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called proper if in a small neighborhood of p one edge passes from one side of the other
edge to the other side. Due to its aesthetic appeal and wide range of applications in VLSI
layout, computer-aided design, software visualization, etc., the area of graph drawings
has received a lot of attention in the past two decades. For a recent bibliography of graph
drawing algorithms, see [DETT]).

There are many interesting results in topological graph theory characterizing all graphs
embeddable on a given surface without crossing (see [WB]). However, we know very
little about the possible intersection patterns determined by the edges of a graph drawn
on a surface. In particular, even for some very simple graphs we do not know how to
find the crossing number of G, i.e., the minimum number of crossing pairs of edges in
a planar drawing of G. In the case when G is a complete bipartite graph, this is Turén's
brick factory problem [T1], [G3). The determination of the crossing number is known
to be NP-complete [GJ].

Another well-known open problem that illustrates our ignorance about graph drawings
was raised by Conway about 40 years ago. He defined a thrackle as a drawing of a graph
G with the property that any two distinct edges either:

(i) share an endpoint, and then they do not have any other point in common; or
(i) do not share an endpoint, in which case they meet exactly once and determine a
proper crossing.

Thrackle Conjecture. The number of edges of a thrackle cannot exceed the number
of its vertices.

A graph that can be drawn as a thrackle is said to be thrackleable. Assuming that the
above conjecture is true, Woodall [W] characterized all thrackleable graphs. With this
assumption, a finite graph is thrackleable if and only if it has at most one odd cycle, it
has no cycle of length four, and each of its connected components contains at most one
cycle. Note that it is quite straightforward to check the necessity of these conditions (see
Lemma 2.1). Using a construction suggested by Conway, the thrackle conjecture can be
reduced to the following statement: If a graph G consists of two even cycles meeting in
a single vertex, then G is not thrackleable ((W1] and {[PRS1]). It is worth mentioning
that the thrackle conjecture is true for straight-line thrackles, i.e., for drawings where
every edge is represented by a segment [HP], [FS}], [PA]. See [LST] for a surprising
relation between straight-line thrackles and triangulations of certain polytopes, and [G1]
for another geometric application.

Any two edges of a thrackle intersect in exactly one point, including the endpoints.
For finite set-systems satisfying a similar condition we have the following well-known
result {F], [BE].

Fisher Inequality. Let F be a family of subsets of a finite set X such that any two
members of F have exactly one element in common. Then F has at most as many
members as the number of elements of X.

An inieresiing wodalar version of this inequality was discovered by Berlekamp {B].
Suppose that every member of F has an odd number of elements and that the intersection
of any two members is even. Then |F| < |X|. These results and their generalizations
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originate in linear algebra and play a central role in finite geometries and in the theory
of combinatorial designs (see [BF]).

Since thrackles do not contain cycles of length four, it follows from [KST] that the
maximum number of edges a thrackle of n vertices can have is O (n/?). Our next theorem
represents a substantial improvement on this bound.

Theorem 1.1. Every thrackle of n vertices has at most 2n — 3 edges.
The proof is based on the following result.
Theorem 1.2. Every thrackleable bipartite graph is planar.

Just like the Fisher inequality, the thrackle conjecture has some modular versions,
too. For example, call a graph drawing a generalized (or modulo 2-) thrackle if any two
edges meet an odd number of times, where “meet” means either “meet at a common
vertex”” or “meet at a proper crossing.”

Theorem 1.3. Every generalized thrackle of n vertices has at most 3n — 4 edges.

Theorem 1.4. A bipartite graph can be drawn as a generalized thrackle if and only if
it is planar.

Woodall [W2] asked whether the thrackle conjecture remains true for generalized
thrackles. Our last theorem implies that the answer to this question is in the negative,
because a bipartite planar graph of n vertices can have as many as 211 — 4 edges.

2. Three Lemmas

In what follows a thrackle and its underlying “abstract” graph are both denoted by G.
If there is no danger of confusion, we make no notational distinction between a vertex
(edge) of the graph and the corresponding point (arc).

Lemma 2.1. Let G be a thrackleable graph. Then G contains (i) no cycle of length
four, (ii) no two vertex-disjoint odd cycles.

Proof. 'Toshow (ii), notice that a pair of vertex-disjoint odd cycles would be represented
in a thrackle by two closed curves that properly cross each other an odd number of
times. ')

Lemma 2.2. Let Cy and Cy be two cycles in a graph G that have precisely one vertex
v in common. Suppose that G can be drawn as a thrackle. Then the two closed curves
representing Cy and C; cross each other in a small neighborhood of v if and only if both
cycles are odd.

Proof. Let k; denote the length of C,. i = 1, 2. The closed curve representing ('
divides the plane into k;(k; — 3)/2 + 2 connected cells. Color these cells with black
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and white so that no two cells that share a boundary arc have the same color. The curve
representing C; intersects C exactly 2(ky — 2) + (k2 — )k = kyk, times (mod 2), not
counting v. Every time C; intersects C, it passes from one cell to another whose color
is different. Assume that in a small neighborhood of v the initial segment of an edge of
C, incident to v lies in a white region. Then the initial segment of the other edge of C;
incident 1o v lies in a black region if and only if k k; is odd. 0

A graph consisting of three internally disjoint paths P;. i = 1.2, 3, between u and
v is called a ©-graph. A drawing of this ©@-graph is said to be a preserver if in a small
neighborhood of u the initial pieces of the paths P; foltow each other in the same circular
order (clockwise or counterclockwise) as the final pieces do around v. Otherwise, the
drawing is called a converter. Note that, using this terminology, if G is a planar graph
drawn in the plane without crossing, then any ©®-subgraph of this drawing is a converter.
The proof of the next lemma is very similar to that of the previous one.

Lemma 2.3. A ©O-subgraph of a thrackle is a converter if and only if at most one of its
three paths has odd length.

Remark. With the exception of Lemma 2.1(i), all statements and proofs in this section
remain valid for generalized thrackles.

3. Bipartite Thrackles

Proof of Theorem 1.2. By Kuratowski’s theorem, it is sufficient to show that a thrack-
leable bipartite graph G does not contain a subdivision of K5 or of K3 3.

Suppose that G contains a subdivision of K5, whose vertices are vy, . . ., V4. Assume
without loss of generality that in a thrackle drawing of G the initial pieces of the edges
incident to vy follow each other in the clockwise order vovy, ..., Uova. Then there are
two (even) cycles through vy. vy, vy and vo, v2, V4 that have no vertex in common other
than vy. The corresponding two curves cross each other in a small neighborhood of vy,
contradicting Lemma 2.2.

Suppose next that G contains a subdivision of K3 3 with vertex classes {u, uz, us}
and {v;. v;. v3}. Denote this subdivision by K. Assume first that the lengths of all nine
paths in K connecting the u;'s and the v;’s have the same parity. Deleting from K the
point u together with the three paths connecting it to the v;’'s, we obtain a ©-graph. In
view of Lemma 2.3, it is a converter between u| and u,. Similarly, deleting u> (u;) we
obtain a converter between w, and w1 (11> and u3, respectively). We say that the type of u;
is clockwise or counterclockwise according to the circular order of the initial segments
of the paths u; vy, i;v2. 1e; v2 around u;. 1t follows from the definition of a converter that
any two u;'s must have opposite types, which is impossible.

There are two other essentially different cases according to the parities of the nine
pathe forming K It turns out that in both cases one can arrive at a contradiction by
showing that there is exactly one pair of points among . 7. U3 having opposite
types. [}
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Proof of Theorem 1.4. In view of the remark at the end of the previous section, the
above argument also proves that every bipartite graph that can be drawn as a generalized
thrackle is planar. To establish the theorem, we have to show that the reverse of this
statement is also true, i.e., every bipartite planar graph G can be drawn as a generalized
thrackle. To see this, consider a crossing-free embedding of G in the plane such that

(i) V(G) = V| U V,, where all points of V, are mapped into the upper half-plane
and all points of V, below the line y = ~1:

(ii) every edge e € E(G) connects a vertex of V to a vertex of V,, and each piece of
e belonging to the strip —1 < vy < 0 s a vertical segment.

Now erase the part of the drawing in the strip —1 < y < 0, and replace the part in
the upper half-plane by its reflection about the y-axis. Reconnecting the corresponding
pairs of points on the lines y = —1 and y = 0 by straight-line segments, we obtain a
drawing of G such that any pair of independent edges meet an odd number of times.
This can be turned into a generalized thrackle by slightly modifying the edges in a small
neighborhood of their endpoints so as to reverse the circular order of edges around each
vertex of G. O

We could have completed our proof without using Lemma 2.2. The fact that a thrackle
contains no subdivision of K5 can also be deduced from Lemma 2.3 in a slightly more
complicated way.

The proof of Theorem 1.2 also yields the following.

Corollary 3.1. A graph is planar if and only if it has a drawing whose every ©-
subgraph is a converter.

For a related result, see [T2].

4. Reduction to the Bipartite Case

Every graph can be made bipartite by the removal of fewer than half of its edges. It
follows from Euler’s polyhedral formula that any bipartite planar graph of n vertices has
at most 2n — 4 edges (n > 2). If in addition the graph has no cycles of length four then
this bound can be replaced by {3rn/2] —3 (n > 3). Thus, Theorem .4 and Lemma 2.1(i)
immediately imply the following.

Corollary 4.1. Letn > 3. Then

(i) every thrackle of n vertices has at most 3n — 7 edges:
(ii) every generalized thrackle of n vertices has at most 4n — 9 edges.

In the rest of this section we sketch how to reduce the bound in Corollary 4.1(i)
ronghly by n

Let G be a thrackle of n vertices, # > 3. One can assume that ' is not bipartite.
otherwise its number of edges cannot exceed {3n/2] — 3. Let C denote a shortest odd
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cycle of G with length ¢. By Lemma 2.1(i) and by the minimality of C, any vertex o:wm
not on C has at most one neighbor belonging to C. Hence, there are at most n edges o
G which are not on C incident to vertices of C. It follows from Tm:..-:u .N.::v that the
graph G — C obtained from G by the removal of all points of C is bipartite. Thus,

- 5 3c
3(n —o¢) +=H|=I.|.

IE(G)| < |E(G-O)l+n=—F— )
One can refine this argument, as follows. The closed curve _‘m.?nmg::m C cuts the Em.:m
into a number of cells that can be colored with black and white so that no two cells e.<:=
a common boundary arc have the same color. Let b and w denote the number of vertices
of G — C lying in black and in white cells, respectively. Clearly, c + b + w = n, and
one can assume without loss of generality that b < w, so that

" )
b < 7

Observe that if an edge ¢ connects a point of C to (say) a Emnx vertex, then in a small
neighborhood of this point the initial piece of e must be white. There are at ::.vm. b mco”
edges, and if one removes all of them together with u.: oamom of C, the resulting grap
{thrackle) becomes bipartite. This with (1) yields the inequality

C
|[E(G)| < W ~3+btcs2n+ -3

Comparing the last two inequalities, we obtain that _MAQ: <2+ WV:.

One can further reduce this bound by utilizing an idea of Conway (see [W1], Bm_,
[PRS2], and [PRS1]). Now we replace each vertex and edge of C g.go nearby «mn_oom
and edges, respectively. More precisely, we split each vertex v of C into two <o§owm. _§
and v,,,, and connect all black and white neighbors of v noton C to vy and vy, Bmmoo:,\m y.
Furthermore, if v and v’ are two consecutive vertices of C, e,wm nossn.ﬁ vp to v, and vy,
to v}. It is not hard to see that this construction can be .ow:_.ma out in such a ém_Q Mrﬂ
the resulting drawing G’ is a thrackle, which becomes bipartite after the removal of a

edges between v,’s and black vertices. Thus,

—3,
2

E(G) —b=I|EG)|+c—b=<

which implies by (1) that
|E(G)| < 2n — 3,

as stated in Theorem 1.1,

5. Small Forbidden Configurations

All of the results in the previous sections were based on parity arguments. Theorem _.M
shows that if we want to settle Conway’s original conjecture, we have to go beyon
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these methods. In the proof of Theorem 1.1 we were able to explore a property of
thrackles that does not hold for generalized thrackles. Namely, we used the fact that
a thrackleable graph has no cycle of length four (Lemma 2.1(i)). By excluding some
other small configurations that would contradict the thrackle conjecture, one can easily
improve the bound in Theorem 1.1. The trouble is that it is quite difficult to find any
new nontrivial forbidden subgraph, because even a relatively small graph may have an
enormous number of topologically different drawings such that no two edges meet more
than once. In this section, we illustrate these difficulties by an example.

Let @, denote a graph consisting of two vertices connected by three internally disjoint
paths of length three.

Theorem 5.1. A thrackleable graph cannot contain ©j3 as a subgraph.

For the proof we need some preparation. Let G be a fixed thrackle whose edges are
smooth curves. Given two directed edges e and f that do not share an endpoint, we say
that e meets f clockwise if at their intersection point a tangent vector to e can be carried
into a tangent vector of f by a clockwise turn with angle less than .

Let P = ejeze3e4 be a directed path in G with length four, directed toward ey.
Associate P with a 4 x 4 matrix M such that M =0ifi = jorif ¢ and e; do
not have an interior point in common. Otherwise, let M;; = 1 or —1 depending on
whether ¢; meets ¢; clockwise or counterclockwise. Clearly, M is antisymmetric and it
is determined by the triple (M3, M4, My4). This triple is called the type of P. It turns
out that there are only six possible types:

a={(,1,-1); b=(,-1,-1); c=(1,-1,1)

A= (—1,~1,1); B =(-1,1,1; C=(-1,1,-1).
Lemma5.2. Let ey, ey, ..., e be six directed edges of a thrackle that form a sim-
ple directed cycle, and let P, = €i€iy1€i12€i 43, where the indices are taken mod 6.

Then type(Py) type(P;) . . .type(Ps) must be one of the following sequences: AaAaAa,
aAaAaA, BbBbBb, bBbBbB.

Given a directed path P = e|e,e3¢4, let the reverse of P be defined as P~! =
ey _mu: _mm _m_|_, where e, ! denotes the same edge as ¢; but with reversed orientation,
If e;...es5 is a simple directed path, we say that P’ = eje3eses can be obtained from

P = ejeje3e4 by a shift.

Lemma 5.3. Let P be a path of length four in a thrackle, and assume that type(P) €
{a, b, A, B}.

(i) type(P~1y = b, a, B, or A according to whether type(P) = a, b, A, or B.

(ii) If P’ can be obtained from P by a shift and type(P’) € {a,b, A, B}, then
type(P) type(P') must be one of the following six pairs: aA, a B, bB, Aa, Ab,
Bb.

Proof of Theorem 5.1.  Assume that there is a thrackle containing ©; as a subgraph. By
Lemma 5.2, the type of every directed path of ©, belongs tothe set{a, b. A. B}. Consider



376 L. lovész, J. Pach, and M. Szegedy

a path P whose type belongs to {b, B}. (If P does not satisfy this condition, then its
reverse does.) Observe that the topology of ®; allows us to transform P into its reverse
by a series of shifts. It follows from Lemma 5.3(ii) that the types of all paths obtained
during this process belong to {b, B}. However, by Lemma 5.3(i), type(P~") € {a, A},
which is a contradiction. a
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Abstract. We give an algorithm to compute a (Euclidean) shortest path in a polygon with
h holes and a total of n vertices. The algorithm uses O (1) space and requires O (n+h’ log n)
time.

1. Introduction

Let P denote a (multiply connected, closed) polygon in the plane having /i holes (“‘ob-
stacles™) and a total of n vertices. The problem of computing a shortest (*‘geodesic”) path
fromapoints € P toapointr € P hasbeen well studied in computational geometry; see
[1].14],16}, (8], [10], {13}, [14]. [17], and [21]-[23], as well as the recent survey chapter
by Mitchell [15]. In the case that h = 0, the shortest path can be computed in O(n)
time [6], [12]. In the case thath > 0, the complexity of the problem has been worst-case
quadratic (O(n?)), until the recent @ (n'-3+*) algorithm of Mitchell [ 14], which develops
the “continuous Dijkstra” paradigm, and its improvement by Hershberger and Suri [7],
[8], which results in an algorithm whose running time is O (nlogn).

A lower bound of 2(n + h log h) is easy to establish (from sorting or convex hulls).
but, to date, there is no matching upper bound. In fact. no upper bounds of the form
O(n + f(h)), having linear dependence on n. have previously been published.

Here. we offer a simple algorithm whose dependence on 1 is linear, both in time and
space. The time dependence on hi, however, is slightly worse than quadratic: O(n +
i* iog n). Thus, while our aigorithm is optimal for values of it that are roughiy O /n), it
is inferior to the best known methods in cases in which /1 is not relatively small compared



