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A Combinatorial Formula for the Pontrjagin
Classes

I.M. Gelfand R.D. MacPherson

1 Introduction.

The problem of finding a combinatorial formula for the Pontrjagin classes of a
polyhedral manifold X is 45 years old, and has stimulated much research (see [M]
and [L] for references). Chern-Weil theory provides a formula for the Pontrjagin
classes of a Riemannian manifold: They are represented by differential forms
which measure certain types of curvature of the manifold. The problem is to
find an analogous theory for polyhedra, which have “infinite curvature” at the
corners.

In this note, we announce a formula that holds in all dimensions, is com-
pletel; axplicit, and can be calculated using corabinatorial constructions and the
operzticns of finite dimensional linear algebra over Q. For eackh i, the formula
gives a rational simplicial cycle ¢; in the barycentric subdivision of X, whost
Poincaré dual represents the i*" inverse Pontrjagin class ;(X). (The inverse
Pontrjagin classes of .\ are defined from the usual Pontrjagin classes p;(X) by
A+p(X)+p2a(X)+ ) = (L+5(X)+p2(X)+---) = 1. Like the p;, the
pi generate the Pontrjagin ring.) The cycle ¢; depends on the choice of certain
additional combinatorial data called a firing cycle. We think of a fixing cycle
as a combinatorial analogue of a smooth structure on X. In fact, a smooth
structure on X induces a canonical fixing cycle.

Two ideas make this formula possible: the systematic exploitation of ori-
ented matroids, for which we use the notations and results of [BLSWZ], and a <
reformulation of Chern-Weil curvature theory.

The only other general and explicit combinatorial formula for the Pontrjagin
classes is Cheeger’s [C]. It uses the asymtotics of the spectium of a differentia’
operator, so it is difficult to compute and its rational properties are not clear.
However, Cheeger’s formula is clearly the best one for the context of the Hodge
operator constructed from the metric.



2 The formula.

Let X be a simplicial manifold of dimension n. For simplicity, we assume that
X 1s oriented (with orientation class [X]) and that n is odd. The modifications
necessary for the general case are noted at the end.

Definition 1. The associated complez Z of X is the simplicial complex con-
structed as follows: The vertices of Z are quadruples (A, t,y, z) where

o A C V is asimplex of X, where V is the set of vertices of X.

e t,y, and z are oriented matroids of rank n + 1,2, and 1 whose set of ele-
ments is the signed set VU -V.

o The simplex A is related to the matroid t by the following two conditions:

1. The nonzero vectors of ¢ are exactly the vertices of the star StA of

A.

2. For each simplex A’ in StA, the set of nonzero elements of ¢ in the
convex hull of A’ is just A’ itself.

® t = y = z, where M = N means that the matroid N is a strong image
of M, i.e. every covector of N is a covector of M. —

The k-simplices of Z are diagrams
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barycentric subdivision of X.

Proposition 1 The map p: Z — Y 1is topologically a fibration with a circle

as fiber.
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Here M ~» N means that the matroid N is a (weak) specialization of M, le.
every covector {V U -V} —s {—,0,+} of NV is obtained from some covector of
M by setting nonzero values equal to zero.

If we delete the matroids 2 resp. all matroids (¢, y, and z ) in this definition,
we get additional associated simplicial complexes which we denote by Y resp.
X, equipped with simplicial maps Z -2~ ¥ 2+ X. Note that X is Just the
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IDEA OF PROOF. That the fibers over the vertices of Y are circles is a special
case of the Folkman-Lawrence representation theorem for the oriented matroid
y.

We now give a combinatorial formula for the first Chern class of a triangu-
lated circle bundle. Let O be the local system on Y with fiber @ and twisting
given by the fiber orientation of Z. Define a I-cocycle © on Z with coefficients
in p*O as follows: For each vertex v of Y, ©|p~!v is the class that integrates to
1 around the circle and has the same value on each 1-simplex. Having fixed this,
for each edge e of Y, ©|p~!e is the cocycle such that the sum of the squares of
the coefficients is minimum. It is rational, since the problem of minimizing a
quadratic expression subject to linear constraints (the cocycle condition) can be

solved by linear equations. Now, define the 2-cocycle © on Y with coefficients
in O by p*Q = 60.

Proposition 2 The cohomology class {Q} is the first Chern class of the circle
bundle 7.

ProOF. By construction, {Q} is the §, differential (transgression) of the fiber
orientation in the spectral sequence for Z.

Definition 2. A fizing cycle for X is a (3n — 2)-cycle ¢ € Zan_2(Y, Z) such
that =, (Q"~1 ~ ¢) - [X].

Remark. The idea of a fixing cycle evolved from the configuration data of

[GGL] and [M].
Theorem 1 Let ¢ be a firing cycle for X. Then
Bi(X) ~ [X] = (=1)'m, (™71 ~ )

Note that since n is odd, Q"+%~! is a cocycle with coefficients in Q since
On+2i—1 — Q

Remark. This is a cycle level formula, since the operations in simplicial
(co)homology involved in the right hand side (7., ~—, ~, and in the definition
of 2, p* and §) are all chain level operations. The complexity of the formula is
contained in the definitions of these operations and the construction of the sim-
plicial complexes Z and Y. Given the fixing cycle ¢, it is a purely local formula:

the value in an open set U/ of X depends only on the combinatorial structure of
X inside U and on ¢|r='U.



3 Construction of the fixing cycle.

First, we study the structure of the auxiliary complex Y. For any simplex A in
X, let Ua be the set of diagrams of oriented matroids y => t with ¢ satisfying
conditions 1 and 2 of definition 1 with respect to A. This is a poset by the
specialization (~+) ordering on the oriented matroids in Us. We denote the
order complex of a poset P by Cx P. The open dual cell of A in Xis denoted
DA (so X is the disjoint union of the DA).

Proposition 3 The subcomplez of Y lying over DA is canonically homeomor-
phic to Cx Ua x DA.

We denote the homeomorphism of the proposition by ¢® : CxUa x DA —
Y.

Remark. Suppose A C A’. Then the edge of ¢(Cx Ua x DA) is glued to
e(CxUar x DA’) by the map Cx Upa — Cx Ua: induced by the map of posets
Ua — Ua+ defined on the matroid level by setting all elements of V' in StA
but not in StA’ equal to zero.

A smooth structure on X is a homeomorphism ¢ : X — M to a smooth
manifold which is differentiable on each closed simplex in X. Define ) to be the
Grassmannian bundle whose fiber over £ € M 1s the space of n — 1-dimensional
subspaces F*1 C T, M & R. The map Y —— X is a sort of a “combinatorial
model” for the map Y — M.

Let Ya be the part of Y lying over o(A) for a simplex A C X. Any point
y in Ya determines an element of U, as follows: Let o(z) be the image of y
in M. There is a unique embedding e : StA — T, M which is linear on each
simplex, takes z to 0, and satisfies d(e|A’) = d(o|A’) for each simplex A’ in
StA. Now map V into Ty M @& R by using the embedding StA —— T, M RN
T: M @ R for vertices in St A and mapping all other vertices to zero. This
gives a representation of the oriented matroid ¢. The oriented matroid y is
represented by projecting the images of these vertices into (T,M ® R) /F™~1.
By this construction, Ya is decomposed into pieces indexed by elements of
Ua. One can see from stratified transversality theory that if o is generic, this
decomposition can be refined to a Whitney stratification Ya = |J, Sawhich is
transverse to the boundary. By construction, each stratum S, determines an
element u(S,) € Us by which piece of Y, it lies in.

A full flag of strata in a manifold is aset S = Sy, Sy, ..., 54 where the closure
of S; contains S; — 1, the dimension of S; is 7, and d is the dimension of the
manifold. If the manifold is oriented, the sign €S of S is defined as follows: Map
a d-simplex with vertices vg, ..., v4 into the manifold so that the vertex vg goes
to So, the edge vgu; goes to Sy, and so on. Then ¢S = +1 if the orientation of
the simplex agrees with the orientation of the manifold, and €S = —1 otherwise.



If S is a full flag of the strata in Ya, then denote by u(S) the oriented simplex
in Cx Ua with vertices u(So),u(Sy), ...

For each simplex A of X, choose orientations [A] of A and [DA] of DA
whose cross product is the orientation of X. Orient Ya by the cross product
of [A] and the standard orientation of the Grassmannian of {(n — 1)- planes in
(n + 1) space (remember that n is odd).

Theorem 2 The generic smoothing o induces a fizing cycle ¢ by the formula
$=> > eS)ed (u(8) x [DA])
a s

where the first sum is over all simplices A of X and the second over all full flags
of strata in Ya.

The idea of the proof is to construct a continuous map f:) — Y so that

¢ = f*[y}

4 An alternative form of Chern-Weil theory

Let E be a vector bundle with a connection over a differentiable manifold M.
Chern-Weil theory gives a formula for the Pontrjagin classes of M as a sum of
terms, each of which is a product of curvature 2-forms £ multiplied by a pattern
reflecting the structure of the Lie algebra of Gi(n, R). Finding a combinatorial
analogue of 2 is possible, but it is a singular current. The difficulty in finding
a combinatorial analogue for Chern-Weil theory is regularizing the products.

The combinatorial formula of this paper is an analogue of another form of
Chern-Weil theory which we now describe. Let e be the fiber dimension of E
and assume that it is even. Let m# : ) — M be the Grassmannian bundle
of (e — 2)-planes in E, and p : Z — Y be the principle circle bundle of the
tautological quotient 2-plane bundle £ over Y. The connection on E induces a
one form © on Z with coefficients twisted by the orientation sheaf O of Z and
a curvature form Q on Y defined by p*Q = dO.

Proposition 4 ' )
Pi(E) = (=1)imQlem+2)

where 7, represents integration over the fiber.

Proposition 4 is proved by an algebraic manipulation using only the Whit-
ney sum formula applied to 7*E = £ @ €1, the vanishing of high Pontrjagin
classes of a low dimensional bundle, and the projection formula. Theorem 1 is
a combinatorial analogue of this formula, where £ is TM & 1.



Orientations and dimensions. Suppose that X is not orientable and/or
not odd dimensional. Let D be the orientation local system of X, so [X] €
Hn(X,D). The fixing cycle should lie in homology with twisted coefficients:
¢ € Zan2(Y, 7D ® O®(n=1)  The construction of ¢ in section 2 still works
because Y has orientation sheaf 7*D @ O®("~1) where O is the orientation sheaf
A
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