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Preface

The theory and practice of computation in algebraic geometry and related
domains, from a mathematical point of view, has generated an increasing
interest both for its rich theoretical possibilities and its usefulness in
applications in science and engineering. In fact, it is one of the master
keys for future significant improvement of the computer algebra systems
(e.g., Reduce, Macsyma, Maple, Mathematica, Axiom, Macaulay, etc.)
that have become such useful tools for many scientists in a variety of
disciplines.

The major themes covered in this volume, arising from papers pre-
sented at the conference MEGA-92 were:

— Effective methods and complexity issues in commutative algebra,

projective geometry, real geometry, and algebraic number theory

— Algebro-geometric methods in algebraic computing and applica-

tions.

MEGA-92 was the second of a new series of European conferences
on the general theme of Effective Methods in Algebraic Geometry. It
was held in Nice, France, on April 21-25, 1992 and built on the themes
presented at MEGA-90 (Livorno, Italy, April 17-21, 1990). The next
conference — MEGA-94 — will be held in Santander, Spain in the spring
of 1994. The Organizing committee that initiatiod and supervises this bi-
enniel conference consists of A. Conte (Torino), J. H. Davenport (Bath),
A. Galligo (Nice), D. Yu. Grigoriev (Petersburg), J. Heintz (Buenos
Aires), W. Lassner (Leipzig), D. Lazard (Paris), H. M. Méller (Hagen),
T. Mora (Genova), M. Pohst (Diisseldorf), T. Recio (Santander), J. J.
Risler (Paris), M. E. Roy (Rennes), R. Schoof (Utrecht), and C. Traverso
(Pisa). : ,,

During the conference, an informal session was organized, in which
some participants were given the opportunity to give short talks on current
research, of too informal a nature for inclusion in the volume. In addition,
the decision since was made to publish only in English, some excellent
papers do not appear here. The following papers given at the conference
were omitted from the volume:

Assi (Grenoble): Homogenization and standard bases with minimal

ecart

Bjorck (Stockholm): There are oo + 1152 cyclic 8-roots
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A continuous and rational solution
to Hilbert’s 17th problem

and several cases of the Positivstellensatz

C.N. Delzell! L. Gonzélez-Vega?  H. Lombardi

Abstract: From the Positivstellensatz we construct a continuous and
rational solution for Hilbert’s 17*h problem and for several cases of the
Positivstellensatz. The solutions are obtained using an especially simple

:

method. :

¥

I. Introduction.

Let K be an ordered field, and R its real closure. Hilbert’s 17** problem
asks if an everywhere nonnegative polynomial f € K[X] := K[X},..., X,]
can be expressed as a sum of squares of rational functions in K(X) with
positive weights in K. Since the answer is well known to be ‘Yes,” we
now seek more information, in particular, on the way the coefficients of
the solution can vary in terms of the coefficents of f. The main tools we
shall use to obtain this extra information are the notion of semipolynomial
function and the Positivstellensatz for K[X].

A semipolynomial function with coefficients in K (a K-semipolynomial)
from R" to R is a function obtained by a finite iteration of composition
of polynomials in K{X] and the function absolute value. A well-known
proposition, not used here, assures that the set of K-semipolynomials agrees
with the minimal max-min stable set of functions containing polynomials
in K[X] (see, for example, [Dely]).

By the name Positivstellensatz we shall refer to the more general ver-
sion of this theorem, i.e., the one assuring that it is possible to associate
to every incompatible finite conjunction of generalized sign conditions on
a list of polynomials in K[X] an algebraic identity in K[X] making this
incompatibility evident (see the beginning of §II).

i Supported by NSF, the Louisiana Board of Regents Research and Develop-
went Program (Education Quality Support Fund), and the Alexander von Humboldt
Foundation.

? Partially supported by CICyT PB 89/0379/C02/01 and Esprit/Bra 6848 (Pos-
#0).
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Using this Positivstellensatz we shall provide, in a constructive way,
a continuous and rational solution for Hilbert’s 17** problem. More pre-
cisely, let fn a(c,X) be the general polynomial of degree d in the n vari-
ables X := (X},...,X,) with coefficients ¢ := (cy,...,¢m), and consider
the semialgebraic set

Foa={c€R™:Vx€R" f,a(c,x)>0}.

Theorem IL5. (Main Theorem) The general polynomial f, 4 of degree
d in n variables can be written as a weighted sum of squares of rational

functions
o[ X))?
.\a.aﬁo. uhv = &M.Nv.‘ AOvA MAO. Nv v

(for allc € R™), where
¢ k(c,X) and the g¢;(c,X) are polynomials in the variables X whose
coefficients are Q-semipolynomials in the coefficients c. Moreover, if
c € Fy 4, then k(c, X) vanishes only on the zeros of f, 4(c, X), and
* each pj(c) is a Q-semipolynomial which is nonnegative on F , 4. More-
over, under the hypothesis ¢ € Fn 4, the nonnegativity of p;(c) is
‘clearly’ evident.

A: Prehistory of Theorem II.5

Hilbert posed his 17** problem in 1900 [Hil]; E. Artin solved it in 1927
[Art] by a non-constructive method. In 1955 Artin asked Kreisel whether,
from Artin’s own proof, one could extract bounds on the number and de-
grees of the rational functions, in terms of suitable elements of the data (n,
d, and possibly c); Kreisel gave a sketch of such an ‘unwinding’ in [Kre,];
the bounds so constructed were in terms of n and d (not c), and primitive
recursive; in 1961 Daykin [Day] worked out Kreisel’s sketch, showing that,
roughly, the bounds were obtained by applying primitive recursion at least
twice to exponential functions of n and d.3 Independently, A. Robinson
(see [Rob;) and [Rob,]) got (by definition total) general recursive bounds.
These authors also expressed the weights and coefficients of the rational
functions as Z-piecewise-polynomial functions g of c. All this handles the
case in which K is given with computable arithmetic operations and sign
test (e.g., when K = Q)—and it was more than enough for Artin himself.

But the fact that those g were, a priori, discontinuous in ¢ for the usual,
order topology on R, meant that they were computationally inadequate for
the case where K = IR, since if we want to have computable arithmetic
operations, elements of IR must be given by, say, rational approximations;
this makes equality and, a fortiori, the order relation, undecidable. In-
tuitionistic logic gives small changes in the logical laws which do ensure

% The statement of Daykin’s bounds was oversimplified in [Del;] and [Dely].

POSITIVSTELLENSATZ 63

continuity of functions constructed (and for a wide range of topologies). So
after the above contributions by classical logic, Kreisel asked in 1962 [Kres)
whether intuitionistic logic could also contribute, by determining whether
the g could be chosen to be continuous, or the rational functions € K(X)
could be chosen to be continuously extendible to R". So far, intuitionistic
logic has contributed little, and real algebraic geometry much:

(a) In 1978 Kreisel noticed [Kre,] that Stengle’s 1974 “Positivstel-
lensatz” [Ste] (which others have called a “Nichtnegativstellensatz”) eas-
ily represents a positive semidefinite (‘psd’) f € K[X] in the form f =
>; Pi(g;/k)? with 0 < p; € K and k,¢; € K[X] and, most importantly
here, such that the functions g; /k extend continuously to R™ (see the end
of §II below for details).

(b) In 1980 the first author showed [Del;] that for even d > 4, the
weights ps(c) in (IL.6)(x) cannot be chosen to be rational functions (€
R(c)); and in 1990 ([Dels] and [Del7]) he excluded even (germs of) real
analytic functions when R = R. '

(c) Also in 1980 he found his first positive result on this ([Dels]): for
all d > 0 the p; and the coefficients of k and the g; can be chosen to
be (locally uniformly) continuous Q-semialgebraic functions of c; functions
with these properties can be effectively evaluated even over R, in the—only
reasonable—sense that they are computable on, say, the rationals, and they
take approximations to approximations. And from the mere existence of
this representation of f (and the completeness of the theory of real closed
fields), the semialgebraic descriptions of these functions are given by general
recursive functions of n and d.

There were two shortcomings in (c): (1) As Scowcroft [Sco;] and the
third author [Lom;] remarked, it contained (only) one nonconstructive step,
namely, the use of Stengle’s theorem, proved up until then by means of
Zorn’s lemma. In 1956 Kreisel had observed [Kre,] that by relativising
a proof to the constructible universe, the axiom of choice (and even the
generalized continuum hypothesis) can be eliminated from any proof of an
arithmetical theorem, a fact which has been used to sanitize proofs of re-
sults on the order of homotopy groups (by Serre) and on p-adic fields (by
Ax and Kochen). Thus, v@msm arithmetic (at least if, say, K = Q, which
was the only case used in (c)), Stengle’s theorem follows from ZF without
further ado. It is clear that this ‘trick’ would not satisfy constructivists,
however: often there is more o constructivity than purging the axiom of
choice, namely purging the principle of the excluded middle. Note also that
ZF with intuitionistic logic seeins not constructively meaningful. Scowcroft
[Scoy] offered a sketch of a proof of Stengle’s theorem without AC or any
other constructively dubious principle; if successful it would yield bounds
which belong not only to the set of general recursive functions, but to
the proper subset of those which are provably total in formal arithmetic
(intuitionistic or classical, both having the same provably total recursive
functions). The third author gave a direct, constructive proof of the Pos-
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itivstellensatz [Lom,], with explicit (primitive recursive) bounds [Lomj).
Thus, by changing only one entry in the bibliography of [Dels] (namely,
from {Ste] to [Lom,] and [Lomy)), the proof in [Dels) becomes constructive,
and the semialgebraic descriptions of those functions also become primitive
recursive. Thus, if all that we had wanted in a solution to Hilbert's 17th
problem over IR were brutal constructivity, then we could have stopped
here; in particular, there would have been no need for (I1.5) (though the
luxury of a simpler proof is welcome).

(2) The other shortcoming of (c), which was not to be overcome by
the above kind of tinkering with the proof in [Dels], was that the functions
which it produced are ‘only’ semialgebraic, and therefore do not necessarily
take K-rational values at K-rational arguments ¢, as Hilbert asked for
(unless K is real-closed). So in the first author’s thesis, and in [Del,],
[Dela), and elsewhere, he proposed to construct continuous, Z-piecewise-
polynomial weights and cocfficients; such functions obviously do take values
in K at K-rational arguments ¢, uniformly for all K. And in [Del4] he
conjectured the full statement of Theorem IL.5, that the functions could
even be chosen to be Z-semipolynomials, which would make their continuity
‘evident’. This last conjecture/tlLeorem appears to be ‘strongest possible’
by (b), and it contains the results in (a) and (¢) above, as explained in
more detail at the end of §II below.

B. magww of Theorem IL.5

Theorem I1.5 is a special case of the Positivstellensatz for semipoly-
nomials (‘Pfs’). The first author-proved I1.5 and the Pfs in 1988 (see the
abstracts [Dels] and [Del7]). The second and third authors, Jjointly, re-
discovered these results in 1991, independently of the first author, and by a
different method. This paper presents their proof of (I11.5), along with their
view (§IV) of it as being primarily a contribution to constructive mathe-
matics (a la Bishop). Their proof of the Pfs will appear in {GV-L]. The
first author’s proof of both results will appear in [Dels], along with his view
of them as being primarily a contribution to (classical) topological algebra
and to the ezamination of assumptions of the logical tradition, specifically,
the assumption that logic contributes to this part of mathematics.

Perhaps the main difference between the two proofs of the Pfs is that
the first author reduces it to the abstract Stellensitze for the real spec-
trum of an arbitrary commutative ring, while the second and third authors
reduce it to the Positivstellensatz for polynomials. An advantage of the
former proof is that it has some surprising facts about abstract semial-
gebraic (in particular, abstract ‘semipolynomial’) functions in f-rings as
by-products. For example, while the absolute value function c1 = Jey] is
obviously positive semidefinite on R, it is not psd on the real spectrum
of the ring of semipolynomials. This example motivated a large part of
N. Schwartz’s recent investigation [Sch] into abstract piecewise-polynomial
functions. An advantage of the latter proof of (I1.5) is that it avoids even
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the appearance of reliance on Zorn’s lemma, simply by avoiding the abstract
Stellensatze. This relies, instead, on—the third author’s direct, construe-
tive proof of—the Positivstellensatz for polynomials [Lom,]; as a result,
the functions produced by this proof are primitive recursive in n and d; as
in (A.c.1) and in Kreisel’s and Daykin’s results at the beginning of sub-
section A, these primitive recursive functions are of iterated exponential
complexity in n and d,* while those of [Delg] are only general recursive.
Thus the latter proof provides another constructive solution to Hilbert’s
17th problem over R, simpler and more informative than that described in
(A.c.1) above (see §1V for details).

The first author’s proof of E.mv was, at first, more complicated than
necessary; A. Prestel simplified the proof, and incidentally rearranged it
along the lines of the method below by the second and third authors. He
also asked in [BP] whether the result extended to higher even powers; cf. the
abstract in [Pres] when n =1, «

The underlying ideas used to prove (I1.5) and the Pfs led all of us (again
independently) to improve the continuous and semialgebraic variation in
Scowcroft’s Positivstellensatz [Stos) to semipolynomial variation.

Finally, unlike the proofs of (I1.5) presented in this paper and in [Delg),
the proof presented in [GV-L] reduces the result to the Pfs.

II. A rational and continuous solution to Hilbert’s 17th problem.

First we recall the definitions of strong incompatibility and the general form
for the Real Nullstellensatz in the polynomial case (see [Lom;] and [Lomg]).
We consider an ordered field K, and X denotes a list of variables X 1, Xo,
-+, Xn. We then denote by K([X] the ring K[X;, X3,...,X,]. If Fis a
finite subset of K[X], we let F*? be the set of squares of elements in F,
and M(F) be the multiplicative monoid generated by F U {1}. Cp(F) will
be the positive cone generated by F (= the additive monoid generated by
elements of type pPQ?, where 0 < p€ K, P € M(F), and Q € K[X])).
Finally, let I(F) be the ideal generated by F.

Definition I1.1. Consider 4 finite subsets of K[X]: Fs,Fs,F=,Fy, con-
taining polynomials for which we want respectively the sign conditions > 0,
2 0,=0, and # 0: we say that F := [Fs, F>, F=, Fy] is strongly incompat-
ible in K if we have in K[X] an equality of the following type:

S+P+Z=0 with S€M(F>UF,?), PeCp(FsUF5), Z € I(F=).
It is clear that a strong incompatibility is a very strong form of incom-

patibility. In particular, it implies that it is impossible to give the indicated
signs to the polynomials considered, in any ordered extension of K. If one

4 However, they involve fewer iterations of the exponential function than Daykin's
bounds.
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considers the real closure R of K, the previous impossibility is testable by
Hormander’s algorithm, for example (see [BCR], chapter 1).

The different variants of the Nullstellensatz in the real case are a con-
sequence of the following general theorem:

Theorem IL.2. Let K be an ordered field and R a real closed extension
of K. The three following conditions, concerning a generalized system of
sign conditions on polynomials of K[X]; are equivalent:

¢ strong incompatibility in K;

e impossibility in R; and

o impossibility in all the ordered extensions of K.

This Nullstellensatz was first proved in 1974 [Ste]. Less general variants
were given by Krivine [Kri], Dubois [Du], Prestel [Pre,], Risler [Ris] and
Efroymson [Efr]. All the proofs until [Lom,] and the sketch in [Sco1] ‘used’
the axiom of choice (recall (I.A.c.1)).

I1.3 Parameterizing Hilbert’s 17'* problem.

Let f, a(c,X) be the general polynomial of degree d in n variables (c de-
notes the list of coefficients ¢, ..., e, and X the list cf varinbles X1, ...,
Xn). It is a standard fact in real algebraic geometry that the set

Hm,:_m = AO ER™ :¥x e R"” \:.&An,unv > Ow

is a closed Q-semialgebraic set. So, applying the Finiteness Theorem, we
have that IF,, 4 is a finite union of ‘basic’ closed Q-semialgebraic sets:

k n,
Fna=J[(){c: Rnaijlc) 2 0}.
i=1j=1

Here the R, 4,; are polynomials in Z[c].® The last equation allows us to
describe the set IF,, 4 in the folloying way:

%:.u” mo P max, Aam:tw?u...c.?v;“f: nit} > ov.

So, if for every i in {1,...,k)} we define

Hp 4i(c) = ; Bi:@@:h..ﬁ.?i

=1,..,

® Some of the published proofs of the Finiteness Theorem (e.g., [Dely]) explicitly
mention the fact that the coefficients of the R, 4., may be chosen to be rational numbers
{even integers, after clearing denominators), while others (¢.g., [BCR]) assert only that
they can be chosen in R; but even these other proofs actually do yield the integrality of
the coeflicients, if one merely pays attention to it. Likewise, in most of the proofs, the
authors do not pay attention to the constructive character of their proofs; if one does,
one sees that in fact most of the proofs are constructive; [Del;] does pay attention, and
[Sol] goes even further, by giving a carcful complexity analysis.

-
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and

Hna(c) = max {Hn4i(c)},

i=1,..,

we have obtained the following description for the set Fpna
Fpq= ?,“ Ha,4(c) > 0},

where Hp 4(c) is a Q-semipolynomial. Therefore we have shown the equiv-
alence

ceEF,g < \N:.aon >0 < VxeR" \:.mAO, x) > 0.

I1.4 The proof of the parameterized theorem.
The last equivalence allows us to conclude

Ve €R™ Vx € R" {Hna(c) 20 => foa(c,x) >0},

or, what is the same, the incompatibility of the system of generalized sign
conditions
Hpa(c) 20, fa,d(e,X)<0. (1)

If 11,y 4(c) were a polynomial and not a semipolynomial, then, apply-
ing the classical Positivstellensatz (theorem I1.2) to the incompatibility (1),
we would get an algebraic identity in ¢ and X making this incompatibil-
ity evident. This would give, for the polynomial fn,d(c,X), a solution to
Hilbert’s 17*» problem parameterized by polynomials in ¢ and so, a rational
and continuous solution.

As this way of attacking the problem is not feasible, we shall try to
translate our incompatible system to another one using only polynomials in
order to be able to apply the Positivstellensatz (Theorem I1.2). To achieve
this goal we introduce new variables zy, . .. » 2k, and for every i € {1,..., k}
we consider the following polynomial system of generalized sign conditions:

(2i = Rn,a,6,1(€))(%i — Rn 4;5,2(¢)) - (2i = Rng,ini(c)) = 0,
zi = Ry 441(c) <0,
H; = zi = Ry 4,2(c) <0,

v

zi — Nwa.u....a_.ﬁnv <0.

It is clear from the definitions of Hp,ai and H; that, for fixed c € R™, if
the system H; is verified then z; = Hy 4:(c).

Next we consider a new variable z and the following polynomial systems
of generalized sign conditions:

(z=2)(z—-22) (2= 2)=0,
z—21 20,
H = 2-2220, K= {H,,...,H,,H)}.

‘ o

z2—2z: 2 0.
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Clearly we have that, for fixed ¢ € R™, if the system K is verified, then
7= Hp 4(c).

After introducing in this way the variables z, z;, ..., zx, what we have
obtained is the following incompatible system of generalized sign conditions
on polynomials in K([X, 2, 2y,..., z]:

K, 2> 0, faa(c,X) < 0.

>Ev_v:=m to this system the Positivstellensatz (theorem II. 2) and replacing
in, the equality obtained every z; by H, 4 i(c) and z by H, 4(c), we obtain
an algebraic identity concerning polynomials in X whose coefficients are
Q-semipolynomials in c.
Next we study the different parts appearing in this algebraic identity:
e The strictly positive part in the initial identity (before the z;’s
replacement) was f, (¢, X)?" and remains unchanged.
¢ The null part in the initial identity was a polynomial in the ideal
of _X_HX z,20,. .., 2k mosoqwomm by the polynomials with ‘= 0’ in
K, ie.,

(7 = Rnai1(€)) (2 = R aia(e)) - (2i = Rugin,(e)) 1<i<k

(z—2)(z—22) (2 — 2x).

After replacing z by H, 4(c) and every z; by H, qi(c), this part
becomes a function of ¢ identically 0 (zero. for all ¢ € R), and this
is the reason why it will not appear in the final identity which
concerns polynomials in X with coefficients Q-semipolynomials in
c.

¢ The nonnegative part in the initial identity was a polynomial in
the positive cone generated by the polynomials:

|\:.&AOVNV_N,NI| Zlyeiey & =2k,

mwa,a....wﬁnv —Ziy.- \Na.a.m,:..AOv -2z i€ AH, ey \nw

After the replacement only —f, 4(c, X) remains unchanged, and

the other generators of the cone become Q-semipolynomials in

¢ which are clearly nonnegative for every c¢ (by the definition of

the functions Hp 4:(c) and H, ¢(c) in terms of max and min) or

the @-semipolynomial H, 4(c) that is nonnegative if f, 4(c,x) is
nonnegative for all x € R™.

Summarizing, we have found an algebraic identity with the following

structure:
fra(e, X)gle, X) = fnale, X)* + h(c, X)), {2)

where g(c, X) and h(c, X) are polynomials in X whose coefficients are Q-
scmipolynomialsin ¢. More precisely, g(c, X) and h(c, X) are sum of terms
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pi(c)gj(e, X)?,

where the g;(c,X) are polynomials in X with coefficients Q-semipolyno-
mials in ¢ and the p;(c) are Q-semipolynomials nonnegative under the hy-
pothesis Hy, 4(c) > 0. More precisely we have that every p;(c) is a product
whose factors have one of the following type:

¢ the Q-semipolynomial H, 4(c),

¢ a Q-semipolynomial Hy, 4(¢c) — Hp 4,i(c),

.» a Q-semipolynomial Ry, 4, j(c) — Hp,4,i(c), and

* a positive rational or the square of a Q-semipolynomial in c.

If we multiply by f, 4(c, X) every member of equation (2), we get

fn,a(e, X)*g(c, X)
"~ Frd(e, X)* + h(c, X)’

.\: on umv =

and denoting by k(¢, X) the denominator of this _._.wno.moP we obtain finally

_ \3 Aa_uhvaAﬂ.uﬂvbAo,xv 9 (¢, X)
e X) = BN R = ke X

where g1 (c, X) is of the same type as g(c, X) and h(c, X). Moreover, k(c, X)
vanishes only at the zeros of f,, a(c, X) if Hn a(c) > 0, because then h(c, x)
is positive for all x € R".

Most of the following theorem has now been proved:

Theorem IL5. The general polynomial f, 4 of degree d in n variables can
be written as a weighted sum of squares of rational functions

ralerX) = (0 e XY, ®

where

o the ¢;j(c,X) and k(c,X) are polynomials in the variables X whose
coefficients are Q-semipolynomials in the coefficients c. Moreover, if
c € Fp, 4, then k(c, X) vanishes only on the zeros of f, 4(c,X);

e each p;(c) is a product whose factors are H, 4(c), or one of the Q-
semipolynomials Hy, a{c) — Hy, 4:(c), or one of the Q-semipolynomials
Rn.4,j(c) — Hn ai(c), or a positive rational, or the square of a Q-
semipolynomial in c. So, under the hypothesis Hy 4(c) > 0, the non-
negativity of p;(c) is ‘clearly’ evident; and

s the equation

foale, X)k(e, X)? Ms (c)gj(e, X)? =
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is especially evident in the following sense: the first member of the
equality, as polynomial in X, has as coefficients Q-semipolynomials in
¢ which are identically 0 (without assuming ¢ € Fpa)

Equation (x) provides a continuous, rational-valued solution to Hilbert’s
17*h problem, because
o all the coefficients (the pj(c) and the X-coefficients of the g;(c,X)
and k(c, X)) appearing in equation (x) are continuous, rational-valued
functions of ¢; more precisely, they are Q-semipolynomials in ¢; and

o every summand in (%)
(e, X)) ?
pi(c) AQ\MAAP_NVVV

is a function which is rational in X, and which can be continuously and
semialgebraically extended to the closed semialgebraic set Fp, 4 x R™.

Proof:

The only statement not yet proved is the last: the semialgebraicity of the
extension of p;(g;/k)? is obvious. To see its continuity, we use an argument
of Kreisel [Kres] (with parameters c): note that k = f2 4+ h (with h
nonnegative over Fp, 4 x R"), which can vanish at some point (c;x) €
IFp,4 x R" only if f vanishes there, forcing each p;(g;/k)? to tend to 0 near
(¢;x), by (x). The fact that this pointwise continuity is actually locally
uniform follows from the corresponding property of f; we leave the ¢’s and
6’s to the reader (see [GV-L) for details). ' A "

II1. Rational and continuous solution to other cases of the classical
Real Positivstellensatz.

The solution for Hilbert’s 17t% problem can be seen as a particular case of
the Real Positivstellensatz, and for this case we have just proved, in the
previous section, the existence of a solution depending on the parameters of
the problem in a semipolynomial way. So what we shall do in this section
is to generalize this result to other cases.

Let H(c,X) be a system of generalized sign conditions on polynomi-
als in Kf[c, X] where the X;’s are considered as variables and the ¢;’s as
parameters. We denote by Sy ﬁ:w semialgebraic set defined by

1
Sy = {c:V¥x € R" ; H(c,x) is incompatible}.

If Sy is locally closed (i.e., intersection of a closed and an open semi-
algebraic set), then, applying the Finiteness Theorem (see [BCR] or else-
where) and the strategy followed n §II when dealing with the set F,g4, it
is possible to construct two K-semipolynomials H(c) and Hj(c) satisfying

i

c€Sy <+« |Hc)2>0, mwAano_ =

POSITIVSTELLENSATZ . 71

<= Vx € R" H(e,x) is incompatible.

We have obtained the incompatible system of sign conditions
[Hie) 20, Hai(e) >0, H(e,X)],

but with Hy(c) and Hj(c) K-semipolynomials. Now we proceed in the
same way as in §II: we consider new variables z1, z;; (i € {1,...,k1}),
zz and z2; (i € {1,...,k3}), which are used to construct a system of
polynomial sign conditions K(c) translating the definition of Hi(c) and
H(c) as semipolynomials.

As the incompatible system of generalized sign conditions

.

{K(e), z1 20, z2 >0, H(c,X)}

involves only polynomials, we can apply the Positivstellensatz (theorem
I1.2), obtaining an algebraic identity making this incompatibility evident.
Finally, we replace in the algebraic identity obtained the variables 23,
71 (i€{1,...,k}), z2and 224 (i € {1,...,ks}) by the K-semipolynomi-
als they are representing. So we have obtained an algebraic identity con-
cerning polynomials in the variables X with coeficients K-semipolynomials
in c.

The next theorem summarizes the results obtained in this section and
provides a rational and continuous solution for some cases of the Real Pos-
itivstellensatz.

Theorem IIL.1. Let H(c,X) be a system of generalized sign conditions
on polynomials in K{c,X), where the X;’s are considered as variables and
the ¢;'s as parameters. If Sy is the semialgebraic set defined by

c€Sy <« VxeR" H(c,x) is incompatible,

and if Sy is locally closed, then (Finiteness Theorem) there exist K-
semipolynomials Hy(c) and Ha(c) such that

cESH <« T:Ewo. m%vvc_.

If ¢ € Sy, then the incompatibility of H(X) := H(c, X) inside R" is made
obvious by a strong incompatibility of fixed type (independent of ¢) and
with coefficients given by K-semipolynomials in c. Moreover,

o the algebraic identity obtained, seen as a polynomial in X, has an
especially simple structure. More precisely, every X-coeflicient of this
identity is a K-semipolynomial in ¢ identically 0 (without assuming
Hi(c) 2 0 and Hy(c) > 0), and

o every coefficient p(¢) in the algebraic identity which must be nonneg-
ative (resp. positive) is given by a K-semipolynomial showing such
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character in an especially clear way under the hypothesis Hy(c) > 0
and Hy(c) > 0.

In the same way that our rational and continuous solution for Hilbert’s
17*" problem (§11) improves the first author’s result [Dels], (I11.1) improves
Scowcroft’s results [Scoy] in four respects:

a-. for us, the semialgebraic set Sy need not be closed (Scowcroft knew
this, but chose to use hypotheses involving the logical form of the
implications implicit in H, rather than topological hypotheses on Sy );

b-. the coefficients of our solution are continuous, rational-valued functions
{more precisely, K-semipolynomials) in the parameters ¢ and not only
continuous semialgebraic as in [Sco,);

c-. the algebraic identity obtained, seen as a polynomial in X, has an
especially simple structure: its coefficents are K-semipolynomials in ¢
identically 0 (without assuming H,(c) > 0 and Hjy(c) > 0); and

d-. the nonnegativity or positivity of those coefficients in the solution
which must satisly such conditions, is clearly evident under the hy-
pothesis Hi(c) > 0 and Hj(c) > 0.

Finally, we note a strong converse of (ITL.1): the hypothesis that Sy
be locally closed is also necessary for the existence of a semipolynomially

]

(or even continuously) varying Positivstellensatz; the proof is in [Delg).

IV. Conclusion: the constructive content of the results.

In constructive mathematics (see [BB] and [MRR]), the theorems presented
in §§II and III are valid when the paraméters ¢ take values in an ordered
discrete field [LR], because in this setting we have a constructive proof of
the Positivstellensatz ([Lom,]). °

An interpretation of the results admissible for everybody is the follow-
ing one: all our proofs are effective, in particular without using the axiom
of choice and, more precisely, providing uniformly primitive recursive algo-
rithms if the structure of the field of parameters is given by an oracle giving
the sign of every polynomial with integer coeflicients on the parameters of
the problem.

The only thing remaining to be mentioned is the constructive content of
the results when dealing with the field IR of the real numbers in constructive
analysis [BB], i.e., the real numbers defined as—equivalence classes of—
Cauchy sequences of rational numbers. From an algorithmic point of view
this means that the real parameters c are given by oracles providing suitable
rational approximations (depending on the request made to the oracle) of
the real numbers involved, and that we are looking for a uniformly primitive
recursive algorithm. More details o1 this question can be found in [GV-1].

The answer to Hilbert’s 17'» problem provided by theorem 11.5 uses
polynomials and semipolynomials with coefficients in Q that can be com-
puted explicitly. The nonnegativity of the weights is clear from a construc-
tive point of view when dealing with real numbers “3 la Cauchy” under
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the hypothesis H, 4(c) > 0. This implies that, if the parameters c satisfy
the condition Hp d(c) > 0, then the polynomial f, 4(c, X) is everywhere
nonnegative. So, for the polynomial f, 4(c,X), Hilbert’s 17** problem is
solved in a continuous, rational-valued way with respect to its coefficients.
Moreover, since we can constructively prove (see [Lomj] or [GV-L]) the
converse
¥xeR"  faoa(e,x)>0 = H,4(c)>0,

we can conclude that also this continuous, rational-valued solution for
Hilbert’s 17** problem is complete and constructive for the field R.
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