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Introduction

In this paper we deal with the algorithm of construction of an effective positivstellensatz given in

[LOM1], for the particular case of a family of univariate polynomials with coefficients in real closed
field.

We study in detail the mixed and generalized Taylor formulas which are essential tools for
constructing algebraic identities for the real effective nullstellensatz. In particular we give more
general and straightforward proof for mixed Taylor formulas, we prove that the coefficients which
appear in both the mixed and generalized Taylor formulas are integers and we establish some
related upper-bounds.

We also show that a good control on the "glueing” procedure leads to a bound on the degree by
8rd? in the final algebraic identity, where d is a bound on the degrees of the input polynomials and
7 is a bound on the number of real roots of these polynomials and their successive derivatives.

1. Ground tools

1.1 Incompatible system and strong implication

A strict sign condition is one of the following two : > 0,< 0. We denote them by —1 and +1
respectively. A generalized sign condition is one of the elements of {< 0,< 0,= 0,> 0,# 0,> 0}.
When we replace the strict sign condition < O(respectively > 0) by the generalized sign condition
< 0 (respectively > 0) we say that the sign condition is relaxed.

T

1
n 2
Given a polynomial P = Z aiX' € 7ZL[X] we recall that its norm is defined as (Z a?> and its
size || P || is defined as the logarlthm of its norm. The degree of P is denoted by deg(P).

We consider an ordered field K and R a real closed extension of K. We denote by K[X] the
polynomial ring K[X},...,X,]. Let F be a non empty finite subset of K[X). We denote by :
F? the set of squares of non zero elements of F.

M(F) the multiplicative monoid generated by F U {1}.

Cp(F) the positive cone generated by F (the additive monoid generated by the elements of type
p.P.Q* where p is poistive in K, P in M(F) and @ in K[X]).
and Z(F) the ideal generated by F.

Definition 1 : Consider a system I = [F, F>, F=, F4] of generalized sign conditions, consisting
of four finite subsets of K[X]. We say that the system H is strongly incompatible in R if we have
in R[X] an equality of the following type :

S+P+7Z=0 (1)
with § € M(F2U F2), P € C,( F5U F»), Z € I(F2)
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Notation 2 : The strong incompatibility of a system H of generalized sign conditions is denoted
by

IH|

Remark 3 : It is clear that a strong incompatibility is a very strong form of incompatibility. In
particular, it implies that it is impossible to give the indicated signs to the polynomials, in any
ordered extension of K. The impossibility of system of generalized sign conditions is constructively
equivalent to its formulation in form of various implications : for exemple the system [P = 0,Q = 0]
is strongly incompatible in R is equivalent to

Vey,...,2, €ER P(21,...,2,) =0 = Q(21,...,7,) # 0

We shall speak thus of strong incompatibility, strong implication, or strong evidence, meaning
always implicitly a strong incompatibility.

Notation 4 :

1) Let 7 be a generalized sign condition. We use the following notation for strong implication :
H[51>0,...,8>0,PL>0,...,P; >0,Z1=0,...,Zk = 0,N1 #£0,..., Ny # 0] = Q T)*

Note that if one takes 1 = 0 in the right-hand side in the above strong implication, and applies the
definition, one obtains exactly the strong incompatibility for the left-hand side of the implication.
Thus we can formulate any strong implication in form of strong incompatibility.

2) Let us denote by H the left-hand side in 1) and by H' a system of generalized sign conditions
Q171 ,...,Qk T . We then write : *(]H - ]H')*

to mean H= Q17 )" and .. and "(H== Qs n )

The different variants of the real positivstellensatz are consequences of the following general
theorem (see [BCR] ch.4) :

Theorem 5 : Let K be an ordered field and R a be real closed extension of K . Let

H = [F, F>, F, F4] a be system of generalized sign conditions on polynomials of K[X] and A be
the semi-algebraic set of R™ defined by :

A={xeR"W feF,f(x)>0,Vg€ F>,9(x)>0,Vhe F_,h(x)=0,V g€ F4,q(x) # 0}
The three following conditions are equivalent :

H s strongly incompatible in R

A is empty in R™

A is emptly in any ordered extension of K.

1.2 A bound on the degree of a strong incompatibility constructed
from other strong incompatibilities

We introduce now some results that will be useful for the rest of this note, concerning the
manipulation of strong incompatibilities and strong implications (see [Lom2]).

Definition 6 : We call degree of a strong incompatibility, the mazimum degree of polynomials that
appear in the corresponding algebraic identity.
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For example, if we have a strong incompatibility : | [A > 0,B > 0,C >0,D > 0,E =0,G =0] |
caracterized by the following algebraic identity :

h k
A*B®+C.) piP}+ AB.D. Y GQi+EU+GV =0

=1 j=1

then the degree of this strong incompatibility is :

sup{deg(A*.B%),deg(C.P})(i = 1,...,h),deg(A.B.D.QY)(j = 1,...,k),deg(E.U),d(G.V)}

In the following proposition we give some precisions on the degree of some basic constructions of
strong incompatibilities (cf [LOM1]).

Proposition 7 : Let H be a system of generalized sign conditions on polynomials of K[X] and
Q € K[X]. Then

(i) If | [H,Q <0]| with the degree § and | [H,Q > 0] | with the degree §', one has | H | with
the degree bounded by § + §'.

(i) of | [H,Q < 0} | with the degree 6 and | [H,Q > 0] | with the degree 6, one has | [H,Q # 0] |
with the degree bounded by 6 + &',

(i) 4f | [H,Q #0] | and | [H,Q =0] | one has | H |. Moreover if Q has the degree g,
| [H,Q # 0] | has the degree & with Q™S in the monoid part and | [H,Q = 0] | has the degree é'.
Then one has the strong incompatibility | H | with the degree bounded by § + 2mé' — 2myq.

Proof : We give only the proof for the most intricate case (iii). Call F, F>, F=, F the four finite
subsets of K[X] containing in H.

The hypothesis | [H,Q # 0] | corresponds to the identity :
Q*S1+Pi+Z1=0 (1)

with
S1 € M(F2UFL)),Pr € Cp(F> U F5), 2y € I(F-)

Likewise the second hypothesis means we have an equality :
So+ P+ 2:Q+7Z35=0 (2)

with
S2 € M(F2UFL)), Py € Cp(F> U F5),Zy € I(F-)

In (1) we have deg(S1) < 6 — 2mq and in (2) deg(Z,) < §' — g. We rewrite the equality (2) :
Sa+ Pot+ Z3 = -22Q
and we take the both sides to the power 2m, so we obtain the equality :
Ss+ Ps+ Zy = Q™ Zs (3)

3
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where deg(Zs) < 2m(6' — ¢). And next we multiply (1) by Zs and (3) by S; so we get :
§153 + P35;1 + Z4SL-— PiZs - leg =0

deg <2mé'+(6-2mq) deg <6+2m(8'—q)

2. Mixed and generalized Taylor Formulas

The mixed and generalized Taylor formulas are the main tool for the constructions of algebraic
identities leading to Henri Lombardi’s proof of real effective Nullstellensatz. The aim of this section
is to extend the mixed Taylor formulas to differentiable functions, which allows us to prove by a
straightforward way the algebraic theorem given in [LOM]1]. Next we study the algebraic identities

called generalized Taylor formulas. These formulas generalize the mixed Taylor formulas in the
polynomial case.

2.1 Mixed Taylor Formulas

Notations :
Let € = [€1,€2,...,€,] (n > 1) be a n-uple of strict sign conditions with €; = 1. We denote by

€k = [€1,...,¢€x) the k-uple formed by the k first elements of €

1
£not1 = 3 (14 €n—1€n)
P¢, the polynomial of Q[ X] defined by the induction :
Pel (t) = 1
t

Pe (1) := (=1)-1(n = 1) Pe,_,(z)dz
€n—1

1
Cke the rational number defined by c¢xe = k/ P, (t)dt
0
k

Moreover we denote the differential operator Tldak by Dy
dz
The polynomials P, are similar to the polynomials in the remainder of classical Taylor formulas.
Thus it is not surprising to find common points in both theories.

Theorem and definition 8 : If u and v are two reals with u < v, welet A= u—=z foru <z <w

and yj = {.7: “:h €kCht1 < 0 Then for each function f : [u,v] — R of class C™"t!, n > 0,
otherwise

there exists 2™ mized Taylor formulas and all the possible sign combinations occur. More precisely

let € = [€1,€2,...,€n41] be a (n + 1)-uple of strict sign conditions with €; = 1, then one has the
following equality

n+1

(@)= F)+ Y exeneA* Du(F)(uk) + engr =

k=1

/1 Pg"+,(t)f(n+1)(u+tA)dt (El)
0

n!

The previous formula is called the mized Taylor formula for f associated to the combination €.

Proof : We show (FE;) by induction on n. The formula (E) is immediate for n = 0. Indeed for f
of C'! we have :

1
f(z) - flu) = A / fu+ tA)dt

4
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Suppose that the formula (E;) holds for f of class C™ for n > 1 on [u,v]. Then for f of class C*+?
we have the following two cases

1"'case : €p€ppy = —1

In this case y, = z. Integrating by parts

' (m)
R:e%n_lﬂA Pe, (1)) (u + 1A )dt

which is equal by induction to

n—1

f(@) = f(u) = excneA*Di(F)(yx)

k=1

we obtain

= e [Q(t)f (u + 1A A /1 Q) f D (u + tA)dt
") (wtth)o —enro—y | Q) u+14)
¢
where Q(t) = / Pe, (z)de = lPgn“(t). Consequently we have :
0 n

n+1

A 1
R = ucnsd Dl £)(om) + nri o [ P (07t 1)t
0

n!

1
with Crgns, = TL/ P, (t)dt = Pe..+1(1)-
0

2Mdcage : €n€nt1 =1

Now y, = u as in the previous case integrating R by parts we get

n

— A n A ' n+1)
R = =gl Q a4 1)) - e / QU S (u + tA)dt

i
but this time we choose Q(¢) = / Pe (z)dz = —‘1‘Pen+1(t)
1 n

which gives exactly

A"+1 1 "
R = nened Dl )un) + nn = [ P (OF D (k1)

1
with Cnyg - Tl/ Pen(t)dt = P5n+l(0) [ |
0

Proposition 9 : Let n be an integer> 1. Then P, is a polynomial of degree n — 1, which is
strictly positive on |0, 1[, with coefficients in Z
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Proof : We show that P¢, is a polynomial with integer coefficients, the remain properties of P,
follow immediatly from the definition.

[t is easy for n = 2 because P¢,(t) = (—1)%'(¢ — £;). Suppose that Pe_ n > 2, has integer coefficients.
Write

n

P€n+l(t) = Zaiti
1=0
= .
P ()= i(i— 1) (i = k+ Dait™*
i=k
Using the definition it is easy to see that

ngll(t) = k! (Z) (_1)(21':,14“ 5j)P£n—k+l
and by identification it follows that
" (Z> () Ziencens®)p,_ (0) k=1,...,n

One deduces that ay € 7Z, k = 1,...,n and P ,, € Z[t] noting that a9 = 0 or ao =
~(a1 + a2+ ...+ ay,) according to €p€p41 = =1 or 1 n

Corollary 10 : (polynomial mixed Taylor Formulas )

Let A be a commutative ring. Then for each polynomial of degree n > 1, there exists 2"~ mized
Taylor formulas and all the possible sign combinations occur. One considers two variables U and
V and one lets A = U — V. Let € = [e1,€3,...,€,] be a n-uple of strict sign conditions with ¢, = 1,
then the mized Taylor formula associated to the combination € for a polynomial P € A[X] of degree
n > 1, is an algebraic identity of the following form :

n—1

P(U) = P(V) =) exkeAXDy(P)(Yk) + €ncneA" Dy P) (Es)
k=1

where ¢y ¢ are positive integers and

Yk: {U Zf €k€k+1>0

V  otherwise

Proof : Since it concerns algebraic identities in variables U, V and the coefficients of the polynomial
P, it is enough to show the corollary for the ring A=7Z, and this can be deduced from the theorem
8m

Proposition 11 : Let € = [¢1,¢€3,...,€,] (n > 1) be a n-uple of strict sign conditions with e; = 1.
Then the integers cx e (k= 1,...,n) satisfy the following inequalities :

9 n+l1
cht1e S (k4 1)cke and cre < 2(nl)a(n) (;—) (Es)

) 1 if n is even
with a(n) = ¢ om+1_y

RFT 3 otherwise
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Proof (see [WAR]). In this proof we establish also the following facts : let n > 2 be an integer, we

denote by E, the set of all n-uples € = [1,€3,...,€,] With €; = 1 j =2.--n and u, = sup cne.
ecE,

Then up is realized by exactly four elements of E,. Choosing an € that realize u, and writing
1

Uy = n/Pgn (t)dt, we show that the increasing sequence (un),>2 is giving by the coefficients of
0
t t 1
the Taylor expansion at zero of the fonction COS_( ) =t
1 — sin(t) cos(t)
is odd u, is a Euler’s number.

Note that the first inequality in proposition 11 means that ¢xt1¢/(k + 1)! < cre/k'n

+ tan(t)). One notes that if n

Proposition 12 : Let € = [e1,¢€2,...,€,] be a n- uple of strict sign conditions with €, = 1. Then
the coefficients ce i satisfy :

k-1
ce1 =1, and €xcpe =1— Z €;0;ci¢ (I:) (E4)

i=1

with §; =1~ & fori=1,...,k—1, k=2,...,n and the computation of the list [ce1,ce2,. .., Cen)
takes time O(n* [log(n)]*) using classical arithmetic.

Proof : The equality (EF4) is obtained taking the particular case P = X¥* in the previous
corollary 10. By the same equality one deduces that the computation of ¢ , takes O(n?) arithmetic
operations. And by the inequalty (E3) the size of the integers and the coefficients c¢ x (K < n —1)

previously computed is bounded by nlog(n), so using classical arithmetic operations, our total
computation is in O(n4[log(n)]’) u

Remark 13 : According the proposition 11 and 12 we deduce that the size of a mixed Taylor
formula for a degree n is bounded by n2log(n) and this formula can be computed in time

O(n*[log(n)]2).

2.2 Generalized Taylor Formulas

Let P be polynomial of degree n with coefficients in a commutative ring and o9, 01,...,0, a list
of strict sign conditions. We denote by

H(X) = [P(X) a0, P'(X) o1, ..., PO(X) an]

and
H'(X)= [P(X) ah, P'(X) al,..., P crn]

the system of generalized sign conditions obtained from H(X) by relaxing all inequalities except
the last one. The Thom’s lemma claims (among other things) that :

[H'(U),H'(V), U < Z < V] = H(Z) (%)

7
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The generalized Taylor formulas will be a way of expressing this geometric fact by particular
algebraic identities, as we shall see later on examples. Let € = [eg, ..., €,] be (n + 1)-uple of strict
. el (k) — - Ap ifeger >0

sign conditions. We denote by & [k, .. €ng1] and A ¢, A, otherwise

Theorem 14 : Let A be a commutative ring and P € A[X] a polynomial of degree n > 1. One
considers two new variables U and V and one lets Ay = X — U, Ay =V — X. Then there ezists
an equality of the following type :

n—1

P(X) = P(Yo) + Z €06k Di(P)(Yi)Hie(A1,A2) 4 €06n D P)Hyp (A1, Az) (Es)
k=1

U 1f €r€iyq > 0
h Ye = { +
where k V  otherwise

and Hy ¢ is a non zero homogeneous polynomial of degree k with positive integer coefficients, given
by the inductive relation :

n—1
1 — epereres n
Hy (A, Ag) = E ————-021 + (k)ck,e’Afo,elHn—k,e(k)(AlaA2)+ YAV
k=1

with ¢ = [(coeeoee],
The equality (Es) is called the generalized Taylor formula for P associated to the combination €.

Proof : By induction on the degree n of P. If n = 1 the theorem is easy. Suppose that the equality
(Es) holds for a degree n — 1 > 0. Let € = [€g, €2,...,€,] be a (n + 1)-uple of strict sign condtions
and P be a polynomial of degree n. We distinguish two cases :

casel : €geg = —1  We write the mixed Taylor formula corresponding to the combination ¢ = 0]
where o = (=) ¥eper,k=1,...,n:
n—1
P(X)=P(V)+ Z oxCko(X = VY Di(P)(Zk) + 0ncno(X — V)" Dyo(P)
k=1
n—1
=P(V)+e Y exckoAEDL(P)(Zx) + €0encnoAEDn(P)
k=1

. Vo if e = -1
ith Z,. = { k€k+1
A k X otherwise

Then either Z;, = V,k = 1,...,n — 1 and then the theorem is proved or there are two set I and J
such that TUJ ={1,...,n},INJ =0 and J # 0 and :

P(X)=P(V)+ ey excksADSD(P)V)+ €0 Y ek gASDL(P)(X) + €0€ncnoAy Du( P)
kel keJ
Let

QX) = co ) ekcroAF Di(P)(X)
keJ
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By induction one has :

n—k
Di(P)(X) = Di(P)(Yi) + €& > €xs; Di[Du(P)(Yis ) H j eer(A1, Ag)

i=1

n

= Dk(P)(Yk) -|- €L Z €m (mnj k) Dm(P)(Ym)Hm_kyg(k)(Al,A2)

m=k+1

with H,, _ ) homogeneous, with positive integer coefficients, of degree m —k and Y,, = U or V.
If jo is the smallest index in J then

Q(X) =0 > &;Di(P)Y;)G;em(D1,40)

ked j=k

= € Z €1D1(P)(YI)GI,5(ALA2)

I=jo

with G, ) = (j J k) ck’cAgHj_kya(k) J2>kand Gig = Z Giexy  (h). One deduces
kedJ

P(X) = P(V)+ ey exDi(P)V)exAf + 0 Y etD(P)YD)G1e(Ar,As)
kel 1=jo
One remarks now that if [ € I then ¢¢;41 = —1 and by induction Y, = V.

For the case ¢ge; = 1 write the mixed Taylor formula for P associated to the n-uple (oK = €€k =
I.....n and use the same argument as in the previous case g

Remark 15 : For a degree n we have 2™ generalized Taylor formulas and all the possible sign
combinations do appear.

Proposition 16 : Let € = [eg,...,€,] be a combination of strict sign
conditions. Then the sum of coefficients of the homogeneous polynomial Hie, k=1,...,nis
bounded by :

+

%([1+\/§<%)% ' 1~x/§<%)5]n) < %((1,75)”“)

Proof : Can be deduced easily by from proposition 11 and theorem 14 g

2.3 Some explicit examples of generalized Taylor Formulas

We consider two variables U and V and welet A} = X —U and Ay = V —X. Let P be a polynomial
with coefficients in a commutative ring A.

If deg(P) = 3, one has eight generalized Taylor formulas : the following 4 and their symetrics
obtained by exchanging U and V ( which implies the remplacement of A; by —A; and A, by
—'A]) :
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P(X) =P(U) + D1(P)(U).A1 + Dy(P)(U).A} + D3(P).A3

P(X) =P(U)+ Di(PYU).Ay + Do(P)(V).A} — D3(P). [2A% + 3A2A,)

P(X) =P(U) + Di(P)(V).A1 = Dy(P)(V). [A] + 2A1A,] + D3(P). [A} + 3A2A, 434,43
Do (P

P(X)=P(U)+ Di(P)V).A; - JU). [A] +241A;] — D3(P). [243 + 6A2A; 4+ 34,43

Assume that U and V give the same relaxed sign condition o},0},0% to P, P’, P() respectively,
the same strict sign condition o3 to P®) and U < X < V. Then one of the eight generalized Taylor
formulas is strong evidence showing that P(X) has the strict sign condition oo. For example, If o
is >0,07:>0,04:<0,03:<0andif Ay >0, Ay > 0, the fourth generalized Taylor formula
can be reread :

—P(X)+P(U)+Dy(P)(V).A1=Da(P)(U). [A] + 2A1A,] - D3(P). [243 + 6A2A, + 3A,A%] =0

The equality provides the above implication as strongly evident.

If deg(P) = 4, one has sixteen generalized Taylor formulas : the following eight and their symetrics
obtained by exchanging U and V :

P(X)= P(U)+ Di(P)U).A1 + Do(P)(U).A} + D3(P).A3 4+ D4(P).AS
P(X) = P(U) + Di(P)(U).A1 + Do(P)U).AT + D3(P)(V).AY = Dy(P). [4A3A; + 3A%)
P(X) = PU)+ Dy(P)U).Ar+

Dy(P)(V).A} = D3(P)(V). [3A3A; + 2A3] + Dy(P). [6A2AZ 4+ 8A3A, + 3AY)
P(X) = P(U) + Di(PYU).A1+

Dy(P)(V).A] = D3(P)(U). [243 + 3A3A;] — Dy(P). 12434, + 6A2A2 + 5A%]
P(X) = P(U)+ Di(P)(V).Ay — Do(P)(V). [A2 + 24, A,] +

D3(P)(U). [A} 4 3A1A5 + 3A3A,] + Dy(P). [18A2A% + 8A1A3 + 12434, + 3AY)
P(X) = P(U) + Di(P)(V).A1 — Dy(P)(V). [2818, + AY] +

D3(P)(V). [3A1A] + 3434, + AY] — Dy(P). [4A1A% + 6ATAS +4A3A, + Af]
P(X) = P(U)+ Di(P)(V).A1 = Do(P)(U). [A} + 24,4,] -

P)(V). [3A1A3 + 6ATA; + 2A3] + Dy(P). [24A3A% + 20A3A, + 8A1A3 + 5A%]

P(X) = P(U)+ Di(P)(V).Ay = Dy(P)(U). [A} +2A,4,] -

Dy(P)(U). [243 + 6A1A; + 3A1A3] — Da(P). [12A3A; + 128242 + 48,43 +34%]

3. Algorithm for the construction of the identity providing the positivstellensatz

Let D be an ordered domain, K its fraction field and R the real closure of K. Let F, ..., F; € A[X],
we shall call the complete sign tableau of the F; denoted by 7 = T«[F1, ..., Fi] the data of the
number N of distinct real roots in R: (; < ( < ... <(nof F},(j = 1,...,k) and a tableau with
k rows and 2N + 1 columns giving the sign of each F; at each zero (; and on each open interval
] = 00,Gi[,1¢ Gl Jns Foo[ F=1,..., N — 1.

Note that the tableau do not provides the value of roots but simply their Thom code.

Proposition 17 : Let (P;) be a family in D[X] stable by derivation. Let ({;) be the family of real
roots of P; in R. Then one can set up the complete sign tableau T for the family (P;) using only
the signs of P;((;)

10
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Proof : It is a easy consequence of Thom’s Lemma g

Let L = [P1,...,Ps] be a list of polynomials of D[X] and ¢ = (0i)i=1,..s be a n-uple of
generalized sign conditions and H = [P1040,...,P0,0] be the system of generalized sign conditions
corresponding to L and ¢. One considers the family P generated by I and by the operation P — P’,

¢1 < (2 < ... < (r the real roots of polynomials in P and 7 the corresponding complete sign
tableau.

Lemma 18 : if one has :

a) the incompatibilities | [H,X < (1] |, [H, (1 < X < (] |, 1 [H,(e < X < (3] L.,
| [H,X < (] | with degree bounded by 6.

b) the incompatibilities | [H,X = ;]| i=1,...,r with degree bounded by §'.

Then one can construct | H | with a degree bounded by 2r§6’.

Proof : We denote by IE; =| [H,X < (3] |, IEx =] [H,({x-1 <X <] | for k = 2,...,r,
ey =L [H,X < (] | and Qx = X — (x, k=1,...,r. Applying r-times the proposition 7 (ii) one
constructs | [H,Q1 # 0,Q2 #0,...,Q, # 0] | with a degree bounded by (r + 1)é according to the

following diagram :

The incompatibility 12 =] [H,Q1 # 0,Q2 < 0] | is obtained by applying from proposition 7
(ii) to IE; and to IEy. The incompatibility IE1 235 =| [H,Q1 # 0,Q2 # 0,@Q3 < 0] | is obtained
by applying proposition 7 (ii) to IE1 2 and to IE3 as previously. Iterating this process until IE,;;
provides us the incompatibility I, . r+1 :=| [H,Q1 # 0,Q2 #0,...,Q, # 0] |. We apply next
r-times the proposition 7 (iii) with ¢ = 1 and noticing that the exponent of Q; is bounded by 26 at
each step, one deduces that the degree increases at most by 26(6' — 1). Finaly one gets the bound
(r+1)64+2r6(6' - 1) n

Theorem 19 :(real effectif positivstellensatz in one variable)
Let D be an ordered domain, K its fraction field and R the real closure of K.
Let L be a list of polynomials of D[X] of degree at most d, r be the number of real roots in R of
the family generated by L and the operation P — P' and H(X) be a system of generalized sign
conditions on elements of L.
Then :
either H(z) is possible in R
or H(z) is impossible in R and then | H | in R. Moreover the degree of | H | is bounded by
8rd?.

Proof : Let 7 be the complete tableau of the family generated by L and the operation P — P’
and (1 < (2 < ... < (, be the ordered list of finite points of 7. We set {; = —oco et Cr41 = +00.

11
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The existence of  in R verifying H(z) is directly readable from the complete tableau 7 and can
be tested by computation in D. To do this one compares on each open interval and for each finite
point of 7, the generalized sign condition of a polynomial in H(X) and its sign given in 7. If no
contradiction is revealed for the polynomials of L on at least an interval or on a point then H(z)
is possible in R.

Otherwise if on each open interval and for each point (x,k = 1,...,7 of T there exists a polynomial
of L of reverse sign condition to its sign given in 7 then H(z) is impossible. On each open interval
I =)Ck-1,Ck[ (k = 2,...,7) one chooses a polynomial P of L of reverse sign condition to its sign
given in 7. One will take as possible a polynomial P of lower degree of L to prevent the growth
of the final degree of the desired identity. If deg(P)=d, one denotes (¢o, €1, . ..,€q) the (d+ 1)-uple
of strict sign conditions of P, P',..., P9 on I respectively. According theorem 14 there exits a
generalized Taylor formula which shows the strong evidence of the generalized sign condition of P

on I and hence the incompatibility | [H, (x—1 < X < (i} |. This generalized Taylor formula can
be rewriten :

Qiikl’l ink‘gak + Sk + Qr-15k2 — QiSk3 — Qu—1QrSka+ Z =0

where Qx-1 = X — (4-1,Qr = X = (k,ax € R,S%;,7 = 1,2,3,4 are sums of squares in R[X]
with positive weights. On intervals | — oo, (i[ and ](x, +oo[ the incompatibility | [H,X < (4] |
(respectively | [H,(, < X] ]) is given by the suitable ordinary Taylor formula of a polynomial of
L. Now on a point (x,k = 1,...,r the incompatibilty | [H,X = (x] | is given by a polynomial
with reverse sign condition at (;. It is writen by an equality of the form :

P(X) = P(Ck) + (X = C)Q(X)

One concludes by applying the lemma 18 g

4. Some precisions about implementation and cost of the algorithms in Axiom

Given L = [Py,..., P,] a list of univariate polynomials of D[X]. We denote by :
d; the degree of P; and n = 3 d;

P the family of the polynomlialls of L and their derivatives

¢1 < (2 < ---,< (r the sorted list of real roots of the polynomials of P and {; = —oco and
Cr41 = +00 _

€k ; the (d; + 1)-uple formed of the sign(P](.z)) t =dj,...,0, on the open interval ](k,Cr+1]
k=0,...,r

ok = |sign(P{ "V (C)), sign(P{™ (), ., sign( Pu(Ck))s - -
sign(PL 71 (G,), sign(PA* TD(Gh)), ., sign(Pu(G))]

The procedure T'S which we describe now, allows us to get the complete sign tableau 7 of the
family P.

Procedure TS :

It’s input is a list L of polynomials with coefficients in D
It’s output is formed of :

o the list [€0,1,€0,2,€0,5]»-- -+, [Em,1+---+Ers) of (r + 1) uples, each uple is

12
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formed of s (d;+1)-uple of sign conditions realized by the polynomials P;d’), P](.dj _1), s PLPy, § =

1...,s on the open interval |(x,(k+1[, £ =0,...,7.
e the list 01,...,0, of n-uple of sign conditions realized by the polynomials of P at the real
zeto (g, k=1...,7

Kemark : We use Roy’s algorithm SI (simultaneous inequalities) [see RS] in the procedure TS to
obtain the complete signs tableau. The procedure TS performs then n times the procedure SI .

Proposition 20 Let D = 7, [Py,..., Ps] be a list of polynomials with integer coefficients, and d
the mazimum of their degree, t the mazimum of their size and r be the number of real roots of

Py,...,Ps and their successive derivatives. The procedure TS runs in time
O(s*d®r(log 7)3t?).

Proof : TS performs at most sd times the procedure SI. Each call of SI takes O(sd®(logr)3t?), so
we get the stated total computation time by multiplication by sd

About the algebraic identity which provides the positivestellensatz we introduce for each (; a
variable z; which represents it. The algebraic identity computed can be represented in compact
form. To avoid the growth, we introduce elsewhere some formal operations. These operations occur
when one eliminates the X — ; using the (iii) of the proposition 7. The proposition 7 (iii) consists
to take the both sides of an identity of the following type :

M+C+Y, = —(X—Ci)Yl
to the power 2h with h integer > 1. We shall write this manipulation by

[—'(X - Ci)Y1]2h = Mzh + MCdefpl(M, 072h) + dlffPZ(M3 072’7’) + YZdefpo(MachZth)

h-—-1

h' I3 o
with  dif fpl(M,C,2h) := ) (ijl)M%h—J’-l)c?i, dif fp2(M,C,2h) := zl (§§)M2(h—ﬂ>c21,
J:

2k .
dif fpO(M, C,Y,2h) := Z (?)(M + C)Qh’ng'l. The result of the two first operations are sums

of squares with positive weights in R[X]. Our algorithm produces, from the procedure TS, a
straigth-line program which gives the desired identity. The evaluation of the last instruction of this
straight-line program is an algebraic expression in the variables X and P;({;) which is a suitable
incompatibility as far as that the z; are replaced by the (;. It follows that this expression is an
identity with coefficients in IR, (the real closure of @). Whenever P;(¢;) = 0 we have substituded
the term Pj;(z;) by 0 in the expression which has been especially simplified. The final identity is
hence an equality in 7 [X, (z;)] /T where I the ideal generated by P;(z;) corresponding to the zero
value of P;((;). In pratice the computation time by straight-line program of the algebraic identity,
is negligible comparing to the time of the computation of the complete sign tableau.

Example :
Let us consider the following polynomial

P=_7X34+5X24+92X +3

13
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We have the following complete sign tableau of P and its successives derivatives :

1 T2 z3 T4

P® ) - ) - ) - -) - (-)

P (+) + (+) 0 () - ) - (-)
P! ) 0 (+) + (+) O -) - ()
P (+) + (+) + (+) + (+) 0 ()

We denote by I, =] []H,X < CL‘]] 1, By =] []H,SB1 < X< 1‘2] | E3 =] []H,.’DQ <X< 5133] 1,
E4 =| [H,z3 < X < 24] | and E5 =| [H,z4 < X] | the strong incompatibilities of generalized the
sign condition H = [P = 0, P’ > 0] on respectively the open intervals Iy =] — 0o, z1[, I =]z, zs]

A3 =)zg,z3[,]s =)z3,24] and I5 =]z4,+oo[. Then IE; k = 1,...,5 are given respectively by the
following generalized formulas :

21Q7 + S11— Q1.513 =0

Py(z1) + S21 4+ Q1.522 — Q2.523 — Q1Q2.524 — P, =0
Py(z2) + 531+ Q2.532 — Q3.533 — Q20Q3.534 — P, =0
21Q3 + Sa1 + Q3-S12 — Q4.543 — Q3Q4.544 = 0

— Pi(z4) 4+ S51 4+ Q4.552 =0

where
Qr=X—z¢, fork=1,...,4

S11==P'(z1)+ Pi; Si3 = P(2)($1)
Sa1 = 0; S22 = 14Q3%; S23 =21Q3; S24 =0
S31 = 0; 533 = 21Q3% + 14Q3%; S33 = 42Q3%; S34 =0
Sir=P'5 Sip = ~P®(23); Ss3 =S4 =0
Ss1 = 21Q% + P'; S5 = —PP)(zy)
On zp (k = 1,...,4) the following identities provide respectively, the strong incompatibility

Py :l []H’Qk = 0] l :
P(l‘l) + QlGl —P=90

P(zy) +Q2Gy,— P =0
P(z3) + Q3G — P =0
- P'(za)+ P' = Q4G4 =0

Let us construct £, 2 =| [H,0Q; # 0,Q2 < 0] |. We rewrite IE; and IE; and multiply respectively
the right and left sides of the two equations :

21Q3% + S11 = Q1513
P(331) - Q2823 — P = —Q1522

we obtain

21P(21)Q7 + P(z1)S11 + Q1513522 — Q2(21Q] + S11) S23 — (21QF + S11) P =0

14
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We perform the same operation with I3 and IE; 3 so we obtain IE; 53 =] [H,Q1 # 0,Q2 # 0,@3 <
0]]:

J

21P(z1)P(z2)Q% + [P(zl)sll + Qfslasn] P(z3)

+ Q3 <21Q% + 511)523532 - Q3 [21P($1)Q% + P(z1)S11 + Q%SI3S22] Sas

- (QIQ% + 511) (P(xg) — Q3533 + Q2523>P =0
In the same way we get 1234 =| [H,Q1# 0,Q2 #0,Q3 # 0,04 <0] | :
441P(21)P(22)Q1Q3 + 21P(21)P(22)Q150 +

[P($1)P($2)511 + P(22)Q% 51352 + 21Q3Q3 553532 + Q%SustSaz] (21(2;2; + 541)

+ Q3 [211)(1?1)@? + P(z1)511 + ‘93513522]533542

+ (21Q% + 511> (P(1‘2) - Q3533+ Q2523>Q3542P =0 (1)

We remark that in the previous identity the polynomial Q4 does not appear, so we can take
| [H,Q1 # 0,Q2 # 0,Q3 # 0,Q4 # 0] |= E;234. We apply now the second procedure of
"glueing” to eliminate )1 and Q3 in the identity (1). We rewrite the strong incompatibility P, :

-@1G1=P(z1)- P
and we take the both sides of this equality to the power 2 :
Q1Gt = P(z1)’ - (2P(z1) - P)P (1)
and we multiply (1) by G? and (IP}) by 441P(z)P(z2)Q3 so we get
441P(21)* P(2)Q} + 2LP (1) P(2:)G2Q3 511 +
[P(l'l)P(iEz)Su + P(22)Q1 513522 + 21Q31Q3 52353 + Q§511523532] (21Q§ + 541)G%

+ [zlp(xl)cgi + P(21)S11 + Q%Slgszg}Qgczs%su - 441P(a:1)P(x2)<2P(:1:1) - P) Q2P

+ (21Q§ + 511) (P($2) — Q3533 + Q2523> Q3S:GIP =0 (2)

To eliminate ()3 we proceed as above with P, and (2) so we get finaly the desired identity :
441P(21)° P(z2)P(23)* + 21 P(z1)P(29)G2G2Q3 54 +

[P(zl)P(mz)Sn + P(22)Q3 513522 + 21Q3Q3 593532 + Q§511523532] (21Q§ + 541)G%G§
+ [QIP(wl)Q% + P(IL‘I)SH + Q%Slgsgg}QgG%G?;Sggstu — 441P(1‘1)P((B2)(2P(.’1)1) — P)QgGgP

it 441P(2:1)3P(:L‘2)(2P(x3) hand P) P + (21@% + 511) (P(.’I)z) — QaSaa + QzSzg) Q3S42G%G§P =0
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