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This
theorems recently found by Edmonds {2] and Lucchesi
respectively. An interesting feature of both theorems is that they do not
seem to follow from the known minimax theorems of matroid theory
(it is of course a different question whether they have generalizations to
matroids: Section | below seems to indicate some connection). The reason
why we include these proofs here. in one paper, is not only the similar
character of the two theorems but also (hat we formulate a problem on
hypergraphs which could serve as a common generalization of both.

paper contains new proofs of, and certain remarks on, two minimax
and Younger [6} §

1. Let G be a digraph with a root a. A branching (rooted at a)
is a spanning tree which is directed in such a way that each x = q has
one edge coming in. A a-cut of G determined by aset S C 1(G) is the set of
edges going from S to 1'(G)  S. It will be denoted by 44(S). We also set
8(S) = | da(S)I.

Tueorem 1 (Edmonds).  7he  mavinm number —of  edge-disjoint
branchings (rooted at a) equals the minimum number of edges in a-cuts,

k for
We use

Proof. The nontrivial part of the theorem says that il 5,(9)
every S C F(G). ae S then there are A cdge-disjoint branchings.
induction on k.

Let F'be a set of edges such that

(i) Fis an arborescence rooted at o (t.c.. a tree such that v = 1'(F)
and it is directed in such g exactly one edge eniers cach point
Y aof Iy,

(i) 8g p(S) . A Forevery SCI(G). ae S, y

r

If I covers all points. ic.. it is a branching we are finished: ¢
contains k - 1 edge-disjoint branchings and Fis in the kth one.
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Suppose F only covers a set TC V(G). We show we can add an edge

eed4(T) to F so that the arising arborescence F -|- ¢ still satisfies (i)
§ and (ii).

Consider a maximal set 4 C ¥(G) such that

(a) ae A;

by AUT = V()

(€) Bg_plA) =k — 1.
If no such A exists any edge of 44(7T) can be added to F.
Since

@<y

86 (AU T)=8(AVT) =k,
wehave AU T = A, TT A. Also,

Se AU T) > 8¢ (A)

and so, there must be an edge ¢ - (x, y) which belongs to 4 ..L; uT) -
d;. HA). Hence xe T — 4 and ye V(G) - T — .x_.. We claim ¢ can be
added to F, i.e.. F |- ¢ satisfies (i) and (1i). (i) is trivial.

Let SC V(). ae S, If e ¢ A(S) then

’ @Q -F ,.‘AMV o woﬂma,v = k—1.

fee dg(S) then x € S, v e V(G) -- S. We use now the inequality

~

S (SUA) | 86 (SN A) 77 86_p(S) + S6_1(A), (D

shich follows by an easy counting. Here

k—1

1, S f(SN A ==

M:v l\: =k
and, by the maximality of A,

w:ﬁl.wc A) =k,

since S A4 < dasve S Adand SU A4 V(G)as ¢S U A Thus (1)
implies

S (S) > k
and so.

M?ﬂ;fl.ﬁv ,\,v > . _ )

Thus, we can increase I tll finally it will satisfy (i), (ii), and V(F)y  F(G).
Then apply the induction hypothesis on G F. This completes the proof.
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Remark. The above proof yields an efficient algorithm to construa
a maximum set of edge-disjoint branching. We will need a good algorithm
to determine 7

Y =K(G) - u—%.wmi S6(S).

This requires the computation of n — 1 flow values (1 — | V(G),
m = | E(G)} and hence, it can be done in p steps, where p is a polynomia
in n, m. Now we start defining F. At any stage, we can increase it by
checking at most m edges e whether or not

KG—F—e¢)=k—I.

In fact, we do not need to check more than n edges altogether; since if an
edge is checked then it is either put into F or it cannot come into consi-
deration as an clement of F anymore. This shows that we obtain Fin
mp steps and thus, we obtain & edge-disjoint branchings in Amp steps.

2. Let G be a weakly connected digraph.® By a directed cut
of G we mean the set D — 4xS) (ST H(G). S == ) provided
As(V{(G) — 8) — . Note that a directed cut D uniquely determines a
set Sy with D~ 4,(Sp).

TueoreM 2 (Lucchesi and Younger). The maximumn number of disjoint
directed cuts equals the minimuan number of edges which cover all directed
cuts.

This result had been conjectured by N. Robertson and D. H. Younger
for some years. Also its special case when G is bipartite, which follows
from the results in McWhirter and Younger [7], is very interesting.

We remark that the minimum number of edges which cover all directed
cuts can be interpreted as the minimum number of cdges whose con-
traction results in a strongly connected graph.

Proof of Theorem 2. We use induction on the number of edges. If this
1s 0 the assertion can be considered as true. Let ¢ «= E(G): Contract ¢;

this results in a digraph 7 . It is'easily seen that the directed cuts of G7are
exactly those of G not containing e.

an

I therein
i

1
¢ Fey such cont >doe-

AR B . »

directed cuts then. by the induction
IS

Hne a1 omost i i igjoint
hypothesis, there exist & 1 edges
. ey covering all directed cuts of 7 Then . ¢, ... ¢, , are k edges

1 This assumption is irrelevant but convenient,
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r__mnr cover all directed cuts of G. Since, obviously at least k oamo.m are
pceded, the assertion is proved. Thus we may assume G’ contains k
disjoint directed cuts for each edge e. . .
If we subdivide all edges of G by a point the arising graph contains
k + | disjoint directed cuts. Hence we can find a subdivision H Ow G
swch that H contains at most k disjoint directed cuts but if we subdivide
acertain edge / of H by a point then it will contain k -+ 1 disjoint directed
auts. Hence H contains k -+ 1 directed cuts Dy ..., Dyys such that only
wo of them have a common edge which is f. o
Also observe that H; arises either from G or from Gy 3.\ m:g_.sm_o:.
Hence by the assumption made above, If contains k n:e.o:: a:mo.ﬁoa
s Cy ..., Csuch that f¢ C; . Thus Dy ..., Diiis Ci sy Cris a collection
of directed cuts of G, such that any edge belongs to at most two of them.
Thus it suffices to show:

LeMMA.  If a digraph G contains at most k disjoint directed cuts, and F is
any collection of directed cuts in G such that any edge belongs to at most
o of them then | F'| << 2k.

Proof of the lemma. First we replace F by a collection of a simple
sructure. Let D, , D, e F be called laminar if Sp N Sp, =@ or Sp, € Sp,
or Sy CSp. or Sp VS, —= V(0). Otherwise, D, and D, are called

2 1 1 2
trossing.

Let D, , D, be a crossing pair. Set

\v—\ = Qﬁrﬂb_ Y .M.Unvv bw\ = QTWU- N _M.bnvu

N..: == Nﬂc \M@_ﬁ uw\v - ”bu ’ bww

It is easily checked that D", D, are directed cuts. Moreover, D', D)’
cover any edge the same number of times as D, , D, . Hence F’ has the

: \ A
ame properties as I, and | ' | == | Fi.
Also,
L \
Y ISol2< 3 1Sl
DeF DeF’
since
. e e e 212
PSp, WS, LSy, N Sh, 2~ 1Sy 12 Sp, 1
Henee, if we do the same with £ as we did with 70 ¢ - we replace two

crossing cuts by two new directed cuts and repeat this procedure we
annot go into a cycle, i.e.. finally we get a collection T, of directed cuts
wch that any cdge belongs to at most two of them. any two are laminar




100 LASZLO LOVASZ
and | Fy| — | F[. So it suffices to prove the Lemma in the case when
consists of pairwise laminar cuts.

Let F == {D;....D.}. We construct a graph G’ as follows. V(G') =
{ty ..o, 05} and we join ¢, to ¢; iff D; © D; == 0. Then G’ contains at mostk
independent points. We show it is bipartite. This will imply it has at mos
2k points (k in each color class) i.e., N <2 2k as stated.

To show G’ is bipartite we consider a circuit (v, ..... r,,) in G’ and the
corresponding sets Mo_ ey Sp o Dy Dy, must be different. For 4
D, — D, then each edge of D, belongs to both D, and D,; thus, to m
other member of I Hence r, has degree | and it cannot occur in any circut
of G".

Since D,nD; 0 (= 0,..,m-—1; Dy — D,), we have eithe
Mo..ﬁ.wc..: or Sp UMF:. We claim the two possibilities occur alter.
natingly: this will prove m is even. Suppose not, e.g.. Mcaﬂ,wc_ﬁma..
We say D; is to the left from D; if either S, OMP or F(G) — Sp, ﬂua_“
D;is to the right from D; if Sp, CH(G) — MP or K(G) - Sp CH(G) — ma_.
Since F consists of laminar cuts, each D; + D; is either to the left or to
the right from D, . Since D, is to the right from D, but D, —= D,, is to the
left from Dy, there is a j. I =i/ << m - - | such that D; is to the righ
from D, but D;,, is to the left from D, . But D; and D, ., have a common
edge ¢ which, therefore. must belong to D, . Thus ¢ belongs to three cuts,
a contradiction.

Remark. The proof uses several ideas which occur in previous papers.
Thus crossing and laminar cuts occur in [7]; families F of cuts covering
each edge at most twice are considered in [8].

3. A hypergraph H is a finite collection of finite sets. These sets
are called edges. the elements of edges are called vertices. The set of
vertices is denoted by 1'(IN. If Iy ... E,, are the edges. ¢, ..... v, are the
vertices of hypergraph /7 then we define

\ i1 if ;e F;;
;; .
o, otherwise.
The matrix 4 (a,;) 1s called the incidence matrix of 1.

A partial lypergraph of 11 is a subcollection of (the collection of edges of)
H. The partial hypergraplt induced by S 2 VU is the collection of edges

contained w1 S,

[EV

-

R RS AR
multiplying the

fipoints x; ... Ay and cach edge E containing v by /i edges
1 h & B <
The partial hypergraph induced by S can be obtained hy

points of I'(/1) S by 0. .
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Let v(//) denote the maximum number of disjoint edges of H .m:& let
() denote the minimum number of points covering .?m?nmo:::mv all
edges of /1. These numbers can be considered as optima of the linear

programs
v integer . x integer
Ax <1 ATx > 1
, )
X = x0
‘max 1.x min [.x

Let » (/1) and 7*(I1) denote optima of these programs when dropping
the assumption that x is an integer, then

w(H) = v*(H) = 7*(H) - (H).

Also. let us denote by Lvy(/1) and iry(H) the optima for solutions with
coordinates half of an integer, then

v(H) << Y wo(H) < v*(H) = 79(H) 2 bro(H) = 7(H).

In [5] a hypergraph was called normal if v(I1') = (1) holds for every
partial hypergraph H’" of H and seminormal if v(H') = v(H') holds for

every induced partial hypergraph. It was proved that

(A) A hypergraph is normal iff 7(H') - +¥(H") holds for every
partial hypergraph H’;

(B) A hypergraph is seminormal iff v(/1") — »*(H') holds for every
induced partial hypergraph 1"

It is easy to see that (B) is of stronger type than (A); in ?Q., to show

the relation (/1) — 7(H) we have to consider induced nm::.: _.Jﬁn?
graphs only. We remark that hypergraphs with totaly unimodular incidence

matrix arc normal (see [1]). . .
Now form two hypergraphs as follows. If G is a digraph rooted at a

then let B.; consist of the sets of edges of branchings rooted at a. Then
Theorem | expresses

T(B¢).

{ Nw:.v =

together with all edges containing it. So. the induced partial hypergraphs
of B, are of torm B, . and hence. they also satisfy (3). So B s seminormal.
Itis casy to see that By is not always normal.
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Define the hypergraph Dg to consist of all directed cuts of the digraph ¢
Then Theorem 2 says

"(Dg) = 7(Dg); U]

and if we contract an edge of G then this will correspond in Dy to the
removal of a point together with all edges containing it. Hence [5) holds
for the induced partial hypergraphs of D as well, i.e., D is seminormal

This raises the question if seminormal hypergraphs have a character-
ization which would imply Theorems 1 and 2 ? In other words is theres
simple property P of hypergraphs such that the theorem

A hypergraph is seminormal iff cach induced partial
hypergraph of it has this property P

holds ? (B) above is an example but the property v(H) — v*(I) is nat
too easy to verify. Nevertheless, it should be pointed out that our proof
of Theorem 2 does something similar.

In fact, the first argument actually proved

THeoreM 3. Jf any hypergraph H' arising from H by mudtiplication o
the vertices satisfies vo( H'Y = 20(11') then v(H) = v(H).

It would be possible to give a separate (but related) proof based on
Theorem B above. First we show that (1) if Fis a collection of pairwise
laminar directed cuts then its incidence matrix A is totally unimodular.

A simple proof of this fact was mentioned to me by N. Roberlson
(private communication). We can find a directed tree 7" with 1(T) D 1G),
E(T) == {fy...../y! so that the cut of G determined by the edge f; of T
in the natural way is exactly D, and f; is oriented correspondingly to D,
Let /be the N~ Nidentity matrix, then (1, A) is the regular representation
of the circuit matroid of TW G in the basis 7. It is well known that the
matrix (/, 4) is totally unimodular and hence, so is A.

(2) If I'is a collection of laminar directed cuts k !
disjoint and no s | 1 of which have a common edge then | /7!

I of which are
sk.

This follows from well knows results on hypergraphs (sce [1. Chap. 20)).

3)

If /7 is any collection of directed cuts of a digraph G with
k and no edge of 7 is contained in more than s members of T

ATy
LA R

Iy

m.,vA::,

J.

I'his follows trom (J) by exactly the
first part of the proof of the Lemma.

(4)

same argument as used m the

(D) - 7(D). By Theorem B.
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We remark that 7(Bg) =— 7*(Bg) is easily verified. One can show even
;more: the polyhedron
I

0

AT - x >
x>

has integral vertices; hence any optimal solution of the program defining
¢*(B;) is baricenter of integral solutions. This follows from the results of

Fulkerson [3].
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