-Complete.

Proof

In the first S subsections of this section we have
shown that CNF--Satisflsbility, & known NP-Complete
probles, is polynomially reducible to TRI. All that
resains to shov is that TRI is im KP. Consider an
instance of TRI as specified by the sets ¥ and B Ve
knov that a set T 1s & triangulation of ¥ if and only
1f the following two properties hold for T:

1. No two edges in T properly intersect.

2. For every edge, 8, whose eadpoints are vertices
of V, either ¢ is ia T or ¢ properly intersects
some edge 10 T.

Bence, given the sets ¥ and E, ve non-
detersinistically choose the set T aad then verify
that these two properties bold. To test for property
1 requires tise O(I‘l‘lz) and testiag for property 2
sy be dose 1n time OCIVI®ITI). Therefors, TRI is 18
NP and hence, TRI is NP-Complete. o

S. Conclusion

Ve have shown that TRI is NP-Complete. The major
open question is to resolve the status of MVWI.
Consider the two Hamjltomian circuit problens and the




two spanning tree problems corresponding to these two
triangulation problems. Both of the correspoading
Bamiltonian circuit problems (that is, the prodblem of
existence given some of the edges and the prodbles of
ainimum veight given all of the edges) are NP-
Complete. In comparison, there are efficient
algorithas for both of the spanning tree problenms.
Glven that TRI is NP-Complete, we conjecture that MWT
is also NP-Complete (actually, NP-Hard as we have
stated it).
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