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BOUNDING THE INDEPENDENCE NUMBER OF A GRAPH sl (

L. LOVASZ

Bolyai Institute, Jozsef Attila University, Szeged H-6720, Hungary i

0. Introduction

The problem of computing the independence number of a graph is NP-
complete; the matching number, on the other hand is computable in poly-
nomial time. This difference in their computational complexity implies that, to
attack these two problems, different strategies have to be applied. The match-
ing problem may serve as a prototype of handling ‘easy’, i.e., polynomially
solvable problems: find a good characterization, then a polynomial algorithm,
describe the facets of associated polyhedra etc. None of these lines of attack
holds out promises of success in the case of the independence number problem.

So what scheme should one follow in the study of an NP-complete problem like

independence number ? Discouraged by the fact of NP-completeness, one é
might answer (or at least feel) that this problem is mathematically intractable ‘

and so one should not waste time on it. Others, who play down the relevance :%
of polynomiality in algorithms, might say that all there is to do is to improve _
the (more or less trivial) exponential algorithms by heuristics, programming, 426 ;
data handling tricks, etc. These two extremes meet in the opinion that no i
further attempts to ‘grip the essence’ of the problem are needed. “ ig ;

In this paper we discuss an idea which might suggest some non-trivial ‘ :
approaches to NP-complete problems. Whether the sporadic phenomena col- gﬁ [ P
lected here will ever fall into a pattern, and whether from this a unified 3 j
approach to NP-complete problems can be learned, is beyond the guessing of ‘ 6 |
this author. ¥

Let a(G) denote the independence number of the graph G. If &(G) cannot 3
be calculated efficiently, a next step is to ask for sharp bounds on it. There is a ' '
very significant difference between upper and lower bounds: A lower bound i -
means to prove the existence of an independent set of some size, which is L N
usually proved by more-or-less constructive methods (heuristics, random ‘ '
choice, etc.). On the other hand, an upper bound means the non-existence of
an independent set of larger size—in this respect it is ‘destructive’, Is there any
practical value then in finding upper bounds ? Potential applications of upper
bounds are the following:
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- In a branch-and-bound procedure, sharp upper bounds may cut down the size
of the search tree considerably. (Question: is there any example in the case of syn
an ‘easy’ problem where a polynomial-bounded algorithm is obtained by adj
pruning a search tree with the help of an upper bound ? Such an example
might shed some light on the hitherto somewhat mysterious phenomenon
that well-characterized problems tend to be polynomially solvable.)

_Given a reasonable upper bound, we may consider the class of those graphs Sit
for which this upper bound is attained, and then restrict the independence fol
number problem to this class. There is a good chance that it is easier to solve
that problem for this particular class of graphs, and such graphs may well be

very interesting.

- Deriving sharper and sharper upper bounds, more and more insight could be an
gained into the nature of independence number (a procedure vaguely co
reminescent of the expansion of a function into, say, a Fourier series). wi
We shall survey some methods to obtain upper bounds on the independence N

number a(G) of a graph. We have left the precise notion of ‘upper bound’ oc

is to look for a positive integer < th

open. The most natural choice, of course,
valued function ¢ defined on graphs, such that a(G) =< ¢(G) for every graph G
and ¢ is polynomially computable. Sometimes we shall have to settle for less, .
e.g., the function ¢ should be such that ¢(G)=<k is an NP-property of the pair y cl
(G, k). Putting things even more general, we shall be interested in methods .

which enable us to exhibit the relation #(G)=<k for reasonably many pairs P
(G, k).

Let us remark that some of these results are easier to state in terms of fc
7(G) = |V(G)| — a(G), the point-covering number of G. Also note that if L(G) E
denotes the line-graph of G, then a(L(G))is the matching number of G, and so ir
it is well-behaved. To what class of graphs generalizing line-graphs the success- st
ful theory of matchings can be extended is the motivation of some important
current research [14, 16].

Finally, let us point out that complexity considerations concerning the 2
independence number problem motivate, and may even initiate, research in-
fields like algebraic geometry, linear algebra and algebraic topology. Although
these connections are in a very embryonic state, any link between graph theory C

classical fields of mathematics 3 g

(or combinatorial optimization) and these deep,
is, I feel, of particular interest.

1. Eigenvalues

We describe very briefly an upper bound on a which was discovered in

connection with a problem of Shannon in coding theory.
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Let G be a graph on V(G)={1,...,n} and let & denote the set of nxXn
symmetric matrices A = (a;) such that a;=1if i=j, or i and j are non-
adjacent. Let A(A) denote the largest eigenvalue of A. Define

3(G)=min{A(A): A E A}.

Since every A €  contains a symmetric &(G)X a(G) submatrix J of all I's, it
follows that

AA)= AU) = a(G),

and so 9(G)= a(G). What is important about & is that it is polynomially
computable. (More precisely, for every & > 0 a rational approximation of 3(G)
with error less than & can be computed in time polynomial in |log ¢| and n.
Note that ¥ may be irrational !) The idea of computing I3(G) is that A(A)is a
convex function of A on the affine subspace &, and it can be minimized using
the methods of Shor [17] and Yudin and Nemirovskii [18] (see also [4D).

As remarked before, this function & gives rise to a class of graphs for which
« is efficiently computable, namely the class of graphs with a(G) = $(G). This
class is, however, rather ugly: it is in NP but it is also NP-complete. A nicer
subclass is the class of perfect graphs. For perfect graphs the only known
polynomial algorithm to compute a(G) is through computing 9(G) (see [4]).

It was also remarked that if a polynomially computable upper bound is
found, then this can be used to prune branch and bound search trees.
Experience shows that the use of 4 does prune the search for maximum
independent set considerably [3], but no theoretical results have been obtained
so far concerning the size of the ‘pruned’ tree.

2. Algebraic geometry

The section title is perhaps somewhat immodest, but the flavor of the result
of Li and Li [9], which is the starting point of our discussion, is indeed algebraic

geometry.
Let G be a simple graph on V(G)={l,..., n}, and let us consider n
variables x,, . .., x,. Form the polynomial

f(G;xls~~-7xn): I_I \(x,-—x,-).

i, JEE(G)!

(This polynomial depends on the labelling of the points, but only up to its sign,
which shall play no role.) Note the following simple fact.
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Lemma 2.1. «(G) <k iff, identifying k + 1 variables in f(G; x, ..., x,) in all
possible ways, we always obtain the zero polynomial.

Let X} C C" denote the set of those vectors which have at least k + 1 equal
coordinates, and let I} denote the ideal of those polynomials in Clxy, ..., x,]
which vanish for every vector in X}. Thus a(G)<k iff f(G;x,,...,x,)E I}
To make use of this observation one needs a description of I{ which will
enable us to exhibit ‘easily’ that a polynomial is in I}. A natural approach is to
find generators for I, and this was indeed accomplished by Li and Li [9]. Let
% denote the set of those graphs on {1, ..., n} which are unions of k disjoint
complete graphs. Let 9} denote the subset of ¥ consisﬁng of those graphs
where the sizes of the components are as equal as possible (i.e., every graph in
#; consist of n— k|n/k| copies of a complete fn/k]-graph and k{n/k]l—n
copies of a complete |n/k|-graph. Note that all members of %} are isomor-
phic, but we are considering labelled graphs !)

Theorem 2.2. I} is generated by the polynomials f(H; x,, . . ., x,) (H € %}).

Corollary 2.3. A graph G satisfies a(G)<k iff there exist polynomials
gu(xy, ..., x,) (H € #}) such that

fGixi oo x)= 2 gu(xy, .., x) f(Hixi, .., ).

He#}

Of course, Theorem 2.2 and Corollary 2.3 remain true if %7 is replaced by
#%, and the main difficulty lies in proving these weaker conclusions.

Let us remark that if (x1,...,x,)€ C" and f(H; xy,...,x,) =0 for every
H € 9%, then an easy argument shows that (xi, ..., x,)E X}. Hence, by the
Nullstellensatz of Hilbert, there exist a natural number p >0 and polynomials
8u(xy, . .., x,) such that

AG;xy, ..., x, P = Z_ gu(xy, .., X)) f(H xq, ..., %) .

He¥x}

The main contents of Theorem 2.2 is that p = 1. This is somewhat reminiscent {;—
of the situation in integer linear programming, where a minimax formula for a &
linear relation follows in generality by the Duality Theorem, and one has to
work hard and use special features of the problem to show that the denomina-
tors of the optimal solution of the linear program are 1’s. 3
Why is this an upper bound on a(G)? In the general sense mentioned in the
introduction, «(G) < k can be proved by exhibiting polynomials gy (H € #

such that
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R)  f(Gixy, .o X)= 2, g (X1, -y Xn) fOH X1,y Xn)

HeX}

There are, however, three problems which arise here:

(1) The cardinality of 7 is exponential in n; so (R,) can be written down in
polynomial time only if all but a polynomial number of the gy are 0. €&—

(2) It might happen that aithough (R;) has only a polynomial number of
terms, the coefficients gy cannot be written down in polynomial space. <

(3) Even if (R;) is written down, there may not be any procedure to verify it
in polynomial time. -

Of these, the first problem is really serious and it limits the applicability of
(R,) to prove a(G) <k to special classes of graphs. (Question: can one prove
that there exist graphs G for which every equation of type (R,) has exponen-
tially many terms on the right-hand side 7)

Objection (2) can be eliminated. I have proved that in (R,) the coefficients gy
themselves may be chosen in the form f(Gy; X3, .. ., x,) with some graphs Gg.
Thus the following theorem may be formulated. <

Theorem 2.4. A graph G has a(G)<k if and only if there exist graphs
G, ..., G, on V(G) such that each G; can be partitioned into k cliques and

R)  f(Gixi....x)= S f(Gix %)

Finally, objection (3) is only moderately serious.

Of course, we cannot simply expand all polynomials occurring and then see if
all terms cancel (as we learn at school), since the expansion of just
f(G; x4, . . ., x,) contains exponentially many terms. But we may, say, generate
values for xy, . . . , X, at random, substitute, and see if the two sides are equal. If
they are not, then, of course, we know that (R,) does not hold. If they are, then
the probability that (R;) is not an identity is negligible, but we have hit a choice
of variables for which the two sides are equal. So the verification of (Ry) can be
carried out at least in a ‘random polynomial’ framework. The problem of
verifying a polynomial identity in deterministic polynomial time is an outstand-
ing problem in the complexity theory of algebra. It may well be, however, that
special identities like (Ry) can be verified easier.

Kleitman and the present author observed that a ‘dual’ version of the
theorem of Li—Li is also true (in fact, it is easier to prove). Let Y C C" denote
the set of those vectors which have at most k distinct entries, and let J denote
the ideal of those polynomials which vanish for every vector in Y.
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Lemma 2.5. A graph G has chromatic number =2kif f(Gyxi,.... X )EJL.

The less trivial part is the following. Let % denote the set of those graphs
on {1,...,n} whose edges form a complete k-graph (and which have, there-

fore, n — k isolated points).
Theorem 2.6. The polynomials f(L; xi, . . ., x») (L € Z¥) generate the ideal J%.

Corollary 2.7. A graph G satisfies x(G)= k iff there exist polynomials
g(xy, ..., x ) (LEXLY) such that

F(Gsxt, . %)= > Gulxy o X)) fLs X1, Xa)

LeS}

Again, the following sharper version is true.

Theorem 2.8. A graph G satisfies x(G) < k iff there exist graphs Gy, ..., G, on
V(G), each containing a complete k-graph, such that

f(G;xlwu,Xn):if(G,-,xl,...,xn).

In this last form this result is reminiscent of a well-known result of Hajos {6],
which also yields a ‘pseudo-good’ characterization of graphs with chromatic
number = k. Define 3 operations on the set of graphs:

(a) add new points and/or lines,

(B) identify two non-adjacent points,

(y) take two graphs Gy, G,, delete two edges xy: € E(G)) and x,y, € E(G»),
identify x, with x, and join y; to y, by a new edge.

Theorem 2.9. A graph G has x(G)= k iff it can be constructed from complete
k-graphs by the repeated application of steps (), (B) and (v).

Again, the relation x(G)= k can be proved for a graph G by carrying out
the construction explicitly. Just how short this proof is, depends on the graph
G. Perfect graphs can be obtained in one step. Are there other interesting
classes for which the construction is short ? So far, Hajds’ theorem was studied
for its possible applications to planarity; its algorithmic complexity aspects are
an unexplored territory (cf. Fig. 1).

To this approach to chromatic number the same remarks apply as to the
Li-Li theorem on independence number.

Li and Li point out that by looking at the degrees of the polynomials, one

Fig. 1
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E%&g

(x1 = x2)(ox2 = x3)(x3 — xa)(xa — x5) (x5 — x10(X1 — X6)(x2 — X6)(x3 — X6)(X4 — X6)(Xs5— X6) =
= (x1 = xa)(x2 — x3)(x1 — x3)(x1 = xg)(x2 — X6 )(X3 — X6)(X3 — Xs)(Xa — X5)(x4 — X6)(X5 — Xe)
+(x1 = x2)(x2 = x3)(x1 — X6)(x2 — Xe)(x3— Xa)(x4— xs5)(x3— x5)(x3— X6)(x4 ~ X6)(Xs — X¢)

Fig. 1. Proving that the 5-wheel has chromatic number =4 by Hajés’ construction and by the
method of polynomials.

sees immediately that if a(G) =<k, then
|E(G)|=deg f(G; xy,...,x)=deg f(H; x1, ..., X)),

where H € #%. This result is just Turdn’s theorem (for the complement of G).
They also obtain generalizations of Turdn’s theorem this way, but we cannot go
into the details of this.

The idea of using the degree of a polynomial to obtain combinatorial
estimations also occurs in a paper by Brouwer and Schrijver [2], where they use
it to calculate 7(H) for the hypergraph H formed by the lines of an affine plane v
over a finite field. dgque o

Let us conclude this section with the remark that Hilbert’s Nullstellensatz
may well be a source of other interesting ‘good’ or ‘pseudo-good’ charac- {,’/ ’
terizations in combinatorics. More generally, the duality between ‘syntax’ and ¥ oLy
‘semantics’ comes up here (in the Nullstellensatz, the solvability of a system of Q()‘?wm‘(" !
algebraic equations—a ‘semantical’ problem—is characterized in terms of the L
non-expressability of 1 as an element of the ideal generated by the left-hand
side—a syntactical property). So, e.g. Godel’s Completeness Theorem could be
viewed as a ‘pseudo-good’ characterization of the consistency of a system of
axioms: if it is inconsistent, we can exhibit this by deriving a contradiction, if it
is consistent, we can exhibit a model. Of course, no polynomiality (or even
finiteness) of these procedures is claimed. Whether polynomiality enters the
picture in any reasonable way is not known.

3. Matroids

These results (see [10]) are best discussed in terms of the point-covering
number 7(G). Let us assume that a matroid (V(G), r) is introduced on V(G).
Then we may generalize the problem of determining 7(G) to determining
7(G, r), the minimum rank of a point-cover. In the special case where (V(G), r)
is the free matroid, we have 7(G, r) = 7(G).
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The gain in introducing this matroid structure on V(G) is that we have more
freedom in applying some reduction procedures. Let v € V(G), r(v)=1 and
assume that v is in the flat spanned by its neighbours. Delete v from the graph
and contract v in the matroid. Then the resulting graph G’ and matroid
(V(G"), r') satisfy

(G, r)=7(G,r)-1. §9)]

If v &€ V(G) has rank r(v)=0, then for the graph G’ and rank function r'
obtained similarly as above we have

(G, r)=7(G,r). 2)

If v € V(G) is a coloop in the matroid, then let (V(G), r") be a new matroid
which is obtained by deleting v, place a ‘general’ point on the flat spanned by
its neighbours, and finally label this new point v.

Then

(G, r")=1(G,r). 3)

If (V(G),r) is any weak map of the matroid (V(G),r) (i.e.; r'<r), then
trivially

(G, ) =<7(G,r). 4)

Now these reductions enable us to prove the relation 7(G)= k for quite a
few graphs. (It is not clear which are interesting classes for which this can be

accomplished.) Fig. 2 shows how to exhibit, using reductions (1)-(4) that the
graph G has 7(G)=6.

Fig. 2. Proving that the graph G has 7(G) = 6 by the method of matroids. For brevity, (1) followed
by (3) is depicted as one step, (1, 3).
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So far, the main application of this method has been to develop a
classification theory for r-critical graphs (Lovdsz [11]). In the algorithmic
context, an important problem which arises is handling the matroids. A natural
approach is to restrict oneself to real representable matroids, and then handle
them as real matrices. There are, however, many problems in connection with
this, for example, how to construct a representation of a principal extension
from a representation of the matroid ? We cannot go into the complicated
problems arising here.

4. Topology

The present author [12] proved the following lower bound on the chromatic
number x(G) of a graph. Let us define the neighbourhood complex #(G) of a
graph G as the simplicial complex whose vertices are the points of G and
whose simplices are those subsets of V(G) which have a neighbour in common.
Let us recall that a topological space T is called k-connected if for every
O=<r=k, every continuous map of the r-sphere S’ into T extends to a
continuous map of the (r+ 1)-ball B™' with boundary S’ into T. Thus 0-
connected means arcwise connected, 1-connected means arcwise connected and
simply connected (trivial fundamental group) etc.

Theorem 4.1. If ¥(G) is k-connected, then x{(G)=k + 3.

This theorem has been used to prove a conjecture of Kneser concerning the
chromatic number of certain graphs. Its proof depends on the Borsuk-Ulam
theorem on antipodal mappings of the sphere.

Schrijver and the present author have found the following lower bound on
7(G) of a somewhat similar character. Let G be a graph and define a simplicial
complex #(G) whose vertices are those subsets X of V(G) for which both X
and V(G)— X span at least one line. Let the simplices of M(G) be those sets
of such subsets which are totally ordered with respect to inclusion.

Theorem 4.2. If #(G) is k-connected, then T(G)=k + 3.

This result generalizes to hypergraphs without any essential change. Its proof
depends on the Borsuk-Ulam theorem again.

The algorithmic aspects of these topological results are very much un-
explored. It is likely that the k-connectivity of #(G) is an NP-property for
every fixed k, since it means that the k-skeleton is contractible to a single point
within the (k + 1)-skeleton, and probably this contraction can be described in
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polynomial time. I could not, however, work out a rigorous proof. The
situation is even more complicated with #(G), since this has exponentially
many vertices. But we may replace #(G) by any simplicial complex which is
homotopically equivalent. Is there such a complex which has only [V(G)|eot
vertices ? Is there one which can be constructed from G in polynomial time ?
Probably these questions may be answered in the affirmative using some
methods like the (homotopical) Crosscut Theorem of Mather [13] or other
related results on topological spaces associated with posets, lattices, etc. (we
also refer to [15] and {1]).

Conclusion. We have surveyed some methods to obtain upper bounds on a(G)
(or, equivalently, lower bounds on 7(G)), which use non-trivial tools from
other parts of mathematics. We tried to show that complexity considerations in
connection with these methods raise some interesting questions in other fields
of mathematics.

Our selection has clearly not been representative for all approaches. We
have to call the reader’s attention to the work of, among others, Hammer and
Simeone [7], Hansen [8] and Haemers [5], but we cannot discuss their approach
in detail.
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