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Abstract
We develop Metropolis-Hastings algorithms for exact conditional inference, including
goodness-of-fit tests, confidence intervals and residual analysis, for binomial and multi-
nomial logistic regression models. We present examples where the exact results, obtained
by enumeration, are available for comparison. We also present examples where Monte

Carlo methods provide the only feasible approach for exact inference.
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1 Introduction

Asymptotic inference for logistic regression models, particularly goodness of fit testing,
is often unreliable for sparse data. In this case, it is preferable to base inference on
an exact conditional distribution, rather than on a large-sample approximation such as
the chi-squared distribution. Exact conditional inference is based on the distribution
of sufficient statistics for the parameters of interest given sufficient statistics for the
nuisance parameters. This distribution does not depend on the nuisance parameters.
See Agresti (1992) and accompanying discussion for a review of exact inference for log-
linear and logistic regression models.

For inference concerning parameters of a logistic regression model, calculation of
the exact conditional distribution is conceptually simple. However, enumerating this
distribution may be infeasible. Monte Carlo sampling from the exact conditional dis-

tribution enables estimation of quantities of interest, such as tail areas and hence exact
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conditional p-values. In general, direct generation from the exact conditional distribution
is infeasible.

Markov chain Monte Carlo (MCMC) methods can be used to generate samples from
complex or high-dimensional multivariate distributions, typically only known up to a
constant of proportionality. Markov chain Monte Carlo methods for exact inference
nvolve the construction of a Markov chain, which is straightforward to generate from,
and whose equilibrium distribution is the exact conditional distribution of interest.
Ideally the Markov chain should be irreducible, i.e., it must be possible to reach any
point in the sample space from any other by transitions of the chain.

Diaconis and Sturmfels (1998) described a general theory for constructing MCMC al-
gorithms for sampling from conditional distributions. Their approach, based on Grébner
bases, can in principle be applied to any discrete regression problem. However, our expe-
rience is that in many situations computing the required basis is impracticable. In this
paper, we develop Metropolis-Hastings algorithms for exact inference for binomial and
multinomial logistic regression models. The proposed algorithms are intuitive and easy
to construct. However, the resulting Markov chain is not necessarily irreducible. When
the Markov chain is not irreducible, the resulting inferences may still be interpreted as
exact conditional inferences, where conditioning is also on being in a particular reduced
component of the sample space. For example, comparing the resulting MCMC p-value
with a fixed significance level still results in a test of exact size. This is essentially the
MCMC approach developed by Besag and Clifford (1989). In this paper we present

examples where the results of our algorithms are consistent with exact conditional

inference obtained by enumeration.

2 Binomial Logistic Regression Models

Let y; ~ binomial(m,,7;) and logit(m;) = =¥B + 27+, ¢ = 1,...,n, where B =
(B1,-..,8,)T is a vector of regression parameters corresponding to the vector of p
explanatory variables x; = (21, ..., Ziyp)T and v = (74,... ,7q)T is a vector of regression
parameters corresponding to the vector of ¢ explanatory variables z; = (z,. .. , Zig) T .

The conditional distribution of the vector of responses y = (Y1,...,yn)T, given X Ty,



the vector of sufficient statistics for 3, is given by

FIXTy = XTypg ) e><1f>(7TZTy)_I?[1 ( T; ) , (1)
where X' = (z;;) is a n X p matrix, y,,, denotes the observed vector of responses and
the right hand side of (1) is subject to the conditioning constraints. Exact conditional
inference concerning - is based on the marginal distribution of Z7y, the vector of
sufficient statistics for -y, where Z = (z;;) is a n x ¢ matrix.

Consider an exact conditional test of the hypothesis Hy: v = ~°. When ¢q = 1, the
test is based on the marginal distribution of the univariate statistic ZTy where v =40
When g > 1, the test is usually based on a one-dimensional function of the multivariate
statistic Z7y, such as a likelihood ratio statistic. A test of goodness of fit of the model
logit(m;) =T B, i =1,...,n, is a special case of a test of H~, where the columns of X
and Z span IR™ and 4° = 0. In this case, the exact conditional distribution is equivalent
to (1) with ¥ = 0. When ¢ = 1, an exact confidence interval for v can be constructed
by inverting a test of H~; see for example Agresti (1992).

For a binomial logistic regression example, Bedrick and Hill (1990) enumerated all
possible responses consistent with the observed values of the sufficient statistics for
the regression parameters in order to perform exact inference based on (1). However,
enumeration of the support of (1), that is all y satisfying the conditioning constraints
XTy = XTy,,., is only feasible for moderate-sized datasets and therefore, as discussed
by Bedrick and Hill (1991), an efficient algorithm to generate from the exact conditional
distribution is required.

Monte Carlo exact inference is based on a sample generated from (1). For example,
when ¢ = 1 an exact p-value for H, is estimated using a tail area of the empirical
distribution of ZTy. The lower (upper) end point of an exact (1 — 2a) confidence
interval for -y can be estimated by finding the value 7° such that the observed value of
ZTy is the upper (lower) a quantile of the empirical distribution. Note that given a
sample from (1) for v = ~*, the exact p-value under H,: v = 7° can be estimated by
weighting the sample by exp{(7° —v*)ZTy}. Hence, in principle, a grid search for both
end points of a confidence interval may be based on a single Monte Carlo sample. A
natural choice is v* = 0, if a Monte Carlo test of ¥ = 0 has already been performed.

Alternatively, v* = 4, the maximum likelihood estimate, is a value which is supported



by the observed data.

Direct Monte Carlo generation is typically infeasible as, in general, this also requires
enumeration of the support of (1). Mehta, Patel and Senchaudhuri (2000) proposed a
network-based direct Monte Carlo sampling approach for binomial logistic regression.
This approach efficiently represents the support of (1) by a network which must be
constructed and stored. Unfortunately, memory requirements often exceed availability
even for data sets of modest size. For a binomial logistic regression model with a single
covariate, Forster, McDonald and Smith (1996) used Gibbs sampling to perform exact
inference. However, the resulting Markov chain may be reducible. For a similar example,
Diaconis and Sturmfels (1998) used their Grébner basis approach to obtain an irreducible
Markov chain. For more complex examples neither of these approaches may be practical:

the Gibbs sampler tends to become highly reducible and finding the Grébner basis is

not feasible.

3 Metropolis-Hastings Sampling

Metropolis-Hastings sampling (Hastings, 1970) is a MCMC method for sampling from

arbitrary, possibly unnormalized, multivariate distributions. The procedure is:

1. Given current value y, generate a new value ¥’ from some probability distribution

9y, v).

2. Accept y’ as the next realization of the chain with probability

f¥)av,y) 1}

fWaly,v)’ ®

oy, y) = min{
otherwise, retain .

Provided q is chosen appropriately, then f is the equilibrium distribution for this chain.
See Smith and Roberts (1993) and references therein for details.

For Monte Carlo exact conditional inference for logistic regression models, the re-
quired distributions are margins of (1). Therefore, if we construct a Metropolis-Hastings
algorithm whose equilibrium distribution is (1), samples from the required marginal
distributions may be extracted. Given a current vector of responses Y, we generate a

new vector ¥’ so as to maintain the sufficient statistics for the nuisance parameters. Our
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proposed Metropolis-Hastings algorithm involves setting ¢’ = y+dv, where 0 < 3/ < m;
for all 4, d is an integer and v is a vector of integers such that X¥v = 0, thus maintaining
the sufficient statistics for the nuisance parameters. Diaconis, Graham and Sturmfels
(1996) proposed a Markov chain of this form, and presented theory, based on primitive
partition identities, for ensuring irreducibility. Takken (1999) noted that there is no
easy way to generate these primitive partition identities, so a practical method for
constructing an irreducible Markov chain for a general logistic regression model does
not yet exist.

We propose algorithms which are intuitive and easy to construct, although not
necessarily irreducible. Initially we enumerate all possible v subject to the constraint
iy [vi] < r for a given r, chosen so that the enumeration is feasible. We allow only
those v where the v; are coprime. Usually, the vector of ones is in the column space of
X, as a constant term is included in the model, so Y _i=1 Vi must equal zero and therefore,
2_i=1 |vs] must be even. Typically, we choose r to be 4, 6 or 8.

Our Metropolis-Hastings algorithm involves selecting one of the possible v with equal
probability and then generating d using

n m
q(djv) o exp{y" Z7 (y + dv)} 1;11 ( " +zdvi ) ’ (3)
where 0 < y; + dv; < m;, for all . This expression reduces to a product of at most r + 1
terms, as terms where v; = 0 are absorbed into the constant of proportionality. Fur-
thermore, for sparse data the support of (3) is small. Hence, obtaining the normalizing
constant for g(d|v) by enumeration is straightforward.

The proposal distribution ¢(y,y’) is given by g(d|v)g(v), which is proportional to
g(d|v), since g(v) is uniform. By comparing (1) and (3) we see that g(djv) x f(y/),
so q(y,y') x f(y’) for every y, 3. As transitions from %’ to y can be made only by
selecting —(dv), we have ¢(y',y) x f(y) with the same constant of proportionality.

Hence, a(y,y’) = 1 and there is no rejection step.

4 Binomial Examples

We present two examples: one where the exact results, obtained by enumeration, are

available for comparison and one where MCMC provides the only feasible method for



Table 1: Dose-response Data

Log-dose m; y;

0.301 19 19

0.000 20 18
—-0.301 19 19
—-0.602 21 14
—-0.903 19 15
—-1.208 20 4
-1.509 16 0O
-1.807 19 0
—-2.108 40 O
—-2.710 81 2

exact inference. For these examples, and those in Section 6, each estimated exact
conditional p-value is based on a sample of one million realizations. The Monte Carlo

error of estimated p-values is summarised by approximate 99% confidence intervals,

calculated using the method of batch means (Geyer, 1992).

4.1 Dose-response Experiment

Table 1, taken from Bedrick and Hill (1990), presents data from a dose-response ex-
periment on the tumorigenicity of benzepyrene in mice. Doses were approximately
equally spaced on a log-dose scale, except that no observations were made at log(dose)
~ —24. We test the goodness of fit of the logistic regression model with log(dose)
as an explanatory variable using both L2, the likelihood ratio statistic, and X2, the
Pearson chi-squared statistic. We use r = 8 in the Metropolis-Hastings algorithm. The
observed values of L? and X? are displayed in Table 2 along with the asymptotic and
estimated exact conditional p-values. Also displayed are the exact conditional p-values
obtained by enumeration (Michaelides, 1997, pp. 88-89). The MCMC estimates are
in close agreement with the exact p-values. This is despite the fact that this chain is
reducible, as it can be shown that no chain with 7 < 14 will be irreducible. This is an
example of a reducible chain which still provides a reasonable inference.

Bedrick and Hill (1990) used an exact outlier test to determine whether lack of fit

1s due to a single extreme observation, say the ith observation. One of their tests uses



Table 2: Test Statistics and P-values for Table 1

Observed Asymptotic  Estimated Exact
value df p-value exact p-value p-value

L? 26.68 8 0.0008 0.0064 0.0064
X2 32.10 8 0.0001 0.0116 0.0132

the marginal conditional probability w; = f(y;| X7y = X Ty 4.) 85 a test statistic with
corresponding p-value p(w;) = Pr(w; < w;ios| Xy = XTy,,,). In order to perform si-
multaneous inference, they proposed using the test statistic T = min{p(w1),..., p(wy)}.
They obtained an observed value for T of 0.04, corresponding to the observation at
log(dose)= —0.602, and enumerated the exact p-value as 0.13. We use our Markov
chain to estimate first ws, ..., wio, second p(wy),... ,p(wyo), third T, and finally the

exact p-value. Our MCMC estimate of the exact p-value is 0.11, which is in close

agreement with the enumerated value.

4.2  Greying of the Hair and Mortality

Lasker and Kaplan (1974) studied the relationship between hair greyness in 1948 (none,
siight, moderate, general) and natural death between 1948 and 1969, controlling for sex
and age. Their data, on a cohort of 469 adult Mexicans, are presented in Table 3. Note
that y; is the number of deaths for each of the 65 observed covariate patterns where the
number of observations, m;, is positive. We consider two logistic regression models for
mortality: SEX+AGE and SEX-+AGE+GREY, where AGE (1 to 12) and GREY (1to
4) are covariates with equally-spaced scores. We used r = 4 in the Metropolis-Hastings
algorithms, which resulted in 50495 and 9697 different v for the tests of goodness of
fit of the SEX+AGE and SEX+AGE+GREY models respectively. For both models,
the observed goodness-of-fit statistics L? and X2 are presented in Table 4 along with
the asymptotic and MCMC estimated exact p-values. In all cases, the estimated exact
p-values suggest a better fit than do the corresponding asymptotic p-values. Note that
the SEX+AGE+GREY model is rejected at the 5% level using the asymptotic p-value
for L?, but not using the estimated exact p-value.

In order to compare the two models, we perform a test of H.,,, as described in Section 2,



Table 3: Greying of the Hair and Mortality

Sex Male Female
Greyness | None  Slight Moderate General | None Slight Moderate General
Vi My Y My Y my Yo Mg (Y ™My Yy ™My Y; my; Yi my
17-24 1 46 0 1 2 34
25-29 1 29 0 21 0 1
30-34 3 23 0 3 1 13
35-39 4 33 3 7 0 23 0 5 1
40-44 2 12 3 12 0 2 0 11 0 2 1 1 1 1
Age 4549 1 12 5 15 3 7 0 2 0 8 4 7 0 3
50-b4 1 1 3 16 0 1 5 8 0o 3 1 7 2 1 4
55-b9 1 2 5 6 1 4 3 9 1 2 0 6 1 4 3 7
6064 [0 3 1 4 3 6 3 6 |1 1 0 2 1 1
65-69 2 3 3 5 0 1 0 2 0 1
70-74 1 1 2 2 3 4 1 1 2 2
75+ 2 2 3 3 1 1 1 1

Table 4: Goodness-of-fit Test statistics and P-values for Table 3

Observed Asymptotic Estimated
Model statistic df p-value exact p-value*
SEX+AGE L? =87.80 62 0.0172 0.0487 £ 0.0059

X?=28581 62 0.0244 0.0518 £ 0.0054
SEX+AGE+GREY L?=8401 61 0.0270 0.0959 % 0.0091

X?=7705 61 0.0806 0.0973 £ 0.0089
* with approximate 99% confidence interval

where 7 is the greyness score parameter. Therefore, we extract from the Markov chain for
the SEX+AGE model a sample of ZTy, the sufficient statistic for 7. Here Z isa 65 x 1
matrix containing the values of the greyness scores. The exact p-value is estimated by
ranking the observed value of the sufficient statistic, Z7y,,, = 235, among this sample.
Against the one-sided alternative that hair greyness is deleterious, the estimated exact
conditional p-value is 0.0314 =+ 0.0068.

Lack of fit of a model may be investigated by residual analysis. The deviance
residual divided by its standard error has an asymptotic standard normal distribution
(McCullagh and Nelder, 1989). We examine the standardized deviance residuals for
the SEX+AGE model in order to investigate whether the lack of fit is due to a small



Table 5: Standardized Deviance Residuals and P-values for Table 3

Covariate values Deviance Asymptotic = Estimated  Support
¥i m;  Sex Age  Greyness  residual p-value exact p-value  points
03 Male 60-64 None —2.229 0.0258 0.0878 4
3 7 Male 35-39  Slight 2.008 0.0446 0.0484 6
4 7 VFemale 45-49  Slight 2.703 0.0068 0.0075 7
1 1 Female 40-44 Moderate 2.161 0.0306 0.0978 2
1 1 Female 40-44 General 2.161 0.0306 0.1000 2

number of extreme cases. Residuals greater than two in absolute value are presented in
Table 5, along with their asymptotic and estimated exact p-values. The estimated exact
conditional p-values are calculated using the empirical distribution of each residual,
extracted from the MCMC sample used to estimate the p-value for the goodness-of-
fit test. Also presented in Table 5 are the number of support points in the empirical
distribution of each residual. The estimated exact p-values for the 65 residuals do not
indicate that the lack of fit is due to a small number of extreme cases. Note that
the asymptotic p-values are closer to the estimated exact p-values for the; empirical
distributions with the larger numbers of support points.

The estimated exact 95% confidence intervals for the greyness score parameter are
(=0.015,0.613) and (—0.010,0.600) using v* = 0 and v* = 4 = 0.295 respectively. These
show relatively little sensitivity to the choice of v* and are similar to the asymptotic

interval (—0.001,0.592).

5 Multinomial Logistic Regression Models

We now consider a polytomous response with categories 0, ..., K. The ith observation
may be represented by the K + 1 counts (vio,%i1,---, %K), i = 1,...,n, with the total
count m; = E;If__.o Yik, assumed fixed. Let Y = (y;) denote a n x K matrix of responses,
where k runs from 1, and denote the K columns of Y by yy,...,yx with y, = m —
S Y, where m = (mq, ... ,my)T. Let (yio, Yi1, - - - Yixx) be multinomially distributed
with probabilities (mio,...,mik), ¢ = 1,...,n. Then a baseline-category multinomial

logistic regression model, with baseline category 0, is

log<?z)=w?ﬂk+zf7k 1=1,...,n, k=1,... K, (4)



where B, = (B, -.,Bkp)T is a vector of regression parameters corresponding to x; =
(@i, )T and v = (a1, - - . ,Ykq)T is a vector of regression parameters correspond-
ing to z; = (zi,...,2i,)7. We denote the p x K matrix (B1,--.,Bk) by B and the
g X K matrix (v;,...,vg) by I'.

When the response is ordinal, it may be more appropriate to express this model as

the equivalent adjacent-category model

log (:;kl) =z B +zlv, i=1,...,n, k=1,... K, (5)

where B = (8),...,8%) = BS™T, I" = (v,,...,7%) = I'S~T and S is a lower
triangular matrix of ones. The matrix of sufficient statistics for B’ is X7Y'S. See Hirji
(1992) for details. As S is invertible, XTY is also sufficient here.

For model (4), the conditional distribution of Y = (y;,...,¥x), given XTY, the

matrix of sufficient statistics for B (or B’), is

oo Uik
where Y s denotes the observed matrix of responses and the right hand side is sub ject to

FYIXTY = XTY 4 T) o exp {tr (17 27Y)} ﬁ ( v i ) , (6)

i=1

the conditioning constraints. Here, exact conditional inference is based on the marginal
distribution of a univariate function of Z7Y", the matrix of sufficient statistics for I'. For
model (5), exact conditional inference is based on the distribution of a univariate function
of ZTY S, the matrix of sufficient statistics for I". This is a marginal distribution of
(6) where T' = I"ST. For a test of goodness of fit, the exact conditional distribution is
equivalent to (6) where T = 0.

Our Metropolis-Hastings algorithm for binomial logistic regression models can be
extended to the multinomial logistic regression models above. The binomial is a special
case of the multinomial where K = 1, y; = y and Yo = m — Yy, and each proposed
step of our binomial algorithm may be thought of as addition of dv to y, together with
subtraction of dv from y,. In the multinomial case, where there are K + 1 vectors
of outcomes, yy,..., Yk, a proposal is obtained by selecting at random a v such that
XTv = 0, and an integer vector w = (wq,wr,...,wg)’ of length K + 1 such that
1%,,w = 0, where 1 is a vector of ones of the given dimension. Then Y’ = Y + dvw,
and Yy = Yo + dwov, where w\o = (wy,. .. ,wg)? and d is generated using

n K 1
‘ T 7T T
g(dlv) x exp (tr {I"Z°(Y + dv’w\o)}) g I]_;[O m,

(7)
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where y;r + dv;wi, > 0 for all < and k.

For computational convenience, the set of possible w is restricted to those for which
Y o|wk| = 2 and (7) reduces to a product of at most 2r + 1 terms, as terms where
viw, = 0 are absorbed into the constant of proportionality. The procedure is then
equivalent to selecting at random ki, ks € {0,1,...,K}, ki # ky, adding dv to Yy, and
subtracting dv from y,,. Therefore, this is a simple extension of the binomial algorithm.
As potential v only depend on X, and not on X, enumeration of all possible v subject
to the constraint 3°7; |v;| < r is as described in Section 3. As with (3), obtaining the
normalizing constant for ¢(d|v) by enumeration is straightforward and a(Y,Y”’) = 1.

Hirji (1992) considered the baseline-category multinomial logistic regression model

log<%§>=9k+m?,@+z?7 i=1,...,n, k=1,... K, (8)
K3

and the adjacent-category model

log(mk>=0k+x;3+z?7 t1=1,...,n, k=1,... K, 9)

Tik—1

which are more parsimonious than (4) and (5) as the regression parameters do not depend
on the category. The sufficient statistics for (6y,...,0k), B and ~ are 17Y, XTY1x
and ZTY 1 for the baseline-category model and 17Y S, XTY S1x and ZTY S 1x
for the adjacent-category model. Note that models (8) and (9) are not equivalent and
there is no one-to-one correspondence between the sufficient statistics for the respective
regression parameters. However, the sufficient statistics for the respective category
effects (61,...,60k) are equivalent, and conditioning on their observed values fixes 1Ty,,
the total count in each category k = 0,1,..., K.

The exact conditional distribution of the sufficient statistics for - is proportional to
the right hand side of (6), with the exponential term replaced by exp('yTZTYl k) for
model (8) and by exp(y7ZTY S1k) for model (9). Hence, the only difference between
the conditional distributions for tests of v = 0 for models (8) and (9) and of I = 0 for
models (4) and (5) is the support imposed by the conditioning constraints. Again, when
g =1, a confidence interval for v can be constructed by weighting a single Monte Carlo

sample from the exact conditional distribution where v = v*.
Our Metropolis-Hastings algorithm described above for models (4) and (5) needs
modification for models (8) and (9). If the algorithm is based on a set of v such that

11



Y + de{o, 17Y" = 17Y 4, and XY’ = XTY ... Hence, the constraints on the

17v = 0, XTv = 0 and Sieq|vil < r for a given r, then for any proposed Y’ =

sufficient statistics for the category effects and for the regression parameters for either
models (8) or (9) are maintained. However, the constraint XY’ = XTY ., is over-
restrictive, since we only require X Y 1x = X7Y 4.1 k for the baseline-category model
and XTY'S1 k = XTY 34s8 1 for the adjacent-category model. Therefore, additional
proposals are required which allow XTY to vary, while maintaining either XTY 1k or
XTY S 1.

We consider an extra set of integer vectors u where 1Zu = 0 but XTu # 0. For
computational convenience, we only consider vectors w for which -7, |u;| = 2. In our
modified algorithm, a v or a u is selected at random from the combined set of all feasible
v and u. If a v is selected, then the algorithm proceeds as before. If a u is selected,
then a w is again selected at random and the proposal is given by Y' =Y +duw{0 and
Yo = Yo + dwou, with d generated using (7). Clearly w?1x,; = 0, in order to maintain
Yo+Y '1x = m. For the baseline-category model, w is selected such that wiplg = 0and
215:1 |w;| = 2. This proposal maintains Y'1x and hence X Y'1x = XTY 4,1x. For
the adjacent-category model, w is selected such that w’{OS’ 1k = 0 and TK ; |wi| = 4.

This proposal maintains Y S1x and hence X7Y'S1x = XY 4,S1k.

6 Multinomial Examples

We present three examples: two where the exact results, obtained by enumeration, are

available for comparison and one where MCMC provides the only feasible method for

exact inference.

6.1 Rhabdomyosarcoma Data

Hirji (1992) considered data on tumor type (embryonal, alveolar, pleomorphic), age
(0: < 15 years; 1: > 15 years) and sex (0: male; 1: female) for patients with rhab-
domyosarcoma. He considered the baseline-category model (8) with tumor type as the
multinomial response, embryonal as baseline tumor type, and age as a covariate. He
calculated the exact conditional distribution of the sufficient statistic, Z7Y 1,, for the

sex parameter 7, where Z is a 4 x 1 matrix containing the values coding sex for each
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of the four covariate patterns. We use r = 4 in our Metropolis-Hastings algorithm.
The distribution function of the exact distribution, calculated by Hirji (1992), and our
MCMC estimate are presented in Figure 1a. The two distributions are so close that it
is hard to discern any difference between them. The estimated exact 95% confidence
intervals for v are (—1.92,2.22) and (—1.91,2.21) using v* = 0 and v* = 4 = 0.116,
respectively. These show relatively little sensitivity to the choice of v* and are very close
to the true interval (—1.94,2.25), calculated using the exact conditional distribution

presented by Hirji (1992). For comparison, note that the asymptotic confidence interval
is (—1.65,1.89).

6.2 Neuroleptic Treatment Data

Hirji (1992) also presented data on patients undergoing neuroleptic treatment. The
variables considered were final Clinical Global Impression (CGI) scale (3 ordinal cat-
egories), initial CGI (scored 0,1,2,3), sex (0: female; 1: male) and treatment period
(0: two weeks; 1: three weeks). He considered the adjacent-category model (9) with
final CGI as the ordinal response and initial CGI and sex as covariates. He calculated
the exact conditional distribution of the sufficient statistic, Z7Y S1,, for the treatment
period parameter 7y, where Z is a 12 .>< 1 matrix containing the values coding treatment
period for each of the 12 covariate patterns. We use r = 4 in our Metropolis-Hastings
algorithm. The distribution function of the exact distribution, calculated by Hirji (1992),
and our MCMC estimate are presented in Figure 1b. The two distributions are again
so close that it is hard to discern any difference between them. The estimated exact
95% confidence intervals for v are (—1.40,1.73) and (—1.47,1.74) using v* = 0 and
v = 4 = 0.137, respectively. Again, these show relatively little sensitivity to the
choice of v* and are very close to the true interval (—1.42,1.74), calculated using the
exact conditional distribution presented by Hirji (1992). Here the asymptotic confidence

interval is (—1.26,1.53).

6.3 Pregnancy Outcome in Consanguineous Marriages

Schull (1958) studied pregnancy outcome in three districts of Shizuoka City, Japan,

according to the degree of consanguinity between the parents. The outcomes of 6358
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Table 6: Pregnancy Outcome in Consanguineous Marriages

Deaths
Abortion Stillbirth < 12 months 13-60 months Survived

Residence  Comnsanguinity Yy Ys Yo Y Yo
No relation 27 15 57 25 834

Rural 2nd cousins 1 1 13 6 139

district 13 cousins 3 2 7 2 51
1st, cousins 12 2 18 11 250
No relation 67 20 128 76 2379

Intermediate 2nd cousins 11 1 25 10 201
district 15 cousins 11 4 14 12 196
1st cousins 23 6 40 27 558

No relation 7 5 21 14 496

Urban 2nd cousins 4 0 1 2 63
district 1—% cousins 3 0 2 100
1st cousins 7 1 15 11 226

pregnancies are presented in Table 6. Scores 0,1,2 and 4 are assigned to the no relation
to first cousins groups respectively, as the corresponding probabilities that any single
locus is homozygous by descent from a common ancestor are 0/64,1/64,2/64 and 4/64.

We consider multinomial regression models (8) and (9) for pregnancy outcome, with
district as a categorical explanatory variable. Note that, with the category labelling
in Table 6, the baseline category for model (8) is ‘Survived’. In order to test, for
each model, that the consanguinity score parameter v is zero, we extract from the
respective Markov chain a sample of ZTY 1, or Z2T7Y S 1,. Here Z is a 12 x 1 matrix
containing the values of the consanguinity scores for each observation. The observed
values of the sufficient statistic for the consanguinity score parameter are ZTY 4,1, =
897 and ZTY ;.S 1, = 2034, and the MCMC estimated exact p-values for the test
against the one-sided alternative that consanguinity is deleterious are 0.0004 and 0.0010
respectively. Therefore, there is strong evidence that consanguinity has a significant
effect on pregnancy outcome.

For the baseline category model, the estimated exact 95% confidence intervals for
v are (0.033,0.196) and (0.039,0.131) using v* = 0 and 7v* = ¥ = 0.085, respectively.
Here, there is a substantial discrepancy between the upper end points of the two intervals.

The interval calculated using v* = 0 is unreliable because of the large difference between
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Table 7: Goodness-of-fit Test Statistics and P-values for Table 6

Observed Asymptotic Estimated
statistic  df p-value exact p-value*
Model (8) L2 =40.00 41 0.5150 0.8200 £+ 0.0037
X?=3983 41 0.5226 0.7478 £ 0.0063
Model (9) L2 =4227 41 0.4159 0.5293 £ 0.0170
X% =4311 41 0.3811 0.3849 £ 0.0201
Model (4) L?=32.06 32 0.4638 0.5813 £ 0.0114
X?=3218 32 0.4576 0.4633 £ 0.0128
* with approximate 99% confidence interval

zero and the upper end point. The interval calculated using v* = % is close to the
asymptotic interval (0.039,0.131). For the adjacent category model, the estimated exact
95% confidence intervals for ~ are (0.0108, 0.0674) and (0.0109, 0.0468) using v* = 0 and
7 = % = 0.0294, respectively. Again, there is a substantial discrepancy between the
upper end points of the two intervals, due to the large difference between zero and the
upper end point, and again the interval calculated using v* = 4 is close to the asymptotic
interval (0.0115,0.0472).

We can also perform an exact test of the goodness of fit of models (8) and (9),
including both district and consanguinity score as explanatory variables. For both
models, and for the more general model (4), the observed values of L2 and X2 are
displayed in Table 7 along with the asymptotic and estimated exact p-values. By any of
these criteria, all three models fit the data well, and choice between them will depend

on which is considered more substantively plausible.

7 Discussion

The Metropolis-Hastings algorithms developed have proved efficient for exact infer-
ence for binomial and multinomial logistic regression models. In the examples where
enumeration was feasible, our MCMC results are in close agreement with the results
obtained by enumeration. One advantage of estimating, rather than enumerating, an
exact distribution is that the required computational effort is much less dependent on

the sample size. As expected, the discrepancy between asymptotic and estimated exact
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p-values and confidence intervals is largest when the data are sparse or unbalanced.
Sparse data also commonly arise in matched case-control studies. Bedrick and Hill
(1996) discuss exact methods of model checking for matched case-control studies, and
our MCMC methods can be applied when enumeration is infeasible.

The exact confidence intervals estimated in this paper were obtained from a single
Monte Carlo sample. When the sample is based on the maximum likelihood estimate,
the observed value of the sufficient statistic for v, the parameter of interest, typically is
close to the median of the empirical distribution. Hence, when the empirical probabilities
are reweighted so that the observed value of the sufficient statistic is either the upper
or lower o quantile, approximately half the observations are in the tail. Therefore, we
expect that the upper and lower end points of the interval are equally well estimated.
Conversely, if the observed value of the sufficient statistic is an extreme quantile of the
empirical distribution, there will be very few observations in one of the tails, and hence
it is likely that at least one of the end points will be poorly estimated. Therefore, if a
Monte Carlo test rejects the hypothesis v = 0, the Monte Carlo sample is likely to be
unreliable for estimating an exact confidence interval.

In certain examples, the Markov chain may not be irreducible. If a sufficiently large
value of r is chosen, then clearly any Y satisfying the conditioning constraints may
be obtained from any other in one transition of the Markov chain, and the chain is
necessarily irreducible. For example, for a binomial logistic regression model with a
single covariate, r = 2y%, 1, will permit all possible transitions. In practice, the chain
will be irreducible for smaller values of 7. For example, for binomial logistic regression
with a single equally-spaced covariate we have proved that r = 4 is sufficient. Takken
(1999) also proved this and several related results. The results of Diaconis, Graham and
Sturmfels (1996) can be used to give sufficient conditions on r for irreducibility of MCMC
algorithms for any logistic regression model. For example, for the dose-response data
presented by Bedrick and Hill (1990), r = 6022 is sufficient although, as y%,,1, = 91,
it is clear that r = 182 allows transition between any two points in the sample space of
the exact conditional distribution. However, using such high values of r is impractical,
as enumeration of all possible v is typically infeasible.

For continuous covariates the required conditional distribution is often degenerate,

as only the observed data satisfy the conditioning constraints. However, when covariate
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values are integer or evenly spaced, the exact conditional distribution is not usually
degenerate. For the dose-response data presented by Bedrick and Hill (1990), log-dose
may be truncated to one decimal place, resulting in equally-spaced values, except that
there are no observations at log(dose) = —2.4. Then the conditional distribution for
exact inference changes and the number of possible v increases from 268 to 1 924. The
Markov chain used in Section 4.1 with r = 8 is now irreducible. The estimated exact
p-value for the outlier test is 0.0256, and there is much stronger evidence of an outlier,

with the most extreme observation at log(dose)= —2.710.
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