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Abstract

Gonzalez-Vega, L. and H. Lombardi, A Real Nullstellensatz and Positivstellensatz for the
semipolynomials over an ordered field, Journal of Pure and Applied Algebra 90 (1993) 167-188.

Let K be an ordered field and R its real closure. A semipolynomial will be defined as a function from
R” to R obtained by composition of polynomial functions and the absolute value. Every
semipolynomial can be defined as a straight-line program containing only instructions with the
following type: “polynomial”, “absolute value”, “max™ and “min” and such a program will be called
a semipolynomial expression. It will be proved, using the ordinary Real Positivstellensatz, a general
Real Positivstellensatz concerning the semipolynomial expressions. Using this semipolynomial
version for the Real Positivstellensatz we shall get as consequences a continu>us and rational
solution for the 17th Hilbert problem, rational and continuous versions for several cases in the Real
Positivstellensatz and constructive proofs for several theorems concerning the algebra over the real
numbers.

1. Introduction

This work can be considered as the natural continuation of [21] and we assume that
the reader knows the results contained in such paper. With respect to [21], [19] and
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[22] this work contains an idea really original, to use in an explicit way the difference
between a function and the program computing such function. Working with poly-
nomials this difference is not really important but dealing with semipolynomial
functions, those obtained composing polynomials with the functions absolute value
and/or max and min, becomes crucial. In fact, there are at least three different ways for
a semipolynomial ¢ to be null:

(1) the semipolynomial ¢ is the null function over any ordered extension of K, but
in general this is not easy to be determined (nevertheless for the polynomial case it
is enough to write in reduced form the formal polynomial defining the function
considered),

(2) the semipolynomial ¢ is defined by a straight-line program such that for all the
a priori possible cases concerning the instructions absolute value, max and min
provides an identically zero polynomial,

(3) the semipolynomial ¢ is identically zero in a way that will be precised later.

The second way for a semipolynomial to be null which is stronger than the first one
and the third one which is stronger than the second one, are applied only to the
programs and this will be the key which will allow us to formulate the Real
Positivstellensatz for the semipolynomials.

This Positivstellensatz is included in a general research program looking for
similar theorems for every first-order formal theory with explicit quantifier
elimination. In this setting a weak Nullstellensatz is a theorem saying that every
incompatible system of equalities is related with an algebraic identity making this
incompatibility evident without using the existential axioms in the theory con-
sidered. Moreover, a “general” Nullstellensatz, in this setting, must achieve the
same objectives for every incompatible system of “atomic relations” in the theory.
If, in the future, this general research program is accomplished we shall have
obtained that all the formal proofs of incompatibility between atomic relations
(which are universal theorems in the theory considered) can be transformed in
an automatic way into proofs without using the existential axioms of the theory
and moreover these proofs will be reduced to the construction of algebraic
identities.

In our case the theory considered is the one concerning the real closed fields where
we shall introduce the symbols for the functions absolute value, max and min. In this
context, it is not possible to reduce the equality between two terms, as in the ordinary
theory for real closed fields, to the equality of a polynomial to zero, it will be reduced
to the equality of a semipolynomial expression to zero.

The search of a Positivstellensatz in the semipolynomial case has been motivated by
the rational and continuous solution for the 17th Hilbert problem and has provided
a reduced solution (independent of the problem considered here) for this problem that
can be founded in [12]. As a by-product of the Positivstellensatz for the
semipolynomials we get a parameterized version for the 17th Hilbert problem and for
several instances of Positivstellensatz. Namely, the theorems we prove in Sections
4 and 5, in reduced version, are the following ones.



A Real Nullstellensatz and Positivstellensatz 169

Theorem 4.1. Let f, 4 be the general polynomial of degree d and n variatles and F, ; the
semialgebraic set defined by

celb,, < VxeR"f,  (c,x)>0.

Then f, 4 can be written as a weighted sum of squares of rational functions

. j ’ X 2
Jna(€:X) =3 pj(c) (%)

J

(for all ce R™), where

- kic,X) and the q;(c, X) are polynomials in the variables X whose coefficients are
Q-semipolynomials in the coefficients ¢. Moreover, if ¢c€F, 4, then k(c, X) vanishes
only on the zeros of f, 4(c, X), and
each pj(e) is a Q-semipolynomial which is nonnegative on [, 4. Moreover, under the
hypothesis ceF, 4, the nonnegativity of pj(c) is “clearly” evident.

Theorem 5.1. Let H(c, X) be a system of generalized sign conditions on polynomials in
K[c, X1, where the X;’s are considered as variables and the c;'s as parameters. If Sy is
the semialgebraic set defined by

ceSy <=  VYxeR" Hle, x) is incompatible

and Sy is locally closed, then (Finiteness Theorem) there exist H (¢) and H,(c)
K-semipolynomials such that

ceSy <= [Hi(e) =0, H,(c) >0].

If ceSyy then the incompatibility of H(X) = H(c, X) inside R" is made obvious by an
algebraic identity with coefficients given by semipolynomials in c.

This paper has been written with the point of view of a constructive mathematician.
Anyway it can be read as a paper in classical mathematics where all the proofs are
effective, in particular without using the Axiom of Choice, providing primitive
recursive algorithms (in case of discrete primitive recursive real closed fields, see [23])
or uniformly primitive recursive (in case the structure of coefficient field is given by an
oracle giving the sign of any polynomial with integer coefficients evaluated in the
coefficients of the problem).

In the part devoted to the constructive algebra for the real numbers “a la Cauchy”,
the proof of a theorem provides a uniformly primitive recursive algorithm, where the
uniformity is understood with respect to the oracles giving the rational approximation
desired for the real numbers “a la Cauchy” appearing in the hypothesis of the problem.

A brief history of Hilbert’s 17th Problem

Hilbert’s 17th Problem was introduced by D. Hilbert in 1901 (see [16]) and first
solved. in a more general version than the one posed by D. Hilbert, by 13. Artin in 1927
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{see [1]). Artin’s proof was strongly non-constructive (for example, use of Zorn’s
Lemma). Several attempts were made trying to get a constructive solution to Hilbert’s
17th Problem. G. Kreisel in 1957 (see [17]) gave a sketch of a proof which was
completed by D.E. Daykin in 1961 (see [4]). Independently, A. Robinson (see [27, 28])
got a constructive solution with (by definition total) general recursive bounds. These
authors also expressed the weights and coefficients of the rational functions as
Z-piecewise-polynomial functions of e. This kind of proofs work only for the case
when the coefficient field has an explicit sign test (which is not the case for R).
C.N. Delzell (see [6]) in 1980 solved the problem partially for the case of R. For other
commentaries on constructivity of solutions see [11, 12, 20].

Moreover, in [6] was proved that the coefficients of the solution (the p;(c)
and the coefficients of the g;(c, X) and k(c, X) in Theorem 4.1) could be choosen
as Q-semialgebraic continuous functions of the parameters of the problem (the c).
A natural question arises in this point: can the coefficients of the solution be
chosen as polynomials in the parameters, ¢, of the problem? The negative answer
to this question when d > 4 can be found in [5] and also in [9] or [18] where it is
proved that it is impossible to find even an analytically varying representation of the
solution.

After all these negative answers, the remaining question is to ask if it is possible
to mmprove in some way the functions appearing in the solution to Hilbert’s
17th Problem. The first (and possible the best one) answer to this question was
announced in 1988 by Delzell (see [8] or [11]): the coefficients in the solution can be
chosen as Q-semipolynomials. This answer provides also a rational solution because
the coefficient functions of the solution can be considered as functions from K" to
K while in the solution introduced in [6] this was only possible with K a real closed
field.

The authors re-discovered independently the same result in 1991 and this motivated
a joint paper [12], concerning Hilbert’s 17th Problem where the solution was derived
without using the semipolynomial Positivstellensatz. The proof announced by Delzell
in [8] can be found in [11]. Such proof is derived from an abstract Positivstellensatz
for the real spectrum of a ring.

2. Definitions

Firstly we recall the definitions of strong incompatibility and the general form for
the Real Nullstellensatz in the polynomial case (see [21, 22]). We consider an ordered
field K, and X denotes a list of variables X, X, . .., X,. We then denote by K[X] the
ring K[ X, X,,...,X,]. If Fis a finite subset of K[X], we let F*? be the set of
squares of elements in F, .#(F) be the multiplicative monoid generated by F L {1}.
€ F) is the positive cone generated by F (the additive monoid generated by elements
of type p- P- Q? where p is positive in K, P is in .# (F), Q is in K[X]). Finally, let I(F)
be the ideal generated by F.
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Definition 2.1. Consider four finite subsets of K[X]: F., F,, F_, F, containing
polynomials for which we want respectively the sign conditions >0, >0, =0, # 0:
wesay that ¥ = [F.; F,; F_; F_]is strongly incompatible in K if we have in K[X] an
equality of the following type:

S+P+Z=0 with Se#(F. UF*?), Pebu(Fs UF.), Zel(F_).
Itis clear that a strong incompatibility is a very strong form of incompatibility. In
particular, it implies it is impossible to give the indicated signs to the polynomials, in
any ordered extension of K. If one considers the real closure R or K, the previous
impossibility is testable by Hérmander’s algorithm, for example.

Notation 2.2. We use the following notation for a strong incompatibility:

L[S, >0, ..., Si>0,P,>0,....P,>0,

Zy=0,...,Z,=0,N, #0,...,N,#0]|
or.denoting by H(X, . . ., X,) the system of generalized sign conditions considered:
VHX . X))
Remark that we use the same notation as in [22] instead of (as in [21] or [19])
HHX .. ... X,) = 1=0)*

The different variants of the real Positivstellensatz are consequences of the follow-
ing general theorem:

Theorem 2.3. Let K be an ordered field and R a real closed extension of K. The three
following facts, concerning a generalized sign condition system on polynomials of K[X]
are equivalent:

strong incompatibility in K,

impossibility in R,

impossibility in all the ordered extensions of K. [

>

An equivalent form of this Postivstellensatz was first proved in 1974 [31]. Less
general variants were given by Krivine [ 18], Dubois [13], Risler [26], Efroymson [14]
and Prestel [25].

Next we generalize the notion of strong incompatibility to the semipolynomial case.
Let K be an ordered discrete field and R its real closure.
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A semipolynomial function with coefficients in K (a K-semipolynomial) from R" to R is
4 function obtained by a finite repetition of composition of polynomials with coeffic-
wnts in K and the function absolute value. A well-known proposition, not used here,
assures that the set of the K-semipolynomials agrees with the minimal max—min stable
set of functions containing polynomials with coefficients in K (see for example [7]).

[t could be developed for the K-semipolynomials a theory similar to the one
mmtroduced in [21] which allows to obtain the constructive version for the Real
Positivstellensatz. In fact we shall reduce our problem to the ordinary Real Positiv-
stellensatz (Theorem 2.3).

In order to obtain an explicit Positivsteliensatz for the semipolynomials, we shall
need firstly a notion for algebraic identities concerning semipolynomials. As the
semipolynomials does not have canonical representation, this question is a bit tricky.

To solve this question we consider a new notion, the K-semipolynomial expression
ishortly a K-spe, or a spe if K is clear in the context). A K-spe F(X,,...,X,) is
a straight-line program with the following structure:

each instruction is an assignment z; < . . . with the indexes i ordered in an increas-

ing way (the last z; is F),

the instructions can have only the four following types:

e-P(Xy oo Xy, ziy, ..., z,) where PeK[X,,. .., Xy 2y, ... ,2,] and
every i, is smaller than j,

zje= |z with i <,

Ije-maxiz,. ...,z with every i, smaller than j,

z;eminlz,, . ...z, } with every i, smaller than j.

It is clear that every K-semipolynomial can be obtained from a K-spe (we only need
to replace every X; by x; and to execute the program). Moreover, every K-spe can be
defined using only one of the three functions, absolute value, max or min.

A polyvnomial underlying a K-spe is, by definition, a polynomial in K[ X, ..., X, ]
obtained when the straight-line program given by the K-spe considered is executed in
the following way:

every instruction z;« |z;] is replaced by one of the two instructions z;« z; or

=i YT T s

every instruction z; « max{z,;,, ..., z,} is replaced by one of the k instructions
2o 2o
every instruction z;« min{z,,, ..., z,} is replaced by one of the k instructions

T — 7.

=1 “ne

For example, if our K-spe F contains d absolute value instructions (without max or
min instructions) then there are a priori 2¢ polynomials underlying the K-spe F.

Definition 2.4. A K-semipolynomial expression F will be said formally null when all
the polynomials underlying F are null.

For example, the K-spe G?> —|G|* is formally null but |Gj--|— G| and
(I + X?2) — |1 + X2| are not, which in some sense is disturbing.
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A K-spe G will be said interior to another K-spe F if (modulo a renumbering of the
variables z; in G) the straight-line program for G can be obtained from the one for F by
deleting some instructions and if the straight-line program for G ends with an
instruction absolute value, min or mix.

A K-spe H is said a polynomial inside the context of the K-spe F if H is a polynomial
n the variables X; and in the K-spe interior to F. More precisely, H must be written as
the straight-line program associated to F plus instructions of polynomial type (indeed
only one of such instructions would be sufficient). Remark that it is not forbidden to
introduce new variables, i.e. not appearing in the F’s context.

In some sense, it is not worthy to compute with different K-spe outside of a common
context. For example if F =|X|and G = |X]|, without common context, the K-spe
H = F — G will be computed by the following program,

1< X, Felzyl, 25X, Gelzyl, HeF -G

obtaining that H is not formally null. So, it is only in a common context that we can
talk about K-spe formally equal.

In a fixed context, we have the stronger notion for two K-spe to be identical, as such
K-spe defined by the same polynomials in the variables and in the K-spe interior to the
context'. In particular it is clear that the notion of K-spe identically pull is stronger
that the one of K-spe formally null.

All what follows will be applied on K-spe which are polynomials inside the context of
a K-spe F fixed (we shall say, inside a fixed context).

Let H be a system of generalized sign conditions on the K-spe F; with 1 <i <.
Next, we define in a recursive way which are the K-spe “evidently =0, >0 or >0
under the hypothesis H”.

K-spe evidently null under the hypothesis H. The K-spe evidently null under the
hypothesis H are:

the K-spe equal to 0 in H,

the K-spe coming from polynomial instructions of the following type,

k
Zj"— Z ZihPh(le N ,Xn,Z,‘l, PN ,Zik),

h=1

where the z;, are yet known as evidently null under H,
- the K-spe identical to another K-spe yet known as evidentally null under H.

! The context notion is not essential. Given F, G, H, . . . it is always possible to compute a maximal
common context (maximal in the sense that it is defined by the maximum of the interior comon K-spe) for
these K-spe, taking first in account the most interior K-spe to F, G, H, . . . (those obtained with only one
instruction absolute value, max or min) until the less interior. Anyway the context notion seems to be useful
to simplify the understanding of what follows and moreover it is well posed for a future implementation of
the algorithms in the proof.
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K-spe evidently nonnegative under the hypothesis H. The K-spe evidently non-
negative under the hypothesis H are:
the K-spe >0 or >0in H,
every K-spe z; obtained in the context by an absolute value instruction z; « |z;],
every K-spe of type z; — z; where z; is obtained in the context by a max instruction
Zie-max{. ..,z ..
every K-spe of type z; — z; where z; is obtained in the context by an min instruction
s;emind. .,z
the square K-spe, i.c. the K-spe coming from an instruction z; « z7,
- the polynomials with positive coefficients in K in some K-spe z;,, . . . , z;, yet known
as evidently > 0 under H,
- the K-spe identical to another K-spe yet known as evidently > 0 under H.

K-spe evidently positive under the hypothesis H. The K-spe evidently positive under
the hypothesis H are:

the K-spe > 01in H,

the positive elements in K,

the square of K-spe # 0 in H,

the products of K-spe yet known as evidently > 0 under H,

the K-spe identical to another K-spe yet known as evidently > 0 under H.

Definition 2.5. A system of generalized sign conditions M is said strongly incompatible
(in K and with the context fixed) if there exists a K-spe formally null, obtained as the
sum of a K-spe evidently > 0, a K-spe evidently > 0 and a K-spe evidently =0
{under the hypothesis H).

We shall use, as in [22], the notation | H(X, ..., X,)|. Remark here that if all
the K-spe considered are “true” polynomials then we find the old notions and this
allows not to introduce new notations.

Using the notion of strong incompatibility, it is possible to develop the notions of
strong implication, the constructions of strong incompatibilities and potential exist-
ence as in [19] or [21] and also the notions of dynamic implication and dynamic
disjunction as in [22]. Anyway we shall not need these concepts because we shall
derive the Real Positivstellensatz for the semipolynomials directly from the ordinary
Real Positivstellensatz (Theorem 2.3).

3. The Real Positivstellensatz for the K-semipolynomial expressions

In this section, the K-semipolynomial expressions considered will be polynomials
inside a fixed context and they will be called K-spe. Also the strong incompatibilities
will have their coefficients in K and they are strong incompatibilities in the fixed
context (which implies that the functions absolute value, max and min can appear
only as in the context).
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Theorem 3.1. Let K be a discrete ordered field and R a real closed field containing K. Let
H be a system of generalized sign conditions defined on a finite family of K-
semipolynomial expressions in the variables X 1, . . ., X, (these K-semipolynomial ex-
pressions are polynomials inside a fixed context). Then the system H is incompatible in
R if and only if the system H is strongly incompatible in K (for the fixed context). More
precisely,

if |H(X,,...,X,)| (inK) then the system H is incompatible in any ordered field
extension of K,

it for every (xy,...,x,)eR" the system H(x,,...,x,) is incompatible then
LTH(X,, ..., X)L (in K).

Proof. Remark, firstly, that the incompatibility of the system H in R can be deter-
mined using a decision algorithm for the discrete real closed fields, performing only
computations in K.

The first part in the statement of the theorem is trivial, it is enough to apply the
definition of strong incompatibility introduced in the previous section.

To prove the second part, we shall reduce our problem to the ordinary Real
Positivstellensatz. Firstly we introduce a formal variable z; for every variable z; in the
context. So our system H can be rewritten as a system H’ containing only polynomials
in the variables X; and z;.

Now we define a polynomial system of generalized sign conditions H, associated to
the context in the following way:

- for every polynomial instruction z; « P(X, ..., X,, zi,, - - . , z;) W€ introduce in

H, the sign condition

Zj_P(Xl""7Xn’Zi1!'"’Zik)zo’

- for every absolute value instruction z; « |z,| we introduce in H, the sign conditions

2 2
Zj—ZiZO, ZjZO,

for every max instruction z;« max{z,,...,z,}, we introduce in H, the sign
conditions

(zj—z)zj—21) . (z; — 2) = O,

Zj—Zi1—>-09 Zj_Zi2->-0» PR, Zj—ZikZO,
- for every min instruction z;« min{z,,...,z,} we introduce in H, the sign
conditions
(Zj — Zil)(zj — Ziz) e (Z] — Zik) = 0,
Zj‘ZhﬁO, Zj—Zizgo, e Zj_ZikSO'
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The system [H', H, ] is incompatible in R because first, the system H is incompatible
in R and second, every solution of the system [H’, H, ] provides a solution for H. As all
the elements involved in the system [H', H,] are polynomials, applying the ordinary
Real Positivstellensatz (see Theorem 2.3), we obtain a strong incompatibility

VIHLH L (1)

Now if we replace, in the algebraic identity obtained, every variable z; by the
corresponding K-spe then:
-- the “positive” part in (1) does not contain any generalized sign condition from
H. and provides a K-spe “evidently positive” under the hypothesis H,
- the “nonnegative” part in (1) provides a K-spe “evidently nonnegative” under the
hypothesis H (it is enough to use the definitions),
- the “null” part in (1) can be separated in two pieces:
~ the first one is null under the hypothesis H’ and provides a K-spe evidently null
under the hypothesis H,
- the second one is null under the hypothesis H, and provides a K-spe formally null
(in the fixed context), which can be deleted.
So, deleting the last piece in the “null” part we obtain a K-spe which is equal to a K-spe
identically null minus a K-spe formally null and so formally null, as we wanted to
show. 0O

Remark 3.2. Theorem 3.1 shows that in particular a straight-line program, as
“G — |G|” with G everywhere positive, defining a semipolynomial everywhere null, has
always an algebraic evidence for its nullity. It is a crucial point that in the definition of
a strong incompatibility, the global K-spe must be formally null, what is much
stronger than “everywhere null”.

Remark 3.3. Strong versions for the polynomial Positivstellensatz and Nichtnegativ-
stellensatz can be found in [32] and can be derived easily from Theorem 2.3. In
a similar manner we can state the same result for the semipolynomial theorems. For
example, assuming that we have an implication

Vxq, ..., x,€R" (H(x{,...,x,) = P(x4,...,x,)>0)
or, what is the same, the incompatibility of the system
H{xy, ..., X0, P(xq,...,x,)<0

Theorem 3.1 gives a corresponding strong incompatibility where we can isolate the
role played by the polynomial P:

S+Q—PR+Z=0
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with § evidently positive, Q and R evidently nonnegative and Z evidently null under
the hypothesis H. If we multiply the left-hand side of the last equality by 1 — P we get
the following formal equality:

PS+R+Q)=(S+0+RP)+Z(1 — P)
or. what is the same:

with S evidently positive, @, and Q, evidently nonnegative and Z, evidently null
under the hypothesis H. This is the form of Lam’s Positivstellensatz. The same trick
works for the Nichtnegativstellensatz.

4. A new rational and continuous solution for Hilbert’s 17th problem

Let £, 4(e, X) be the general polynomial with degree d and n variables (¢ denotes the
list of coefficients ¢y, . . ., ¢,, and X the list of variables X, . . ., X,). It is a standard
fact in real algebraic geometry that the set

Foq= {c: VxeR" f, 4(c, x) > 0}

is a closed Q-semialgebraic set. So, applying the Finiteness Theorem we have that
F,..4 can be described as a finite union of basic closed Q-semialgebraic sets. Looking
carefully at the proof of the Finiteness Theorem in [3] (or in other places) we can
conclude that such proof is explicit and rational (see [30] for a careful complexity
analysis of this theorem), which implies that it is possible to compute in a rational way
a finite number of polynomials R, 4 ; ;(¢) in Z[c] such that

HC_»

(nj {¢: Ry 4.1.5(c) = 0}.

This last equality allows us to describe the set F, ; in the following way.
F..= {c: l:‘max {min{R, ;. {¢);j=1,... ,n,-}}] > 0}.

So, 1f for every iin {1, ... k} we define

H, 4 c)= A min {Rn,d,i,j(c)}a Hn,d(c) = ' max {Hn,d,i(c)}s
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we have obtained the following description for the set F, 4
[Fn,d = {C: Hn,d(c) 2 0}>

where H, ,4(c) is a Q)-semipolynomial.
We have shown the equivalences

celF,y = H, ()20 <« VxeR"f 4c,x)>0

with f, 4(c, X) a polynomial and H, ,4(c) a Q-semipolynomial. Let us consider now
H, , as a Q-spe defined by the straight-line program that translates the definitions of
H,41.....H, 4, and H, ,. So, we can apply the Real Positivstellensatz for the
(d-semipolynomial expressions in the context H, 4 to the implication

VceR"” VxeR" {H, () >0 = f, ¢, x)=>0}
or. what is the same, to the incompatibility of the system of generalized sign conditions
H, 4c¢) =0, Ja.ale, X) <0

Applying Theorem 3.1 to this system we obtain a strong incompatibility that can be
rewritten as the following formal equality,

.ﬁl.d (c7 x)g(c, X) =fr‘l,d(c’ X)Zr + h(ca X), (2)

where h and g are Q-spe evidently nonnegative under the hypothesis H, 4(c) > 0.
Coming back again to the definitions it is easy to see that g and h are polynomials in
X whose coefficients are Q-spe in ¢. More precisely, g and h are sum of terms

Pj(c)‘lj(c» X)Z’

where the gj(c, X) have the same type as g and h and the p;(c) are Q-spe evidently
nonnegative under the hypothesis H, 4(c) > 0 and with the context H, 4(c). This
allows us to conclude that without loss of generality we can suppose that every p;(c) is
a product whose factors have the following type:

the Q-spe H, 4(c),
- a Q-spe H, 4(¢) — H, 4.(c),
- a Q-spe R, 4;,;(c) — H, 4 (c),
- a positive rational or the square of a Q-spe in c.

If we multiply by f, 4(c, X) every member of equality (2) we get

f;l,d(c’ X)zg(cs X)
Jr.a(e, X)*" + hie, X)

Juale, X) =
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and denoting by k(e, X) the denominator of such fraction we obtain finally

f;:,d(cs X)Zg(c’ X)k(c9 x) _ gl(c’ x)
k(e, X)? k(e X))’

Jnale, X) =

where ¢g; has the same type as ¢ and h.
The proof of the following theorem is almost achieved.

Theorem 4.1. The general polynomial with degree d and n variables can be written as
a sum of rational functions

frae, X) = Y p, ("ff;;) 3)

j

where:
The g;(c, X) and k(e, X) are polynomials in the variables X whose coefficients are
Q-spe in the variables c. Moreover, if c€ F, 4 then k(c, X) only vanishes on the zeros of
he.ale, X).
Each p»,-(c) is a product whose factors are H,,c) or one of the Q-spe
H, 4(¢) = H, 4:(¢) or one of the Q-spe R, 4; j(€) — H, 4.;.(¢) or a positive rational or
the square of a Q-spe in . So, under the hypothesis H, 4(¢) > 0 the positivity of pi(e) is
“clearly” evident.
The equality

Jua (€, X)k(e, X)? Zp, (€)q;(c,X)? =0

is specially evident in the following sense: the first member of the equality, as
polynomial in X, has as coefficients Q-spe in ¢ which are formally null.
Equality (3) provides a rational and continuous solution for Hilbert's 17th problem
because
all the coefficients (the pj(c) and the coefficients of the q;(c, X) and k(c, X) considered
as polynomials in X) appearing in the equality are rational and continuous functions in
¢, more precisely they are Q-spe in the variables ¢
every term in sum (3),

o[ BEX)Y
PRO\ ke x) )

Is a rational function which can be extended by continuity to a semialgebraic
continuous function in the semialgebraic closed set F, 4 x R"
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Proof. The only statement still not proved is the one concerning the fact that every
term in (3) can be extended with continuity to a semialgebraic continuous function on
F..sxR” For that it is enough to exhibit a modulus of uniform continuity for

2
Ule. X) = pj0) (‘“(c’ X)>

k(c, X)

on every bounded set B < [, ; xR".
So, if € is a positive number then we can choose 6 > 0 such that on B we have

e, x) = (¢, x)| <3 = |fale,x) = frale, x)| < %¢

and we consider two different cases:
If f,.4(e, X) < 3¢/8 then f, 4(¢/, x') < § ¢, which implies directly that

0<Ule,x)<3e o
0<UE.x)<def [Ule,x) — Ule', x)| <&

if f,.4(c, x) > £/4 then f, 4(¢’, x') = ¢ &, which implies
kie,x) > (g &), ki, x) = (5,
allowing to find ¢’ < § such that
e, x) — (¢, x)]| <o = |Ule,x)— Ulc,x)| < ¢

since the minoration of the denominator. [

5. Rational and continuous solution for another cases of the classical Real
Positivstellensatz

The solution for Hilbert’s 17th problem can be seen as a particular case of the Real
Positivstellensatz and for this case we have just proved, in the previous section, the
existence of a solution depending on the parameters of the problem in
a semipolynomial way. So what we shall do, is to generalize this result for another
cases.

Let H(e, X) be a system of generalized sign conditions on polynomials in K[¢, X]]
where the X/’s are considered as variables and the c;’s as parameters. We denote by
Si: the semialgebraic set defined by

Sy = {e: VxeR" H(c, x) is incompatible}.
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If S, is locally closed (i.e. intersection of a closed and an open semialgebraic set)
then, applying the Finiteness Theorem (see [3]) and the strategy followed in Section
4 when dealing with the set F, ,, it is possible to compute two K-spe H,(¢) and H,(c)
verifying

ceSy < [H(c)=0, Hy(c) > 0]
< VxeR" Hie, x) is incompatible.

Applying now the Real Positivstellensatz for the K-spe in the context defined by
H, and H, to the incompatibility of the system of generalized sign conditions

[Hi(e}) =0, Hy(c) >0, H(c, X)]

one gets a rational and continuous version for the strong incompatibilty of the system
Hi(c, X) when the parameters ¢ vary inside Sy.

In the same way that our rational and continuous solution for Hilbert’s 17th
problem showed in Section 4, improves Delzell’s result (see [6]), which is obtained in
this section improves Scowcroft’s results (see [29]) in four aspects:

(a) the semialgebraic set Sy; need not be for us, necessarily closed,

{b) the coefficients of our solution are K-semipolynomials in the parameters ¢ for
the hypothesis,

{c) the algebraic identity obtained, seen as polynomial in X, has a structure
specially simple, its coefficients are K-spe in ¢ formally null,

(d) the positivity or strict positivity of the coefficients (which must verify such
condition) in the solution is clearly evident under the hypothesis H,(c) > 0 and
H,(c) > 0.

The next theorem summarizes the results obtained in this section and provides
a rational and continuous solution for some cases of Real Positivstellensatz.

Theorem S.1. Let M(c, X) be a system of generalized sign conditions on polynomials in
K([c. X], where the X|'s are considered as variables and the ¢;'s as parameters. If Sy, is the
semiulgebraic defined by

ceSy; <«  VYxeR" Hlc, x) is incompatible

and Sy is locally closed, then (Finiteness Theorem) there exist H (c) and H,(c)
K-semipolynomial expressions such that

ceSy <« [Hy(c) =0, Hy(c) > 0].

If ¢c€Syy then the incompatibility of H(X) = Hc, X) inside R is made obvious by
a strong incompatibility | H(X) | with type fixed (independent of ¢) and with coefficients
given by K-semipolynomial expressions in ¢ (which are polynomials inside the context
defined by H,(c} and H,(c)). Moreover,
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- the algebraic identity obtained, seen as polynomial in X, has a structure specially
simple, more precisely, every coefficient of such identity as polynomial in X is a
K-semipolynomial expression in ¢ formally null (in particular, this K-semipolynomial
expression defines the zero function of ¢ without supposing H,(c) > 0 and H,(c) > 0),
every coefficient p(c) in the algebraic identity which must be nonnegative (resp.
positive) is given by a K-semipolynomial expression evidently nonnegative (resp.
positive) under the hypothesis Hy(¢) > 0 and Hy(c) > 0. O

Remark 5.2. It has been obtained a form of the Real Positivstellensatz where the
parameters in a strong incompatibility depends in a rational and continuous way on
the parameters in the system considered. The restriction concerning the character
locally closed of the semialgebraic Sy, gives a particular significance to the choice of
the parameterization. One possibility a priori, is to take as distinct parameters all the
coeflicients appearing inside the hypothesis, but this is not an obligation. Moreover,
since the semi-algebraic set Sy can be easily described as the projection of a closed
semialgebraic set in higher dimension, we always can be placed in the conditions
where it is possible to apply Theorem 5.1, merely increasing the number of para-
meters. Anyway this naive idea does not solve (in a magic way) all the problems
provided by the constructive algebra with real numbers given “a la Cauchy”.

Example 5.3. Polynomial positive on a compact and basic semialgebraic set. Let K be
a bounded, closed and basic semialgebraic set in R” defined by the system

He(X): ¢(X)>0,...,q(X)=0

with every ¢;(X) a polynomial in K[X].
Let . 4(e, X) be the generic polynomial with degree d and n variables as in Section 4.
The semialgebraic set Vy defined by

Vi = (e VxeK f, 4c, x) > 0}

is open. In fact, if the polynomial f, , is, for a value ¢,, positive on K then there is
a positive lower bound g of f, 4(co, X) on K which implies that ¢/2 is a lower bound for
Jn.ale, X) on K with ¢ enough close to ¢.

So we are in the conditions of Theorem 3.1, the system of generalized sign
conditions

Hic,X): q(X3=0,...,9(X)20, —f 4c,X)>0
is incompatible in X if and only if ce ¥y and, as V is an open semialgebraic set, there

exists a K-semipolynomial v(c) in ¢ verifying that the incompatibility of the system
Hic. X) in X is equivalent to v(¢) > 0.
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Applying Theorem 3.1 to the incompatibility of H(c, X) with v(c) > 0 we obtain an
algebraic identity with the following structure:

Jn.ate, X) < 2 pile) <H qj(X)>ri(c, X)2>

iely jeti

= \’(C)Zp + Z S,’(c) (n q](X)>t,(c, X)2

iel, JjeJi

This algebraic identity is an identity between polynomials in X where the coefficients
are K-spe formally null (if we equate to zero). All the expressions there appearing are
polynomials inside the context defined by v(c) and the s;(¢)'s and p;(c)'s are K-spe
evidently nonnegative under the hypothesis v(c) > 0.

The structure of the last equality provides us the evidence that, for ¢ fixed verifying
v(c) > 0, there exists a positive lower bound for the polynomial f, 4(c, X) on the
bounded and closed semialgebraic set K,

v(c)?? - v(c)??

S pie) <H qj(x)>r.-<c, X?

iel Jjedy

VxeK f4c,x) = >0,

where m > 0 is a lower bound of the denominator on K (it is worthy to remark that if
v(e) > 0 then the denominator is positive on K).

Example 5.4. Polynomial positive on a regular family of compact and basic semialgeb-
raic sets. In the last example when dealing with the question of a polynomial positive
on a compact we have parametrized the polynomial, but we can also parameterize the
compact. So we will introduce the notion of regular family of compact and basic
semialgebraic sets.

Let W be a locally closed semialgebraic set defined by two K-semipolynomials w (u)
and w,(u),

W= {ueR" w;(n) > 0, w,(u) > 0},

and we shall consider for every ue W a non-empty compact semialgebraic set
K, defined by

Ku: {XGR"I ‘11(“7")2 O’ e ’qs(u’x) 20, HXH < P(“)}a

where the g;(u, X)’s are polynomials in X with coefficients K-semipolynomials in u and
p(u) is a polynomial in u. This family of compacts is said regular to mean that the
compact set K, depends continuously on u (for the Haussdorf distance between two
compacts).
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Let V be the semialgebraic set defined by
V= {(c,u):ue Wand VxeK, f, 4(c,x) >0}

and (¢, u”)e V. The function f, 4(c° x) has a positive lower bound ¢ on the compact
Ko Since the family of compacts is regular and K, is explicitly bounded in terms of
u then for (¢, u) in a neighbourhood of (¢°, u®) in R™ x W, the function f, 4(c, x) is bigger
than /2 what implies that V' is open in R™ x W and so locally closed. So there exist
two K-semipolynomials v, (¢, u) and v, (c, u) in the variables (¢, u) defining V" and giving
the following equivalences:

(c,weV <= vile,u)>0, vy(c,u) >0 <« VxekK, f (e, x)>0.

These equivalences provide the following incompatible system of generalized sign
conditions for the K-semipolynomials:

vile,u) >0, vy(c,u) >0, —f 4, X)=0

Applying the Real Positivstellensatz for semipolynomials to this system, one gets an
algebraic identity in x parameterized by K-semipolynomials in (¢, u), providing the
cvidence (in the usual algebraic way) that f, 4(c, x) >0 when ue W, xeK, and
{c,uje V.

6. Some consequences for the constructive algebra over the real numbers presented
*a la Cauchy”

In constructive mathematics (see [2] or [24]) the theorems introduced in the
Sections 3—5 are valid when the parameters belong to the real closure R of an ordered
and discrete field K (see [23]) because in this setting we have a constructive proof for
the Real Positivstellensatz (see [21]).

Every point of view will find its place in the following remark: all our proofs are
effective, in particular without using the Axiom of Choice, and more precisely, provide
uniformly primitive recursive algorithms if the structure of the field of parameters is
given by an oracle showing the sign of every polynomial with integer coefficients in the
parameters of the problem considered.

One question still missed is the study of the constructive meaning for these results in
the framework of the field R: the field of real numbers for the constructive analysis (see
[2]). 1.e. the real numbers defined as Cauchy sequences of rational numbers. From the
algorithmic point of view, this means that the real parameters c are given by oracles
providing suitable rational approximations for these real numbers and that we are
looking for an uniformly primitive recursive algorithm. In [15] we shall provide
a study of this question as systematic as possible.
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In this section 1t will be shown how to use the parameterized results obtained
concerning Hilbert’s 17th problem to derive the same theorem in Constructive
Algebra (while the non-parameterized solution does not allow to derive any kind of
consequence). The section will be ended showing how, we think, it is necessary to
formulate the Positivstellensatz problem when dealing with Cauchy real numbers.

h.0 Hilbert's 17th problem

et R be the field of real algebraic numbers. Since the equivalence

¥x

{T

R" fiale.x) =20 < H,,c)=>0
is true for every ¢ real algebraic then by continuity we have
HER (YXER' f4(eX) 20 < H,4(c) = 0)

The answer for Hilbert’s 17th problem provided by Theorem 4.1 uses polynomials and
semipolynoinials with rational coefficients which can be, at least in principle, fully
determined. The fact concerning the positivity of the coefficients (which must be
positive) is constructively clear when dealing with real numbers “a la Cauchy” under
the hypothesis H, 4(¢) > 0. This implies that if the parameters ¢ are in R and verify
H, 4ie) = O then £, (¢, x) = O for every x. We have obtained

veeR” (H,0)>0 = ¥xeR"f 4ic,x) > 0)

with the evidence of this fact given by an algebraic identity. So, when H, 4(c) > 0,
Hiibert’s 17th problem is solved in a continuous and rational way with respect to its
coefhicients.

To complete the continuous and rational solution for the field R we need a con-
structive proof for the implication

VxeR" f 4e.x) >0 = H,, c)>0

when ¢ 15 4 point with coordinates in R. The simple proof we show here, has been
given in {201 for the homogeneous case.

Let G, 4(Rj be the subset of R” defined by the first member of the implication to be
shown and F, ,(R) the second one. We remark that the problem is reduced to the case
when 4 1s even and this is assumed in all that follows.

Sewe have F, R) < G, 4(R) and we want to prove the other inclusion. We see that
G, AR 1s a4 convex and closed cone and as the point ¢ corresponding to the
polynomiai 1 + 37 x7)¥* is interior to G, 4(R), we obtain that G, ,(R) is the

adherence of its interior.
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and this implication 1s made evident by an algebraic identity in X, whose coefficienis
are K-semipolvnomals in ¢,

Sa. to prove constructively the corresponding case of the Real Positivstellensatz
{continuous and rational) is the same thing that to provide a constructive proof for the
mplication

VxR Hie X)os tncompatible = (H (¢} = Oand Hy(e > O

when ¢ 15 2 point with coordinates in R.

In the particular case of Hilbert’s 17th problem the proof was found taking
advantage of the particular case we were dealing with. So more general tools to deal
with this kind of questions need to be created. A result seems essential, the construc-
tive proof that for any lecally closed semialgebraic set S defined by the conditions
Hi{c) = 0 and H,(c) > 0 (with H,(¢) and H,(cj K-semipolynomials), every point in
5{R} is a limit of points in S(R).

If this program is fullfilled, Example 5.3 will provide a Positivstellensatz for the case
of a polynomial in R] X] everywhere positive on a Q-semialgebraic basic compact set,
and Example 5.4 will provide a Positivstellensatz for the case of a polynomial in R[X]
cverywhere positive on a R-semialgebraic basic compact set that can be described as
a member of a regular family of Q-semialgebraic basic compact sets.
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