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Abstract

We show how an elementary and constructive proof of Brocker-
Scheiderer theorem can be used to keep control on the degrees of

the polynomials involved in the process of reduction of systems of
inequalities.

1 Introduction

Brocker [Br2] and Scheiderer {Sch] have independently proved the now famous
theorem that every system of simultaneous strict inequalities in a real variety
of dimension d can be reduced to at most d such inequalities. In [Ma2], the
second author of the present paper has announced another proof, somehow
more ”elementary” in the sense that it uses only classical techniques of Pfister
forms. This proof is also more constructive and allows to consider explicit
algorithmic reductions. For instance we may ask the following question:
given a system of inequalities of n polynomials f; > 0,...,f, > 0in d
variables of degree bounded by B, can we give a bound B’ for the degree of
an equivalent system of inequalities of d polynomials ¢, > 0,...,g4 > 07

In sections 2 and 3, we present in full details the theoretical proof we use,
in the general setting of the real spectrum of a ring, leaving intentionally
aside the computational aspects and we end up section 3 by this reduction
theorem:

*Partially supported by European Community contract CHRX-CT94-0506



Theorem 1.1 (Brocker-Scheiderer) Let A be any R-algebra of transcen-
dence degree d > 0 over the real closed field R, then any system of strict
inequalities fy > 0,...,fa > 0 with fi € A, is equivalent to a system
Gl -+ Jmax(d.1) With g; € A. .

In that theorem, two systems of inequalities are said to be equivalent if
the parts of the real spectrum Specy A where they are satisfied are the same.
As a corollary we get of course that any basic open semi-algebraic set in a real
algebraic set V of dimension d > 0 is generated by d polynomial functions
on V.

In section 4, we show how we can control the degree in the theorem
of Tsen-Lang, which is the first tool in our proof. In section 5, we answer
partially the question above: we give a bound B’ for asystemg; > 0,...,g94 >
0 “generically” equivalent to f; > 0,...,f, > 0: the solution sets may
differ by positive codimensional subsets. The explicit result we find for B’ is

B' = ((3d + 1)d(d + 1))n—d B. Eventually, in section 6, we give a complete
answer in the 2-variable case (notice that the 1-variable case is rather trivial).

Before starting the proofs, let us recall some known facts and fix notations
about quadratic forms on fields and rings. Notice that we deal here only with
quadratic forms over free modules.

Definitions 1.2 Let A be any ring, a quadratic form of dimension n on A
is a quadratic homogeneous polynomial map }_7._; a;;z;x; with coefficients
a;; € A. A diagonal quadratic form has the shape ¥, a;z? and is denoted
by < ay,...,a, >. The form is said to be regular if the determinant []a; is
a unit.

Two n-dimensional quadratic forms ¢, and ¢, are said to be isometric,
and this will be denoted by ¢q; =~ ¢, if there is an automorphism f of A™
such that Yz € A™ q1(f(z)) = q(z).

An r-fold Pfister form on A is a 2"-dimensional quadratic form ¢ =
<1,fi>®...0 <1, f, >. Once developped, it takes the shape < 1 > L¢/,
and ¢’ is called the pure subform of .

An element h € A is said to be represented by an n-dimensional form ¢
over A if there exists u € A™ such that A = q(u).

The element h is said to be weakly represented by q over A if there exist
some up,...,u, € A" such that h = q(uy)+...+q(u,). f g =< ay,...,a, >,
this is equivalent to h = ¥, a;t; with the t;’s sums of s squares in A. As
this means that h is represented by a multiple s X ¢ of ¢q, we will denote
symbolically the fact by h = s x q(u).

For definitions and basic facts about real spectrum, we refer to [BCR].
Let us just say that a point v of Spec; A may be thought as a homomorphism
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from A to some real closed field. denoted by £(v). An element a € A is said
to be positive at v if the image of a in k() is positive, and totally positive
if a(y) > 0 for every v € Spec; A.

Given a form ¢ and a point v € Specy A, we can talk about the signature
q(7) of q(v) := ¢ ® k(7).

A constructible set in Spec; A is a set defined by intersections, unions
and complement of sets {x € Spec; A : f(z) > 0}.

A basic open set in Spec; A is a constructible set of the form

Salfiy-..,fn)={c€Specy A : fi(z)>0fori=1,...,n}.

2 Generic reduction: the field case

If V is a real variety and A = R[V] its coordinate ring, there is an iso-
morphism of boolean algebras between semi-algebraic subsets of V(R) and
constructible subsets of Spec, A. If K is the product of the function fields
K; of the irreducible components of V, there is an embedding of Spec, K
in Spec; A, and given two semi-algebraic subsets B and C of V(R), they
coincide up to positive codimensional subsets if and only if their traces on
Specy I are equal. So, in order to make a "generic” reduction of the semi-
algebraic set {zx € V(R) : fi(z) > 0,..., fa(z) > 0}, it is enough to make a
true reduction at the level of Spec; K. We immediately see it is enough to
consider the case V is irreducible and K is a field.
The pillar of the proof is the following quadratic form result:

Theorem 2.1 Let K be a field of transcendence degree d over a real closed
field R and ¢ a reqular n-fold Pfister form over K, with n > max(d,1). Then
1 s represented over I{ by the pure subform .

Proof. If  is isotropic, then ¢ contains a subform of the type < a,—a >
which represents 1 (recall n > 2). So, we may assume ¢ anisotropic. Thus,
the field /{(z) has transcendence degree d over the algebraically closed field
R(1), and the form ¢ extended to K(i) has degree 2, with 2" > 2¢ variables:
By the theorem of Tsen-Lang [Lan), ¢ has a unimodular zero u € K(i)*". As
 is anisotropic over K, this shows in passing that : ¢ K and that {1,1} is
a basis of /(i) over K. Denoting respectively by Ru and Iu the “real” and
“imaginary” part of u, we get

o(u) = o(Ru) + 2i(Ru, Iu), — o(Ju) =0
(where (, ), denotes the polar form of ). Thus we get the system
@(Ru) = p(Iu) ; (Ru, Iu), = 0.
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Using the multiplicativity of Pfister forms [Pfi], one finds a vector z such
that o(Ru)p(Iu) = ¢(Ru)? = ¢(z); because ¢ is anisotropic and u is not
zero, @(Ru) # 0 and we may divide z by ¢(Ru) to get 1 = ‘P(;(fz_u))' But by
the same theorem of Pfister, ¢ being anisotropic, the first component of z is

equal to (Ru, Iu), = 0, and so actually 1 has the form ¢'(2'). a

The next step is the following result which is a variant, a bit more efficient
for our purpose, of [Lam, chap. 10, prop. 1.5]:

Theorem 2.2 Let for | <1 < r, ¢o; =LK f1,-.., fi > be a reqular Pfister
form, u;, 1 = 1...r — 1 elements in K represented by y¢; and ug a square
in K. Define w; := 37 .\, fiu;-1. Then, if the w;’s are units, we have
Pr ~<K wo, flwlﬁ AR fr—lwr—l >.

Proof. Let us remind first the following:

if a,b and a + b are units, then (1) € a,b >~ a+ b,ab>,

if b is represented by a regular Pfister form ¢, then (2) ® € a >~
Q@ K ab>.

Then we prove by descending induction on k, 0 < k < r, that ¢, ~
Pr® K Wi, fr41Wks1s- -+ fr—1wr—1 > and the result will follow in putting
k = 0. The only thing to show is that @ 1® <€ fr,wr >~
Pr-1® € wi_y, frwr >. As we have wi.y = frug_; +wi, when ug_; is a unit,
it comes from the two reminders (1) and (2), and if ux_; =0, then wy = wi4
and we have directly € fr,wr >=<& wr-1, fi DK wi_y, frwr > by (2).

a

We are now able to state the following:

Theorem 2.3 Let I be a field of transcendence degree d over the real closed
field R and fi,...,f, n elements of K with n > max(d,1). Then there ezist
g1y---,94 in K such that Sg(fi,..., fa) = Sk(g15-- - Gmax(d1))-

Proof. 1t is easy to see that if p =< fi,..., fa >, we get
Sk(fiy..-yfn) ={z €Specy K : $ >0} = {z € Specy X : $=2"}.

By iteration, we may assume n = d+1ifd > 0,and n = 2if d = 0.
So, by theorem 2.1, the element 1 is represented over K by ¢’, meaning
1 = we = L7, fiuj—1 with notations of theorem 2.2. If one w, would be
null, we would have 1 = ¢/ (u) for some u, reducing the problem to n = r.
So we may assume w; # 0 for i = 0...n — 1 = d and apply theorem 2.2

to get o ~<k 1, fiwy,..., faws > and finally Sk(fi,..., fa) = Sk(91,---,9d)
for g; = fiw;. O



3 Extension to rings: actual reduction

We are going to extend to Regular Function Rings, a weakened version of
the results of the preceding section.

Definition 3.1 A ring A will be called a Regular Function Ring (RFR in
short) if it satisfies the following equivalent properties:

1) all maximal ideals of A are real

ii) the elements 1 + ¥ z? are units in A.

The standard examples are the rings of real regular functions over some real
algebraic set (rational functions that vanish nowhere on this set), but there
are many other examples (like any formally real field).

Theorem 3.2 Let A be a« RFFR of transcendence degree d over a real closed
field R and ¢ a regular n-fold Pfister form over A with n > max(d,1). Then
1 is weakly represented by the pure subform @' over A.

Proof. We can first reduce to the case A itself is a reduced ring: if 1 = rx¢'(%)
in A,.q for some r, we have 1 +¢ = r X ¢'(u) in A for some nilpotent element
i. But then, | +¢ = 52 {or some unit s and we can divide by that s to get
1=rx¢'(v)in A

Then we may assume A is noetherian: just work in B = R[f1,..., fals
where £ = {z € R[f1,...,fs] : zisaunitin A}. The ring B is a RFR
(because A is so), is noetherian, has ¢ regular on itself and maps to A : a
weak representation of 1 by ¢’ over B, will induce one over A.

Now, we will proceed by induction on d. If d =0 and n > 1, A is a finite
product of copies of R, and by theorem 2.1, the form ¢’ represents 1 over
each factor and so over the product A. Let d > 0 and ¢ a (d+ 1)-fold Pfister
form, one can find (see for example [Mal, lemme 2.3]) a non zero-divisor
f such that A; splits into a finite product of domains A;, of transcendence
degree < d. Call K; their fraction field, theorem 2.1 says that 1 = ¢'(u) over
K; and so over the product [] ;. Cancelling denominators, one finds some
non zero-divisor g such that g2 = ¢'(u) in Ay =[] A; and (f7g)? = ¢'(w) in
A for some integer r.

If frg is a unit in A, just divide by its square, otherwise go into A/(f"g):
it is a RFR of transcendence degree < d satisfying the induction hypothesis
and we can write 1 = m x ¢'(T) in A/(f"g) for some integer m and some
m-tuple of vectors z. Lifting this equation in A, we get 1 —m x ¢'(z) = A f"g
for some XA € A, and by squaring we get:

(1-mx¢'(z))? = (A 9)* = ¢'(Mw)
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Expanding the lefthandside, this gives
L+s2=mx ¢'(av2) + ¢'(Mw) = (m+ 1) x ¢/(y)

Because 1 + s? is a unit in A, we eventually obtain 1 = 2(m+1) x ¢©/(z) in A.
a

Let us now state an extension of theorem 2.2 to general rings.

Theorem 3.3 Let A be a ring and f,...,f, any r elements in A. Let,
for1 <1 <r ¢ =K fi,...,fi > be a (non necessarily regular) i-fold
Pfister form, and u;, ¢+ = 1...r — 1 elements in A weakly represented by
w; and uo a sum of squares in A. Define w; 1= ¥7_.\, fiuj-1. Then, if
Y =<K wo, fiwr, .-, froiweor >, we get () = 1/;(7) at the points v at
which both forms are regular.

Proof. Just apply theorem 2.2 to ¢.(v) and (7). a

It is now easy to conclude in giving the proof of theorem 1.1.

Let A be a ring of transcendence degree d over a real closed field R, and
fisy--., fa be any n > max(d, 1) elements of A. By iteration, we may assume
that n=d+1ifd>0andn=2ifd=0. Let S = S(f1,...,fn) C Spec; A
and B = Ag, with Eg = {a € A : Vy € S a(y) > 0}. The RFR
B has transcendence degree < d over R and the f;’s are units in B. So,
theorem 3.2 gives a weak reprcsentation of 1 by the pure subform ¢'. With
the notations of theorem 3.3, we have 1 = wy and multiplying by the totally
positive element P? = (1 — f, + f2)?, we get a representation P? = w}, of the
same shape. This can be written (1 + f2)? = w) + 2fa(1 + f2) = wj with
w!_ = fa (u;_1 +2(1 + f,f)) for some ul,_, weakly represented by ¢,,_;. So,
this w;,_, has the right shape and is totally positive on S, forcing all the w!'’s
to be units in B. Cancelling denominators, we get © = wj’ in A for some u
positive on S and by theerem 3.3, we get () = zﬁ('y), with p =< u > Qx
and x =< fiw!’,..., famiwi; > at the points ¥ where both forms are
regular.

Let g; = fiw"” for 1 < i < n —1; the g;’s are strictly positive on S and so
S € Sa(g1,---,94); in the other hand, because each f; divides [];g;, if v €
Sa(g1,-...94), none of the f;’s can be 0 at v. But as u = fiugy' + wy” with uj’
a sum of squares, u(y) = 0 implies fiw}’ < 0, and so for ¥ € S4(g1,---,94),
we have u(7) # 0 and ¥ is regular at y: by theorem 3.3 ¥(y) = 2%(y) > 0
and v € S. So we have § = S;(g1,...,94)- O



4 Bounds in the theorem of Tsen-Lang

From now on, we take A = R[Xj,..., X4] with R a real closed field , we
fix n = d + | polynomials fy,..., f, in A of degree bounded by B, and we
want to find a bound B’ such that we can assert that there exist g;,..., 94
of degree at most B’ in A such that Sa(g1,...,94) = Sa(f1,-.-, fa) up to
positive codimensional subsets. We may always assume Sa(f1,..., fa) # 9,
or else we are already done.

From the beginning of section 2, we see that the first thing to do is to
keep track of degrees in the theorem of Tsen-Lang. In order to deal easily
with Pfister forms, let us fix the following notation: for an integer k less that
27 let us call £;(k) the i-th binary digit of k, i.e. k = T o) ei(k)2'.

Denoting R(v/—1) by C. we may consider the equation with coefficients
in C[X,,..., X4

2d+1_j

e (k
> u H 8 = (1)
k=0 1=0
where the u;’s are the unknowns. Call a; := deg f; and a := T «;, we get

the following:

Theorem 4.1 There ezists a non zero 2%*+'-tuple satisfying (1) such that
each summand of the lefthandside has degree < da.

Proof. Suppose we look for a solution (uq,. .., uq+i1_;) such that each sum-
mand of the equation has a fixed degree A, then 24, := degu? < A -
Y% o aiz1€i(k). Displaying everything over C, we get a system of e equations
in v variables over C, with e equal to the number of monomials of degree less
1+d 24+ 1 ([Ag]+d
or equal to A, i.e. ( j ) and v=37_" ( ) where [A] is the integral
part of A;. We know that we will get a non tr1v1al solution to (1) as soon as
we get more unknowns than equations, i.e. if ZTM"‘ [A"Hd) > (Ajd). We
then have to prove that the above inequality holds for the choice A = da.
Let us begin by the following lemmas:

Lemma 4.2 Let By,...,B441, A be integers such that A > f:= ¥ 21 B; and
define Ap = 3(A — TiLo Binrei(k)). Then

)T Ag =294 - 2918

2) T30 T (Ar+ 1)(Ar +2) .. (A + d) 2 2T, (A — B/2 + 2i).
) TI HAd + DA +2) .. ([Ad + d) 2 21T, (A - B/2 -
1+ 72)



Proof. For every 1, the equality Zi‘:(;“ ei(k) = 24 gives

T2 T S o Birei(k) = 298 and then we get 1). For 2), the condition
A > B ensures Ay > 0 and the convexity for £ > 0 of the function f :
z (z+1)(c+2)... (z+d) gives iy ™ er f(Ax) 2 f (T30 dr Ai).-
Applying 1) to the righthandside gives the result.

Let us show 3): suppose the §;’s are all even. If A is even, then all
the A, are integers and 3) comes readily from 2). If A is odd, we may
apply 2) to A — 1 which is still > §: we get (A — 1); = [Ax] and we can
conclude. If one B; is odd, changing ¢;(k) changes the parity of 24, and

so half of the Ay’s (i.e. 2%) are integers, the others being half-integers and
so i:;’l[/lk] = 294 — 2718 — 291 | The same proof as in 2), added to

the fact that f is increasing gives ZZ:;"([Ak] + 1)([Ae] +2) ... ([Ad] +d) >

QML (A=8/2=1/2+2)>2[T (A - 3/2 -1+ 2i). a
Lemma 4.3 Ford >0 and U > (d+ 1)/2 we get:

d d+1

[T = 1+2i) 2 (U + 2y

=1

Proof. 1If d = 1, we have equality. If d > 2, we may group symmetric terms
in the lefthandside and write (U —14+2i)(U —1+2(d+1—2)) - (U+ &) =
dU — (d +1)%/4 + (20 = 1)(2d + 1 — 23). If U > (d + 1)/2, this is strictly
positive. If d is odd, the isolated middle termis U +d > U + (d + 1)/2. It,
is then easy to conclude.

The proof of the last one is left to the reader:

Lemma 4.4 For all d € N*, and for all 3 > 0 we have :
V2(@2d-1)8+d+1)>2dB+d + 1.
Now, let’s finish the proof of theorem 4.1:
We know f; # 0 (because S # 0). If « < d + 1 there is some f; of degree

0, and there is an easy solution with (\/— 7;)2 +fi=0. Ifa>d+1, since
d > 1 we have (d — 1/2)a > (d +1)/2 and we may apply the preceding
lemmas with 8; = a;, U = (d = 1/2)a and A = da. We get:

YL (A +d
5 ( kd ) > 1o nf=1(d“ —a/2-1+2j), (lemma4.2)
k=0 o> 72(da — af2 + 1), (lemma 4.3 )
> S(da + (d +1)/2)¢, (lemma 4.4 )

L(da+(d+1)/2) > L(da+1)...(da+d) = (%+

and finally, the concavity of the Log function gives
E A ), and we have proved
theorem 4.1.



5 Quantitative generic reduction

In this section, we prove degree-controlled versions of the representation the-
orem 2.1 and its corollary, the generic reduction theorem 2.3. Following the
plan of the proof of theorem 2.1, we see that the next step to control after
the theorem of Tsen-Lang is the behaviour of the degrees in Pfister’s theorem
on multiplicativity.

Let us fix some notations.

Notations 5.1 Let K be a commutative field, m an integer, fi,...,fm €
K*. Call o, the Pfister form < f1,..., fm > ifm > 0and ¢g :=< 1 >. This
form is represented by a matrix A, = diag(l, fi, fo, fife,--  ifee o fm) =
(A""'l 0 ) form >0

0  fmAm=1)’ )

Let = = zg,...,Z2m—1 a 2™-tuple of elements of K: we have z = (u,a)
with u, % some 2™~ !-tuple for m > 0. Pfister defines a 2™ x 2™ matrix T;
such that ¢, (2)dm(¥) = ém(T=(y)) and T, is inductively defined as follows:
(cf. [Pfi} Satz L, p. 231)

T, =uq, ifz€ Rand form >0:

T. 0O o .
A ) £ G (i) = 0

T = u

‘ T‘u mTﬂ . ~
T _1) i Gmoa(@) # 0

where Uy = mTﬁA;l_lTéAm_lTﬁ

The transposed of A is denoted by A’ and (T3 )k will denote the (k+1,1+1)
entry of T;. For any integer k, we put A := ) 72,¢:(k) (see last section for
the definition of &;(k)).

From now on we assume N = R(X4,...,Xy) and the f;’s polynomials. Then,
the matrix A has the shape num A/ den A with num A a matrix with poly-
nomial entries and den A a polynomial. In the sequel, num A and den A will
always denote a possible "numerator” and denominator for A. An interesting
feature of the matrices T} is the following:

Proposition 5.2 [For any integer m and any vector ¢ € K*” we have

(A7'TiAR), = (D (T2,

kL

Proof. By induction, considering the cases k and | < 2™~} or not.

As a consequence, we get that if £ = (u, ), a possible denominator for

T, is given by ¢, (i) den T,[den T;]%.



Using this, it is now possible to control the degrees of numerator and
denominator of T,. Using the preceding notations, and with the convention
that an empty sum is 0, we get the following:

Proposition 5.3 Let m > | be an integer, z € R[X,,..., X ]*" and let
Qai,...,qn, A be integers such that A > YL, ai. Assume that for every
0< L < 2™ — 1 we have deg(zy) < (A Yotk )a,-+1), and define B,
as 38 =14 — 3m- 2y milay, then

1) deg(denT )< B

2) deg (num T.),; < 3 (A + £75" aig (ei(!) = €i(k))) + B

Proof. Let us remark first that a; does not appear in By, (it is not a mistake!).
Let us prove 1) by induction on m: if m = 1, T, needs no denominator
and By = 0. Then we want to show step m + | from step m and so we
assume deg(z;) < (A — T ei(k)aig) for every k € {0,...,2m+1 —1}.
Writing = = (u, u) we get for every 0 < k£ < 2™ ~ 1 that deg () <
: (A — a1 — gt si(k) ',~+1) , and induction hypothesis applies to @ with
A—apm4 and to u with A. We know from proposition 5.3 that a denominator
for T is given by (denT ) (den T;3)? ¢ (i) and so, writing B, = %(A—
Am41)—3m "2 T2 @iy, induction hypothesis gives degden T, < B,,+2B,.+
A—anq1 = Byt The proof of 2) is similar, but long, and we skip the details.
O
Now let us come to the representation theorem: with the notations of
theorem 2.1, we put n = d+1,r = Ruand y = Ju. Calling z = (0, ') = T;.y,
we get ¢'(2') = ¢(x)d(y) = (é(z))®. Multiplying by (denT,)? and putting
v = denT;.z', we get a polynomial P such that P? = ’(v). Concerning the
degree of this P we have:

Proposition 5.4 Let ¢ =<K fi,..., fag1 > be a (d + 1)-fold Pfister form,

fi € R[X,,..., X4], a; = deg f; for eachz and a = Z:‘ 1 ;. Then there exist

P € R[X,,..., X4 with P? of the shape ¢'(v) and

(3¢ +1)
2

<

deg P <

da — 3 a — o).

Proof.* We have P = @(z)denT:, and by theorem 4.1, we may take z such
that dego(r) £ A = da and deg x4 satisfying hypotheses of proposition 5.3,
so degden T, < B4y, which gives deg P < A + Byy,. a

Remark 5.5 Actually, it is not only P? which has degree bounded by
(A + B,;H) but also each summand v? [T, f;(lk) of ¢'(z'): we have v, =

Z, o “Ynum T2 )es(y)i, and by theorem 5.3 we know that
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deg(num T)e(v)h < A+ Thomn(a() —&k)] + Bua +
% [A -4, a,-.,.l(e,-(l))], that is A — %( ¢ o @ip1€i(k)) + Baya, for every | <
24+1 S5 the same is true for v and we get the announced result.

As a corollary, we get:

Theorem 5.6 Letd > 1, fi,..., fis1 € R[X:1,..., X4), K = R(X,,...,X4),
a; = deg f; and a = Y a;. There ezist g1,...,9a € R[Xy,...,X4] such
that deg g; < (37 + 1)da and such that Sk(fi,..., far1) = Sklgr,s..-,9q).

Proof. From the remark above, when P? is expressed in terms of w;’s, we
have degw; < (3% + 1)da — 2.3%"!(a — ;). Renumbering the f;’s if need be,
we may assume that oy is the infimum of the a;’s and so, by theorem 2.3,
degg; = degw; + a; < (3 + 1)da + o; — 2.3 (o — o) < (3¢ + 1)da by the
choice of a;. a

If we want to express this result in terms of a bound B for the degree of
every f;, we have the following:

Theorem 5.7 Letn >d > 1, fi,..., fa € R[X,,..., X4}, K = R(Xy,...,X4)-

Let B be such that o; := deg f; < B, then there exist g1, ...,94 € R[X1,..., X4}
n-d

such that deg g; < B’ with B' = ((1 + 3%)(d(d + 1)) B and Sk(f1,...,fa) =

Sk(g1s---+94)-

Proof. There is just to remark that o < (d + 1)B and iterate n — d times.

Remark 5.8 As we will see next section, we have a better bound when d = 2
because of the multiplicativity of 3-fold Pfister forms in rings. In this case,

a; + 4a (or 13B) is enough.
6 Quantitative reduction in 2 variables

In the 2-variable case, we are able to make a complete reduction of systems
of inequalities, keeping control on the degree of the final system. Precisely,
putting A = R[X, Y], we prove the following:

Theorem 6.1 Given polynomials fi, fo,f3 € A, deg f; = a;, a = T a,
there ezist g, 92 € A of degrees < 112a* +26a — 16 such that Su(fi, f2, f3) =
Sa(g1,92)-

Before starting the proof, let us fix some notations.
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Notations 6.2 As usual, for k£ = 0...7, denote by hx = [I3, ;i(lk), ¢ the
Pfister form < fi, f2, f3 > and ¢’ the pure subform. Sums of squares will
be denoted by s; and elements weakly represented by ¢’ will be denoted by

®ls)» the subscript being used to identify them.

Proof. The proof will be divided in several steps.
(1) A generic solution. As in section 4, we apply the theorem of Tsen-
Lang to ¢ in order to find a non zero vector u € C[X,Y]® such that ¢(u) =
Y1 _ohwu? = 0, and such that deghru} < 2a. Calling z and y the real
and imaginary part of u, we get o(z)? = @(z)p(y). But here ¢ is a 3-fold
Pfister form and it is well known that such forms are multiplicative over any
ring, meaning we can find z € R[X,Y]? such that o(z)p(y) = ¢(2), and
again, z may be choosen such that the first component z, is (z,y), = 0. So
we have P? = YI_, hpz} with deg P?,deg hxzf < 4 and we may find two
polynomials g;, g, of degree < a; +4a,7 = 1,2 (or < 13B) solving generically
the reduction problem. Of course, dividing everything by a square if need
be, we may assume that the z;’s have no common factor.
(2) Digression. This implies in particular that P cannot vanish on a 1-
dimensional part of S, or else it would also be so for the z;’s and they would
have a common factor. So P has at most a finite number of zeros on S
and this leads to the following remark: taking other identities P? = ¢'(z(;)
of same degree (we have infinitely many of them) and adding them, we get
S0 = P{q) With 5o a sum of squares still of degree < 4a vanishing on S only at
the common zeros of the P;’s. It is very unlikely that all possible identities
P? = ¢'(z(;)) of degree < 4a have a common zero on S (the opposite would
be very strange), but we have not been able to prove it so far. So, although
we think it is true, we cannot assert that an identity so = ',9’(0) of degree < 4a
with sg(S) > 0 exists, and we have to do more involved computations.
(3) Working in A/P. Taking inspiration in the proof of theorem 1.1, we
try to find a sum of squares ¢ such that t = ¢{; mod P and t, P having no
common factor. Actually we do a little less. Writing P2 = Y"7_, hy2f = D1y
it is possible that P and the (h4z:)? have a non trivial ged A, but this A
cannot vanish on S because each of its prime factors has to divide some hj.
We are going to find an equality P?s; +t = ¥(2)» With s2,t sums of squares
multiple of A and P := P/A,f:=t/A without any common factor. This is
obtained as follows:

for k= 1...7 define 6, = | — nphy + n?h? for some positive constant ny.
Then we get:

(P6)* = [(1 + nphi + n2h2)° — dnghe (1 + nihi)] hezt + Tjap hj(6kz;)?

and so

(P60)? + 4ne(1 + n2hd)(hizi)? = b [(1 + nehe + nfhE)zi)” + i hj(6ez;)?

12
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Adding these 7 equalities, we get
PPyl 6+ 4o ne (14 (nehe)?) (hezi)? = P(2)-
Calling t = 4 Y7y n& (1 + (nche)?) (hezi)?, it is clear that A divides ¢, and
we can choose the ny's in order to have P and t without any common factor.
Calling s, = ¥_i_, 6%, we have an equality P?s; +t = (s, each summand of
it being of degree < Sa, and degt < 7a. )
(4) Down in dimension 0. Let us call R the resultant Resy (P,t) and call
I the ideal generated by R and P. The ring A/I is zero dimensional and so
it is clear by Hensel’s lemma and Chinese Remainder Theorem, that we can
solve for any element f € A, the equation fu? = %% in A/I, in such a way
that u and v are strictly positive at the real zeros of I where f is positive,
and are null at the other real zeros of /.
(5) Back in A. Making f = f; and lifting this in A, we get an identity
fsu? — v2 = wP + AR and we know that wu,v are strictly positive at the
zeros of P inside S. As R = UP + Vi, putting yt = w + AU, we get fyu® —
v? = uP + AVi. Multiplying by A, changing side and squaring, we have
((fsu? = o)A — uP)? = (AV1)? From t = Pl2) — 59P?, and because t is
itself a sum of squares, we have (AVt)? = ¥(3) — S3. After transformation,
this equality rewrites:
(fau?A + v A — pP)? — 4A% fauv? + 53 — Y5y = —4v?ApP

Adding 0 = P?—¢jy, = P (14 f3+ f3)? —oln) (1 + fa— f3)* —4f3(1 + f3) P?
to the lefthandside, we may write —4v?AP = s4 — ¢} with s4 = (fau?A +
VIA — PV + s34+ P21+ fs+ f3)? and o) = 4A°% fau®v? + @5 + 0y (1 + fa —
)2 +4f5(1 + f2)P? strictly positive on S (because A? fau?v? doesn’t vanish
z:t) the points of S at which P? vanishes, and @{3), ©{;) are non negative on
S).

Squaring again, we get (sq — (,))* = (4Au?)2P? = ®(s)» Which leads to
(84 +¢(y)* = 4s19(4) T P(5) = Plo) and Pg) is strictly positive on 5.

Now, @5y = fioo+ f201+ f302 with o; weakly represented by ©; (o = (1})).

We may observe that o, = 4s4(4u?v?A% + 4P2%(1 + f3) + ...) is strictly
positive on S, forcing wy = f30, and wy; = f,0, + w, to be so. Now, putting
01 = fiwr,g2 = fawq, we have S = S4(g1, 92) as shown in section 3.
(6) Counting degrees. We have to estimate the degree of ¢g; in terms of
a. Having a close look at the computations above, we see that when we
express 5922) and 9:»’(3) as ¥ hyug, for up sums of squares, then the degree
of each summand hpu, is not greater than the degree of the sum (this is
because it is true for ¢y, as shown in remark 5.5). As degy(;) < 4a, we
have deg ¢{y) < 8 and deg (3 < 8a+degt+2deg AV. We have degt < Ta;
let us compute deg AV.
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Up to a linear change of coordinates, we may always assume that P (and
thus P) is monic as a Y-polynomial. So, in step (5), making the euclidean
division of u,2.A by P in Y, we may assume that u,v,A have a degree in
Y less than deg P. forcing degy w to be < degy P + degy f3 — 2. Now,
dividing the coefficients of u,v,w by R along X, we may also assume that
degy u,degy v,degy w < deg R — 1 and degy A < deg R + a3 — 2. This last
operation does not modify the degree in Y of u, v, w, but does modify degy A,
which becomes only < degy f3 + 2degy P — 2. Adding the degrees in X and
Y of everything, we get:

degu,v < deg R+ deg P — 2

degw < deg R + deg P — 3 + deg f5

deg A < deg R+ 2deg P — 4 + 2deg f3.

Knowing that degV = deg R — degt = (legt(degP — 1), we have
deg(AV)? < 2(2deg R + 2deg P — degi — 4 + 2a3)

and as deg R = deg P degi we have
deg ©i3) < deg(AV)? + 15

<ddeg R+ 4deg P — 7degi -8+ 4a3 + 15

=4deg P + 2degi(2deg P — 1) — 8 + 4a3 + 15ax

< 8a+56a’—14a—8+4az+15a = 56’ +9a—8+4a3 =: N;. As thisis also
greater than the degree of s3, fa(Auv)?, (f3ulA+v?A—pP)? P14+ f3+ f2)?
and f3(1 + f3)P?, N, is a bound for the degree of s, and any summand of
¢(4)» Showing that each summand of (s has degree less or equal to 2/V;. At
the end we have

deg g, < deg f, + 2N; < 112a? 4+ 26« — 16 and this estimate works also
for g;. Of course, there is a big gap between this bound and the bound 5«
in the generic case, and there is probably much better to do. a

In terms of B we have:

Corollary 6.3 Given polynomials fi, fo, fa € A, deg fi < B, there ezxist
gi,92 € A of degrees < 1008B? + 63B — 16 such that Ss(f1,-..,fn) =
Sa(g1,92)-

Proof. evident. a
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