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In this paper we present a polynomial-time algorithm to solve the following
problem: given a non-zero polynomial fe Q{X] in one variable with rational
coefficients, find the decomposition of f into irreducible factors in Q[X7]. It is well
known that this is equivalent to factoring primitive polynomials feZ[X7] into
irreducible factors in Z[X]. Here we call f¢ Z[X] primitive if the greatest common
divisor of its coefficients (the content of f) is 1.

Our algorithm performs well in practice, cf. [8]. Its running time, measured in
bit operations, is O(n'?+n’(log|f1)’). Here feZ[X] is the polynomial to be
factored, n=deg(f) is the degree of £, and

[Ze] =(Z )"
for a polynomial ;a,x' with real coefficients a,.

An outline of the algorithm is as follows. First we find, for a suitable small.
prime number p, a p-adic irreducible factor h of f, to a certain precision. This is
done with Beriekamp's algorithm for factoring polynomials over small finite fields.
combined with Hensel's lemma. Next we look for the irreducible factor hy of f in
Z[X] that is divisible by A. The condition that h, is divisible by h means that h,
belongs to a certain lattice, and the condition that hy divides f implies that the
coefficients of h, are relatively small. It follows that we must look for a “small”
element in that lattice, and this is done by means of a basis reduction algorithm. It
turns out that this enables us to determine h,. The algorithm is repeated until all
irreducible factors of f have been found.

The basis reduction algorithm that we employ is new, and it is described and
analysed in Sect. 1. It improves the algorithm given ina preliminary version of [9,
Sect. 3). At the end of Sect. 1 we briefly mention two applications of the new
algorithm to diophantine approximation.

The connection between factors of f and reduced bases of a lattice is treated in
detail in Sect. 2. The theory presented here cxtends a result appearing in (s,
Theorem 2). It should be remarked that the latter result, which is simpler to prove,
would in principle have sufficed for our purpose.
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Section 3, finally, contains the description and the analysis of our algorithm for
factoring polynomials.

It may be expected that other irreducibility tests and factoring methods tt.
depend on diophantine approximation (Cantor [3], Ferguson and Forcade [5],
Brentjes [2, Sect. 4A), and Zassenhaus [16]) can also be made into polynomial-
time algorithms with the help of the basis reduction algorithm presented in Sect. .

Splitting an arbitrary non-zero polynomial feZ[X] into its content and its
primitive part, we deduce from our main result that the problem of factoring such a
polynomial is polynomial-time reducible to the problem of factoring positive
integers. The same fact was proved by Adleman and Odlyzko [1] under the
assumption of several deep and unproved hypotheses from number theory.

The generalization of our result to algebraic number fields and to polynomials
in several variables is the subject of future publications.

1. Reduced Bases for Lattices

Let n be a positive integer. A subset L of the n-dimensional real vector space R" is
called a lattice if there exists a basis b, b,, ..., b, of R* such that

L=} lb‘-{z r‘b,:r‘el(XSiSn)}.
(=1 i=y

In this situation we say that b,, b, ..., b, form a basis for L, or that they span L. We
call n the rank of L. The determinant L) of L is defined by

(L.1) d(L)=|detib,, b, ....b ).

the b, being written as column vectors. This is a positive real number that does no 4
depend on the choice of the basis [4, Sect. [.2].

Let b,b,,....b,eR" be linearly independent. We recall the Gram-Schmidt
orthogonalization process. The vectors b? (1 Si S n) and the real numbers By (lS)
<ign) are inductively defined by -

(1.2) bf=b— 3 upbr.
i=1
(1.3) sy =(b, bT)(b7,57), _ .
where (,) denotes the ordinary inner product on R®. Notice that b? is the

i=-1 =1
projection of b, on the orthogonal complement of Y Rb, and that ) Rb,

j=1 j=1
i=-1

= Y Rb?, for 1 SiSn It follows that b?, b3, ..., b* is an orthogonal basis of R"
“In this paper, we call a basis b, b,. ...b, for a lattice L reduced if

(1.4) lujS1/2 for lsj{iSH

and

(1.9) 16 + 4y b 22202 ,12 for 1<ign,
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where || denotes the ordinary Euclidean length. thice that the vectors b*
+ - b, and b} | appearing in (1.5) are the projections of b, and b;_, on the
({=1Yi= - i=2

orthogonal complement of . Rb, The constant 2 in (1.5) is arbitrarily chosen.
it .
and may be replaced by any fixed real number y with 4 <y<1.

(1.6) Proposition. Let b, b,, ....b, be a reduced basis for a lattice L in R, and let
b%,b3,....b* be defined as above. Then we have

(1.7 bi2s2'7' 16 for 15jSisn,
. b 2dl-l)/6.d([‘),

(1.8) d(L)s .-I:[ll |s

(19) |b‘|$2('-”/‘~d([.)“".

emar i i ith <y <, then the powers of 2 appearing
fdin(1.5)is replaced by y, with <y <1, 2
ii (1.7;“(11.8‘)l:r:d (;.9) must be replaced by the same powers of 4/(4y—1).

Remark. From (1.8) we see that a reduced basis is also reduced in the sense of [9,
e .

(M1
Proof of (1.6). From (1.5) and (1.4) we see that

b1 2 G —ufi- )16 1P 24101
for 1 <ign, so by induction

Ib,‘l‘gZ‘"-lb,‘lz for 185jsisn.
From (1.2) and (1.4) we now obtain

i-1
lbj*=1bf1?+ 3. uilbst?

i=1

i-1 )
S+ 3 327/

j=t
=(1+3Q2'-2)Ib7?
§2l— 1 lbﬂz .

Hows that |
el lbj2g2/~ b2 52t 1b7I?
for 1SjSign This proves (1.7).

From (1.1), (1.2) it follows that
d(L)=|det(b?, b3, ..., DY)
and‘therefore. since the b are pairwise orthogonal
d(Ly= [T 1671

im

- i . Putting j=1in(1.7) and
20=12,1h*| we now obtain (1:8)
mgug.:‘esplfjdau’ﬁ Icfwlllef i=1,2, :n we find (1.9). This proves (1.6).
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Remark. Notice that the proof of the inequality
(1.10) dL)s [T by

isy

did not require the basis to be reduced. This is Hadamard's inequality.
(1.11) Proposition. Let L CR" he a lattice with reduced basis by.by....,b,. Then

bl g2t |xp2
Jor every X€EL, x40,

Proof. Write x-lf_l rdi= ¥ rib? with re, veR (1 Sisn). I iis the largest
= i=y
index with 7, %0 then ri=r, 30
M’%r}"lb;‘l‘klb“l‘.
By (1.7), we have lbdzsz""lb,‘I‘SZ"'"lb,‘l’. This proves (1.11).

(1.12) Proposition. Let L CR* be a lattice with reduced basis b,.b,,....b,. Let Xy, .
X3, ... X,€ L be linearly independent. Then we have

lb}lzsz.- ! 'm(lxllz- Ilezs ---v'xrlz}
for j=1,2 .. ¢

Proof. Write "1"‘21 rb, with r,€Z (15i8n) for 1Sjst For fixed j, let i)
denote the largest i for which 7;#0. Then we have, by the proof of (1.11)
(1.13) lx,l‘:lb;,,l‘

for 155t Renumber the x; such that ()SADS... S41). We claim that Sy
for1gjse. lfnot.thenx,.x,....,x,wouldallbelong xollbl+Rb,+...+ij-l.a
contradiction with the linear independence of X1 X3 .. X From jSi(j) and (1.7)
we obtain, using (1.13):

'bﬂzsz‘m-"'b:/;lzsz.-l'lsz)lzsz.-l‘lx/ll
for j=1,2,....¢. This proves (1.12).

Remark. Let 4,,1,,...,4_ denote the successive minima of ||? on L, see (4, Chap.
VIII], and let b,,b,,....b, be a reduced basis for L. Then (1.7) and (1.12) easily
imply that

24 SIS, for 1gish,
s0 |bj? is a reasonable approximation of A,

(1.14) Remark. Notice that the aumber 2*~! may in (1.11) be replaced by
max{id,*/bf1*: 1 i} and in (1.12) by max{[b*/1b#12: 15/ Sisn).

(1.15) We shall now describe an algorithm that transforms a given basis
bi.by,....b, for a lattice L into a reduced one. The algorithm improves the
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algorithm given in a preliminary version of [9, Sect. 3}. Our description
incorporates an additional improvement due to J. J. M. Cuppen, reducing our
running time estimates by a factor n.

To initialize the algorithm we compute b (1Sismand u, (1 Sj<ign) using
(1.2) and (1.3). In the course of the algorithm the vectors b, ....b, will be
changed several times, but always in such a way that they form a basis for L. After
every change of the b, we shall update the b? and Hyy in such a way that (1.2) and
(1.3) remain valid.

At each step of the algorithm we shall have a current subscript
ke{1,2,...,n+1}. We begin with k=2, '

We shall now iterate a sequence of steps that starts from, and returns to, a
situation in which the following conditions are satisfied:

(1.16) st for 1sj<i<k,

(L17) b +py,- be P 23R 12 for 1<i<k.

These conditions are triviaily satisfied if k= 2.

In the above situation one proceeds as follows. If k=n+1 then the basis is
reduced, and the algorithm terminates. Suppose now that k<n Then we first
achieve that

(1.18) My lS3 0if k>1.

If this does not hold, let r be the integer nearest to Ky i -y, and replace b, by b,
—rby_,. The numbers y,, with j<k-1 are then replaced by y,, —ry,_, , and
Bya-y BY sy, =7 The other g, ,and all bf are unchanged. After this change (1.18)
holds.

Next we distinguish two cases.
Case 1. Suppose that k22 and
(1.19) by +py - B 12 <3 b2 )2,

Then we interchange b,_, and b,, and we leave the other b, unchanged. The

- vectors b, and b and the numbers 4, , _,, My-yp Map Hig— gy By fOr j<k—1and

for i>k, have now to be replaced. This is done by formulae that we give below. The
most important one of these changes is that b?_  is replaced by b +u,, _ ,b2_ ;50
the new value of |b?_ ,|* is less than £ times the old one. These changes being made,
we replace k by k— 1. Then we are in the situation described by (1.16) and (1.17),
and we proceed with the algorithm from there.

Case 2. Suppose that k=1 or

(1.20) |bF + sy - b3 (1> 2210212,
In this case we first achieve that
(1.21) Impst for 1SjSk—-1. ‘

[For j=k—1 this is aiready true, by (1.18).] If (1.21) does not hold. let ! be the
largest index <k with |u,| >4, let r be the integer nearest to My and replace b, by
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by - rb,. The numbers Hyy With j<lare then replaced by 4, - THpand uy, by y,
the other Ky and all b® are unchanged. This is repeated until (1.21) holds,

Next we replace & by k+ 1. Then we are in the situation described by (1. 16) a
(1.17), and we proceed with the aigorithm from there.

Notice that in the case k=1 we have done no more than replacing k by 2.

This finishes the description of the algorithm. Below we shall prove that the

(1.22) For the sake of completeness we now give the formuiae that are needed in
case |. Let b,.b,,...,b, be the current basis and b?, K asin(1.2) and (1.3). Let k be
the current subscript for which (1.16), (1.17),(1.18), and (1.19) hold. By el and v,
we denote the vectors and numbers that wil] replace b, b?, and Hp respectively.
The new basis €1:€ay -, C, I8 given by

Cg-;’btu Cl'bl—l' C,=b, rOl' l*k-l.k
k-2
Since ¢g_, is the projection of b, on the orthogonal compiement of Y Rb; we
i=1
have, as announced :
Ci-y ‘b:+l‘tk-1bt.-1
(cf. the remark after (1.5)]). To obtain ¢y we must project b, bn the orthogonal
complement of Rcy_,. That leads to
Var-y -(bl.-l'ct‘-l)/(cl‘- 0ee-y)

=pyy b 1'2/|C.‘- o3,

ct‘-bt.-l-vll-lcl‘-l'
Forisk-1, k we have ' =bP. Letnowi>k Tofind v,,_, and Vi We substitute
bk.-l-vll-lcl‘-l +ey
bl‘-(l-”tl-lvll-l)cl‘~l “hg- i C¢
-(Ib,,‘l‘/lc,,‘.,l’)-c,‘.,—u,,_,c,,‘

i=-1
in b=+ ¥ u,.b*. That yields
1=t

Viket ®HigoVygn, +uplbt3/Ick_ 1_'1
Vie ™ Mhyae = Upllyy o,
Finally, we have

Viay j=m iy, Vay=Hyoy
for 1§j<k-1, and Vy=sy if 1S j<ign (i, j}A{k—1, k} =g,

We remark that after the initialization stage of the algorithm it is not necessary
to keep track of the vectors 7. It suffices to keep track of the numbers %1%, in
addition to u,, and the vectors b, Notice that l4:,‘1’-lb.‘_ll‘-ll;,‘l‘/lc,‘_llz in the
above, and that the left hand side of (1.19), (1.20) equals 16912 + 43, - Ibe_ |2

The entire algorithm is represented in Fig 1, in which B =3,
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b mb,;
u,i:-(b,,b,‘)/B,;} - o . .
b by = f for jmbL2...i~1;} for iml2...a;
B,:=(b?,bf)
k:=2;
(1) perform (s) for Imk—1{;
if Bn<(‘}'l‘:n-l)st-|- 3010,,(2)5
perform (s) for {mk—2 k~3,....1;
if kw=n, terminate;
kimk+1;
go to (1),
(2 wimp,,_,; B:'Bl+“lai-1;“tk-l:-“at-l/B;
B,:=B,_,BJB:B,_,:=8;

)=o)
“' ” (‘:") for jml,2..

(u.‘:.):_(; ‘Tl)(‘l’ _“)(“';;‘) for imk+1,k+2...n:

f k>2, then k:mk-1};
go to (1)
(o) Ulud>4 then:
riminteger nearest to juy,; b, :=mb, ~rb
Hyjimpy,—rp, for jm1,2,...0—-1
Hog:m ply =7,
Fig. 1. The reduction algorithm

(1.23) To prove that the algorithm terminates we introduce the quantities

(1.29) dy=det((b, b)), <} 14

for 05ign It is easily checked that ‘

(1.25) d,= ] lbg1?
j=1

for 0SiSn Hence the d, are positive real numbers. Notice that d,=1 and 4,
=d(L)*. Put

By (1.25); the number D only changes if some b is changed, which only occurs in
case 1. In case 1, the number d, _ , is reduced by a factor <3, by (1.25), whereas the
other d, are unchanged, by (1.24); hence D is reduced by a factor <2. Below we
prove that there is a positive lower bound for d, that only depends on L. It follows



e

34
A. K. Lenstra et al.

that there is also a positive lower bound for D, and hence an upper bound for the
number of times that we pass through case 1.

In case 1, the value of k is decreased by 1, and in case 2 it is increased by L.
Initially we have k=2, and kSn+1 throughout the algorithm. Therefore the
number of times that we pass through case 2 is at most n— | more than the number
of times that we pass through case 1, and consequently it is bounded. This implies
that the algorithm terminates.

To prove that d, has a lower bound we put

m(L)=min{|x|>:xe L, x+0}.

This is a positive real number. For i >0, we can interpret d, as the square of the
determinant of the lattice of rank i spanned by b,b,,...,b, in the vector space
i

¥ Rb, By (4, Chap. [, Lemma 4 and Chap. II, Theorem [J, this lattice contains a
=1

}non -zero vector x with |x|3 S(4/3)4~ 124! Therefore d, 2(3/4)¢~ 1" 2m(L),
required.

We shall now analyse the running time of the algorithm under the added
hypothesis that beZ" for 1SiSn By an arithmetic operation we ‘mean an
addition, subtraction, multiplication or division of two integers. Let the binary
length of an integer a be the number of binary digits of |al.

(1.26) Proposition. Let LCZ" be a lattice with basis b,,b,,....b,, and let BeR,
B22, be such that |bj>*SB for 1 SiSn Then the number of arithmetic operations
needed by the basis reduction algorithm described in (1.15) is O(n*logB), and the
integers on which these operations are performed each have binary length O(nlog B).

Remark. Using the classical algorithms for the arithmetic operations we find that
the number of bit operations needed by the basis reduction algorithm is
O{(n%(log B)®). This can be reduced to O(n® *‘(log B)* **), for every £ >0, if we employ
fast multiplication techniques.

Proof of (1.26). We first estimate the number of times that we pass through cases |
and 2. In the beginning of the algorithm we have d, S B, by (1.25), so DS B™"~ "2,
Throughout the algorithm we have D 2 |, since d,e Z by (1.24) and d,>0 by (1.25).
So by the argument in (1.23) the number of times that we pass through case 1 is
O(n?logB), and the same applies to case 2.

The initialization of the algorithm takes O(n®) arithmetic operations with
rational numbers ; below we shall see how they can be replaced by operations with
integers.

For (1.18) we need O(n) arithmetic operations, and this is also true for case 1. In
case 2 we have to deal with O(n) values of [, that each require O(n) arithmetic
operations. Since we pass through these cases O(n? log B) times we arrive at a total
of O(n*logB) arithmetic operations.

In order to represent all numbers that appear in the course of the aigorithm by
means of integers we also keep track of the numbers d, defined by (1.24). In the
initialization stage these can be caiculated by (1.25). After that, they are only
changed in case 1. In that case, d,_, is replaced by d,_,lc3-,[*/1b?_ | =d,_,

‘leg- 12 [in the notation of (1.22)] whereas the other d, are unchanged. By (1.24),
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the d, are integers, and we shall now see that they can be used as denominators for
all numbers that appear:

(1.270 b =d/d,_, (15iSn),
(1.28) d_ btelcCZ" (15iSn),
(1.29) du,el (1sj<ign).

i-1
The first of these follows from (1.25). For the second, we write by =b,— Z Ab; .
with i€ R. Solving 4y, ..., 4,,_, from the system =t

i-1
(b('b|)= z ‘-(j(bpbl) (1 §l§i- l)
j=1

and using (1.24) we find that di_2,;€Z, whence (1.28). Notice that the same
argument yieids

i-t
d,_l(b.- Zu,,b;)el' for isk;
j=t

this is useful for the calculation of by at the beginning of the algorithm. To prove
(1.29) we use (1.3), (1.27), and (1.28):

dypy=d b, b6, b)=d, (b, b3)=(b,d,. b)e.

To finish the proof of (1.26) we estimate all integers that appear. Since no d, is
ever increased we have d,SB' throughout the algorithm. This estimates the
denominators. To estimate the numerators it suffices to find upper bounds for
1b?12, 1b4?, and Iy, . .

At the beginning we have [b*125|bJ2 S B, and max {|b*|2:1 Sign} is non-
increasing; to see this, use that |cf_,|* <3|bg_ |? and le?1 S1be_ 12 in (1.22), the
latter inequality because ¢f is a projection of by.,. Hence we have [b*|2<B
throughout the algorithm. ‘

To deal with |bj? and Ky we first prove that every time we arrive at the
situation described by (1.16) and (1.17) the following inequalities are satisfied :

(1.30) [bj*SnB for i%k,

(1.31) b2 Sn*4B)y if k#n+l,

(132 st for 15j<i, i<k,

(1.33) Iuj S(nBH2 for 1Sj<i, i>k,

(1.34) i S2*~HnB*" )2 for 15j<k, if ken+l.

Here (1.30), for i <k, is trivial from (1.32), and (1.31) follows from (1.34). Using that
(1.35) uiyS1bJ*/1b31 =d,_ Ibj%/d, S B~ b2

we see that (1.33) follows from (1.30), and (1.32) is the same as (1.16). }t remains to
prove (1.30) for i > k and to prove (1.34). At the beginning of the algqnth;n we even
have |b|* < B and u} S B, by (1.35), so it suffices to consider the situation at the
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end of cases | and 2. Taking into account that k changes in these cases, we see that
in case | the set of vectors {b,:i#k} is unchanged, and that in case 2 the s
{b,:i>k} is replaced by a subset. Hence the inequalities (1.30) are preserved. A,
the end of case 2, the new values for u, ;(if k#n+1)are the old values of Hiey 5O
here (1.34) follows from the inequality (1.33) at the previous stage. To prove (1.34)
at the end of case 1 we assume that it is valid at the previous stage, and we foliow
what happens to u,,. To achieve (1.18) it is, for j<k -1, replaced by u, —ry, _
with |r|<2iy,,_,| and |g,_, | S}, so :

(1.36) |I“u""ﬂg-|ﬂ$|ﬂxﬂ+|ﬂn-1|
S (B )2 by (1.34).
In the notation of (1.22) we therefore have
Iv.-lﬁszl-(h'l)(naa- l)l/! for j<k—1

and since k~1 is the new value for k this is exactly the inequality (1.34) to be
proved.

Finally, we have to estimate |bj? and #,, at the other points in the algorithm.
For this it suffices to remark that the maximum of [t by Va2 s lBty o - o[ is at most
doubled when (1.18) is achieved, by (1.36), and that the same thing happens in
case 2 for at most k—~2 values of I. Combining this with (1.34) and (1.33) we
conclude that throughout the course of the algorithm we have

ludS2°'(nB*~ "2 for 1§j<ign

1L j

and therefore
b2 Sn*4By for 1SiSn.
This finishes the proof of (1.26).

(1.37) Remark. Let 1 Sn' Sn If k, in the situation described by (1.16) and (1.17), is
for the first time equal to n + 1, then the first n’ vectors b, b,,...,b, form a reduced
basis for the lattice of rank ' spanned by the first 1’ vectors of the initially given
basis. This will be useful in Sect. 3.

(1.38) Remark. It is easily verified that, apart from some minor changes, the
analysis of our algorithm remains valid if the condition LcZ" is replaced by the
condition that (x, y)e Z for all x, ye L ; or, equivalently, that (b, b JeZforlSijsn.
The weaker condition that (b, b)eQ, for 1 Si, jSn, is also sufficient, but in this
case we should clear denominators before applying (1.26).

We close this section with two applications of our reduction algorithm. The
first is to simultaneous diophantine approximation. Let n be a positive integer,
a,,a,, ..., a, real aumbers, and ee R, 0 <z < 1. It is a classical theorem [4, Sect.V.10]
that there exist integers p,, p,, ..., p,, q satisfying

lp;~gaiSe for 15ign,

1§qsSe™".

We show that there exists a polynomial-time algorithm to find integers that satisfy
a slightly weaker condition.
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(1.39) Propesition. There exists a polynomial-time algorithm that, given a positive
integer n and rational numbers a,, 2, ...,a,, ¢ satisfying 0<e <1, finds integers Py
P3e - Dm q for which
lpi—qalsSe for 1Sisn,
1 éqézn(n* “/‘8-..

Proof. Let L be the lattice of rank n+1 spanned by the columns of the
(n+1) x (n+ 1)-matrix .

t 0o ... 0 -a,
ot ... o0 -a,
00 ... 1 -a,

0 0 .. 0 2 werurege

The inner product of any two columns is rational, so by (1.38) there is a
polynomial-time algorithm to find a reduced basis by, b,,...,b,., for L. By (1.9)
we then have ’ o

1Bl S 274 (L)% Ve

Since b, € L, we can write

bl-(p,-qal,p,-qa,,...,p,—qa,.q-Z““"’“"e"*‘)’
with p.,p,, ... p, q€Z It follows that

lpi—qajsSe for 15ign,
lqlszdl«vl)/‘e-n.

From e<1and b, #0 we see that g #0. Replacing b, by —b,, if necessary, we can
achieve that ¢>0. ,

This proves (1.39).

Another application of our reduction algorithm is to the problem of finding
Q-linear relations among given real numbers a,, «,, ....a,. For this we take the
lattice L to be Z*, embedded in R**! by

"
(m,,m,,...,m.)r-(ml,mz,...,m,,,c Y m,a;);
im}
here ¢ is a large constant and « is a good rational approximation to a;. The first
basis vector of a reduced basis of L will give rise to integers m,, m,, ..., m, that are
A

not too large such that Y mg, is very small.

is|

Applying this to @, =a'~! we see that our algorithm can be used to test a given
real number a for algebraicity, and to determine its irreducible polynomial. Taking
for a a zero of a polynomial feZ[X], f+0, and generalizing the algorithm to
complex a, one finds in this way an irreducible factor of f in Z[X]. It is likely that
this yields actually a polynomial-time algorithm to factor f in Q{X), an algorithm
that is different from the p-adic method described in Sect. 3.

In a similar way we can test given real numbers «, 8, y, ... for algebraic
dependence, taking the a, to be the monomiaisin a, 8, y, ... up to a given degree.
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2. Factors and Lattices

In this section we denote by P a prime number and by k a positive integcr.
We write Z/p*Z for the ring of integers modulo p*, and F, for the field
Z/pL For g= Za,X‘eZ[X] we denote by (gmodp*) the polynomiat

2 (a,;modpX'e (l‘/p‘Z)[X 1

We fix a polynomial fe Z[X] of degree n, withn>0,and a polynomial he Z[X]
that has the following properties:

(2.1) h has leading coefficient 1,

(2.2) (hmodp") divides (f modp*) in @roix].
(23 (hmodp) is irreducible in F,[X],

(2.4) (hmodp)* does not divide ( S modp) in F[X].

We put [=deg(h); so O<ign.

(2.5) Proposition. The polynomial f has an irreducible factor hy in ZLX] for which
(hmodp) divides (homodp), and this factor is uniquely determined up to sign.
Further, if g divides f in Z[X), then the Jollowing three assertions are equivalent :
(i) (hmodp) divides (gmodp) in F,[X],
(ii) (hmodp") divides (g mod p*) in @roex),
(iii) h, divides g in Z[X].
In particular (hmod p*) divides (hy mod p*) in @/prox).

Proof. The existence of h, follows from (22) and (2.3), and the uniqueness, up to

+1, from (24). The implications (ii) = (i) and (iii) = (i) are obvious. Now
assume (i); we prove (iii) and (ii). From (i) and (24) it follows that (hmodp) does ‘
not divide (f/g modp) in F,[X]. Therefore hq does not divide f/g in Z[X], so it

must divide g. This proves (iii). By (2.3) the polynomials (h modp) and ( flg mod p)

are relatively prime.in F,[X]), s0in F,[X] we have

(4, modp)-(hmodp) + (4, modp)-(f/g mod p) = 1

for certain A, u,€Z[X]. Therefore Ath+u, flgm1-pv, for some v, eZ[X].
Multiplying this by 1+ pv, +pivi+. . +pt AL ang by g we obtain

Azh+is, fm gmod pZ[X)

for certain 4,, 4, € Z[X]. Since the left hand side, when taken modulo p*, is divisible
by (hmodp), the same is true for the right hand side. This proves (ii).
The final assertion of (2.5) follows if we take g=h,. This proves (2.5).

(26) Intheremninderofthissectionweﬁxanintemmwithmzl,and we let L be
the collection of all polynomials in Z[X] of degree Sm that, when taken modulo P,
are divisible by (hmod p*) in (Z/p*Z)(X]. This is a subset of the (m+ 1)-dimensional
real vector space R+R-X +... + R-X™. This vector space is identified with R**!

by identifying ¥’ aX* with (aq,a,, -+ Gg). Notice that the length | ¥ a,x*
(=0

(=0

of a
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polynomiai, as defined in the introduction, is equal to the ordinary Euclidean
length of (a4, 4, ..., a,)- It is easy to see that L is a lattice in R™* ' and, using (2.1),
that a basis of L is given by

(p’X':0si<l}u{nx!:08jSm-1}.

From (1.1) it follows that d(L)=p*.
In the following proposition h, is as in (2.5).

(2.7) Proposition. Let be L satisfy
(2.8) P> 111 1ol
Then b is divisible by hq in Z[X], and in particular gcd(f,b) =+ 1.

Remark. A weaker version of (2.7), which could also be used to obtain a
polynomial-time factoring aigorithm for polynomials, asserts that gcd(f b)+1
under the same conditions. The proof of this version is less complicated than the
proof given below, see (8, Theorem 2].

Proof of (2.7). We may assume that b#0. Let g=gcd(f, b). By (2.5) it suffices to
show that (hmodp) divides (g modp). Suppose that this is not the case. Then by
(2.3) we have .

(2.9) Ash+usg=1-pv,

for certain A4, 4y, v4€ Z[X]. We shall derive a contradiction from this.
Put e=deg(g) and m =deg(b). Clearly 0 SeSm Sm. We define

M={lf+ub:i ueZ[X], deg(d)<m ~e,deg(u)<n—e}
CZ+Z-X+...+T- X"~

Let M’ be the projection of M on
T-X+L-X 4+ +Z XV

Suppose that Af + ub projects to 0 in M, with 4, 4 as in the definition of M. Then
deg(if + ub)<e, but g divides Af +ub, so Af +ub=0. From 4-(f/g)= —u-(b/g)
and ged(f/g, b/g)=1 it follows that f/g divides u. But deg(u) <n—e=deg(f/g), so
u =0, and therefore also 4=0.

This proves that the projections of

(X'f:08i<m —e}u{X’h:05j<n—e}
on M’ are linearly independent. Since these projections span M, it follows that M’

is a lattice of rank n+m’ —2e. From Hadamard'’s inequality (1.10) and (2.8) we
obtain

(210) M) S| [l S bl < pM.

~ Below we deduce from (2.9) that

(211 (ve M :deg(v) <e+1} CpZIX].
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Hence, if we choose a basis bedeats i Dormmgey of M’ with de
Chap. I, Theorem 1.A], then the leading coefficients of b,, bewrs b, are
divisible by p*. [Notice that e+l—-1Sn+m=e—1 because g divid;s‘ya,-
(hmod p) divides (f/g modp).] Since d(M’) equals the absolute value of the produ\‘
of the leading coefficients of bebpats rbypmoymy We find that dM) 2 p*.
Combined with (2.10) this is the desired contradiction.

To prove (2.11), let ve M, deg(v)<e+!. Then g divides v. Multiplying (2.9) by
v/g and by 1 +pv,+p2vi+ . +p*" ' we obtain

212 Agh+p,v = v/g mod pPZLX]

with 4,, u,eZ[X]. From ve M and beL it follows that (vmodp') is divisible by
(hmodp"). So by (2.12) also (v/g mod p") is divisible by (h modp*). But (hmod P is
of degree [ with leading coefficient 1, while (v/gmod p*) has degree <e+/—e=|.
Therefore v/g w0 mod p*Z[X], so also v=0 mod p*Z[X]. This proves (2.11).

This concludes the proof of "N

8(b) =, see [a,

(2.13) Proposition. Let p, k, f, n, h, | be as at the beginning of this section. h, as in
(2.5), and m, L as in (2.6). Suppose that b,, b,, v Dy is a reduced basis for L (see
(1.4) and (1.5)), and that

~2
- o e

Then we have deg(h,) Sm if and only if

(215) B, <@ A 11 e,

Proof. The “if*-part is immediate from (27), since deg(b,) sm. To prove the “only
if"-part, assume that deg(ho) Sm. Then hoe L by (25), and lhy| S (2:)”'., flbya
result of Mignotte [10; cf. 7, Exercise 4.6.2.20]. Applying (1.11) to x=h, we fin

that Ib1|52"’z'lh°|$2"’z-(T)m~!ﬂ. By (2.14) this implies (2.15). This provcs.
(213)

(216) Proposition. Let the notation and the hypotheses be the same as in (2.13), and
assume in addition that there exists an index Jj€{L,2,....,m+1} for which

21m bl <(pH/1f1m)1m.
Let t be the largest such j. Then we have
deg(hg)=m+t -1,

ho=ged(b,,b,,...,b),
and (2.17) holds for all j with 1 §j S¢.

Proof. Let J={je{1,2,...m+1}: (217 holds}. From (2.7) we know that hq,
divides b, for every jeJ. Hence if we put

hy = god({b, :je J})
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then hy dividgs h,.Eachb,jeJ, is divisible by h, and has degree <m, 50 belongs to
Zh+Z-h X+  +Z -h X480

Since the b, are linearly independent this implies that
(2.18) #JSm+1—deg(h,).

By the result of Mignotte used in the proof of (2.13) we have (X' =|h,|
1/2
s (2:) -If] for ail i20. For i=0,1,...,m—deg(h,) we have hoX'eL, so from

(1.12) we obtain
12
pisz(2) i

for 1 SjSm+1—deg(h,). By (2.14), this implies that
(2.19) {L,2,...m+1—=deg(hy)} CJ.
From (2.18), (2.19) and the fact that h, divides h, we now see that equahty must
hold in (2.18) and (2.19), and that
deg(hy) =deg(h,)=m+1—t, J={1,2,..,¢}.

It remains to prove that h is equal to h,, up to sign, and for this it suffices to check
that h, is primitive. Choose jeJ, and let d; be the content of b, Then b/d, is
dmsnble by h,, and hyeL, s0 b/d ;€ L. But b, belongs to a basis for L, sod;=1and
b, is primitive, and the same is true for the factor h, of b, This finishes the proof of
(2.16)

Remark. If t=1 then we see from (2.16) that b, is an irreducible factor of f, and
that no gcd computation is necessary.

Remark. From the proofs of (2.13) and (2.16) we see that (2.14) may be replaced by
>,

where f=max {|b|/Ib?1:13jSigm+ 1} [cf. (1.14)] and where y is such that jg| S 7
for every factor g of f in Z[X] with deg(g)Sm.

3. Description of the Algorithm

Denote by f a primitive polynomial in Z[X7] of degree n, with n>0. In this section
we describe an algorithm that factors f into irreducible factors in Z[X]. We begin
with two auxiliary algorithms.

(3.1) Suppose that, in addition to f and n, a prime number p, a positive integer k
and a polynomial he Z{X] are given satisfying (2.1), (2.2), (2.3), and (2.4). Assume
that the coefficients of h are reduced modulo p*, so

hi*S1+1p%,
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where [=deg(h). Let further an integer m21 be given, and assume that inequality
(2.14) is satisfied :

p“>z---(2:)"z~|f|"~.

We describe an algorithm that decides whether deg(hy) Sm, with hy as in (2.5), and
determines h, if indeed deg(hy) sm.
Let L be the lattice defined in (2.6), with basis

{p*x* :0§i<l}u{hX’:0§j§m—l}.

Applying algorithm (1.15) we find a reduced basis b,,b,, ..., busy for L. If [b,|
2(p"/|f1")"" then by (213) we have deg(hy) >m, and the algorithm stops. If |b
<(P*1 ™" then by (2.13) and (2.16) we have deg(h,) Sm and

ho =gcd(b,, b,, by

ol

algorithm (3.1),

(3.2) Proposition. The number of arithmetic operations needed by algorithm (3.1) is
O(m*klogp), and the integers on which these operations are performed each haye
binary length O(mk logp).

Proof. We apply (1.26) with m+ 1 in the role of n and with B=1 +Ip*. From Isn
and (2.14) we see that m=O(k logp), so logi<igm implies that log B = O(k logp).
This leads to the estimates in (3.2). It is straightforward to verify that the ged
computation at the end satisfies the same estimates. This proves (3.2).

(3.3) Next suppose that, in addition to f and n, a prime number p and ~
polynomial he Z[X] are given such that (2.1),(2.2), (2.3), and (2.4) are satisfied W,
k replaced by 1. Assume that the coefficients of h are reduced modulo p- W
describe an algorithm that determines h, the irreducible factor of f for which
(hmodp) divides (hg mod p), cf. (2.5).

Write l =deg(h). If | =n then ho = £, and the algorithm stops. Let now [ <n. We
first calculate the least positive integer k for which (2.14) holds with m replaced by

n-1:
(8= a2 2(n- 1)).-/2. 2a-1
pH>2 ( el [f13"-t.
Next we modify h, without changing (hmodp), in such a way that (2.2) holds for
the value of k just calculated, in addition to (2.1), (2.3), and (2.4). This can be
accomplished by the use of Hensel's lemma, see (7, Exercise 4.6.2.22; 14 (5. 13].
We may assume that the coefficients of h are reduced modulo p*.

Let u be the greatest integer for which I S(n— 1)/2%. We perform algorithm (3.1)
for each of the values m=((n~1)/2*], [(n— /2", L lm=1)2), n—1t in
succession, with [x] denoting the greatest integer S x; but we stop as soon as for
one of these values of m algorithm (3.1) succeeds in determining h,,. If this does not
occur for any m in the sequence then deg(hy)>n—1, so ho=f and we stop. This
finishes the description of algorithm (3.3).
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(3.4) Proposition. Denote by m, =deg(h,) the degree of the irreducible factor h, of
f that is found by algorithm (3.3). Then the number of arithmetic operations
needed by algorithm (3.3) is O(mq(n® +n*log|f]+n’logp)), and the integers on
which these operations are performed each have binary length O(n® +n®log|f]
+nlogp).

Proof. From

P.— 1 §p“' iy §2(.- T (2("" 1)
n—-

C
-
Ol in
it follows that
klogp=(k—1)logp+logp=0(n* +nlog|f| +logp).

Let m, be the largest value of m for which algorithm (3.1) is performed. From the
choice of values for m it follows that m, <2m,, and that every other value for m
that is tried is of the form [m,/2'], with i21. Therefore we have Y m*=0(mg).
Using (3.2) we conclude that the total number of arithmetic operations needed by
the applications of algorithm (3.1) is O{mgk logp), which is

O(mg(n’ +nlogif1+logp)).
and that the integers involved each have binary length O(m klogp), which is

O(mq(n? +nloglf] +logp)).

With some care it can be shown that the same estimates are valid for a suitable
version of Hensel's lemma. But it is simpler, and sufficient for our purpose, to
replace the above estimates by the estimates stated in (3.4), using that my Sn; then
a very crude estimate for Hensel's lemma will do. The straightforward verification
is left to the reader. This proves (3.4).

(3.5) We now describe an algorithm that factors a given primitive polynomial
feZ[X] of degree n>0 into irreducible factors in Z[X].

The first step is to calculate the resultant R(f, /') of f and its derivative f’, using
the subresultant algorithm (7, Sect. 4.6.1]. If R(S, f)=0 then f and f* have a
greatest common divisor g in Z[X] of positive degree, and g is also calculated by
the subresultant algorithm. This case will be discussed at the end of the algorithm.
Assume now that R(f, /) #0.

In the second step we determine the smallest prime number p not dividing
R(f, ), and we decompose (f modp) into irreducible factors in F,[X] by means of
Beriekamp’s algorithm (7, Sect. 4.6.2]. Notice that R(f, /) is, up to sign, equal to
the product of the leading coefficient of f and the discriminant of f So
R(f, /Y%0modp implies that (f modp) still has degree n, and that it has no
multiple factors in F_[X]. Therefore (2.4) is valid for every irreducible factor
(hmodp) of (f modp) in F[X].

In the third step we assume that we know a decomposition f = f, f; in Z[X]
such that the complete factorizations of f, in Z[X] and (fymodp) in F[X] are
known. At the start we can take f, =1, f=f In this situation we proceed as
follows. If f;= +1then f=+f, is completely factored in Z[X], and the algorithm
stops. Suppose now that f, has positive degree, and choose an irreducible factor
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(hmodp) of (f, modp) in F,[X]). We may assume that the coeflicients of h are
reduced modulo p and that A has leading coefficient 1. Then we are in the situatic
described at the start of algorithm (3.3), with f; in the role of f, and we use tl
algorithm to find the irreducible factor hq of £, in Z[X] for which (h mod p) divides
(ho mod p). We now replace fiand f, by fihoand f,/h,, respectively, and from the
list of irreducible factors of (f, modp) we delete those that divide (h, modp). After
this we return to the beginning of the third step.

This finishes the description of the algorithm in the case that R(/ /) 0.
Suppose now that R(f, /) =0, let g betheged of fand f" in Z[X], and put f, = f/g.
Then f, has no multiple factors in Z[X], 50 R(f,, f3) #0, and we can factor f, using
the main part of the algorithm. Since each irreducible factor of g in Z[X] divides f,
we can now complete the factorization of J=fog by a few trial divisions. This
finishes the description of algorithm (3.5).

(3.6) Theorem. The above algorithm factors any primitive polynomial feZ[X] of
positive degree n into irreducible factors in Z[X). The number of arithmetic
operations needed by the algorithm is O(n® + n® log|f1), and the integers on which
these operations are performed each have binary length O(n® + n* log|f]). Here || is
as defined in the introduction. ) :

Using the classical algorithms for the arithmetic operations we now arrive at
the bound O(n'? + n®(log| f1)°) for the number of bit operations that was announ-
ced in the introduction. This can be reduced to O(n®**+n" *“(log|f])***), for every
£>0, if we employ fast multiplication techniques.

Proof of (3.6). The correctness of the algorithm is clear from its description. To
prove the estimates we first assume that R(f, /) #0. We begin by deriving an upper
bound for p. Since p is the least prime not dividing R(f, f") we have

(3.7 [T qsRU/Y.
€<p.qprime
It is not difficult to prove that there is a positive constant A such that
(38) [T g>ev
1<p.qprime

for all p>2, see [6, Sect. 22.2]; by [12] we can take 4 =0.84 for p>101. From
Hadamard’s inequality (1.10) we easily obtain

IRU N Sm ) f132 0.
Combining this with (3.7) and (3.8) we conclude that
3.9 p<(nlogn+(2n~1)log|f1)y/ 4

or p=2. Therefore the terms involving logp in proposition (3.4) are absorbed by
the other terms.

The call of algorithm (3.3) in the third step requires O(my,-(n* +n*log|f, )
arithmetic operations, by (3.4), where my, is the degree of the factor h, that is found.
Since f, divides £, Mignotte’s theorem [10; cf. 7, Exercise 4.6.2.20] that was used in
the proof of (2.13) implies that log| f2=0(n +log|f]). Further the sum Y mq of the
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degrees of the irreducible factors of f is clearly equal to n. We conclude that the
total number of arithmetic operations needed by the applications of (3.3) is O(n®
+n°logl/]). By (3.4), the integers involved in (3.3) each have binary length O(n’
* +n’log|f). '
We must now show that the other parts of the algorithm satisfy the same
* estimates. For the subresultant algorithm in the first step and the remainder of the
third step this is entirely straightforward and left to the reader. We consider the
second step.
Write P for the right hand side of (3.9). Then p can be found with o(P)
arithmetic operations on integers of binary length O(P); here one can apply 1 1]
to generate a table of prime numbers < P, or alternatively use a table of squarefree
numbers, which is easier to generate. From p < P it also follows that Berlekamp's
algorithm satisfies the estimates stated in the theorem, see [7, Sect. 4.6.2].
Finally, let R(f, f)=0, and f, = f/gcd(f, f') as in the algorithm. Since fo divides
f, Mignotte’s theorem again implies that log| JSol =0(n+log|fl). The theorem now
follows casily by applying the preceding case to f,.
This finishes the proof of (3.6).

(3.10) For the algorithms described in this section the precise choice of the basis
reduction algorithm is irrelevant, as long as it satisfies the estimates of proposition
(1.26). A few simplifications are possible if the algorithm explained in Sect. 1 is
used. Specifically, the gcd computation at the end of algorithm (3.1) can be
avoided. To see this, assume that m, =deg(h,) is indeed $m. We claim that hqo
occurs as b, in the course of the basis reduction algorithm. Namely, by (1.37) it will
happen at a certain moment that b,,b,,...,b,, ., form a reduced basis for the
lattice of rank my+ 1 spanned by {p*X*:0S5i</}u{hX’:0Sjgm,—1}. At that
moment, we have hy=b,, by (2.13) and (2.16), applied with m, in the role of m. A
similar argument shows that in algorithm (3.3) one can simply try the values m =1,
I+1,...,n—1 in succession, until h,is found.

L4
:
\ Acknowledgements are due to J. J. M. Cuppen for permission to include his improvement of our basis
i reduction algorithm in Sect. 1.
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