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1 Introduction.

The object of this note is to introduce a new type of geometric structure called a
combinatorial differential manifold. We define tangent bundles and characteris-
tic classes of combinatorial differential manifolds. We show that a differentiable
manifold which is appropriately triangulated in the usual sense gives rise to a
combinatorial differential manifold.

There are more questions than theory about combinatorial differential man-
ifolds at present. However, the theory has already proved its utility in one way:

it is the essential basis for the combinatorial formula for the Pontrjagin classes
of [GM2].

The reader may wish to start with definition of combinatorial differential
manifolds, which is in §2.1, and which may be read after looking at the definition
of an oriented matroid in the appendix. The rest of this introduction will be
a comparison of combinatorial differential manifolds with usual combinatorial
manifolds.

1.1 Combinatorial Manifolds.

DEFINITION. Let X be a simplicial complex, and let A be a simplex of X.
A flattening of X at A is a simplex-wise linear homeomorphism f : Star A —
U C V of the star of A onto a neighborhood U of the origin in an n dimensional

real vector space V, such that the image of the interior of A contains the origin
of V.

For example, the star of a vertex of the surface of an octahedron may be



flattened as follows:
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An n dimensional combinatorial manifold is a simplicial complex X such
for every simplex A C X, there exists an n-flattening of X at A. Only the
existence of the flattening is required: the flattening itself is not retained as
part of the structure (as, for example, coordinate charts are retained as part of
the structure of a differentiable manifold). The flattenings at adjacent vertices
are not required to be related to each other.

1.2 Oriented Matroids: Combinatorial Remnants of Flat-
tenings.

In a combinatorial differential n-manifold X, only a certain “combinatorial rem-
nant” of a flattening of X at A is required. As an example, the “combinatorial
remnant” of following three flattenings of the star of a vertex of an octahedron
are considered to be different:

S(v) f(v) f(v1)

f(va) f(va) f(vq) f(va) f(va) f(v2)

f(va) f(va) f(va)

Combinatorially distinct flattenings



The difference between them is that in the second picture the line from f(v1)
to f(vo) to f(v3) is straight; in the first it bends toward f(v4); and in the third
it bends toward f(v,). This difference is encoded in a standard combinatorial
object called an oriented matroid, which is a combinatorial abstraction of a set
of vectors in a real vector space. In a combinatorial differential manifold, not
only do we require the existence of oriented matroids encoding a “combinatorial
remnant” of a flattening of the star of each simplex, but these oriented matroids
are kept as part of the structure. They are also assumed to vary in a controlled
way as you move around the polyhedron, and the variation is also kept as part
of the structure.

1.3 Why study Combinatorial Differential Manifolds?

The real hope, of course, is that the category of combinatorial differential man-
ifolds will have a rich theory. However, there are some a priori reasons having
to do with the importance of oriented matroids:

1. The linear apparatus of calculus, which is inherent to smooth manifolds,
is very important in topology. Micro-bundles or block bundles, which are the
tangent objects of combinatorial manifolds, have no linear structure on their
fiber. Matroid bundles (see §3 ), which are the tangent objects of combinatorial
differential manifolds, have oriented matroids as their fibers. Oriented matroids
are the standard combinatorial abstraction of (a set of vectors in) a real vector
space.

2. Combinatorial manifolds are not really combinatorial objects: The exis-
tence of flattenings is really a question in semi-algebraic geometry rather than
combinatorics. Combinatorial differential manifolds are true combinatorial ob-
jects since oriented matroids, which are combinatorial, replace the flattenings.

3. Oriented matroid theory is already a well-established branch of combina-
torics with some highly non-trivial theorems. There is the potential to establish
serious interaction between combinatorics and topology.

2 Combinatorial Differential Manifolds.

2.1 The Definition.

Notations. We assume that the reader has some familiarity with the notions
of oriented matroid theory, in the notation given in the appendix. (In particular
M ~+ M’ means that M’ is a specialization of M, §5.4.) If A is a simplex of a



simplicial complex X, then Star A is the star of A, i.e. the union of the closed
simplices of X that contain A as a face; Star A is the boundary of the star of

A, ie. the union of the simplices of Star A which do not intersect the interior
of A.

DEFINITION. An n-dimensional combinatorial differential manifold is the
triple of data (X, X, M) as follows:

1. X is a simplicial complex. We denote simplices of X by A, A’, etc.

2. X is cell complex which is a refinement of X. We denote the cells of X
by o, o', etc. For any simplex o of X, we denote by A(c) the smallest
simplex of X containing o.

3. M is a rule which, to every simplex o of X, assigns a rank n oriented
matroid M (o) whose set of elements is Sa, the set of vertices of Star A(o).

These data are subject to the following axioms:
Al. The rank in M(0) of the set of vertices of A(o) is the dimension of A(c).

A2. For each simplex A’ in dStar A(c), the set Z of vertices of A’ is linearly

independent in M(c), and no other non-zero element of M(c) is in the convex
hull of Z.

A3. Whenever ¢’ is in the boundary of o, we have M(c) ~» Ma(s)(0’), where
Ma(0)(0’) is the submatroid of M(¢’) whose set of elements is Sa(o)-

2.2 Interpretation in terms of flattenings.

Recall the notion of a configuration of vectors (§5.2): a map of a finite set S
into a real vector space V whose image spans V.

DEFINITION. Suppose that A C X, is a simplex and f : StarA — U C V
is a flattening of X at A, where V is an n dimensional vector space. Then the
vector configuration associated to f is the configuration p : Sa — V where Sa
is the set of vertices of Star A, and p is the restriction of f to Sa. The following



picture shows a flattening and the associated vector configuration:

A flattening The associated vector configuration

DEFINITION. The rank n oriented matroid M(f) associated to the flattening
f is the matroid represented by the vector configuration associated to f.

The oriented matroid M (f) is the “combinatorial remnant” of the flattening
f referred to in the introduction.

Proposition 2.1 For any flatiening f, the oriented matroid M(f) satisfies az-
toms Al and A2 of the definition of a combinatorial differential manifold.

This proposition shows why axioms Al and A2 are natural. Axiom A3 is a
kind of continuity requirement on the “combinatorial remnants” of flattenings.
Consider the case that ¢ and ¢’ are both in the same simplex A of X, so that
Sa(e) = Sa(e')- Suppose that we are given a map ma : A — Fa from A into
the space Fp of flattenings f : StarA — U C V of X at A. (By §5.5.2, the
set of all flattenings of X at A is a manifold.)

Proposition 2.2 Suppose that the map ma is continuous. Suppose further
that ma s constant on each cell of X in A. Then the assignation M(o) =

M(ma(0)) satisfies aziom A3 for o and o' in A.

This follows from proposition 5.2

2.3 An example.

Suppose that X is simplex-wise linearly embedded as the surface of a convex
body in R**! that contains the origin 0 in its interior. Then X has the structure




of a combinatorial differential manifold defined as follows: To each point p € A
of X, we obtain a flattening of X at A by projecting Star A into the quotient
space R"*!/(p), where (p) is the 1-dimensional subspace of R"*' spanned by p.
We obtain an oriented matroid M, on Sa from the flattening as above. The cell
complex X is defined by the condition that two points p and p’ in the interior
of A lie in the same cell of X if M, = M. (It is an amusing exercise to verify
that X so defined is indeed a cell complex.) Finally, M(¢) = M(p) forp€ 0.

For example, suppose that X is the surface of the regular tetrahedron, em-
bedded in R® with 0 as its center of gravity.
U1

17}
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v2
The surface of a regular tetrahedron

Then X is the subdivision of X obtained by dividing each edge of X into
two 1-cells separated by a vertex.

The subdivision X

The oriented matroids M(v,) and M(v;) the are represented by the follow-
ing vector configurations. (Each vector is labeled by the vertices to which it



corresponds.)

Uq
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M(vl) M(vz)

These are, in fact, the only possibilities allowed by the axioms. For example,
in M(v;), the point corresponding to v; must be zero axiom Al. The oriented
matroids M(oy1), M(02), and M(o3) are represented by the following vector

configurations:
Vg 12 vg
vy v3 v3
M(ay) M(o3) M(o3)

_ This illustrates why in the definition we are forced to make the cell complex
X finer than X: we must allow the matroid M(p) to vary as the p moves along
the edge in X. Finally, M(o) where o is the face with vertices vy, v2, and v3 is



also determined up to isomorphism by the axioms

v

v3 vy

M(o)

2.4 The connection with differentiable manifolds

Let N be a differentiable manifold. Recall that a smooth triangulation of N is
a simplicial complex X together with a homeomorphism 7 : X — N which is
smooth on each closed simplex A of X. (The smoothness condition means that
n|A extends to a smooth map to N of a neighborhood of A in an affine space
containing A as a linearly embedded simplex.)

DEFINITION. Suppose we are given a smooth triangulation 7 : X — N. Let
P € X be a point in the interior of a simplex A. The flattening f, : Star A —
U C Typ)N is said to be induced at p by the smooth triangulation if for each
simplex A’ € Star A, the differential at p of f|A’ coincides with the differential
at p of n|A’.

For all p € X, there exists a unique flattening induced by p, because f|A’
is an affine map. (Purists should note that T,,)N has been identified with
ToT,(p)N in the definition.)

Just as in §2.2 above, the flattening f, of X at A has an associated vector
configuration, which represents a matroid M, on the set Sj4.

DEFINITION.  The smooth triangulation n : X — N is said to be tame
if there is a cell decomposition X which refines X with the property that the
matroid M, is constant on each open cell o of X.

For example, if 7 is piecewise analytic then it is tame. Generic smooth trian-
gulations are tame. These may be both seen by using the analytic constructibil-
ity of matroid stratification of the space of equivalence classes of flattenings of

§5.5.2.



Proposition 2.3 Suppose that  : X — N is a tame smooth triangula-
tion. Then X has an induced structure of a combinatorial differential manifold
(namely (X, X, M) where X is the cell decomposition showing that 1 is tame
and M(o) = M, forpeo.

3 Matroid bundles and the Matroid Grassman-
nian.

Every good category for geometric topology has an associated bundle theory
with a classifying space. Differential manifolds have vector bundles, which are
classified by the Grassmannian. Piecewise linear manifolds have micro-bundles
(or block bundles) which are classified by BPL.

In this section, we develop the bundle theory associated to combinatorial
differential manifolds. The bundles are Matroid bundles, and their classifying
space is the Matroid Grassmannian. Both are purely combinatorial construc-
tions.

3.1 Matroid bundles.

DEFINITION. Let X be a simplicial complex. A rank n matroid bundle over
X is a triple of data (S, X, M) as follows:

1. S is a finite set.
2. X is cell complex which is a refinement of X.

3. M is a rule which, to every simplex & of X, assigns a rank n oriented
matroid M (o) whose elements are S.

such that whenever ¢’ is in the boundary of o, we have M (o) ~ M(d’).

Matroid bundles have some properties that one expects from a topologi-
cal bundle theory. A matroid bundle over X has an associated sphere bundle,
which is a cell complex mapping to X. The fiber over a point in o is a sim-
plicial complex whose set of vertices is the set of all covectors of M (o). This
fiber is homeomorphic to a sphere, by the representation theorem for matroids
[BLSWZ]. Likewise, a matroid bundle over X has analogues of associated Grass-
mann bundles. The constructions of these are sketched in [GM2].



3.2 The tangent bundle.

Let (X,X,M) be a combinatorial differential manifold. We want to construct
a matroid bundle TX = (S,X’,M') over X called the tangent bundle of X.
Tangent bundles are an important source of examples of a matroid bundle.

The set S is the set of vertices of X.

The cell complex X’ is obtained from X by adding cellulated tubular neigh-
borhoods around the simplices A of X. More specifically, we proceed as follows:
Consider the category C of cell complexes whose objects are the closed simplices
A of X, cell decomposed as in X, and whose morphisms are the inclusions.
Then the classifying space of C is itself a cell complex K. The cells of K are
parameterized by the data

cCACAIC---CA:

The dimension of this cell is dimo + k. Its boundary is all cells obtained by
replacing o by a cell in the boundary of o, and by deleting some of the A;. The
cell complex K is isomorphic to a cell decomposition of X, which is our X"’.

The matroid M’(¢’') on S , where o is the cell just discussed, is the matroid
obtained from M (o) on the set Sa(o)bysettingallelementsofSa — S5, equal to
zero and adding additional zero elements S-Sa.

3.3 The Matroid Grassmannian

The Matroid Grassmannian plays the same role for matroid bundles as the
ordinary Grassmannian plays for vector bundles.

DEFINITION. Let S be a finite set and let n be a positive integer. The
Matroid Grassmannian of rank n on the set S, denoted M™(S), is the order
complex of the poset of rank n oriented matroids on the set S, ordered by the
relation ~ of specialization.

(Recall that the order complex of a poset (P,~+) is the simplicial complex
whose vertices are elements of p of P, whose edges are pairs (o, p1) such that
Po ~ p1, whose 2-simplices are triples (pg, p1,p2) such that pg ~ p; ~ po, etc.)
The Matroid Grassmannian M"(S) is actually homeomorphic to the ordinary
Grassmannian G™(R®) if n is 1, 2, |S| — 2, or |S| — 1, where |S| is the number
of elements in S. Otherwise, the topology of the M Grassmannian is a mystery.

Proposition 3.1 A rank n matroid bundle (S,X,M) over X determines a
simplicial map ¢ : X' — M"(S), where X' is the barycentric subdivision of X.

This is clear from the definitions. The map c is called the classifying map for
the matroid bundle.

10



3.4 Relations with ordinary Grassmannians.

Let S be a finite set. Denote by RS the real vector space with a basis indexed
by elgments of S. Let G*(R®) be the Grassmannian of n dimensional quotients
of R°.

Proposition 3.2 There is a canonical (up to homotopy) map ¢ : G*(R°) —
M"™(S) of the ordinary Grassmannian into the M Grassmannian.

To prove this proposition, recall from §5.5.1 the decomposition G"(RS )=UYm
of the Grassmannian into matroid strata, indexed by the set O of oriented
matroids of rank n on the set S. Let T be a triangulation of G"(RS) such that
for each simplex é of T, the interior of § is wholly contained in a single matroid
stratum Yjs. Denote the matroid M by 6(6). Such a triangulation exists since
the matroid strata are semi-analytically constructible. The proof now hinges on
the following statement: There is a partition of unity {¢M : G*(R5) — R},
1 = Y ¢ indexed by O, with the property that ¢a(g) # 0 only if M(g) ~
M. Such a partition of unity may be constructed this way. Take the usual
barycentric partition of unity 1 = 3~ 95 associated to the triangulation T' (with
the property that ¥;s(g) # 0 if and only if g is in the interior of Star ). Then

b= > ¥

(=M

This partition of unity has the property that ¢ (g) # 0 only if M(g9) ~ M
because the sets Yas have the property that Y intersects the closure of Yy if
and only if M/ ~ M,

Now, the map ¢ : G*(R%) — M™(S) is defined by sending g € G*(R®)
to the point of M™(S) whose homogeneous coordinates are {¢ap(g)}. The fact
that the map is well defined up to homotopy is a consequence of the fact that
the partitions of unity with the property that ¢ (g) # 0 only if M(g) ~ M
form a convex set.

3.5 Characteristic classes and vector bundles.

Since the Grassmannian is the classifying space for vector bundles and the M
Grassmannian is the classifying space for matroid bundles, the set of maps ¢ of
Proposition 3.2 give a map of the whole theory of vector bundles to the theory
of matroid bundles. To make this precise, first we need to stabilize.

Any inclusion of S into a larger set S’ induces a stabilization map of M™(S)
into M™(S’) (by sending a rank n matroid on S to the rank n matroid on S’
determined by making elements of S’ — S be zero). Any two maps of S into S’

11



determine homotopic maps M "(S) — M™(S'). Therefore, it makes sense to
take the limit of the cohomology groups of Matroid Grassmannians

lim H*(M"(S))

taken as the number of elements of S increases. An element of this ring is called
a characteristic class for matroid bundles. Such an element gives a cohomology
class in X for every matroid bundle B over X. Similarly, there are stabiliza-
tion maps G*(R®) to G*(R%'). The limit lim_ H*(G"(R®)) is well defined,
and elements of this ring are standardly called characteristic classes for vector
bundles.

The set of maps ¢ of Proposition 3.2 commutes with the stabilization maps,
and hence induces a map { from the ring of characteristic classes for matroid
bundles to the ring of characteristic classes for vector bundles. Eric Babson has
announced a proof of the following proposition:

Proposition 3.3 (Babson, [Ba]) With rational coefficients, map ¢ (from the
ring of characteristic classes for matroid bundles to the ring of characteristic
classes for vector bundles) is a surjection.

The idea of the proof is the following. With rational coefficients, the ring of
characteristic classes of vector bundles is generated by the Pontrjagin classes.
In [GM2], a combinatorial formula for the Pontrjagin class of a matroid bundle
was given, under the assumption that the associated Grassmannian bundle of 2
planes has a “fixing cycle”. Babson has shown that every combinatorial vector
bundle has an essentially unique fixing cycle.

Call two matroid bundles on X equivalent if their classifying maps m are
homotopic (after stabilization). Any vector bundle E on X gives rise to an
equivalence class B of matroid bundles on X (by composing the classifying map
for E with the map ¢ ). The Pontrjagin classes of E coincide with the Pontrjagin
classes for B.

4 Questions.

1. Does the map ¢ from the ring of rational characteristic classes for matroid
bundles to the ring of rational characteristic classes for vector bundles have
a kernel? In other words, are there stable rational characteristic classes for
matroid bundles that are not Pontrjagin classes?

2. What is a good notion of a refinement of a combinatorial differential
manifold? Taking the limit, one would like a category that bears the same re-
lationship to combinatorial differential manifolds that the category of piecewise
linear manifolds bears to combinatorial manifolds.

12



3. If X is a combinatorial differential manifold, is its underlying simplicial
complex a topological manifold? (See [SZ] for related questions on oriented
matroids.)

4, Is the sphere bundle of a combinatorial vector bundle a topological fiber
bundle?

5. What does the theory of transversality look like for combinatorial dif-
ferential manifolds? (Transversality for oriented matroids makes sense.) How
about cobordism? Surgery? ...

5 Appendix: Oriented Matroids

For a detailed treatment of the theory and significance of oriented matroids, see
[BLSWZ)]. We give here a minimal sketch on the material directly relevant to
combinatorial differential manifolds.

5.1 The Definition of an Oriented Matroid.

An oriented matroid is defined to be a finite set S together with a finite collection
of functions from S to the three element set {—,0, +} satisfying certain axioms.
Before giving the axioms, we give several definitions about functions ¢ : § —
{—,0,+}, which are all obvious except the last one. We say that c(v) > 0 if
c(v) is 0 or 1. Likewise, c(v) < 0 if ¢(v) is 0 or —. There is an operator —
from {—,0,+} to itself defined by —(—) = +, —(+) + 0, and —(0) = 0. For any
function ¢ : S — {—,0,+}, the function —c is defined by (—c)(v) = —c(v). If
c and d are two functions from S to {—,0, +}, then the function cod is defined
by cod (v) = ¢(v) if ¢(v) # 0 and c o d (v) = d(v) otherwise.

DEFINITION. An oriented matroid M is a finite set S called the set of
elements or of M, together with a collection of functions ¢ : § — {—,0,+}
called the covectors of M, subject to the following system of axioms: 1. The
constant function with value 0 is a covector.

2. If ¢ is a covector, then —c is a covector.
3. If ¢ and d are covectors, then c o d is a covector.

4. If ¢ and d are covectors and v € S is an element such that ¢(v) = +
and d(v) = —, then there exists a covector e with the following properties: i)
e(v) = 0. ii) If ¢(w) = d(w) = 0, then e(w) = 0. iii) If ¢(w) > 0 and d(w) > 0
but ¢(w) and d(w) are not both zero, then e(w) = +. iv) If ¢(w) < 0 and
d(w) < 0 but c(w) and d(w) are not both zero, then e(w) = —.

13
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5.2 Representations of oriented matroids

The motivating example of an oriented matroid arises from vector configura-
tions.

DEFINITION. Let S be an n dimensional real vector space and let S be any
finite set. A vector configuration is a map p : $ — V such that the image of p
spans V.

DEFINITION. The oriented matroid represented by p is the matroid whose
covectors are those functions ¢ : § —, {—,0,+} obtained as follows: Take any
linear function f : S — R. Then c(v) is —, 0, or + depending on whether
f(p(v)) is negative, zero, or positive.

If an oriented matroid M arises in this way from a representation of a con-
figuration of vectors, it is called representable. Non representable oriented ma-
troids exist. The problem of finding a purely combinatorial characterization of
representable matroids is unsolved,

As an example, consider the three matroids represented as follows, where V

18 2- dimensional and S has 4 elements, vy, ..., v,.
1 2] vy vy

-~ = v, Uy - = U 4 (2]
vy | va Y3

These three examples represent different oriented matroids. The second one
is distinguished by the fact that any covector which is 0 on v; is 0 on v3. The
first (resp. third) are distinguished from each other by the fact that any covector
which is + on both v; and v3 is — (resp. +) on v,.

For v € S, if p(v) is replaced by Ap(v) for a real number A > 0, then
the oriented matroid represented by p is also not changed. Therefore, we may
equally well imagine the oriented matroid M to be represented by a function p
which takes S to the set of raysin V. (A rayin V is a set {Avj]A >0} forv e S.
As a degenerate example, the set consisting only of the zero vector is a ray.)

14



5.3 Constructions on a single oriented matroid.

An oriented matroid is a combinatorial analogue of (a finite collection of vectors
in) a real vector space. Many notions linear algebra have analogous construc-
tions on oriented matroids. In order to define the analogues, it suffices to express
the linear algebra constructions in terms of the set of linear functions on the
vector space. We will now carry out this procedure for several cases. Let us fix
a matroid M whose set of elements is S.

An element v € S is nonzero if there is some covector ¢ for which ¢(v) #
0. Otherwise, v is said to be zero. There may be many zero elements. A
subset {vy,v,...,v;} is said to be independent if there exists a set of covectors
{e1,c2,...,¢j} such that ¢;(ve) # 0 if and only if 1 = k. The rank of a subset
W of S is the cardinality of any (and hence every) maximal independent subset
of W. The rank of M is the rank of the set S. Any subset W of S becomes
a matroid M’ by taking as its covectors all restrictions of covectors of M. We
write M/ C M and say that M’ is a submatroid of M.

For W C S, the linear span of W is the set of v € S such that if ¢(w) = 0
for all w € W, then c(v) = 0. A flat of M is a subset of S that is its own linear
span. If F C S is a flat, then the quotient matroid is the matroid M whose set
of elements is S, and whose covectors are those covectors of M which are zero
on F. We have rankM + rankF = rankM.

For W C S, the convez hull W of W is the set of v € S such that if ¢(w) > 0
for all w € W, then ¢(v) > 0. (If M is a represented matroid, the convex hull
of W is all elements of S represented by points in the smallest closed convex
union of rays in V containing p(W).

5.4 Specialization.

DEFINITION. Suppose that M and M’ have the same set of elements S
and the same rank. Then we say that M’ is a specialization of M, symbolized
M ~ M, if for every covector ¢’ of M’ there is a covector ¢ of M such that if
d(v) # 0 then ¢/(v) = ¢(v). (In other words, ¢’ is obtained from c by the process
of setting some nonzero values to zero.)

For example, the second oriented matroid whose representation is pictured
above is a specialization of both the first one and the third one.

The set of oriented matroids of rank r on a given set S forms a partially or-
dered set under the relation ~». The relation of specialization has the following
interpretation: If the matroids M and M’ are both representable, and a repre-
sentation of M is the limit of a sequence of representations of M’, then M ~» M’.
In the next section, we will develop a topology on the set of representations to
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make this statement precise.

5.5 The Grassmannian viewed as a space of vector config-
urations.

5.5.1 Equivalence classes of vector configurations.

Let V and V' be two n dimensional real vector space and let S be a finite set.
Two vector configuration p : S — V and P 1S — V' are said to be equivalent
if there is a linear isomorphism v : V — V’ guch that o’ = vop. It is clear that
if p is equivalent to p’, then the matroids that they represent are isomorphic:

M(p) = M(p).

Denote by RS the real vector space with a basis indexed by elements of S.
Let G*(R®) be the Grassmannian of n dimensional quotients of RS. In other
words, a point in G*(R%)is a subspace of R® of dimension s — n, where s is
the number of elements of S.

Proposition 5.1 There is @ canonical bijection between the set of equivalence

classes of n dimensional vector configurations on the set S and the set of points
in G*(R").

In other words, the Grassmannian is the modul space for vector configu-
rations. This Proposition, which appeared in [M] and (GM1), was one of the
points of departure for the ideas presented here. The proof is clear once the
maps in the two directions are given: :

e If £ is a plane representing a point in the Grassmannian G™"(R5), let V
be the quotient n=space RS /¢, and let p(s) be the image of s in RS /€,
for s € S. Then, the € is mapped to the equivalence class containing p.

*Ifp:S — Visa vector configuration, let 5 : RS —, v be the linear
transformation which sends the basis vector corresponding to s to p(s),
and let £ C R® be the kernel of p. Then the equivalence class containing
p is mapped to €.

DEFINITION. [GGMS] Let M be a rank n oriented matroid whose set of
elements is S. Then the matroid stratum Yar for M is set of points in the

Grassmannian G™(RS) which correspond to vector configurations representing
M.

The matroid strata give a decomposition of G*(R®) = UYa into a dis-
Joint collection of semi—ana.lytically constructible subsets. The matroid strata
themselves can have almost arbitrary topological complexity [Mn]
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Proposition 5.2 Suppose that the matroids M and M’ are both nepresenta(ale,
and that the closure of Yar has nonempty intersection with Yp:. Then M isa
specialization of M.

The converse is false [W].
5.5.2 Equivalence classes of flattenings.

DEFINITION. Let X be a simplicial complex, and let A be a simplex of X.
Two flattenings of X at A, f:StarA — U C V and f' : Star A — U’ C 14
are said to be equivalent if there is a linear isomorphism v : V' — V'’ such that

ff=vof.

Recall that to a flattening of X at A determines a vector configuration on
the set Sa, by restricting the flattening to the vertices. Equivalent flattenings
give rise to equivalent vector configurations.

Proposition 5.3 The set Fa of equivalence classes of flattenings of X at A is
an open subset of the Grassmannian G™(R®) which is a union of Grassmannian
strata.

This makes the set of flattenings equivalence classes of into an analytic space,
which is decomposed into semi-analytically constructible subsets by the matroid
strata. The space of flattenings was considered in {GGL).
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