
Université catholique de Louvain

Faculté des Sciences Appliquées

Computing Markov bases,

Gröbner bases, and extreme rays

Thèse présentée en vue de l’obtention du grade de

Docteur en Sciences Appliquées par

Peter N. MALKIN

Promoteur: L.A. Wolsey

Jury: V. Blondel (Président)
K. Aardal

R. Hemmecke

Y. Nesterov

Y. Pochet

ii

Acknowledgements

There are many people I would like that thank who have supported me during my
doctorate.

Firstly, I would like to thank my supervisor Laurence Wolsey. He guided me and
gave me the freedom to explore my interests. I especially appreciate his patience in
deciphering the many drafts of this thesis.

I feel especially indebted to Raymond Hemmecke for his encouragement and advice.
The time I have spent working with him was some of the most productive and
inspiring time during my doctorate.

It has been a privilege for me to do my doctorate at CORE. The environment
at CORE is extremely friendly and conducive to research. I would like to thank
everyone at CORE who together make it such a unique place.

As any international student or visitor to CORE will tell you, the support given by
the administrative staff at CORE is invaluable. Only with their help have I navigated
through the vagaries of the Belgian administrative system. So, I give many thanks
to Mady, Catherine, Sheila, Fabienne, and Sylvie.

During my doctorate, I was fortunate enough to spend several months in Magde-
burg with Robert Weismantel, Raymond Hemmecke, Matthias Köppe, and Utz-Uwe
Haus. My time there proved extremely productive. I am very grateful for having had
this opportunity to work with them.

I would also like to thank the other members of my doctoral jury Karen Aardal,
Vincent Blondel (president), Yurii Nesterov, and Yves Pochet for their advice and
useful comments.

I gratefully acknowledge the support of the Marie Curie Research Training Network
ADONET 504438 and the support of the Université catholique de Louvain.

I particularly appreciate the friendship of François who paradoxically both drove
me mad and kept me sane throughout my doctorate. I would also like to express
my appreciation for the friendship of the following people during my doctorate:
Jeremy, Giles, Virginia, Ruslan, Hamish, Helena, Andreas, Malika, Fabienne, Maziar,
Quentin, Michel, Robert, Sylvain, Gilles, Diego, Joao, Kent, Ayse, the people from
UKRO, and Estelle’s family.

I would like to thank my parents and my brother for supporting me throughout my
thesis. Finally, my fiancée Estelle has especially been an enormous source of support
and compassion.

iii

iv

Contents

1 Introduction 1

1.1 Polyhedral cones . 2

1.2 Convex polyhedra . 5

1.3 Linear programs . 7

1.4 Integer programs . 8

1.5 Gröbner bases . 9

1.6 Markov bases . 16

1.7 Outline . 20

2 Foundations 23

2.1 Linear spaces . 23

2.2 Polyhedral cones . 24

2.3 Convex polyhedra . 29

2.4 Integer lattices . 31

2.5 Gordan-Dickson’s lemma . 34

2.6 Linear programs . 34

2.7 Integer programs . 36

2.8 Linear space programs . 37

2.9 Lattice programs . 40

2.10 Term orders . 45

3 Markov bases 51

3.1 Markov bases of lattice fibers . 51

3.2 Markov bases of lattices . 54

3.3 Truncated Markov bases of lattices 56

4 Gröbner bases 61

4.1 Gröbner bases of lattice fibers . 61

4.2 Gröbner bases of lattices . 65

4.3 Truncated Gröbner bases of lattices 69

v

vi CONTENTS

5 Computing Gröbner bases 75

5.1 Completion procedure . 75

5.2 Truncated completion procedure . 83

5.3 Optimising the completion procedure 88

5.3.1 Critical pair elimination criteria 89

5.3.2 Finding reduction paths . 96

5.3.3 Finding a reductor . 97

5.4 Alternative Algorithms . 99

5.4.1 Graver basis algorithm . 99

5.4.2 Gröbner walk algorithm . 100

5.4.3 Knapsack algorithm . 101

5.4.4 FLGM algorithm . 101

5.4.5 Hosten and Thomas’s algorithm 102

6 Computing Markov bases 103

6.1 Project-and-Lift algorithm . 104

6.2 Truncated Project-and-Lift algorithm 109

6.3 Saturation algorithm . 113

6.4 Lift-and-Project algorithm . 120

6.5 Comparison of algorithms . 122

7 Applications 127

7.1 Algebraic statistics . 127

7.2 Normality of semigroups . 130

7.3 Feasibility of Integer Programs . 132

7.4 Integer programming . 135

7.5 Enumeration . 142

8 Computing extreme rays 145

8.1 Double Description Method . 147

8.2 Optimisations . 157

8.2.1 Eliminating extreme ray pairs 157

8.2.2 Combinatorial approach . 160

8.2.3 Algebraic approach . 164

8.2.4 Adjacency inference . 175

8.3 Alternative approach . 179

8.4 Computational results . 181

CONTENTS vii

9 Computing circuits of matrices 185

9.1 Circuit algorithm . 186

9.2 Computational results . 193

10 Conclusion 195

A Computational Algebraic Geometry 199

B Notation 203

viii CONTENTS

List of Figures

1.1 A simple polyhedral cone in two dimensions. 3

1.2 A set of cones in two dimensions. 5

1.3 A simple convex set in two dimensions. 5

1.4 The set of feasible solutions for IPA,c(b). 10

1.5 The possible improvements by vectors in G and G′. 11

1.6 The feasible sets of IPA,c(b
′), IPA,c(b

′′), and IPA,c(b
′′′). 12

1.7 The feasible set of IPA,c(b) with vectors form G′′′. 13

1.8 The bounded feasible set of IPA,c(b) with vectors from G′′′. 14

1.9 The graphs G(FA(b), M) and G(FA(b), M ′). 17

1.10 The graphs G(FA(b′), M) and G(FA(b′′), M). 18

1.11 The graphs G(FA(b), M ′′) and G(FA(b′′′), M ′′). 19

5.1 Reduction path between x and y. 76

5.2 A critical path for (u, v) between x, z, and y. 76

5.3 Replacing a critical path by a reduction path 77

5.4 Checking for a reduction path from x(u,v) to y(u,v). 78

5.5 Criterion 1. 89

5.6 Criterion 2. 91

5.7 Criterion 3. 95

5.8 Intersecting decreasing paths from x(u,v) and y(u,v). 97

5.9 A support tree. 99

6.1 Comparison of intermediate set sizes in each iteration. 124

8.1 The intersection of a polytope P and a half-space H. 150

8.2 A support tree. 163

8.3 Traversing the support tree. 164

8.4 The projection of a cone onto {x ∈ Rn : rx = 0}. 172

8.5 Adjacency Inference. 176

ix

x LIST OF FIGURES

List of Tables

5.1 Timings for computing truncated Gröbner bases. 88

5.2 Positive supports of vectors in G. 99

6.1 Comparison of different truncation approaches. 113

6.2 Timings for computing truncated Markov bases of different fibers. . . 113

6.3 Timings for computing a truncated Gröbner basis from a truncated
Markov basis. 114

6.4 Software and algorithm . 123

6.5 Comparison of computing times. 124

7.1 A contingency table of month of birth versus month of death ([30]). . 128

7.2 Hard Knapsack Constraint Instances. 136

7.3 Hard Knapsack Constraint Instance Timings. 137

8.1 Extreme ray supports. 162

8.2 Running times for computing extreme rays. 182

8.3 Running times for computing extreme rays. 183

9.1 Running times for computing circuits of matrices. 194

xi

xii LIST OF TABLES

Chapter 1

Introduction

In this thesis, we address problems from two topics of applied mathematics: linear
integer programming and polyhedral computation.

Linear integer programming concerns solving optimisation problems to maximise
or minimise a linear cost function over the set of integer points in a polyhedron.
The framework of integer programming is remarkably flexible and expressive, and a
wide variety of problems can be modelled as integer programs. Applications of inte-
ger programming include production scheduling, facility location, and VLSI circuit
design. There is a plethora of techniques and variations thereof for solving integer
programs far too numerous to mention. Standard techniques have proven to be ex-
treme effective in practice despite the fact that integer programming is NP-hard. In
this thesis, we explore the theory and computation of Gröbner bases and Markov
bases for integer programming.

Markov basis methods concern the set of feasible solutions of an integer program.
A Markov basis is a set of integer vectors such that we can move between any two
feasible solutions by adding or subtracting a vector in the Markov basis while staying
feasible – we never move outside the set of feasible solutions. The major contribution
of this thesis is a fast algorithm for computing Markov bases. A Markov basis has
two main applications: sampling from a set of feasible solutions and computing
Gröbner bases of integer programs. Sampling from a set of feasible solutions is used
in algebraic statistics to determine whether a set of observed events follow a given
frequency distribution. Using the fast algorithm, we were able to solve a previously
intractable computational challenge in algebraic statistics for computing Markov
bases. Also, there is another potential application of Markov bases in local search
heuristics. Other problems have also been successfully tackled using this algorithm.

Gröbner basis methods for integer programming are iterative improvement tech-
niques for solving an integer program. A Gröbner basis is a set of vectors such that
we can improve any given non-optimal feasible solution of an integer programming
by subtracting a vector in the Gröbner basis. So, using a Gröbner basis, we can
solve an integer program by iteratively improving a given initial feasible solution.
The process of constructing a Gröbner basis and then solving an integer program
using the Gröbner basis is called the Gröbner basis approach. Gröbner basis meth-
ods are relatively new compared to standard methods for solving integer programs.

1

2 CHAPTER 1. INTRODUCTION

The worst case complexity of Gröbner basis methods is not fully known but it is at
least exponential as is expected since integer programming is NP-hard. One of the
reasons we are interested in Gröbner basis techniques from a theoretical viewpoint
is that they are exact local search approaches for integer programs meaning that
local optimality in some neighbourhood of a feasible solution implies global optimal-
ity, which is an interesting concept in itself to study. Also, despite the effectiveness
of standard techniques, there still remain some classes of problems for which stan-
dard techniques are ineffective, so we explore Gröbner basis methods in the search
for another method that can either provide some insight into what makes these
classes of problems difficult, or actually allow us to solve these difficult problems. In
this thesis, we extend and improve Gröbner basis methods. Previous Gröbner basis
methods effectively solved for many different integer programs simultaneously, so
problem structure of a particular integer program could not be used. We present a
new Gröbner basis approach that uses structure of a particular integer program in
order to solve the integer program more efficiently.

Polyhedral computation is concerned with algorithms for computing different prop-
erties of convex polyhedra. A convex polyhedron is a set of points that satisfy a finite
set of linear constraints. Convex polyhedra appear in many different areas of math-
ematics such as linear programming, integer programming, combinatorial optimi-
sation, computational geometry, and algebraic geometry. Computing the properties
of convex polyhedra is interesting in itself, and it is also useful for solving prob-
lems within the above areas of mathematics. For example, in integer programming,
polyhedral computation is used to analyse the structure of the convex hulls of the
set of feasible solutions of an integer program. In this thesis, we investigate ways of
improving existing methods for computing certain properties of convex polyhedra.
More explicitly, we investigate and improve an algorithm for converting between
different representations of cones and polyhedra; that is, we convert between a gen-
erator representation of a cone or polyhedron and a constraint representation of the
cone or polyhedron. This algorithm can be extended to compute circuits of matrices,
which are used in computational biology for metabolic pathway analysis.

In the rest of this introduction, we informally introduce and discuss these concepts.
We will define these concepts in a more formal framework in the rest of this thesis.

1.1 Polyhedral cones

In this section, we introduce polyhedral cones. They play an important role in poly-
hedral computation.

The expression λ1x1 + λ2x2 + ... + λkxk where λ1, λ2, ..., λk ∈ R+ is called a conic
combination of x1, x2, ..., xk ∈ Rn. A cone is a set C ⊆ Rn that is closed under conic
combinations. More explicitly, if x1, x2, ..., xk ∈ C, then λ1x1 + λ2x2 + ... + λkxk ∈ C
for all λ1, λ2, ..., λk ∈ R+.

A set of points in Rn that satisfy a finite set of linear homogeneous constraints is a
cone, called a finitely constrained cone; that is, the set C(A) := {x ∈ Rn : Ax ≥ 0}
where A ∈ Rm×n is a finitely constrained cone. For example, the following set of

1.1. POLYHEDRAL CONES 3

points in Rn is a cone: C = {x ∈ R2 : 3x1 − 2x2 ≥ 0,−x1 + 2x2 ≥ 0}. It is depicted
in Figure 1.1. Note that the cone in the diagram extends forever in the direction of
the vectors in the diagram and that the cone includes all the points in between the
vectors as well on the vectors themselves.

2

3

1

4

0

2 31 40

2x

x1

Figure 1.1: A simple polyhedral cone in two dimensions.

A set of points in Rn generated by all the possible conic combinations of a finite set of
points in Rn is a cone, called a finitely generated cone; that is, the set {λB : λ ∈ Rk

+}
where B ∈ Rk×n is a finitely generated cone. Here, the set {λB : λ ∈ Rk

+} is all
possible conic combinations of the rows of the matrix B, and we call the rows of B

the generators of the cone. We will see later (Section 2.2) that if the cone contains
no lines that go to infinity in both directions, then there is a unique (up to positive
scaling) minimal set of generators of any finitely generated cone – a set of generators
is minimal if we cannot remove a generator from the set without changing the cone
that is generated. If there are no lines in a cone, then we say that the cone is pointed.
Geometrically speaking, a pointed cone has edges, and any vector that lies along an
edge of the cone is called an extreme ray of the cone. We will see that every cone
has a finite number of distinct extreme rays (i.e. extreme rays that are not positive
scalar multiples of each other) and that every pointed cone is generated by the set
of its extreme rays; moreover, the set of extreme rays is a minimal generating set of
the cone.

The cone C in Figure 1.1 can also be represented as a conic combination of a
set of points: C = {λ1(2, 1) + λ2(2, 3) : λ1, λ2 ∈ R+}. This set of two generators
{(2, 1), (2, 3)} is minimal, meaning that the cone C cannot be generated by only one
of the two vectors. Note that the cone is pointed since there are no lines contained
within the cone. We have drawn these two vectors in Figure 1.1. Observe that these
two vectors lie on the edge of the cone, so these two vectors are extreme rays of C.

A fundamental theorem in polyhedral theory is that a cone is finitely constrained
if and only if it is finitely generated. We saw this with our small example cone of
Figure 1.1. We represented it is as both a finitely constrained cone and a finitely
generated cone. This theorem in the forward direction (only if) is most commonly
known as Minkowski’s theorem, and in the backward direction (if), the theorem
is most commonly known as Weyl’s theorem. More explicitly, Minkowski’s theorem
says that, for any finitely constrained cone C = {x ∈ Rn : Ax ≥ 0} where A ∈ Rm×n,
there exists a matrix B ∈ Rk×n such that C = {λB : λ ∈ Rk

+}, and Weyl’s theorem

4 CHAPTER 1. INTRODUCTION

says that, for any finitely generated cone C = {λB : λ ∈ Rk
+} where B ∈ Rk×n, there

exists a matrix A ∈ Rm×n such that C = {x ∈ Rn : Ax ≥ 0}.

Due to the essential equivalence of finitely constrained cones and finitely generated
cones, we refer to them both as polyhedral cones. In this thesis, we are interested
in finding a finitely constrained formulation of a polyhedral cone given a finitely
generated formulation and conversely in finding a finitely generated formulation of
a polyhedral cone given a finitely constrained formulation. These two problems are
essentially the same problem meaning that one problem can be phrased in terms
of the other (see Section 2.3). In this thesis, we approach this problem from the
perspective of converting from constraints to generators.

Another problem that we address is to find all the generators of a set of related but
different cones; in other words, given a set of finitely constrained cones, we wish to
find the generators of all the cones in the set. Here, the set of cones consists of all
cones with the same set of linear homogeneous constraints (the coefficients of the
variables are fixed) except that constraints may vary between being either less-than-
or-equal-to-zero (≤ 0) constraints or greater-than-or-equal-to-zero (≥ 0) constraints.
More specifically, given some constraint matrix A, this set of cones consists of every
cone {x ∈ Rn : A1x ≥ 0, A2x ≤ 0} where the matrices A1 ∈ Rk×n and A2 ∈ Rm−k×n

are some partition of the rows of the matrix A. For example, this set of cones includes
the cone C(A) = {x ∈ Rn : Ax ≥ 0}, and the cone C(-A) = {x ∈ Rn : Ax ≤ 0}.
Another way of describing this set of cones is as the set of all cones in the form
{x ∈ Rn : Ax ∈ On} where On is a subset of Rn, called an orthant, given by
constraining each coordinate to be either non-negative or (exclusively) non-positive;
that is, On = {x ∈ Rn : δixi ≥ 0, i = 1, ..., n} for some δ ∈ {1, -1}n. Note that Rn

+ is
an orthant and C(A) = {x ∈ Rn : Ax ∈ Rn

+}.

In this thesis, we describe how an algorithm for computing the generators of a
single cone given a constrained representation can be efficiently adapted to solve this
problem. This is well-known. This problem is equivalent to the problem of computing
the circuits of matrices for which there are applications in computational biology:
metabolic pathway analysis ([38]) and gene interaction analysis ([11]). We will defer
discussion of circuits of matrices and its applications until Chapter 9.

For the example cone in Figure 1.1, C = {x ∈ R2 : −x1 + 2x2 ≥ 0, 3x1 − x2 ≥ 0},
there are four cones in the set of cones:

(i). C1 = {x ∈ R2 : 3x1 − 2x2 ≥ 0,−x1 + 2x2 ≥ 0};

(ii). C2 = {x ∈ R2 : 3x1 − 2x2 ≥ 0,−x1 + 2x2 ≤ 0};

(iii). C3 = {x ∈ R2 : 3x1 − 2x2 ≤ 0,−x1 + 2x2 ≥ 0}; and

(iv). C4 = {x ∈ R2 : 3x1 − 2x2 ≤ 0,−x1 + 2x2 ≤ 0}.

We have depicted these four cones in Figure 1.2. These four cones completely cover
the space R2. The set {(2, 1), (2, 3), (-2, -1), (-2, -3)} is the set of all generators of
each of these four cones.

1.2. CONVEX POLYHEDRA 5

2

3

1

4

0

2 31 40

2x

x1

1

2

3

4

Figure 1.2: A set of cones in two dimensions.

1.2 Convex polyhedra

In this section, we discuss convex polyhedra and their properties. s The expression
λ1x1 + λ2x2 + ... + λkxk where λ1, λ2, ..., λk ∈ R+ and λ1 + λ2 + ... + λk = 1 is called
a convex combination of the points x1, x2, ..., xk ∈ Rn. A convex set is a set K ⊆ Rn

that is closed under convex combinations. More explicitly, if x1, x2, ..., xk ∈ K, then
λ1x1 + λ2x2 + ... + λkxk ∈ K for all λ1, λ2, ..., λk ∈ R+ where λ1 + λ2 + ... + λk = 1.

A set of points in Rn that satisfy a finite set of linear constraints is a convex set,
called a finitely constrained convex set: the set PA(b) := {x ∈ Rn : Ax ≥ b} where
A ∈ Rm×n and b ∈ Rm is a finitely constrained convex set. Note that a polyhedral
cone C(A) is thus a finitely constrained convex set: C(A) = PA(0).

For example, the set P = {x ∈ R2 : x1 ≥ 1,−x1+2x2 ≥ 0, x1+x2 ≥ 3, x1−x2 ≥ −2}
is a finitely constrained convex set. It is depicted in Figure 1.3.

2

3

1

4

0

2 31 40

2x

x1

Figure 1.3: A simple convex set in two dimensions.

A set of points in Rn generated by all the possible convex combinations of a finite
set of points in Rn is a convex set, and also, a set of points in Rn generated by all the
possible conic combinations of a finite set of points in Rn is a convex set. Moreover,
a set of points in Rn generated by all the possible convex combinations of a one set

6 CHAPTER 1. INTRODUCTION

of points in Rn plus all the possible conic combinations of another set of points in
Rn is also a convex set and it is called a finitely generated convex set; that is, the set
{λB + δD :

∑q
i=1 δi = 1, δ ∈ Rq

+, λ ∈ Rp
+} where B ∈ Rp×n and D ∈ Rq×n is finitely

generated convex set. Here, the set {λB + δD :
∑q

i=1 δi = 1, δ ∈ Rq
+, λ ∈ Rp

+} is all
the possible convex combinations of the rows of the matrix B plus all the possible
conic combinations of the rows of the matrix D. Note that a polyhedral cone is a
finitely generated convex set.

We shall see later in the thesis (Section 2.2) that if a convex set contains no lines,
then there is a unique set of minimal convex generators and a unique (up to positive
scaling) set of conic generators of any finitely generated convex set. If there are no
lines in the polyhedron, then we say that the polyhedron is pointed. Geometrically
speaking, we call the vertices of a pointed polyhedron the set of extreme points of
the polyhedron, and we call a vector that lies along an edge that goes to infinity in
one direction an extreme ray of the polyhedron. This definition of an extreme ray
coincides precisely with the definition of an extreme ray given earlier for cones when
we regard a cone as a polyhedron. We will see that every polyhedron has a finite
number of extreme points and extreme rays and that a polyhedron is generated by
a convex combination of its extreme points plus a conic combination of its extreme
rays; moreover, the set of extreme points and extreme rays is a minimal generating
set of the polyhedron.

The convex set in Figure 1.3 can also be represented as a finitely generated convex
set:

P = {λ1(1, 1)+λ2(2, 1)+δ1(1, 3)+δ2(1, 2)+δ3(2, 1) : δ1+δ2+δ3 = 1, δ ∈ R2
+, λ ∈ R2

+}.

The three points (1, 3), (1, 2), and (2, 1) are vertices of the polyhedron P, so they
are also the extreme points of P. The two vectors (1, 1) and (2, 1) lie along the two
edges that go to infinity, so they are the extreme rays of P. Thus, the polyhedron
P is generated by a convex combination of the extreme points of P plus a conic
combination of the extreme rays of P.

Analogously to the case for cones, a fundamental theorem is that a convex set is
finitely constrained if and only if it is finitely generated. We saw this with our small
example convex set of Figure 1.3, which we formulated as a finitely constrained
convex set and a finitely generated convex set. As for cones, in the forward direction
this theorem is commonly known as Minkowski’s theorem, and in the other direction,
it is known as Weyl’s theorem.

We define a convex polyhedron as a finitely constrained convex set or equivalently
a finitely generated convex set. In this thesis, as with cones, we are interested in
converting between different formulations of a convex polyhedron.

Fortunately, this problem of converting between different representations of a poly-
hedron can be reduced to the problem of converting between different representa-
tions of cones. To achieve this, we embed the polyhedron in a cone and perform the
conversion from one representation of a cone to another and then extract the poly-
hedron from the cone in its converted representation. Consequently, since converting
from one representation of a cone to another representation is essentially the same
problem in both directions, the same is true for polyhedra; that is, the problem of

1.3. LINEAR PROGRAMS 7

converting from a finitely constrained formulation to a finitely generated formula-
tion is equivalent to the problem of converting from a finitely generated formulation
to a finitely constrained formulation. In this thesis, we concentrate on the problem
of converting between different formulations of cones.

1.3 Linear programs

In this section, we define Linear Programs and discuss their properties. Linear pro-
gramming is a useful tool for integer programming. We only give a brief discussion
of linear programming; for a full description of linear programming see for example
[71].

A linear program involves minimising or maximising some linear function over the
set of points in a polyhedron. We define a linear program as the following:

LP := min{cx : x ∈ P} or LP := max{cx : x ∈ P}

where P ⊆ Rn is a polyhedron and c ∈ Rn is a cost vector. We often refer to the
set of points in the polyhedron P as the feasible points of the linear program LP .
By convention, we assume that we are minimising c and not maximising; indeed,
we can maximise c by minimising −c. We can also optimise cx + k over P where
k is some constant, but k can effectively be ignored since min{cx + k : x ∈ P} =
min{cx : x ∈ P} + k, so we usually omit it. The standard form of a linear program
that we consider is LP := min{cx : x ∈ P} where c ∈ Rn, and P is a polyhedron.

The standard algorithm for solving a linear program is the simplex method developed
by George Dantzig ([29]). This method starts from some vertex of the polyhedron
P and then iteratively moves along the edges of P from one vertex to another
adjacent vertex of lower cost. Crucially, at least one of the vertices of the polyhedron
P is an optimal solution of LP if LP has an optimal solution and P is pointed.
The method stops when we can no longer find an adjacent vertex of lower cost,
in which case, the current vertex is an optimal solution. The simplex algorithm has
proven to be extremely efficient for practical problems even though it has exponential
worst-case complexity for all current variations ([64]). But, it is an open problem
whether a variation exists that has polynomial time worst-case complexity. For more
information on linear programming, see [71].

There is also the class of methods called interior point methods. They solve a linear
program by generating a sequence of points in the interior of the polyhedron P that
converge to the optimal solution. Interior point methods are derived from the projec-
tive method proposed by Karmarkar in [61]. Interior point methods have polynomial
time worse-case complexity and they are particularly effective on extremely large
problem instances in the order of millions of variables (provided that the input data
is sparse). For more information on interior point methods, see [96].

8 CHAPTER 1. INTRODUCTION

1.4 Integer programs

We define an integer program as the following:

IP := min{cx : x ∈ (P ∩ Zn)}

where P is a rational polyhedron, and c ∈ Rn is a cost vector. So, an integer
program involves minimising some linear function over the set of integral points in
some polyhedron. We call the set of integer points in a polyhedron, F = (P ∩ Zn),
the feasible points of the integer program IP .

In general, integer programs are hard to solve. In contrast with linear programs
LP := min{cx : x ∈ P} where there is always a vertex of the polyhedron P that
is an optimal solution (assuming an optimal solution exists), the set of optimal
solutions of IP := min{cx : x ∈ (P ∩ Zn)} may lie in the interior of the polyhedron
P, which can make them difficult to find.

A common approach for solving an integer program is first to solve the linear pro-
gramming relaxation of the integer program. The linear programming relaxation
of an integer program IP := min{cx : x ∈ (P ∩ Zn)} is the linear program
LP := min{cx : x ∈ P}. Here, we have the same cost function and the same
polyhedron, but we have relaxed the requirement that the feasible solutions are
integral. If an optimal solution of the linear program is integral, then it is also a
feasible solution of the integer program, and moreover, it is also an optimal solution
of IP . Indeed, every feasible solution of IP is also a feasible solution of LP , and
therefore, an optimal solution of IP cannot have a lower cost than an optimal solu-
tion of LP . Therefore, by solving the linear programming relaxation, we potentially
also solve the original integer program. However, it often occurs that the optimal
solution of the linear programming relaxation is not integral, in which case, we need
other techniques to solve the integer program.

One approach is to reformulate the integer program using different and or additional
variables and constraints such that ideally the linear programming relaxation has an
integral optimal solution or at least the integer program is easier to solve for what-
ever reason. One such reformulation technique, called the cutting-plane algorithm,
involves adding additional constraints to create a new polyhedron P ′ such that
P ′ ⊆ P and (P ′∩Zn) = (P ∩Zn). Thus, IP = min{cx : x ∈ (P ′∩Zn)}. In doing so,
we hope that the optimal solution of the linear relaxation LP ′ = min{cx : x ∈ P ′}
is integral and thus optimal for IP . The basic procedure for finding additional con-
straints is as follows. We first solve the linear relaxation LP = min{cx : x ∈ P}
given an optimal solution x∗. If x∗ is integral, then it is an optimal solution of IP .
Otherwise, we search for a constraint πx ≤ π0 where π ∈ Rn and π0 ∈ R such that
πx ≤ π0 for all x ∈ (P ∩ Zn), but πx∗ > π0. The constraint πx ≤ π0 is called a cut.
Then, we add the constraint to the polyhedron P creating a new smaller polyhedron
P ′ = P ∩ {x ∈ Rn : πx ≤ π0}. By construction, P ′ ⊆ P and (P ′ ∩ Zn) = (P ∩ Zn).
Importantly, x∗ 6∈ P ′, and thus, LP ′ = min{cx : x ∈ P ′} has a different optimal
solution than LP = min{cx : x ∈ P}, which is hopefully integral. If the new optimal
solution is not integral, then we repeat the process and try to find a cut for the new
optimal solution of the linear relaxation.

1.5. GRÖBNER BASES 9

Another approach is called branch-and-bound. This approach involves splitting the
integer program IP into smaller sub-problems such that every feasible solution of IP

is also feasible for some sub-problem. The idea is that each integer sub-program is in
some way easier to solve than IP . Then, by solving each of the sub-problems, we can
solve IP . Specifically, we split the polyhedron P into two or more (usually disjoint)
smaller polyhedra P1,P2, ...,PK such that (P ∩ Zn) = [(P1 ∪ P2 ∪ · · · ∪ PK) ∩Zn].
Then, IP = mink IP k where IP k = min{cx : x ∈ (Pk ∩ Zn)} for k = 1, ..., K
since the optimal solution of IP must also be an optimal solution of IP k for some
k = 1, ..., k. This process of splitting the integer program IP into sub-problems
is called branching, and it can be applied recursive by further splitting each sub-
problem into sub-sub-problems and so on until each individual sub-problem is easy
to solve (e.g. the optimal solution of the linear relaxation is integral). Additionally,
in some circumstances, we can deduce that we do not actually need to solve a sub-
problem. Assume that we have found a feasible solution x ∈ (P ∩Zn) of IP perhaps
by solving one of the sub-problems. Then, we know that cx ≥ IP , or in other words,
the feasible solution provides an upper bound on IP . Also, the optimal value of
the linear relaxation of a sub-problem IP k provides a lower bound on the optimal
solution of IP k: IP k ≥ LP k = min{cx : x ∈ Pk)}. Therefore, if LP k ≥ cx, then
there can be no feasible solution of IP k that is better than x, and thus, we do not
need to solve IP k, in which case, we say that the sub-problem has been pruned by
bound.

We can combine the two techniques of cutting-planes and branch-and-bound giving
the technique called branch-and-cut. In this case, we apply the branch-and-bound
approach, and in addition, we apply the cutting-plane technique to sub-problems
within the branch-and-bound framework. Branch-and-cut is the standard technique
used for solving integer programs. The branch-and-cut technique is implemented in
most commercial software packages that solve integer programs. It is remarkably
effective and continues to be improved to this day. However, there still remain some
classes of problems for which this technique is ineffective. One such class of problems
is the “Market Split” problems (see [26]).

For a more detailed and thorough presentation of the theory and algorithms for
integer programming, see for example the texts [71, 95].

1.5 Gröbner bases

In this thesis, we present an alternative exact technique for solving integer programs;
this technique is called the Gröbner basis method. The basic framework of the
Gröbner basis method was first introduced by Graver in [45]. For a given integer
program, the term Gröbner basis refers to a set of vectors such that we can move
from any non-optimal feasible solution of the integer program to a better feasible
solution by subtracting a vector in the Gröbner basis from the feasible solution.
A Gröbner basis is thus a set of augmenting or improving vectors. More formally,
consider the integer program IP := min{cx : x ∈ (P ∩Zn)}. A Gröbner basis of IP

is a set of vectors G ⊆ Zn such that for every non-optimal solution x ∈ (P ∩ Zn) of
IP , there exists a vector u ∈ G such that x − u ∈ (P ∩ Zn) and c(x − u) < cx.

10 CHAPTER 1. INTRODUCTION

The definition of a Gröbner basis guarantees that if a feasible solution of IP is not
optimal, then we can improve it by some vector in the Gröbner basis, and a feasible
solution must be optimal if we cannot improve it by some vector in the Gröbner
basis. We can thus solve the integer program IP by first finding a feasible solution
and then iteratively improving the solution using vectors in the Gröbner basis until
we attain an optimal solution (assuming that an optimal solution exists). Note when
solving an IP using a Gröbner basis, we construct a strictly cost decreasing sequence
of feasible solutions.

Example 1.5.1. Consider the integer program IPA,c(b) := min{cx : x ∈ PA(b)∩Zn}
where

A =









2 3
−2 +1
−2 −1
1 −1









, b =









6
−4
−10
−1









, and c = (3, 4),

so IPA,c(b) = min{3x1+4x2 : 2x1+3x2 ≥ 6, 2x1−x2 ≤ 4, 2x1+x2 ≤ 10, x1−x2 ≥ -1}.
We have depicted the set of feasible solutions in Figure 1.4. In this diagram, the solid
lines represent the constraints and the area within the solid lines is the polyhedron
PA(b). The feasible solutions of IPA,c(b), the integer points within PA(b), are drawn
as dots within the polyhedron PA(b). The optimal solution of IPA,c(b) is the point
(2, 1).

(a)

�
�
�
�
�
�

Q
Q
Q
Q
Q
Q�
�
�
�
�
�
�
�A
A
A
A

6

0 1 2 3 4 x1
-0

1

2

3

4
x2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

r

r

r r

r r

r

Figure 1.4: The set of feasible solutions for IPA,c(b).

Consider the set G = {(1, 0), (0, 1)}. In Figure 1.5(a), we have drawn the vectors of
G onto the set of feasible solutions of IP where it is possible to a use a vector from
G to move from one feasible solution to another. For example, we can improve the
feasible solution (2, 3) using the the vector (0, 1) in G to move to the feasible solution
(2, 3)−(0, 1) = (2, 2). However, we cannot improve the non-optimal feasible solution
(1, 2) since both points (1, 2)−(1, 0) = (0, 2) and (1, 2)−(0, 1) = (1, 1) are infeasible.
Therefore, this set is not a Gröbner basis of IP .

The point (1, 2) is the second best solution of IPA,c(b), so if we improved (1, 2),
we must arrive at the optimal solution (2, 1). Therefore, we must have the vector
(-1, 1) = (1, 2)−(2, 1) in a Gröbner basis of IPA,c(b). Let G′ := {(1, 0), (0, 1), (-1, 1)}.
This set G′ is a Gröbner basis of IPA,c(b). In Figure 1.5(a), we have drawn the
vectors of G′ onto the set of feasible solutions. We can verify from this picture that
indeed every non-optimal solution can be improved using a vector in G′.

1.5. GRÖBNER BASES 11

(a)

�
�
�
�
�
�

Q
Q
Q
Q
Q
Q�
�
�
�
�
�
�
�A
A
A
A

6

0 1 2 3 4 x1
-0

1

2

3

4
x2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

r

r

r r

r r

r

-

- -
6

6 6

6
(b)

�
�
�
�
�
�

Q
Q
Q
Q
Q
Q�
�
�
�
�
�
�
�A
A
A
A

6

0 1 2 3 4 x1
-0

1

2

3

4
x2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

r

r

r r

r r

r

-

- -
6

6 6

6

@
@I

@
@I

Figure 1.5: The possible improvements by vectors in G and G′.

The basic and well-known Gröbner basis method for an integer program involves
first computing a Gröbner basis and then solving the integer program using the
vectors in the Gröbner basis by iteratively improving a given feasible solution until
we attain an optimal solution (see [45, 25]). Almost all of the computation time
of the Gröbner basis method is spent in first computing the Gröbner basis for an
integer program; once we have a Gröbner basis, we can optimise the integer program
in a comparatively small amount of time.

The Gröbner basis method is an exact local search method. It is exact in the sense
that it is guaranteed to find the optimal solution if one exists and given sufficient
time and computing resources. This approach differs from other local search methods
such as tabu search and simulated annealing, which are heuristics for which there is
no guarantee that the solution returned by these methods is optimal.

In some cases, for example in stochastic integer programming (see for example [83]),
we want to solve not just one integer program but a set of many different but related
integer programs. The Gröbner basis method is well suited to this situation. Here, the
set of different integer programs consists of all integer programs that have the same
given cost function and the same given set of equality and inequality constraints
except that the constant term in a constraint (the right-hand-side) is allowed to
vary from one integer program to another. More formally, this is the set of integer
programs IPA,c(b) where A and c are fixed, but b is allowed to vary, and we write
this set as IPA,c(·) := {IPA,c(b) : b ∈ Rm}.

Above, we considered a Gröbner basis of one particular integer program. We now
define a Gröbner basis of a set of integer programs as a set of integer vectors that
is simultaneously a Gröbner basis for every integer program in the set. Specifically,
a set G ⊆ Zn is a Gröbner basis of IPA,c(·) if G is a Gröbner basis of IPA,c(b) for
all b ∈ Rm.

Example 1.5.2. Consider the integer program from Example 1.5.1 above. The set
G′ = {(1, 0), (0, 1), (-1, 1)} is a Gröbner basis of IPA,c(b) where b = (6, -4, -10, -1),
but it is not a Gröbner basis of IPA,c(·).

Consider the integer program IPA,c(b
′) where b′ = (6, -4, -10, 1); the feasible set is de-

picted in 1.6(a). Note that there are only two feasible solutions of IPA,c(b
′), and they

are {(2, 1), (3, 2)}. Here, (2, 1) is the optimal solution, and (3, 2) is a non-optimal
solution. So, a Gröbner basis of IPA,c(b

′) must contain the vector (1, 1), which is the

12 CHAPTER 1. INTRODUCTION

only vector that can improve (3, 2). Let G′′ = {(1, 0), (0, 1), (-1, 1), (1, 1)}. The set
G′′ is also not a Gröbner basis of IPA,c(·).

(a)

�
�
�
�
�
�

Q
Q
Q
Q
Q
Q�
�
�
�
�
�
�
�A
A
A
A

6

0 1 2 3 4 x1
-0

1

2

3

4
x2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

r

r

(b)

�
�
�
�
�
�

�
�
�
�
�
�

A
A
A
A
A
A
A
A

Q
Q
Q
Q
Q
Q
Q
Q
Q

6

0 1 2 3 4 x1
-0

1

2

3

4
x2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

r

r

r

r

@
@I

-�
��6

(c)

�
�
�
�

Q
Q
Q
Q
Q
Q�
�
�
�

A
A
A
A
A
A
A
A

�
�
�
�

Q
Q
Q
Q
Q
Q�
�
�
�

A
A
A
A
A
A
A
A

6

0 1 2 3 4 x1
-0

1

2

3

4
x2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

r

r

rr

r

--
6

6

@
@I

@
@I

@
@I

�
��

HHHHj

Figure 1.6: The feasible sets of IPA,c(b
′), IPA,c(b

′′), and IPA,c(b
′′′).

Additionally, consider the set integer program IPA,c(b
′′) where b′′ = (8, -5, -7, -1); the

feasible set is depicted in 1.6(b). G′′ is not a Gröbner basis of IPA,c(b
′′) since the non-

optimal point (3, 1) cannot be improved. In this case, (1, 2) is the optimal solution and
(3, 1) is the second best solution. Therefore, we need the vector (2, -1) = (3, 1)−(1, 2)
in any Gröbner basis of IPA,c(b

′′). Let G′′′ = {(1, 0), (0, 1), (-1, 1), (1, -1), (2, -1)}.
Again, G′′′ is not a Gröbner basis of IPA,c(·).

Finally, consider the set integer program IPA,c(b
′′′) where b′′′ = (6, -6, -6, -2); the

feasible set is depicted in 1.6(c). G′′ is not a Gröbner basis of IPA,c(b
′′′) since the non-

optimal point (3, 0) cannot be improved. In this case, (0, 2) is the optimal solution and
(3, 0) is the second best solution. Therefore, we need the vector (3, -2) = (3, 0)−(0, 2)
in any Gröbner basis of IPA,c(b

′′′).

Let G′′′ = {(1, 0), (0, 1), (-1, 1), (1, -1), (2, -1), (3, -2)}. At last, G′′′ is a Gröbner basis
of IPA,c(·). This is certainly not obvious even for such a small example.

A fundamental result in the theory of Gröbner bases of integer programs is that
there always exists a finite set of vectors that is a Gröbner basis of IPA,c(·). Another
fundamental result is that we can compute a finite Gröbner basis of IPA,c(·). The
algorithm for computing a Gröbner bases of IPA,c(·) is called the completion pro-
cedure or the Buchberger algorithm named after Bruno Buchberger who discovered
the algorithm (see [14]).

The Gröbner basis method for solving a set of integer programs (i.e. a finite subset of
IPA,c(·)) involves first computing a Gröbner basis of IPA,c(·), then solving each indi-
vidual integer program in the set using the vectors in the Gröbner basis as described
above. As in the case for one integer program, almost all of the computation time of
the Gröbner basis method for a set of integer programs is spent in first computing
the Gröbner basis for the set of integer programs; once we have a Gröbner basis,
we can optimise all of the individual integer programs in the set in a comparatively
small amount of time.

Since there is an algorithm for computing a Gröbner basis of IPA,c(·), the basic
Gröbner basis method for solving one integer program IPA,c(b) actually involves
computing a Gröbner basis of IPA,c(·). This approach of first computing a Gröbner

1.5. GRÖBNER BASES 13

basis of IPA,c(·) is very powerful when we wish to solve many different integer
programs in the set IPA,c(·), but in the more common case when we wish to only
a particular integer program, it is disadvantageous to compute a Gröbner basis
of IPA,c(·) since we often compute a much larger set than is necessary. Indeed, a
Gröbner basis of IPA,c(·) may be much larger than a Gröbner basis of IPA,c(b), and
in general, the larger the size of the Gröbner basis the longer it takes to compute.

Fortunately, there is variation of the algorithm for computing a Gröbner basis of
IPA,c(·) that computes what is called a truncated Gröbner basis, which is more
specific to a particular integer program. A truncated Gröbner basis of an integer
program IPA,c(b) consists of the vectors in a Gröbner basis for IPA,c(·) except for
those vectors that cannot be used to move from one feasible solution of the integer
program of IPA,c(b) to another feasible solution – such vectors are essentially too
long to be useful; in other words, we exclude vectors v ∈ Zn for which there do not
exist two feasible solutions x and y of IPA,c(b) such that x − y = v. A vector that
cannot move between two feasible solutions of IPA,c(b) is never needed in a Gröbner
basis of IPA,c(b), and thus, a truncated Gröbner basis of IPA,c(b) is thus a Gröbner
basis of IPA,c(b) since we have not thrown away any vectors that we might need.
A vector that can step between two feasible solutions of IPA,c(b) still may not be
strictly needed in a Gröbner basis of IPA,c(b), but hopefully, there are not too many
unnecessary vectors in the truncated Gröbner basis.

Example 1.5.3. We saw in Example 1.5.2 that the set

G′′′ = {(1, 0), (0, 1), (-1, 1), (1, -1), (2, -1), (3, -2)}

is a Gröbner basis of IPA,c(·) for the integer program IPA,b(c) in Example 1.5.1
above. In Figure 1.7, we have drawn the vectors of G′′′ onto the set of feasible so-
lutions of IPA,b(c) where it is possible to a use a vector from G′′′ to move from
one feasible solution to another. Note that the vectors (2, -1) and (3, -2) are never
used. They are too long to fit inside the feasible set of IPA,c(b). Therefore, the set
{(1, 0), (0, 1), (-1, 1), (1, 1)} is a truncated Gröbner basis of IPA,c(b).

�
�
�
�
�
�

Q
Q
Q
Q
Q
Q�
�
�
�
�
�
�
�A
A
A
A

6

0 1 2 3 4 x1
-0

1

2

3

4
x2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

r

r

r r

r r

r

-

- -
6

6 6

6

@
@I

@
@I
�

��
�

��

�
��

�
��

Figure 1.7: The feasible set of IPA,c(b) with vectors form G′′′.

Note that the set {(1, 0), (0, 1), (-1, 1)} is a Gröbner basis of IPA,c(b) as shown previ-
ously. So, although the truncated Gröbner basis of IPA,c(b) is smaller than a Gröbner
basis of IPA,c(·), it is still larger than strictly needed for a Gröbner basis of IPA,c(b).

14 CHAPTER 1. INTRODUCTION

A truncated Gröbner basis of IPA,c(b) is potentially much smaller than a Gröbner
basis of IPA,c(·); it is possibly just an empty set, which occurs when the set of feasible
solutions of IPA,c(b) is empty or contains only one solution – every vector is then
too long by definition. Crucially, we can compute truncated Gröbner bases, and we
can do so without first computing a Gröbner basis of IPA,c(·) and then removing
vectors that are too long. Truncated Gröbner bases for integer programs in their
most general form were first introduced by Weismantel and Thomas in [85], and in
a simplified form in [92]. In this thesis, we extend the techniques proposed in [85]
for computing truncated Gröbner bases.

The truncated Gröbner basis approach is still not adequate though since a trun-
cated Gröbner basis may still be prohibitively larger than is necessary for solving a
particular integer program, so we still need to improve upon this approach. Thus,
in this thesis, we look at ways to reduce the size of the truncated Gröbner basis.

The size of a truncated Gröbner basis of an integer program depends on the size of
the set of feasible solutions of the integer program; in general, the larger the feasible
set of the integer program the larger the truncated Gröbner basis since the larger
the feasible set the more vectors that fit inside it. But, the size of the feasible set
does not necessarily reflect the difficulty of solving the integer program. We can
remedy this by introducing a bound constraint on the cost of feasible solutions (an
upper bound for minimisation and a lower bound for maximisation) to reduce the
size of the feasible set and thus to strengthen truncation. The value of this bound
can be computed from a given good feasible solution. For example, if x̄ is a feasible
solution of IPA,c(b), then cx ≤ cx̄ is a bound constraint for IPA,c(b). Importantly,
introducing this bound constraint does not increase the size of a truncated Gröbner
basis, and it has the potential to drastically reduce the size of a truncated Gröbner
basis.

Example 1.5.4. The set {(1, 0), (0, 1), (-1, 1), (1, 1)} is a truncated Gröbner basis
of IPA,c(b) from Example 1.5.1 above. Now, consider that we have found the feasible
solution (1, 2). This is second best solution, so it provides a very tight upper bound
on the optimal solution. The cost of the point (1, 2) is (3, 4) · (1, 2) = 11. If we
introduce the constraint 3x1 + 4x2 ≤ 11 into the integer program, then there are
only two feasible solutions, and the set {(-1, 1)} is a truncated Gröbner basis of the
bounded integer program.

�
�
�
�
�
�

Q
Q
Q
Q
Q
Q�
�
�
�
�
�
�
�A
A
A
A

Z
Z
Z
Z
Z
Z
Z
Z

6

0 1 2 3 4 x1
-0

1

2

3

4
x2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

r

r

@
@I

Figure 1.8: The bounded feasible set of IPA,c(b) with vectors from G′′′.

1.5. GRÖBNER BASES 15

Another possible reason for an unnecessarily large truncated Gröbner bases is the
presence of unnecessary constraints. A constraint is unnecessary if we can relax it
(i.e. remove it from the formulation) and still solve the integer program meaning
that the optimal solution of the relaxed integer program is the optimal solution of
the original integer program. Redundant constraints are unnecessary since relaxing
redundant constraints does not change the set of feasible solutions and thus does
not change the optimal solution. Irredundant constraints may also be unnecessary
particularly when they are in some sense not active around the optimal solution. To
avoid computing with unnecessary constraints, we solve a hierarchy of relaxations
of the integer program. This involves the following steps. Initially, we choose some
initial relaxation of the integer program that has an optimal solution; in particular,
we choose what is called the Gomory group relaxation named after Gomory who
first suggested this relaxation in [43]. Then, we solve the relaxation by computing
a Gröbner basis and iteratively improving a given feasible solution. If the optimal
solution of the relaxation is optimal for the original problem we can stop, otherwise
we add a relaxed constraint that is violated by the optimal solution of the relax-
ation creating what is called an extended group relaxation and repeat. Crucially,
we can compute the Gröbner basis for each iteration incrementally. By only adding
constraints that are violated, we potentially avoid adding unnecessary constraints.

Combining the technique of adding a bound constraint and the technique of solving
a hierarchy of relaxations gives a novel Gröbner basis approach to solve a particular
integer program. This novel Gröbner basis approach performs better than other
general Gröbner basis methods because it can use structure specific to the particular
integer program. Solving a hierarchy of group relaxations was explored in [43, 94,
59, 87], and truncated methods were explored in [85]; however, combining these two
approaches and strengthening truncation by using bounds has not been done before.

Gröbner basis methods can also be applied to the integer feasibility enumeration
problem where we wish to enumerate all of the integer feasible solutions. Tayur et
al. in [83] showed that we can use a Gröbner basis to enumerate all feasible solutions.
We present this enumeration method in this thesis and discuss how it can help to
solve optimisation problems.

The general concept of a Gröbner basis of an integer program, also known as a
test set, was first introduced by Graver in 1975 in [45]. The test sets that Graver
introduced, called Graver bases, are Gröbner bases of a set of integer programs
with a particular structure. Specifically, a Graver basis is a set of integer vec-
tors that is simultaneously a Gröbner basis for the family of integer programs
IPA(c, u, b) := min{cx : u ≥ Ax ≥ b, x ∈ Zn} where A ∈ Rm×n is fixed and
c ∈ Rn, b ∈ Rm, and u ∈ Rm are allowed to vary. Here, we define a Gröbner basis
of IPA(c, u, b) in the same way as a Gröbner bases of IPA,c(b). In 1991, Conti and
Traverso ([25]) first defined Gröbner bases of IPA,c(·) and showed that a Gröbner
basis of a special type of polynomial ideal in algebraic geometry was essentially
a Gröbner basis of IPA,c(·) (see also [3]); these special types of polynomial ideals
are called toric ideals or more generally lattice ideals ([81]). See [28, 10, 3] for a
general introduction to polynomial ideals in algebraic geometry. A Gröbner basis
of an integer program is a translation of these Gröbner bases of certain polynomial
ideals into the context of integer programming; it is from Gröbner bases of polyno-

16 CHAPTER 1. INTRODUCTION

mial ideals that Gröbner bases of integer programs received their name.1 In 1995,
Thomas translated results on Gröbner bases of polynomial ideals from algebraic
geometry into an integer programming context ([86]). The main algorithm for com-
puting Gröbner bases of integer programs is derived from the Buchberger algorithm
for computing Gröbner bases of polynomial ideals ([14]). Most of the results and
algorithms concerning Gröbner bases of integer programs have an analogous result
or algorithm in the context of Gröbner bases of polynomial ideals. We will present
the results in an integer programming context following the lead of Thomas in [86]
and not an algebraic context. We refer the reader to [83, 92] for a description of the
link between Gröbner bases of integer programs and Gröbner bases of polynomial
ideals. Also, for a very brief summary of the relationship, see Appendix A.

1.6 Markov bases

A Markov basis relates to the set feasible solutions of a set of discrete or integer
points in a polyhedron F = (P ∩Zn), or in other words, the set of feasible solutions
of an integer program. We refer to the set F = (P∩Zn) as a fiber. A Markov basis of
a fiber is a set of integer vectors such that we can move from any point in the fiber
to any other point in the fiber in a finite number of steps via other points in the
fiber using the vectors in the Markov basis. We can move from one point to another
by adding or subtracting a vector in the Markov basis. Note that when moving from
one point to another we must stay within F . More formally, a set of vectors M ⊆ Zn

is a Markov basis of F if, for every pair of points x, y ∈ F , there exists a sequence of
points (x1, x2, ..., xk) ⊆ F where x1 = x and xk = y such that either xi − xi+1 ∈ M

or xi+1 − xi ∈ M for all i = 1, ..., k − 1.

We can describe Markov bases very nicely and succinctly using the concept of con-
nected graphs. Consider the graph G(F , M) where the nodes of the graph are the
points in F and there is an edge between two nodes x, y ∈ F if either x− y ∈ M or
y − x ∈ M (the graph is undirected). Then, M is a Markov basis of F if and only
if the graph G(F , M) is connected. Recall that a graph is connected if there exists
a path between any two nodes in the graph, and a path from x to y in G(F , M) is
a sequence of points (x1, x2, ..., xk) ⊆ F where x1 = x and xk = y such that either
xi − xi+1 ∈ M or xi+1 − xi ∈ M for all i = 1, ..., k − 1.

Example 1.6.1. Consider the fiber FA(b) = (PA(b) ∩ Zn) where the polyhedron
PA(b) is as defined in Example 1.5.1. Let M = {(1, 0), (0, 1)}. Then, M is a Markov
basis of FA(b). We can see this by examining the graph G(FA(b), M) as depicted in
Figure 1.9(a). This graph is connected, so M is a Markov basis of FA(b).

On the other hand, the set M ′ = {(1, 0), (-1, 1)} is not a Markov basis of FA(b).
The graph G(FA(b), M ′) depicted in Figure 1.9(b) is not connected because the point
(3, 4) is isolated from the rest of the graph.

1A Gröbner basis of a polynomial ideal is a particular generating set of the ideal which has
certain properties. There are many uses for Gröbner bases: for example, deciding equality of ideals,
deciding ideal membership, and solving polynomial systems of equations.

1.6. MARKOV BASES 17

(a)

�
�
�
�
�
�

Q
Q
Q
Q
Q
Q�
�
�
�
�
�
�
�A
A
A
A

6

0 1 2 3 4 x1
-0

1

2

3

4
x2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

r

r

r r

r r

r
(b)

�
�
�
�
�
�

Q
Q
Q
Q
Q
Q�
�
�
�
�
�
�
�A
A
A
A

6

0 1 2 3 4 x1
-0

1

2

3

4
x2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

r

r

r r

r r

r

@
@

@
@

Figure 1.9: The graphs G(FA(b), M) and G(FA(b), M ′).

Three applications of Markov bases are computing Gröbner bases, sampling from
fibers, and local search heuristics. Next, we discuss these applications.

We need Markov bases to compute Gröbner bases of integer programs. The first
stage of computing a Gröbner bases of an integer program is computing a Markov
basis of the feasible solutions of the integer program. This is often the most expensive
part of the Gröbner basis computation and many of the improvements for comput-
ing Gröbner bases presented in this thesis are due to improvements for computing
Markov bases.

Markov bases can be used to sample from a finite fiber. The fiber may be too large to
enumerate, and instead, we wish to find a representative subset of the fiber. We can
construct such a representative set using a Markov basis as follows: first, we choose
some initial point in the fiber; second, we add the point to the sample; thirdly, using
the vectors in the Markov basis, we move randomly from one point in the fiber to
another a certain number of times and then add the current point to the sample and
repeat. This technique is called Markov chain Monte Carlo (see for example [40]);
Markov bases are named after Markov chains. It is important that there is a non-
zero probability of sampling any point in the fiber, which is guaranteed by definition
of a Markov basis. One of the applications of this approach is in algebraic statistics
to test validity of statistical models via sampling (see Diaconis and Sturmfels [30]).
Another area of application is in computational biology for problems arising from
phylogenetic trees (see [33]).

Markov bases are used by local search heuristics to solve integer programs although
they are not known under this name. In a local search method, we start from some
given feasible solution, and we iteratively move to another feasible solution within
some set of candidate feasible solutions called a neighbourhood of the current feasible
solution. We desire that, given any starting point of the local search algorithm, it
is at least possible to reach the global optimum of the integer program by taking
a finite number of steps from one feasible solution to another. Often this property
is called reachability. One possible way to define a neighbourhood is using a set of
vectors where the neighbourhood consists of all feasible solutions given by adding
or subtracting a vector in the set of vectors from the current feasible solution. The
reachability property is satisfied for this definition of a neighbourhood precisely
when the set of vectors is a Markov basis of the set of feasible solutions.

Under some circumstances, we can find a Markov basis of a fiber easily; however, in

18 CHAPTER 1. INTRODUCTION

general, this is not the case. It is always possible to find a Markov basis of a superset
of the fiber easily (which is a standard approach for local search heuristics); in this
case, we allow paths to be infeasible for the original fiber but they still must be
feasible for the superset of the fiber and they still must connect every two points.
However, this is not always desirable. One of the topics we address in this thesis is
how to compute Markov bases of fibers.

Most existing approaches for computing Markov bases compute a Markov basis that
is simultaneously a Markov basis for each fiber in a set of different but related fibers
analogously to Gröbner bases. Here, the set of different fibers consists of all possible
fibers given a set of constraints where the coefficients of the variables are fixed and
the constant term (right-hand-side) is allowed to vary. More formally, this is the
set of fibers FA(b) = (PA(b) ∩ Zn) where the constraint matrix A is fixed and b is
allowed to vary, and we write this set as FA(·) := {FA(b) : b ∈ Rm}. In this thesis,
we present a new approach for computing Markov bases of FA(·). This approach
computes a Markov basis of FA(·) incrementally. Initially, we relax some constraints
of the fiber such that we can easily find a Markov basis of the relaxed fiber. Then, we
iteratively add a relaxed constraint and incrementally compute the Markov basis for
the new relaxed fiber and repeat. After we have added all of the relaxed constraints,
we must have a Markov basis of the original fiber.

Example 1.6.2. Consider the fiber FA(b) = (PA(b)∩Zn) as in Example 1.6.1 above.
Again, let M = {(1, 0), (0, 1)}. Then, M is a Markov basis of FA(b) as we saw in
the previous example. However, M is not a Markov basis of FA(·).

Consider b′ = (6, -4, -10, 1). The fiber FA(b′) contains only two points: (2, 1) and
(3, 2) (see Figure 1.10(a)), and thus, any Markov basis of FA(·) needs to contain the
vector (1, 1) = (3, 2) − (2, 1) (or (-1, -1)).

(a)

�
�
�
�
�
�

Q
Q
Q
Q
Q
Q�
�
�
�
�
�
�
�A
A
A
A

6

0 1 2 3 4 x1
-0

1

2

3

4
x2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

r

r

(b)

�
�
�
�
�
�

Q
Q
Q
Q
Q
Q�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A

6

0 1 2 3 4 x1
-0

1

2

3

4
x2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

r

r

Figure 1.10: The graphs G(FA(b′), M) and G(FA(b′′), M).

Also, consider b′′ = (6, -4, -5, -1). The fiber FA(b′) also contains only two points:
(2, 1) and (1, 2) (see Figure 1.10(b)), and thus, any Markov basis of FA(·) needs to
contain the vector (-1, 1) = (1, 2) − (2, 1) (or (1, -1)).

The set M ′′ = {(1, 0), (0, 1), (1, 1), (-1, 1)} is a Markov basis of FA(·), but this is
certainly not obvious.

In some circumstances, we do need a Markov basis of FA(·), but sometimes, we want
a Markov basis for only one fiber FA(b). As with Gröbner bases, a Markov basis of

1.6. MARKOV BASES 19

FA(·) may be much larger than a Markov basis of one fiber FA(b), so we would prefer
to compute a Markov basis which is specific to FA(b). Analogously, to truncated
Gröbner bases, we define truncated Markov bases: a truncated Markov basis of a
set of feasible solutions is a Markov basis for FA(·) after removing all vectors that
are too long to be useful. Previously, to compute a truncated Markov basis required
first computing a Markov basis of FA(·) and then removing the vectors that were
too long. But, using our incremental approach for computing Markov bases of FA(·),
we can truncate at each iteration, and thus, in most cases, we never compute the
entire Markov basis of FA(·).

Example 1.6.3. Consider again the fiber FA(b) = (PA(b)∩Zn) from Example 1.6.1.
We saw previously that M ′′ = {(1, 0), (0, 1), (1, 1), (-1, 1)} is a Markov basis of FA(·).
Also, M ′′ is a truncated Gröbner basis of FA(b) and we cannot remove any vectors
from M ′′ since they all fit within the fiber FA(b) (see Figure 1.11(a)). In this case,
truncation has no effect on the size of the Markov basis.

(a)

�
�
�
�
�
�

Q
Q
Q
Q
Q
Q�
�
�
�
�
�
�
�A
A
A
A

6

0 1 2 3 4 x1
-0

1

2

3

4
x2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

r

r

r r

r r

r

@
@

@
@

�
�

�
�

�
�

�
�

(b)

�
�
�
�
�
�

Q
Q
Q
Q
Q
Q�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A

6

0 1 2 3 4 x1
-0

1

2

3

4
x2

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

r

r

r

@
@

Figure 1.11: The graphs G(FA(b), M ′′) and G(FA(b′′′), M ′′).

However, suppose that b′′′ = (6, -4, -6, -1). The fiber FA(b′′′) is depicted in Figure
1.11(b). In this case, the vector (1, 1) does not fit within the fiber, and hence, the set
M ′′′ = {(1, 0), (0, 1), (-1, 1)} is a truncated Markov basis of FA(b′′′).

Markov basis algorithms can also be applied to the integer feasibility problem. In
general, integer feasibility problems are as difficult to solve as integer programs.
Here, we want a feasible solution of a given fiber. Integer feasibility problems, like
integer programs, are very useful in modelling a wide variety of problems such as
time-tabling problems. Actually, all Markov basis algorithms that we know of can
solve the integer feasibility problem while computing a Markov basis for a very small
computational overhead; indeed, the notion of a Markov basis is strongly related
to feasibility. This is true of our incremental approach, which as a consequence
of computing Markov bases faster than other algorithms, also computes feasible
solutions faster than other algorithms. Finding a feasible solution is important for
Gröbner basis methods since they require an initial feasible solution as well as a
Markov basis.

Markov bases also have a direct analogy in algebraic geometry: a Markov basis
corresponds to a generating set of a lattice ideal (see [30]). As with Gröbner bases,
we will present the results on Markov bases in an integer programming context.
Also, for a very brief formal statement and proof of the result that Markov bases
correspond to generating sets of lattice ideas, see Appendix A.

20 CHAPTER 1. INTRODUCTION

1.7 Outline

In this section, we describe the structure of the thesis and highlight original contri-
butions. The thesis is divided into two main parts. The first part deals with Markov
bases and Gröbner bases and their applications (Chapters 3 to 7) and the second
part deals with extreme rays of cones and circuits of matrices and their applications
(Chapters 8 and 9). These two parts to the thesis are separate and self contained.

Before presenting the two main parts of thesis, we first present the necessary back-
ground material in Chapter 2. Here, we formally define and discuss some of the
concepts in this introduction and some additional relevant concepts and extend
them to lay the framework for the rest of the thesis. The results in the chapter are
all well-known or variants of well-known results. We try to present the results in a
concise way to facilitate the presentation of results in subsequent chapters and to
establish notation for the rest of the thesis. We define and discuss relevant concepts
and results for linear spaces, polyhedral cones, convex polyhedra, integer lattices,
integer programs, and linear programs. Also, we define and discuss lattice programs,
linear space programs, and term orders. A linear space program is a reformulation
of a linear program and a lattice program is a reformulation of an integer program;
they are extremely useful when presenting the theory of and algorithms for Gröbner
bases and Markov bases. A term order is a special total ordering on the set of feasi-
ble solutions. We need term orders to compute Gröbner bases and Markov bases of
lattice programs.

In the next two chapters, we formally define Markov bases and Gröbner bases. The
definitions here differ from the definitions given in this introduction in that we define
Markov bases and Gröbner bases in the context of lattice programs. Most of concepts
and theory in these chapters are known in some form or another. The aim of these
chapters is to bring together theory on Markov bases and Gröbner bases and present
it in a coherent form in a integer programming context. Chapter 3 contains formal
definitions of Markov bases. In the next chapter, Chapter 4, we describe Gröbner
bases of lattice programs and present some novel results on the size of truncated
Gröbner bases for equality knapsack problems.

In Chapter 5, we present the completion procedure, which is the basic algorithm
for computing Gröbner bases. We present this chapter on computing Gröbner bases
before the chapter on computing Markov bases (Chapter 6) because the algorithms
for computing Markov bases rely heavily the completion procedure. Most of results
and algorithms in this chapter are known, but we do present some results in a lattice
programming context that were previously only known in an computational algebraic
geometry context. We describe the truncated version of the completion procedure
where we describe new ways of improving the performance of truncation. Next,
we detail some improvements to the completion procedure. These improvements
are mostly known results, although, for some results, this is the first time they have
been translated from computational algebraic geometry into an integer programming
context. Also, we do present a new approach to optimise the process of finding a
reductor in Section 5.3.3, which turns out to be very efficient in practice. At the end
of this chapter, we present some alternative approaches to computing Gröbner base.

1.7. OUTLINE 21

The next chapter on computing Markov bases contains one of our main contribu-
tions. There are three main methods for computing a Markov basis of a lattice: the
algorithm of Hosten and Sturmfels in [57] called the “Saturation” algorithm; the al-
gorithm of Bigatti, LaScala, and Robbiano in [12] that we call the “Lift-and-Project”
algorithm, and our algorithm ([52]) called the “Project-and-Lift” algorithm as dis-
cussed in this introduction. Computationally, the Project-and-Lift algorithm is the
fastest of the three algorithms in general ([52]), and we provide computational re-
sults that support this claim. The Project-and-Lift algorithm is fundamental to the
later algorithms we present to optimise integer programs and to solve the integer fea-
sibility problem. Also, this chapter contains the novel “truncated Project-and-Lift”
algorithm. This algorithm is based upon our Project-and-Lift algorithm combined
with the truncated completion procedure.

The next chapter focuses on applying the algorithms from the previous chapters.
First, we present an application of Markov bases in algebraic statistics in some
detail. Using the algorithms that are developed in this thesis for computing Markov
bases, we were able to solve an open challenge in algebraic statistics, which we
explain in the chapter. Next, we describe an application using Markov bases to
show that a semigroup is not normal. Then, we show how we can solve the integer
feasibility problem using an extension of the truncated Markov basis algorithm, and
we present results of applying this approach to solve equality constrained integer
knapsacks ([2]). Then, we present a new algorithm for optimising integer programs,
which is also based upon an extension of the truncated Markov basis algorithm, and
we present some preliminary but promising results. Lastly, we discuss an approach
to the feasibility enumeration problem, which is based upon the approach by Tayur
et al. in [83], and we discuss how this method could be used in our optimisation
algorithm for integer programs.

The next two chapters constitute part two of the thesis. In Chapter 8, we describe
the double-description-method for computing extreme rays of cones ([69, 37]). This
method is well-known and we present new optimisations for the method that prove
effective in practice. In the next chapter, Chapter 9, we describe how the double-
description-method for computing extreme rays of cones can be adapted to compute
circuits of matrices. This is well-known ([48, 93, 39, 91]). Then, we present some com-
putational results from using our optimisations for the double-description-method.

Lastly, in Appendix A, we describe the concepts in computational algebraic geometry
that correspond to Gröbner bases of integer programs and Markov bases of fibers.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Foundations

In this chapter, we present fundamental results that are used in the rest of the thesis
with the intention of reminding the reader of the result and to establish notation.
All the theory presented in this section is well-known or at least readily derivable
from well-known theory, so some proofs have been omitted. We have repeated some
results here from the introduction for completeness.

We define and discuss relevant concepts and results for linear spaces, polyhedral
cones, convex polyhedra, integer lattices, integer programs, and linear programs,
linear space programs, lattice programs, and term orders.1

2.1 Linear spaces

In this section, we introduce linear spaces. We need the concept of linear spaces
when we describe polyhedral cones in the next section and when describing linear
space programs in Section 2.8.

The expression λ1x1 + λ2x2 + ... + λkxk where λ1, λ2, ..., λk ∈ R is called a linear

combination of x1, x2, ..., xk ∈ Rn.

Definition 2.1.1. A linear space is a set S ⊆ Rn that is closed under linear
combinations.

More explicitly, if x1, x2, ..., xk ∈ S, then λ1x1 + λ2x2 + ... + λkxk ∈ S for all
λ1, λ2, ..., λk ∈ R; in other words, a linear space is a vector subspace of Rn. The
set S(A) := {x ∈ Rn : Ax = 0} where A ∈ Rm×n is a linear space, called a finitely

constrained linear space. The set {λB : λ ∈ Rk} where B ∈ Rk×n is also a linear
space, called a finitely generated linear space. From linear algebra, we know that
every linear space is finitely generated and finitely constrained. We can convert be-
tween constrained representations of linear spaces and generator representations of
linear spaces using Gaussian elimination.

1The sections on linear spaces, polyhedral cones, convex polyhedra, and integer lattices follow
the approach of Trotter in [90]. Some terminology is non-standard.

23

24 CHAPTER 2. FOUNDATIONS

Definition 2.1.2. The set S∗ = {x ∈ Rn : xs = 0 ∀s ∈ S} is the dual2 of a linear
space S ⊆ Rn.

The duals of linear spaces are also linear spaces (see Lemma 2.1.3). Given a vector
a ∈ Rn if ax = 0 for all x ∈ S, we say that ax = 0 is a valid equality for S. So,
the dual space of S∗ precisely determines the set of valid equalities of S.

Lemma 2.1.3. Let S ⊆ Rn be a linear space.

(i). S∗ is a subspace.

(ii). S = S∗∗.

(iii). If S = {x ∈ Rn : Ax = 0} where A ∈ Rm×n, then S∗ = {yA : y ∈ Rm}.

(iv). If S = {yB : y ∈ Rk} where B ∈ Rk×n, then S∗ = {x ∈ Rn : Bx = 0}.

If S1 and S2 are linear spaces, then S1∩S2 and S1+S2 := {s1+s2 : s1 ∈ S1, s2 ∈ S2}
are also linear spaces. Moreover, the operations of linear space intersection and
summation are in some sense dual operations since (S1 ∩ S2)∗ = (S1)∗ + (S2)∗ and
similarly (S1 + S2)∗ = (S1)∗ ∩ (S2)∗.

2.2 Polyhedral cones

We describe polyhedral cones in this section in a more formal way than in the
introduction. There are two main purposes of this section. The first is establishing
the essential equivalence of converting between constraints and generators of cones as
we briefly discussed in the introduction. We use the concept of duality to establish
this. The second purpose is establishing that polyhedral cones are generated by
their extreme rays. We also present some crucial result on extreme rays and the
facial structure of polyhedral cones.

Definition 2.2.1. A cone is a set C ⊆ Rn that is closed under conic combinations.

A linear space is also by definition a cone. The intersection of two cones is a cone
and the summation of two cones is also a cone: given cones C1 and C2, the set C1∩C2

is a cone and the set C1 + C2 = {x1 + x2 : x1 ∈ C1, x2 ∈ C2} is also a cone.

The set C(A) := {x ∈ Rn : Ax ≥ 0} where A ∈ Rm×n is a cone, called a finitely

constrained cone. The set {λB : λ ∈ Rk
+} where B ∈ Rk×n is also a cone, called

a finitely generated cone. The following theorem is one of the most fundamental
theorems in linear algebra.

Theorem 2.2.2. A cone is finitely constrained if and only if it is finitely generated.

2The dual of a linear space is also known as the orthogonal space of the linear space.

2.2. POLYHEDRAL CONES 25

Due to the essential equivalence of finitely constrained cones and finitely generated
cones, we shall refer to them both as polyhedral cones. Also, we call a polyhedral
cone rational if the input data (either constraints or generators) is rational. We are
only interested in rational polyhedral cones, and it is assumed that all cones are
rational polyhedral cones if not explicitly stated.

In this thesis, we are interested in finding a finitely constrained representation of
a cone given a finitely generated representation and also conversely in finding a
finitely generated representation of a cone given a finitely constrained representation.
These two problems of finding the other representation of a cone are really the same
problem. We demonstrate this using the concept of conic duality.

Definition 2.2.3. The set C∗ = {x ∈ Rn : xy ≥ 0 ∀y ∈ C} is the dual of a cone
C ⊆ Rn.

Given a vector a ∈ Rn if ax ≥ 0 for all x ∈ C, we say that ax ≥ 0 is a valid

inequality for C. So, the dual cone of C∗ determines precisely the set of valid
inequalities of C. Recall that a linear subspace S is also a cone, and in this case,
the dual of S treated as a subspace is identical to the dual of S treated as a cone,
so there is no ambiguity created from using the same notation (∗) to indicate conic
duality and linear subspace duality.

Lemma 2.2.4. Let C ⊆ Rn be a polyhedral cone.

(i). C∗ is a polyhedral cone.

(ii). C = C∗∗.

(iii). If C = {x ∈ Rn : Ax ≥ 0} where A ∈ Rm×n, then C∗ = {yA : y ∈ Rm
+}.

(iv). If C = {yB : y ∈ Rk
+} where B ∈ Rk×n, then C∗ = {x ∈ Rn : Bx ≥ 0}.

Note that part (iii) of Proposition 2.2.4 says that if we know a constraint represen-
tation of a cone, then we know a generator representation of the dual of the cone.
Conversely, part (iv) of Proposition 2.2.4 says that if we know a generator repre-
sentation of a cone, then we know a constraint representation of the dual of the
cone.

As with linear spaces, the operations of conic intersection and summation are also in
some sense dual operations since (C1∩C2)∗ = (C1)∗+(C2)∗ and similarly (C1+C2)∗ =
(C1)∗ ∩ (C2)∗ for any two cones C1 and C2.

Assume that we know how to convert from a constraint representation of a cone to a
generator representation. Now, we wish to convert from a generator representation
C = {yB : y ∈ Rk

+} where B ∈ Rk×n to a constraint representation of C. We know
the constraint representation of the dual cone C∗ = {x ∈ Rk : Bx ≥ 0}, and we can
convert this into a generator representation of the dual cone C∗ = {yA : y ∈ Rm

+} for
some A ∈ Rm×n. Then, we take the dual of the dual, C∗∗ = {x ∈ Rn : Ax ≥ 0}, and
since C∗∗ = C, we have thus found a constraint representation of C. Similarly, if we
know how to convert from generators to constraints, then we also know how convert

26 CHAPTER 2. FOUNDATIONS

from constraints to generators. Throughout this thesis, we approach this problem
from the perspective of converting from constraints to generators.

The lineality (subspace) of C, written lin(C), is the set C∩−C = {x : x ∈ C,−x ∈ C},
which is the largest subspace contained within the cone C. If C = {x ∈ Rn : Ax ≥ 0},
then lin(C) = {x ∈ Rn : Ax = 0}. When the lineality of C is trivial (i.e. lin(C) =
{0}), then we say the cone is pointed. Note that lin(C) = {x ∈ Rn : Ax = 0} = {0}
if and only if rank(A) = n. Pointed cones have a unique (up to positive scaling)
minimal generator representation as we shall see below.

Every cone can be written as the sum of its lineality subspace and a pointed cone.

Lemma 2.2.5. For a cone C, we have C = S + (C ∩ S∗) where S = lin(C) and
(C ∩ S∗) is a pointed cone.

Lemma 2.2.5 means that we can compute the generator representation of a cone
C = {x ∈ Rn : Ax ≥ 0} by separately computing the generators of the cone’s
linear subspace S = lin(C) = {x ∈ Rn : Ax = 0} and the generators of the
pointed cone (C ∩ S∗). We can compute the generators of the linear space S from
the constraint representation of S: S = {λB : λ ∈ Rk} for some B ∈ Rk×n. Hence,
S∗ = {x ∈ Rn : Bx = 0}, and therefore, we know a constraint representation of the
pointed cone (C ∩ S∗): (C ∩ S∗) = {x ∈ Rn : Bx = 0, Ax ≥ 0}. We then compute
the generators of the pointed cone (C ∩ S∗): (C ∩ S∗) = {δD : δ ∈ Rl

+} for some
D ∈ Rl×n. Therefore, C = S + (C ∩ S∗) = {λB + δD : λ ∈ Rk, δ ∈ Rl

+}. So, Lemma
2.2.5 is important because it means that, in this thesis, we can focus on pointed
cones.

Often, we wish to compute generators of a cone given in the form

Cσ(A) := {x ∈ Rn : Aσ̄x = 0, Aσx ≥ 0}

where A ∈ Rm×n, σ ⊆ {1, ..., m} and σ̄ = {1, ..., m} \ σ. Note that Aσ is the
submatrix of A consisting of the rows indexed by σ, and Aσ̄ is the submatrix of A

consisting of the rows of A indexed by σ̄; that is, we have partitioned the rows of
the matrix A into two submatrices Aσ and Aσ̄. So, σ refers to the rows of the matrix
A that are inequality constraints, and σ̄ refers to the rows of the matrix A that
are equality constraints. The cone Cσ(A) is thus the intersection of a linear space
S(Aσ̄) := {x ∈ Rn : Aσ̄x = 0} and the cone C(Aσ) := {x ∈ Rn : Aσx ≥ 0}. The
dual of the cone Cσ(A) = S(Aσ̄) ∩ C(Aσ) is the cone Cσ(A)∗ = S(Aσ̄)∗ + C(Aσ)∗,

and since S(Aσ̄)∗ = {yAσ̄ : y ∈ R|σ̄|} and C(Aσ)∗ = {yAσ : y ∈ R|σ|
+ }, we have

Cσ(A)∗ = {yA : yσ ≥ 0, y ∈ Rm}. We find the form Cσ(A) convenient for discussing
faces of cones below.

We can reformulate the cone Cσ(A) in the form C(Ã) for some matrix Ã by replacing
each equality constraint with two inequalities:

Cσ(A) = {x ∈ Rn : Aσ̄x ≥ 0, Aσ̄x ≤ 0, Aσx ≥ 0}.

However, in general, it is not a good idea to perform this transformation as doing so
might adversely affect the algorithms to compute the generators of the cone. This
is certainly true for the algorithm that we discuss in this thesis. There are other

2.2. POLYHEDRAL CONES 27

possible transformations that do not adversely affect the algorithm, and we discuss
these possible reformulations of the cone Cσ(A) in the chapter on computing extreme
rays of cones (Section 8.2.3).

We now discuss the facial structure of polyhedral cones.

Definition 2.2.6. Given a cone C and a vector a ∈ C∗, the set F := {x ∈ C : ax = 0}
is called a face of C.

A face of a cone is itself a cone. The cone C is a face of itself, and the unique smallest
inclusion-wise face of C is the lineality subspace lin(C). We call a face F of a cone
C a proper face if F 6= C and F 6= lin(C). If the dimension of a face F of the cone
C is one less than the dimension of the cone C (dim(F) = dim(C) − 1), then we
call F a facet of C. Note that the dimension of a cone C is the number of linearly
independent points in C, or equivalently, the dimension of C is the dimension of the
linear space it spans (i.e. the smallest linear space containing the cone).

Theorem 2.2.7. Given a set F ⊆ Cσ(A) := {x ∈ Rn : Aσ̄x = 0, Aσx ≥ 0}, F is a
face of Cσ(A) if and only if F = Cτ (A) = {x ∈ Rn : Aτ̄x = 0, Aτx ≥ 0} for some set
τ ⊆ σ.

From Theorem 2.2.7, we can immediately deduce that there are a finite number of
faces of a cone and given two faces F 1 and F 2 of a cone Cσ(A), F 1∩F 2 is also a face
of Cσ(A). However, it is not necessarily true that F 1 + F 2 is also a face of Cσ(A).

Definition 2.2.8. Given a pointed cone C, we call any vector r ∈ C where r 6= 0 a
ray of C. Also, we call a ray r ∈ C an extreme ray of C if the set {λr : λ ∈ Rn

+}
is a one-dimensional face of C.

The extreme rays of a cone C are unique up to positive scaling, and we shall treat
two extreme rays that differ by positive scaling as the same extreme ray. The result
that we are working towards is that a cone is generated by its extreme rays. Thus,
the algorithms that we present for computing a generator representation of a cone
given a constraint representation compute the extreme rays of a cone.

Definition 2.2.9. Given a ray r ∈ Cσ(A) := {x ∈ Rn : Aσ̄x = 0, Aσx ≥ 0}, we
define the support of the ray r as the set suppA(r) := {i ∈ {1, ..., m} : Air 6= 0}.

Observe that suppA(r) ⊆ σ for a ray r ∈ Cσ(A) since Aix = 0 for all i ∈ σ̄.
It follows from Theorem 2.2.7 that, for a given ray r of a cone Cσ(A), the face
F := Cτ (A) = {x ∈ Rn : Aτ̄x = 0, Aτx ≥ 0} where τ = suppA(r), is the inclusion-
minimal face of Cσ(A) containing r. Moreover, if r is an extreme ray of Cσ(A), then
F = R = {λr : λ ∈ Rn

+}. Thus, we arrive at the following useful lemma below that
gives a geometric characterisation of extreme rays.

Lemma 2.2.10. Given a pointed cone Cσ(A), a ray r ∈ Cσ(A) is an extreme ray of
Cσ(A) if and only if dim(F) = 1 where F = Cτ (A) and τ = suppA(r).

We can compute the dimension of the inclusion-minimal face of Cσ(A) containing a
ray r as follows.

28 CHAPTER 2. FOUNDATIONS

Lemma 2.2.11. Let r be a ray of a cone Cσ(A) and let F = Cτ (A) where τ =
suppA(r). Then, dim(F) = n − rank(Aτ̄).

Proof. Let F̄ = {x ∈ Rn : Aτ̄x = 0}. Note that r ∈ F̄ . The set F̄ is the inclusion-
minimal linear space containing F . It has the same dimension as F . The dimension
of the linear space F̄ is n − rank(Aτ̄).

Combining Lemma 2.2.11 and Lemma 2.2.10, we arrive at the following corollary.

Corollary 2.2.12. Given a pointed cone Cσ(A), a ray r ∈ Cσ(A) is an extreme ray
of Cσ(A) if and only if n − rank(Aτ̄) = 1 where τ = suppA(r).

The following lemma gives a combinatorial characterisation of extreme rays. First,
note that a ray r ∈ Cσ(A) is a support-minimal ray of Cσ(A) if there does not exists
another ray r′ ∈ Cσ(A) such that suppA(r′) (suppA(r).

Lemma 2.2.13. The extreme rays of a pointed cone Cσ(A) are the support-minimal
rays of Cσ(A).

Proof. Let r ∈ Cσ(A) be an extreme ray of Cσ(A), and let r′ be a ray of Cσ(A) such
that suppA(r′) (suppA(r). Let F = Cτ (A) where τ = suppA(r). Since suppA(r′) (
suppA(r), we must have r′ ⊆ F . Also, F = {λr : λ ∈ Rn

+} because r is an extreme
ray of Cσ(A). Thus, r′ = λr for some λ ∈ Rn

+. Therefore, suppA(r′) = suppA(r),
which is a contradiction.

The next corollary follows from the proof of the previous lemma. It says that we
can uniquely identify extreme rays by their support. Recall that two extreme rays
that differ by positive scaling are considered as the same extreme ray.

Corollary 2.2.14. Let r1 and r2 be two extreme rays of a pointed cone Cσ(A). If
suppA(r1) ⊆ suppA(r2), then r1 = λr2 for some λ ∈ R+.

An extreme ray r of a pointed cone Cσ(A) is also an extreme ray of any face F

where r ∈ F . This follows since an extreme ray is support-minimal in Cσ(A) from
Lemma 2.2.13 and thus also support-minimal in F from Theorem 2.2.7. Moreover,
an extreme ray of a face F of Cσ(A) is also an extreme ray of Cσ(A) since a one-
dimensional face of F is also a one-dimensional face of Cσ(A).

The following result is fundamental for computing generators of cones. It says that
every pointed cone is generated by its extreme rays. We need at least all the extreme
rays of a pointed cone as generators of a pointed cone, but the fact that they are
sufficient to generate the cone is not immediate.

Lemma 2.2.15. For every pointed cone C, we have C = {λB : λ ∈ Rn
+} where the

rows of B are the extreme rays of C.

Proof. From Theorem 2.2.2, C = Cσ(A) for some matrix A and some set σ. Let
C′ = {λB : λ ∈ Rn

+}; then, C′ ⊆ C. Assume that C 6= C′. Choose a ray r ∈ C \C′ with
minimal-support in C \ C′. The ray r cannot be an extreme ray otherwise r ∈ C′.

2.3. CONVEX POLYHEDRA 29

There must exists an extreme ray r′ such that suppA(r′) ⊆ suppA(r) by Lemma
2.2.13. Let s = Ar and s′ = Ar′, and let λ = min{ si

s′i
: i ∈ suppA(r′)}. Then,

r−λr′ ∈ C and suppA(r−λr′) (suppA(r) by construction. Also, we must have that
r − λr′ 6∈ C′ otherwise r ∈ C′, but this contradicts the support-minimal assumption
on r since suppA(r − λr′) (suppA(r).

The set of extreme rays of a pointed cone is a unique (up to positive scaling)
inclusion-minimal generating set of the cone since we must have all the extreme
rays of a cone in any generating set and Lemma 2.2.15 shows that the extreme rays
are actually all we need.

2.3 Convex polyhedra

We discuss convex polyhedra in this section. The main purpose of this section is es-
tablishing that we can convert between different representations of a polyhedron (i.e.,
constraint to generator representation or generator to constraint representation) us-
ing an algorithm for converting between different representations of a polyhedral
cone as discussed in the previous section.

Definition 2.3.1. A convex set is a set K ⊆ Rn that is closed under convex
combinations.

Note that cones are convex sets.

The set PA(b) := {x ∈ Rn : Ax ≥ b} where A ∈ Rm×n and b ∈ Rm is a convex set,
and we call the set PA(b) a finitely constrained convex set. The set {yB + zC :
∑q

i=1 zi = 1, y ∈ Rp
+, z ∈ Rq

+} where B ∈ Rp×n and C ∈ Rq×n is also a convex set,
called a finitely generated convex set.

Analogously to Theorem 2.2.2 for cones, we have the following inhomogeneous ver-
sion.

Theorem 2.3.2. A convex set is finitely constrained if and only if it is finitely
generated.

We call a convex set of points P ⊆ Rn a convex polyhedron if it is finitely
constrained or equivalently if it is finitely generated. We only deal with convex
polyhedra, so we usually omit the term convex. Note that a polyhedral cone is a
polyhedron. In this thesis, we only deal with rational polyhedra, so when we say a
polyhedron, we mean a rational polyhedron.

Often, we write a polyhedron in the form Pσ
A(b) := {x ∈ Rn : Aσ̄x = bσ̄, Aσx ≥ bσ}.

Recall that Aσ̄ is the submatrix of A consisting of the rows of A indexed by σ̄ and
Aσ is the submatrix of A consisting of the rows of A indexed by σ. Also, bσ̄ is the
vector b projected onto the σ̄ components and bσ is the vector b projected onto the σ

components. We could remove the equality constraints by replacing Aσ̄x = bσ̄ with
Aσ̄x ≥ bσ̄ and Aσ̄x ≤ bσ̄, but this is not a good transformation as it can adversely
affects algorithms for converting between a constraint representation to a generator
representation of the polyhedron.

30 CHAPTER 2. FOUNDATIONS

A polyhedron P is bounded if every coordinate in has a maximum and minimum
value in P: that is, if P ⊆ {x ∈ Rn : −ω ≤ xi ≤ ω, ∀i = 1, ..., n} for some ω ∈ R+.
If a polyhedron is bounded, then we call it a polytope. The recession cone of a
polyhedron P is the set of all vectors r ∈ Rn such that for every x ∈ P, x + λr ∈ P
for all λ ∈ R+. It follows that a polyhedron P is bounded if and only if its recession
cone rec(P) is trivial (i.e. rec(P) = {0}). Specifically, the recession cone of Pσ

A(b) is
the cone rec(Pσ

A(b)) := Pσ
A(0) = {x ∈ Rn : Aσ̄x = 0, Aσx ≥ 0} = Cσ(A). Also, the

recession cone of the polyhedron P = {yB+zC :
∑q

i=1 zi = 1, y ∈ Rp
+, z ∈ Rq

+} is the
cone rec(P) = {yB : y ∈ Rp

+}. The polyhedron P ′ = {zC :
∑q

i=1 zi = 1, z ∈ Rq
+} is

bounded, so we can formulate the polyhedron P as the sum of its recession cone and
a bounded polyhedron P ′; that is, P = rec(P)+P ′. This applies to any polyhedron.

We say that a polyhedron P is pointed if the polyhedron contains no lines; in other
words, P is pointed if there does not exist x ∈ P such that x+λr ∈ P for all λ ∈ R.
Note that if x + λr ∈ P for all λ ∈ R, then λr ∈ rec(P) for all λ ∈ R, in which case,
the recession cone is not pointed. Conversely, if rec(P) is not pointed, then neither
is P. So, a polyhedron P is pointed if and only if rec(P) is pointed.

We now introduce the notions of faces of polyhedra. First, we need the concept of
a valid inequality. The inequality πx ≤ π0 is called a valid inequality for P if
πx ≤ π0 for every x ∈ P.

Definition 2.3.3. Given a polyhedron P and a valid inequality πx ≤ π0 for P, the
set F := {x ∈ P : πx = π0} is called a face of P.

A face of a polyhedron is itself a polyhedron. The polyhedron P is by definition a
face of itself, and the unique inclusion-minimal face of P is F = {x ∈ Rn : Ax = b},
which might be empty when b 6= 0 or trivial when b = 0 (i.e. F = {0}).

If P is a d-dimensional polyhedron, and F ⊆ P a d− 1-dimensional face of P, then
we call F a facet of P. If F is a zero-dimensional face of P (i.e. F = {x}), then we
call F (or just x) an extreme point or vertex of P. Note that a polyhedron only has
0-dimensional faces if P is pointed.

This definition of a faces of a polyhedron coincides exactly with the definition of a
face of a cone when considering a cone as a polyhedron, and so, there is no ambiguity
in using the same terminology.

Theorem 2.3.4. Given a set F ⊆ Pσ
A(b) := {x ∈ Rn : Aσ̄x = bσ̄, Aσx ≥ bσ}, F is a

face of Pσ
A(b) if and only if F = Pτ

A(b) = {x ∈ Rn : Aτ̄x = bτ̄ , Aτx ≥ bτ} for some
set τ ⊆ σ.

From Theorem 2.3.4, we can immediately deduce that there are a finite number of
faces of a polyhedron and given two faces F 1 and F 2 of a polyhedron Pσ

A(b), F 1∩F 2

is also a face of Pσ
A(b).

We wish to convert between different representations of a polyhedron: to convert
from a constraint representation to a generator representation and to convert from
a generator representation to a constraint representation. Fortunately, this problem
of converting between different representations of a polyhedron can be reduced to the
problem of converting between different representations of cones. To achieve this, we

2.4. INTEGER LATTICES 31

embed the polyhedron in a cone and perform the conversion from one representation
of a cone to another and then extract the polyhedron from the cone in its converted
representation.

First, we show how to convert from constraints to generators. Consider the polyhe-
dron Pσ

A(b) := {x ∈ Rn : Aσ̄x = bσ̄, Aσx ≥ bσ}. The set

C = {(x, xn+1) ∈ Rn+1 : Aσ̄x − bσ̄xn+1 = 0, Aσx − bσxn+1 ≥ 0, xn+1 ≥ 0}

is a finitely constrained cone, and Pσ
A(b) = {x ∈ Rn : (x, 1) ∈ C}. By theorem 2.2.2,

C = {λD : λ ∈ Rk
+} for some matrix D ∈ Rk×(n+1), and we can compute D using an

algorithm to convert from constraints to generators of cones. Note the D is the set
of extreme rays of C assuming C is pointed, which it is if and only if P is pointed.
After scaling and re-arranging the rows of D so that the entries in the last column
of D are 0 and 1 and the rows with 0 entries come first, we may write

D =

[

B 0

C 1

]

where B ∈ Rp×n and C ∈ Rq×n. Then, C = {(yB, 0) + (zC, 1z) : y ∈ Rp
+, z ∈ Rq

+},
and therefore, P = {x ∈ Rn : (x, 1) ∈ C} = {yB + zC :

∑q
i=1 zi = 1, y ∈ Rp

+, z ∈
Rq

+}. Recall that {yB : y ∈ Rp
+} is the recession cone of P, and thus, B is the set of

extreme rays of rec(P) assuming P is pointed. Also, the vector (c, 1) where c is a row
of C is an extreme ray of C since D is the set of extreme rays of C and (c, 1) is a row
of D. Then, assuming that P is pointed, C is pointed, and F = {λ(c, 1) : λ ∈ R+}
is a one-dimensional face of C, which implies that (c, 1) is a zero-dimensional face of
the polyheron C ∩ {(x, 1) : x ∈ Rn}. Thus, c ∈ P is also a zero-dimensional face of
P, so c is an extreme point of P. So, if P is pointed, then it is generated by conic
combinations of the extreme rays of its recession cone plus convex combinations of
its extreme points. Moreover, from the above construction, since the extreme rays
of a cone are the unique minimal generators of the cone, the extreme points and
extreme rays are the unique minimal generators of the polyhedron.

Conversely, let P = {yB + zC :
∑q

i=1 zi = 1, y ∈ Rp
+, z ∈ Rq

+}. Then, the cone
C = {(yB + zC, 1z) : y ∈ Rp

+, z ∈ Rq
+} is a finitely generated cone, and we have P =

{x ∈ Rn : (x, 1) ∈ C}. By theorem 2.2.2, C = {(x, xn+1) ∈ Rn+1 : D(x, xn+1) ≥ 0}
for some matrix D ∈ Rm×(n+1), and we can compute D using an algorithm to convert
from generators to constraints of cones, which is the essentially the same algorithm
as converting from constraints to generators. We may write D =

[

A −b
]

where
A ∈ Rm×n and b ∈ Rm. Therefore, P = {x ∈ Rn : (x, 1) ∈ C} = {x ∈ Rn : Ax ≥ b}.

We can thus convert between representations of polyhedra using an algorithm to
convert between representations of cones. Note that we have just effectively proven
theorem 2.3.2.

2.4 Integer lattices

Integer lattices play a crucial role in describing Gröbner bases and Markov bases.
In particular, the Hermite Normal Form algorithm presented here, which computes

32 CHAPTER 2. FOUNDATIONS

bases of lattices and solves linear integer equality systems, is frequently used in the
rest of this thesis.

An integer lattice is a set L ⊆ Zn which is closed under addition, which implies
that L is also closed under multiplication by an integral scalar.3 So, if x1, ..., xk ∈ L,
then λ1x1 + ... + λkxk ∈ L for all λ1, ..., λk ∈ Z. In other words, a integer lattice is a
Z-submodule of Zn. We are only concerned with integer lattices, so for brevity, we
just say lattice when we mean an integer lattice.

Given an integer matrix B ∈ Zk×n, the set {λB : λ ∈ Zk} is a lattice, called a
finitely generated lattice. In this case, we say that B spans L, and if rank(B) = k

(full row rank), then we say that B is a basis of L.

Lemma 2.4.1. Every lattice is a finitely generated lattice, and every lattice has a
basis.

The set of integer points in a linear space is a lattice: the set L = {x ∈ Zn : Ax = 0}
where A ∈ Rk×n is a lattice since such a set is closed under addition. If a lattice
can be represented in such a form, then we say it is saturated. However, not all
lattices L ∈ Zn can be written in the form L = {x ∈ Zn : Ax = 0} for some matrix
A. The reason being is that if L = {x ∈ Zn : Ax = 0}, then for all x ∈ L, we must
also have λx ∈ L for all λ ∈ Rn where λx ∈ Zn. However, this property is not true
for every lattice. Indeed, consider the lattice finitely generated by the single vector
(2, -2): L = {λ(2, -2) : λ ∈ Z}. If L were saturated, then (1, -1) would be in L, but
it is not.

Every lattice is not saturated, but every lattice is the projection of some saturated
lattice. Let L ⊆ Zn be a lattice, and let B ∈ Zk×n be a basis of L, so we have
L = {λB : λ ∈ Zk}. Then, let L̃ = {(x, λ) : x − λB = 0, λ ∈ Zk}, so L̃ is a
saturated lattice and (B, I) is a basis of L̃. Note that L = {x : (x, λ) ∈ L̃}, so
L is the projection of L̃ onto the x variables. For example, the lattice generated
by the vector (2, -2) is the projection of the saturated lattice generated by (2, -2, 1)
projected onto the first two components.

There are two related lattice problems that we frequently need to solve in this thesis.
One is the problem of finding a feasible solution or showing infeasibility of the set
{x ∈ Zn : Ax = b} for some matrix A ∈ Zm×n and b ∈ Zm. Another problem is
finding a basis of the lattice L = {x ∈ Zn : Ax = 0}. We now show how to solve
these problems using the Hermite Normal Form algorithm.

First, we must introduce the concept of unimodular matrices.

Definition 2.4.2. An integer matrix C ∈ Zn×n is unimodular if | det(C)| = 1.

A unimodular matrix C has some very useful properties. The inverse of a unimodular
matrix C -1 is also unimodular. Also, Cx ∈ Zn if and only if x ∈ Zn. If x ∈ Zn, then
Cx ∈ Zn because C is integral and if Cx ∈ Zn, then C -1Cx = x ∈ Zn since C -1

is integral. Moreover, for every x ∈ Zn, there exists y ∈ Zn such that Cy = x by
taking y = C -1x. So, a unimodular matrix induces a one-to-one map from Zn to Zn.

The next concept we need is that of matrices is Hermite Normal Form.

3More general definitions of lattices exist, but for our purposes, this definition will suffice.

2.4. INTEGER LATTICES 33

Definition 2.4.3. An n by n non-singular matrix H is said to be in Hermite

Normal Form (HNF) if

(i). H is lower triangle (i.e. Hij = 0 for j > i),

(ii). Hii > 0 for i = 1, ..., n, and

(iii). Hij ≤ 0 and |Hij| < Hii for j < i.

For example, the matrix H =

(

1 0
-3 5

)

is in Hermite Normal Form.

The next lemma is a fundamental result.

Lemma 2.4.4. Let A ∈ Zm×n where rank(A) = m. There exists a unimodular
matrix C ∈ Zn×n such that AC = (H, 0) where H ∈ Zm×m is in Hermite Normal
Form and H -1A is an integer matrix.

The matrices H and C given above in Lemma 2.4.4 can be computed using the
Hermite Normal Form algorithm. We refer the reader to [71] for a description of the
basic algorithm. There are polynomial time algorithms to compute C and H (see
for example [77]).

Let A ∈ Zm×n where rank(A) = m. Let C ∈ Zn×n be a unimodular matrix such
that AC = (H, 0) where H ∈ Zm×m is in Hermite Normal Form and H -1A is an
integer matrix as in Lemma 2.4.4. Also, we write C = (C1, C2) where C1 ∈ Zn×m

and C2 ∈ Zn×n−m. We now reformulate the set {x ∈ Zn : Ax = b} into an equivalent
and useful form that enables us to find a feasible solution of {x ∈ Zn : Ax = b} and
to find a basis for the lattice {x ∈ Zn : Ax = 0}.

{x ∈ Zn : Ax = b} ={x : x = Cw, ACw = b, w ∈ Zn}

={x : x = Cw, (H, 0)w = b, w ∈ Zn}

={x : x = C1w1 + C2w2, Hw1 = b, w1 ∈ Zm, w2 ∈ Zn−m}

={x : x = C1H
-1b + C2w2, H

-1b ∈ Zm, w2 ∈ Zn−m}.

This implies that {x ∈ Zn : Ax = b} 6= ∅ if and only if H -1b ∈ Zm. Moreover, if
H -1b ∈ Zm, then x = C1H

-1b ∈ Zn is a feasible solution of {x ∈ Zn : Ax = b}.
Furthermore, when b = 0, {x ∈ Zn : Ax = 0} = {x : x = C2w2, w2 ∈ Zn−m},
so the set CT

2 (the transpose of C2) is a generating set of the following lattice:
{x ∈ Zn : Ax = 0}. Also, since rank(C) = n, rank(CT

2) = n − m (i.e. CT

2 is full row
rank); therefore, CT

2 is a basis of {x ∈ Zn : Ax = 0}.

Lastly, we consider different possible ways of representing a given lattice using a
set of generators. We show that if B generates the lattice L and C is a unimodular
matrix, then CB also generates L. Firstly, by definition L = {λB : λ ∈ Zk}, and,
from the properties of unimodular matrices (Zn = {δC : δ ∈ Zk}), we can substitute
δC for λ giving L = {δCB : δ ∈ Zk}.

Consider the special case where B ∈ Zk×k and rank(B) = k. The matrix B is a
basis of the lattice L = {λB : λ ∈ Zk}. Using the HNF algorithm we can compute

34 CHAPTER 2. FOUNDATIONS

a unimodular matrix C such that BTC = H or equivalently CTB = HT. Thus,
CTB = HT is also a basis of L since CT (the transpose of C) is also unimodular.
Note that the matrix HT (the transpose of H) is an upper triangle matrix with
positive diagonal entries and non-positive entries elsewhere. Also, H is unique and
so is HT. We say that any matrix whose transpose is in Hermite Normal Form is in
Upper Hermite Normal Form (UHNF). So, we can always find a basis in Upper
Hermite Normal Form for any lattice that has a square matrix for a basis; this fact
is often used in this thesis.

2.5 Gordan-Dickson’s lemma

In this section, we briefly state Gordan-Dickson’s lemma. This result is very useful
and we refer to it and its variations several times throughout the thesis.

Lemma 2.5.1. For any set S ⊆ Nn, there exists a unique inclusion-minimal finite
subset T ⊆ S such that T ≤ S, or more explicitly, for every s ∈ S, there exists t ∈ T

such that t ≤ s.

A useful consequence of Gordan-Dickson’s lemma is that given a sequence of points
(x1, x2, ..., xk, ...), there must exist k ∈ N such that for all j > k, there exists i ≤ k

such that xi ≤ xj . We will use this to show that algorithms for computing Gröbner
bases and Markov bases terminate.

2.6 Linear programs

In this section, we define Linear Programs and discuss their properties. The prop-
erties we are most interested in are those of duality and boundedness (when the
linear program has an optimal solution), which are strongly related. We will only
give a brief discussion of linear programming; for a more complete description see
for example [71]. Linear programming is a useful tool for integer programming and
we will use it many times in this thesis.

Recall from the introduction that we define a linear program as the following:

LP := min{cx : x ∈ P}

where P ⊆ Rn is a polyhedron, and c ∈ Rn is a cost vector. We often refer to the
set of points in the polyhedron P as the feasible points of the linear program LP .

One of the most important concepts in linear programming is duality.

Definition 2.6.1. The dual of LP σ
A,c(b) := min{cx : Aσ̄x = bσ̄, Aσx ≥ bσ} is the

dual linear program DP σ
A,b(c) := max{yb : yA = c, yσ ≥ 0}.

Importantly, the dual of the dual of LP σ
A,c(b) is again LP σ

A,c(b). This can be seen
by expressing the dual in primal form and performing the above transformation.
Note that the polyhedron Pσ

A(b) := {x ∈ Rn : Aσ̄x = bσ̄, Aσx ≥ bσ} is the set

2.6. LINEAR PROGRAMS 35

of feasible solutions of LP σ
A,c(b). For convenience, we define the dual polyhedron

Dσ
A(c) := {y ∈ Rm : yA = c, yσ ≥ 0}, which is the set of feasible solutions of the

dual. The following result is fundamental to linear programming and is called weak
duality.

Lemma 2.6.2 (Weak Duality). We have cx ≥ yb, for every x ∈ Pσ
A(b) and for

every y ∈ Dσ
A(c).

Weak duality says that if we have a feasible solution of the dual problem y ∈ Dσ
A(b),

then LP σ
A,c(b) ≥ yb, so each feasible solution of the dual provides a lower bound on

the value of LP σ
A,c(b) ≥ yb. Conversely, each feasible solution of the primal provides

an upper bound on the value of DP σ
A,b(c). The implication of this is that if Pσ

A(b) 6= ∅
and Dσ

A(c) 6= ∅, then LP σ
A,c(b) ≥ DP σ

A,b(c). Furthermore in this situation where the
primal problem is feasible and the dual problem is feasible, we have strong duality,
which says that the optimal solutions of the primal and dual problems are equivalent.

Lemma 2.6.3 (Strong Duality). If Pσ
A(b) 6= ∅ and Dσ

A(c) 6= ∅, then LP σ
A,c(b) =

DP σ
A,b(c).

Also, another implication of weak duality is that if LP σ
A,c(b) has an unbounded

optimal value, then Dσ
A(c) = ∅ since any feasible solution of DP σ

A,b(c) gives a lower
bound on LP σ

A,c(b). Similarly, if DP σ
A,b(c) has an unbounded optimal value, then

Pσ
A(b) = ∅. For brevity, we will say that a feasible linear program that has an

unbounded optimal value is unbounded, and bounded otherwise. The following
corollary brings all the above results on duality together.

Corollary 2.6.4. There are four possibilities for LP σ
A,c(b) and DP σ

A,b(c).

(i). LP σ
A,c(b) = DP σ

A,b(c).

(ii). LP σ
A,c(b) = −∞ and Dσ

A(c) = ∅.

(iii). DP σ
A,b(c) = ∞ and Pσ

A(b) = ∅.

(iv). Pσ
A(b) = ∅ and Dσ

A(c) = ∅.

An interesting implication of Corollary 2.6.4 above is that if Dσ
A(c) = ∅, then LP σ

A,c(b)
is unbounded for all feasible b, and conversely, if Dσ

A(c) 6= ∅, then LP σ
A,c(b) is bounded

for all feasible b ∈ Rm. Moreover, Pσ
A(0) 6= ∅ since 0 ∈ Pσ

A(0). Therefore, LP σ
A,c(b) is

bounded for all feasible b if and only if LP σ
A,c(0) is bounded. In this thesis, we are

often interested in the boundedness of LP σ
A,c(b) for all feasible b ∈ Rm, so this result

is particularly useful. The same is true for the dual program: DP σ
A,b(c) is bounded

for all feasible c if and only if DP σ
A,b(0) is bounded.

Moreover, Pσ
A(0) is the recession cone of the polyhedron Pσ

A(b) for any b ∈ Rm,
and similarly, Dσ

A(0) is the recession cone of Dσ
A(c) for any c ∈ Rn. Hence, the

boundedness of a linear program is determined by its recession cone, so we may
write the above results in a form that is independent of the representation of the
linear program.

36 CHAPTER 2. FOUNDATIONS

Corollary 2.6.5. A feasible linear program LP := min{cx : x ∈ P} is bounded if
and only if min{cx : x ∈ rec(P)} is bounded.

The linear program LP σ
A,c(0) is bounded if and only if there does not exist x ∈ Pσ

A(0)
such that cx < 0. Firstly, if no such x exists, then LP σ

A,c(0) ≥ 0 and LP σ
A,c(0) is

bounded by definition. Secondly, if there exists x ∈ Pσ
A(0) where cx < 0, then we

must have LP σ
A,c(0) = −∞ because λx ∈ Pσ

A(0) for all λ ∈ R+ and cλx → −∞ as
λ → ∞. In other words, LP σ

A,c(0) is bounded if and only if LP σ
A,c(0) = 0 because

LP σ
A,c(0) ≥ 0 implies that LP σ

A,c(0) = 0 since 0 ∈ Pσ
A(0). Additionally, note that,

since Pσ
A(0) is a cone, there does not exist x ∈ Pσ

A(0) where cx < 0 if and only if
c ∈ Pσ

A(0)∗ (the dual cone of Pσ
A(0)) from the definition of a dual cone. Thus, we also

have that LP σ
A,c(0) is bounded if and only if c ∈ Pσ

A(0)∗ = {yA : yσ ≥ 0, y ∈ Rm},
which is equivalent to the condition Dσ

A(c) 6= ∅. This is exactly what Corollary
2.6.4(ii) says.

There is an analogous result for the dual program, which says that DP σ
A,b(0) is

bounded if and only if there does not exist y ∈ Dσ
A(0) such that yb > 0 or equivalently

−b ∈ Dσ
A(0)∗ = {y ∈ Rn : Aσ̄x = −yσ̄, Aσx ≥ −yσ}, which is equivalent to the

condition Pσ
A(b) 6= ∅. This is exactly what Corollary 2.6.4(iii) says.

Lemma 2.6.6. A feasible linear program LP := min{cx : x ∈ P} is bounded if and
only if there does not exist x ∈ rec(P) such that cx < 0 or equivalently c ∈ rec(P)∗.

2.7 Integer programs

In this section, we define Integer Programs and discuss their properties. We are most
interested in the boundedness of integer programs. For a more detailed and thorough
presentation of the theory and algorithms for integer programming, see for example
the texts [71, 95].

Recall from the introduction that we define an integer program as the following:

IP := min{cx : x ∈ (P ∩ Zn)}

where P is a rational polyhedron, and c is a linear function over Rn. We call the
set of integer points in a polyhedron, F = (P ∩ Zn), a polyhedral fiber, and we
also refer to the polyhedral fiber F = (P ∩Zn) as the feasible points of the integer
program IP .

Fortunately, as the lemma below says, we can determine whether an integer program
has a bounded optimal value from its linear programming relaxation. Note that, in
the following lemma, we need to assume that P is a rational polyhedron.

Lemma 2.7.1. A feasible integer program IP = min{cx : x ∈ (P ∩Zn)} is bounded
if and only if LP = min{cx : x ∈ P} is bounded.

Proof. If IP is unbounded, then LP must also be unbounded.

Assume that LP = min{cx : x ∈ P} is unbounded. Recall from Lemma 2.6.6 that
LP is unbounded if and only if there exists x ∈ rec(P) where cx < 0. Since we

2.8. LINEAR SPACE PROGRAMS 37

assume that all data is rational, P is a rational polyhedron, and we may assume
that x is rational (i.e. x ∈ Qn). Now λx ∈ rec(P) for all λ ∈ R+, so λx ∈ Zn for some
λ ∈ R+. Furthermore, if x̄ ∈ P ∩ Zn, then (x̄ + λx) ∈ P ∩ Zn for all λ ∈ R+ where
λx ∈ Zn. Therefore, IP is unbounded because c(x̄ + λx) → −∞ if λ → ∞.

The following corollary was shown during the proof of Lemma 2.7.1 above.

Corollary 2.7.2. A feasible integer program IP = min{cx : x ∈ (P ∩ Zn)} is
bounded if and only if there does not exist x ∈ rec(P) ∩ Zn such that cx < 0.

Note that a linear program LP = min{cx : x ∈ P} is bounded if and only if
min{cx : x ∈ rec(P)} is bounded from Corollary 2.6.5 and min{cx : x ∈ rec(P)} is
bounded if and only if the integer program min{cx : x ∈ (rec(P) ∩ Zn)} is bounded
from Lemma 2.7.1 above. Thus, the corollary below follows.

Corollary 2.7.3. A feasible integer program IP = min{cx : x ∈ (P ∩ Zn)} is
bounded if and only if min{cx : x ∈ (rec(P) ∩ Zn)} is bounded.

Often in this thesis, we are concerned with solving IP σ
A,c(b) for many different b ∈

Rm. From 2.7.1 above, we have that each feasible IP σ
A,c(b) is unbounded if and only

if LP σ
A,c(b) is unbounded. Moreover, from Lemma 2.6.6, LP σ

A,c(b) is unbounded if and
only if min{cx : x ∈ Pσ

A(0))} is unbounded. Thus, by checking whether one linear
program is unbounded, we can check whether every feasible IP σ

A,c(b) for b ∈ Rm is
unbounded.

2.8 Linear space programs

Linear Subspace programs are essentially the same as linear programs; they are
basically just a reformulation of a linear program. Although we will not use linear
space programs much in this thesis, we find it useful to introduce them now as
an introduction to lattice programs in the next section, which we will use quite
frequently.

We define a linear space program as the following:

LP σ
S,c(ν) := min{cx : x − ν ∈ S, xσ̄ ≥ 0, x ∈ Rn}

where σ ⊆ {1, ..., n}, σ̄ = {1, ..., n} \ σ, S ⊆ Rn is a linear space, c ∈ Rn is some
cost function, and ν ∈ Rn. We write the set of feasible solutions as

Pσ
S (ν) := {x ∈ Rn : x − ν ∈ S, xσ̄ ≥ 0},

so LP σ
S,c(ν) := min{cx : x ∈ Pσ

S (ν)}. So, we have relaxed the non-negativity con-
straints on the xσ variables. In the particular case where σ = ∅ and all variables are
non-negative, we will usually omit σ from LP σ

S,c(ν) and just write LPS,c(ν) instead,
and similarly, we write PS(ν).

Remark 2.8.1. Analogous to linear programming duality, linear space programs
also have dual programs. The dual of min{cx : x − ν ∈ S, xσ̄ ≥ 0, x ∈ Rn} is the
program max{yν : yσ = −cσ, yσ̄ ≥ −cσ̄, y ∈ S∗}.

38 CHAPTER 2. FOUNDATIONS

Any linear space program can be reformulated as a linear program. Consider the
linear space S ∈ Rn. We know from section 2.1 that, for every linear space S, we
have S = {x ∈ Rn : Ax = 0} for some matrix A ∈ Rm×n. Then,

LP σ
S,c(ν) :=min{cx : x − ν ∈ S, xσ̄ ≥ 0, x ∈ Rn}

=min{cx : A(x − ν) = 0, xσ̄ ≥ 0, x ∈ Rn}

=min{cx : Ax = Aν, xσ̄ ≥ 0, x ∈ Rn}

=DP σ̄
AT,-c(Aν).

The final formulation of the problem is in the form of the dual linear program
DP σ̄

AT,-c(Aν) where AT is the transpose of the matrix A. Note that Pσ
S (ν) = Dσ̄

AT(Aν),

and so, Pσ
S (ν) is a polyhedron. Thus, we may now apply Corollary 2.6.5 to obtain

results about the boundedness of LP σ
S,c(ν). First, observe that the recession cone of

the polyhedron Pσ
S (ν) is the cone Pσ

S (0) = {x ∈ S : xσ̄ ≥ 0}.

Lemma 2.8.2. A feasible linear space program LP σ
S,c(ν) := min{cx : x ∈ Pσ

S (ν)} is
bounded if and only if LP σ

S,c(0) := min{cx : x ∈ Pσ
S (0)} is bounded.

Also, we may apply Lemma 2.6.6 to linear space programs to obtain the following
useful lemma on the boundedness of LP σ

S,c(ν). Note that the dual of the cone Pσ
S (0)

is the cone Pσ
S (0)∗ = {y ∈ Rn : yσ = sσ, yσ̄ ≥ sσ̄, s ∈ S∗}.

Lemma 2.8.3. A feasible linear space program LP σ
S,c(ν) := min{cx : x ∈ Pσ

S (ν)} is
bounded if and only if there does not exist x ∈ Pσ

S (0) = {x ∈ S : xσ̄ ≥ 0} such that
cx < 0 or equivalently c ∈ Pσ

S (0)∗ = {y ∈ Rn : yσ = sσ, yσ̄ ≥ sσ̄, s ∈ S∗}.

Importantly, if the linear space program LP σ
S,c(ν) has an optimal solution, then it

can always be reformulated as a linear space program where all the variables are
non-negative. This is achieved by projecting the linear space program onto the xσ̄

variables as shown below. We may assume that cσ = 0 without loss of generality,
which follows from Lemma 2.8.4 below. Then,

LP σ
S,c(ν) := min{cx : x − ν ∈ S, xσ̄ ≥ 0, x ∈ Rn}

=min{cσ̄xσ̄ : xσ̄ − νσ̄ ∈ Sσ, xσ − νσ ∈ S σ̄, xσ̄ ≥ 0, x ∈ Rn}

=min{cσ̄xσ̄ : xσ̄ − νσ̄ ∈ Sσ, xσ̄ ≥ 0, xσ̄ ∈ R|σ̄|}

=LPSσ ,cσ̄(νσ̄).

Note that Sσ denotes the projection of S onto the σ̄ components and S σ̄ denotes
the projection of S onto the σ components. Thus, we can solve LP σ

S,c(ν) by solving
LPSσ,cσ̄(νσ̄), and all the variables are non-negative. Furthermore, if we know the
optimal solution of LPSσ,cσ̄(νσ̄), then we can easily reconstruct the optimal solution
of LP σ

S,c(ν) as follows. Let x∗
σ̄ be the optimal solution of LPSσ,cσ̄(νσ̄). Assuming that

S = {x ∈ Rn : Ax = 0}, we then compute x∗
σ by solving the following equation:

A∗σx∗
σ + A∗σ̄x∗

σ̄ = Aν. Note that A∗σ is a submatrix of A consisting of the columns
of A indexed by σ, and A∗σ̄ is the columns of A indexed by σ̄. This equation must
have a solution since x∗

σ̄ − νσ̄ ∈ Sσ. Then, x∗ ∈ Pσ
S (ν) and x∗ is the optimal solution

of LP σ
S,c(ν) since cx∗ = cσ̄x∗

σ̄.

We now show that we can assume that cσ = 0.

2.8. LINEAR SPACE PROGRAMS 39

Lemma 2.8.4. For every feasible bounded linear space program LP σ
S,c(ν), there ex-

ists c̃ ∈ Rn and k ∈ R such that c̃σ = 0, c̃σ̄ ≥ 0, c̃x = cx + k for all x ∈ Pσ
S (ν), and

LP σ
S,c(ν) = LP σ

S,c̃(ν) + k.

Proof. From Lemma 2.8.3, the linear space program LP σ
S,c(ν) is bounded if and

only if c ∈ Pσ
S (0)∗ = {y ∈ Rn : yσ = sσ, yσ̄ ≥ sσ̄, s ∈ S∗}. So, assuming LP σ

S,c(ν)
is bounded, there exists s ∈ S∗ such that cσ = sσ and cσ̄ ≥ sσ̄. Let c̃ = c − s;
then, c̃σ = 0, and c̃σ̄ ≥ 0 by construction. Now, for every x ∈ Pσ

S (ν), we have
c̃x = cx − sx = cx − sν since x − ν ∈ S and s ∈ S∗ implies that s(x − ν) = 0 and
sx = sν. Therefore, LP σ

S,c̃(ν) = LP σ
S,c(ν) − sν.

Note that the proof of the Lemma 2.8.4 is constructive: if we are given a linear space
program LP σ

S,c(ν), then we can find a cost vector c̃ ∈ Rn where c̃σ = 0 or c̃σ̄ ≥ 0 by
finding s ∈ S∗ such that cσ = sσ and cσ̄ ≥ sσ̄ and setting c̃ = c − sν.

Crucially, any linear program can be formulated as a linear space program. First
consider the dual linear program, DP σ

A,b(c) := max{yb : yA = c, yσ ≥ 0, y ∈ Rm}.
Let S := {y ∈ Rm : yA = 0}, which is a linear space. Also, let ν ∈ Rm be such that
νA = c. We can always find such a ν using linear algebra or if no such ν exists, then
LP is infeasible and there is nothing more to do. We saw previously that the linear
space program LP σ̄

S,-b(ν) may be reformulated as DP σ
A,b(νA), and now, we proceed

in the other direction in the same manner.

DP σ
A,b(c) :=max{yb : yA = c, yσ ≥ 0, y ∈ Rm}

=max{yb : yA = νA, yσ ≥ 0, y ∈ Rm}

=max{yb : (x − ν)A = 0, yσ ≥ 0, y ∈ Rm}

=max{yb : x − ν ∈ S, yσ ≥ 0, y ∈ Rm}

=LP σ̄
S,-b(ν).

Note that Dσ
A(ν) = F σ̄

S (ν) in this case.

To reformulate a linear program in primal form LP σ
A,c(b) := min{cx : Aσ̄x =

bσ̄, Aσx ≥ bσ} as a linear space program, we will need to introduce some addi-
tional slack variables to change the inequality constraints into equality constraints.
Then,

LP σ
A,b(c) := min{cx : Aσ̄x = bσ̄, Aσx ≥ bσ, x ∈ Rn}

= min{cx : Aσ̄x = bσ̄, Aσx − Is = bσ, x ∈ Rn, s ∈ R|σ|
+ }.

Now let S ⊆ Rn+m where S := {(x, s) ∈ Rn+m : Aσ̄x = 0, Aσx − Is = 0}. Also, let
ν ∈ Rn+m where ν = (νx, νs) such that Aσ̄νx = bσ̄ and Aσνx − Iνs = bσ. We can find
ν using linear algebra or if no such ν exists, then LP σ

A,b(c) is infeasible. Then,

LP σ
A,b(c) = min{cx : Aσ̄x = bσ̄, Aσx − Is = bσ, x ∈ Rn, s ∈ R|σ|

+ }

= min{cx : Aσ̄x = Aσ̄νx, Aσx − Is = Aσνx − Iνs, x ∈ Rn, s ∈ R|σ|
+ }

= min{cx : Aσ̄(x − νx) = 0, Aσ(x − νx) − I(s − νs) = 0, x ∈ Rn, s ∈ R|σ|
+ }

= min{cx : (x, s) − (νx, νs) ∈ S, x ∈ Rn, s ∈ R|σ|
+ }.

40 CHAPTER 2. FOUNDATIONS

The final formulation is a linear space program. Recall that we can reformulate
a linear space program into an equivalent form with only non-negative variables
by just projecting onto the non-negative variables assuming that the linear space
program has an optimal solution. In this case, this means projecting onto the slack
variables s. In order to perform this reformulation, we must first find a cost function
c̃ = (c̃x, c̃y) ∈ Rm+n that is equivalent to c such that c̃x = 0 (and c̃s ≥ 0), which is
always possible from Lemma 2.8.4. So,

LP σ
A,b(c) := min{cx : Aσ̄x = bσ̄, Aσx ≥ bσ, x ∈ Rn}

= min{cx : (x, s) − (νx, νs) ∈ S, x ∈ Rn, s ∈ R|σ|
+ }

≡min{c̃ss : s − νs ∈ Sx, s ∈ R|σ|
+ }

=LPSx,c̃s(νs)

where Sx ⊆ R|σ| denotes the projection of S onto the slack variables s. In other
words, we can formulate any integer program as a linear space program involving
only the slack variables of the inequality constraints of the integer program. Recall
that Fσ

A(b) is the set of feasible solutions of LP σ
A,b(c) and FSx(νs) is the set of feasible

solutions of LPSx,c̃s(νs). Then, for every x ∈ Fσ
A(b), we have (Aσx − bσ) ∈ FSx(νs),

and also, for every s ∈ FSx(νs), there exists an x ∈ Fσ
A(b) such that (Aσx− bσ) = s.

2.9 Lattice programs

Lattice programs are essentially the same as integer programs; they are basically just
a reformulation of an integer program. In this thesis, we will use lattice programs
as the preferred formulation of an integer program.

We define a lattice program as the following:

IP σ
L,c(ν) := min{cx : x − ν ∈ L, xσ̄ ≥ 0, x ∈ Zn}

where σ ⊆ {1, ..., n}, σ̄ = {1, ..., n} \ σ, L ⊆ Zn is an integer lattice, c ∈ Rn is some
cost function, and ν ∈ Zn. We call the set of feasible points of a lattice program a
lattice fiber, and we write it as Fσ

L(ν) := {x ∈ Zn : x − ν ∈ L, xσ̄ ≥ 0}. In the
particular case where σ = ∅ and all variables are non-negative, we will usually omit
σ from IP σ

L,c(ν) and just write IPL,c(ν) instead, and similarly, we write FL(ν).

Any lattice program can be formulated as an integer program. Consider the lattice
L ∈ Zn. First, we consider the special case where L = {x ∈ Zn : Ax = 0} for some
matrix A ∈ Rm×n. Then,

IP σ
L,c(ν) := min{cx : x − ν ∈ L, xσ̄ ≥ 0, x ∈ Zn}

= min{cx : A(x − ν) = 0, xσ̄ ≥ 0, x ∈ Zn}

= min{cx : Ax = Aν, xσ̄ ≥ 0, x ∈ Zn}

The final formulation of the problem is an integer program. Incidentally, we have
also shown here how to reformulate the lattice fiber Fσ

L(ν) as a polyhedral fiber.

2.9. LATTICE PROGRAMS 41

Unfortunately, in general, not all lattices are saturated: we cannot represent all
lattices in the form L = {x ∈ Zn : Ax = 0} for some matrix A ∈ Rm×n. In this case,
we can still formulate the lattice program as an integer program, but we need some
additional variables. Let B ∈ Zk×n be a basis for the lattice L where the rows of the
matrix B span L, so L = {yB : y ∈ Zk}. Then,

IP σ
L,c(ν) := min{cx : x ∈ Fσ

L(ν)}

= min{cx : x − ν ∈ L, xσ̄ ≥ 0, x ∈ Zn}

= min{cx : x − ν = yB, xσ̄ ≥ 0, x ∈ Zn, y ∈ Zk}.

The final formulation is an integer program. We could use the equation x = yB + ν

to eliminate the x variables from the formulation if we wanted a more compact
formulation. Note that we have also shown here how to reformulate the lattice fiber
Fσ

L(ν) as the projection of a polyhedral fiber.

The linear relaxation of IP σ
L,c(ν) is the linear space program LP σ

S,c(ν) where S is
the inclusion-minimal linear space containing the lattice L; i.e., for the lattice L =
{yB : y ∈ Zk} where B ∈ Rk×n, the linear space S = {yB : y ∈ Rk} is the inclusion-
minimal linear space containing L. This follows since we can formulate LP σ

S,c(ν) as a
linear program in the same form as the integer programming formulation of IP σ

L,c(ν)
above but without the integrality constraints:

LP σ
S,c(ν) := min{cx : x − ν ∈ S, xσ̄ ≥ 0, x ∈ Rn}

= min{cx : x − ν = yB, xσ̄ ≥ 0, x ∈ Rn, y ∈ Rk}.

As with integer programs, we can determine if a lattice program has a bounded
optimal value from its linear relaxation. The proof follows closely the proof of 2.7.1.

Lemma 2.9.1. A feasible lattice program IP σ
L,c(ν) is bounded if and only if LP σ

S,c(ν)
is bounded where S is the inclusion-minimal linear space containing L.

Proof. If LP σ
L,c(ν) is unbounded, then LP σ

S,c(ν) must also be unbounded since it is
the linear relaxation of LP σ

L,c(ν).

Assume that LP σ
S,c(ν) is unbounded. Recall from Lemma 2.8.3 that LP σ

S,c(ν) is
bounded if and only if there does exists x ∈ Pσ

S (0) = {x ∈ S : xσ̄ ≥ 0} such that
cx < 0. Since we assume that all data is rational, Pσ

S (0) is a rational polyhedron,
and we may assume that x is rational. Now λx ∈ Pσ

S (0) for all λ ∈ R+, so λx ∈ L
for some λ ∈ R+, in which case, λx ∈ {x ∈ L : xσ̄ ≥ 0} = Fσ

S (0). Furthermore, if
x̄ ∈ Fσ

L(ν), then (x̄+λx) ∈ Fσ
L(ν) for all λ ∈ R+ where λx ∈ L. Therefore, IP σ

L,c(ν)
is unbounded because c(x̄ + λx) → −∞ if λ → ∞.

The following corollary was shown during the proof of Lemma 2.9.1 above.

Corollary 2.9.2. A feasible lattice program IP σ
L,c(ν) is bounded if and only if there

does not exist x ∈ Fσ
S (0) = {x ∈ L : xσ̄ ≥ 0} such that cx < 0.

Note that in Corollary 2.9.2 above, whether a lattice program IP σ
L,c(ν) is bounded

or not is independent of ν except that IP σ
L,c(ν) must be feasible. Also, the lattice

program IP σ
L,c(0) is always feasible since 0 ∈ Fσ

L(0). Thus, we arrive at the following
useful corollary.

42 CHAPTER 2. FOUNDATIONS

Corollary 2.9.3. A feasible lattice program IP σ
L,c(ν) is bounded if and only if

IP σ
L,c(0) is bounded.

Importantly, if the relaxation IP σ
L,c(ν) has an optimal solution, then it may be re-

formulated as a lattice program where all the variables are non-negative. This is
one of the main reasons why lattice programs are a convenient formulation. This
is achieved by projecting the integer program onto the xσ̄ variables as shown be-
low. Firstly, we can assume that cσ = 0, which we showed was true for the linear
relaxation IP σ

S,c(ν) (see Lemma 2.8.4), so it is also true for IP σ
L,c(ν). Then,

IP σ
L,c(ν) := min{cx : x − ν ∈ L, xσ̄ ≥ 0, x ∈ Zn}

= min{cσ̄xσ̄ : xσ̄ − νσ̄ ∈ Lσ, xσ − νσ ∈ Lσ̄, xσ̄ ≥ 0, x ∈ Zn}

= min{cσ̄xσ̄ : xσ̄ − νσ̄ ∈ Lσ, xσ̄ ≥ 0, xσ̄ ∈ Z|σ̄|}

=IPLσ,cσ̄(νσ̄).

Thus, we can solve IP σ
L,c(ν) by solving IPLσ,cσ̄(νσ̄), and all the variables are non-

negative. Conceptually, this means that it is the non-negative constraints that make
the lattice program difficult to solve, and we can effectively ignore the other variables.
Indeed, if there are no non-negativity constraints on the variables, then the lattice
program is easy to solve. Furthermore, if we know the optimal solution of IPLσ,cσ̄(νσ̄),
then we can easily reconstruct the optimal solution of IP σ

L,c(ν) as follows. Let x∗
σ̄

be the optimal solution of IPLσ,cσ̄(νσ̄). Let B ∈ Zk×n be a basis of L, so we have
L = {λB : λ ∈ Zk}. Then, B∗σ̄ is a basis of Lσ. Thus, x∗

σ̄ = λB∗σ̄ + νσ̄ for some
λ ∈ Zk. Let x∗

σ = λB∗σ + νσ. Then, x∗ ∈ Fσ
L(ν), and x∗ is the optimal solution of

IP σ
S,c(ν) since cx∗ = cσ̄x∗

σ̄.

In this thesis, we often consider projecting the set of points in Fσ
L(ν) onto the set

FLσ(νσ̄). We are often interested in doing this under the condition that there is a
one-to-one correspondence between points in Fσ

L(ν) and points in FLσ(νσ̄) for every
ν ∈ Zn: for every ν ∈ Zn and every x, y ∈ Fσ

L(ν), if xσ̄ = yσ̄, then x = y, or
in other words, the projective map πσ : Fσ

L(ν) → FLσ(νσ̄) is a bijection for every
ν ∈ Zn. There is such a one-to-one correspondence if and only if there is a one-to-one
correspondence between vectors in L and vectors in Lσ: for u, v ∈ L, if uσ̄ = vσ̄,
then u = v, or in other words, the projective map πσ : L → Lσ is a bijection, and
thus, the inverse map π-1

σ is well-defined. First, note that there exists u, v ∈ L such
that uσ̄ = vσ̄ and u 6= v if and only if {u ∈ L : uσ̄ = 0} 6= {0}. If there exists
x, y ∈ Fσ

L(ν) for some ν ∈ Zn such that xσ̄ = yσ̄ and x 6= y, then (x − y) 6= 0 and
(x − y) ∈ {u ∈ L : uσ̄ = 0}. Conversely, let u ∈ {u ∈ L : uσ̄ = 0}. Let x ∈ Fσ

L(ν)
and let y = x + u. Note that y ∈ Fσ

L(ν). Then, xσ̄ = yσ̄ but x 6= y. Hence, there is
a one-to-one correspondence between points in Fσ

L(ν) and points in FLσ(νσ̄) if and
only if ker(πσ) ∩ L = {u ∈ L : uσ̄ = 0} = {0}.4

Crucially, any integer program can be formulated as a lattice program. Consider the
special case, IP := min{cx : Ax = b, xσ ≥ 0, x ∈ Zn}. Let L := {x ∈ Zn : Ax = 0},
which is a lattice. Also, let ν ∈ Zn such that Aν = b. We can always find such an

4The notation ker(πσ) means the kernel of the map πσ; that is, the points that are mapped to
zero.

2.9. LATTICE PROGRAMS 43

ν using the HNF algorithm. If no such ν exists, then IP is infeasible and there is
nothing more to do. Then,

IP := min{cx : Ax = b, xσ ≥ 0, x ∈ Zn}

=min{cx : Ax = Aν, xσ ≥ 0, x ∈ Zn}

=min{cx : A(x − ν) = 0, xσ ≥ 0, x ∈ Zn}

=min{cx : x − ν ∈ L, xσ ≥ 0, x ∈ Zn}

=IP σ
L,c(ν).

Note that Fσ
A(b) = Fσ

L(ν) in this case, so we have reformulated a polyhedral fiber
as a lattice fiber..

To reformulate integer programs in general form as a lattice program, we will need
to introduce some additional slack variables to change the inequality constraints
into equality constraints. Consider the integer program IP σ

A,b(c). We always assume
that all data is rational, and for this situation, we also will assume that all data has
been scaled so that it is integral (i.e. A ∈ Zm×n, b ∈ Zm, and c ∈ Zn). Then,

IP σ
A,b(c) := min{cx : Aσ̄x = bσ̄, Aσx ≥ bσ, x ∈ Zn}

= min{cx : Aσ̄x = bσ̄, Aσx − Is = bσ, x ∈ Zn, s ∈ N|σ|}.

Now let L ⊆ Zn+m where L := {(x, s) ∈ Zn+m : Aσ̄x = 0, Aσx − Is = 0}. Also, let
ν ∈ Zn+m where ν = (νx, νs) such that Aσ̄νx = bσ̄ and Aσνx − Iνs = bσ. We can find
ν using the HNF algorithm. If no such ν exists, then IP σ

A,b(c) is infeasible. Then,

IP σ
A,b(c) = min{cx : Aσ̄x = bσ̄, Aσx − Is = bσ, x ∈ Zn, s ∈ N|σ|}

= min{cx : Aσ̄x = Aσ̄νx, Aσx − Is = Aσνx − Iνs, x ∈ Zn, s ∈ N|σ|}

= min{cx : Aσ̄(x − νx) = 0, Aσ(x − νx) − I(s − νs) = 0, x ∈ Zn, s ∈ N|σ|}

= min{cx : (x, s) − (νx, νs) ∈ L, x ∈ Zn, s ∈ N|σ|}.

The final formulation is a lattice program. Note that we have also shown that a
polyhedral fiber can be reformulated as the projection of a lattice fiber.

Now, recall that we can reformulate a lattice program into an equivalent form with
only non-negative variables by just projecting onto the non-negative variables as-
suming that the lattice program has an optimal solution. In this case, this means
projecting onto the slack variables s. In order to perform this reformulation, we must
first find a cost function c̃ = (c̃x, c̃s) ∈ Zn+m that is equivalent to c such that c̃x = 0,
which is always possible. So,

IP σ
A,b(c) :=min{cx : Aσ̄x = bσ̄, Aσx ≥ bσ, x ∈ Zn}

=min{cx : (x, s) − (νx, νs) ∈ L, x ∈ Zn, s ∈ N|σ|}

=min{c̃ss : s − νs ∈ Lx, s ∈ N|σ|}

=IPLx,c̃s(νs)

where Lx denotes the projection of L onto the slack variables s. In other words,
we can formulate any integer program as a lattice program involving only the slack

44 CHAPTER 2. FOUNDATIONS

variables of the inequality constraints of the integer program. Recall that Fσ
A(b) is

the set of feasible solutions of IP σ
A,b(c) and FLx(νs) is the set of feasible solutions of

IPLx,c̃s(νs). Then, for every x ∈ Fσ
A(b), we have (Aσx − bσ) ∈ FLx(νs), and also, for

every s ∈ FLx(νs), there exists an x ∈ Fσ
A(b) such that (Aσx − bσ) = s.

Example 2.9.4. Consider IPA,c(b) := min{cx : x ∈ (PA(b) ∩ Zn)} where

A =









2 3
−2 +1
−2 −1
1 −1









, b =









6
−4
−10
−1









, and c = (3, 4),

so IPA,c(b) = min{3x1 +4x2 : 2x1 +3x2 ≥ 6, 2x1−x2 ≤ 4, 2x1 +x2 ≤ 10,−x1 +x2 ≤
1, x ∈ Z2}. This is the integer program from Section 1.5 in the introduction. We will
reformulate this as a lattice program. Let L = {(x, s) ∈ Z6 : Ax − Is = 0}, and let
σ = {1, 2}, so σ indexes the x variables and σ̄ indexes the s variables. A basis for
L is

B = (I, AT) =

(

1 0 2 -2 -2 1
0 1 3 1 -1 -1

)

.

Let ν = (νσ, νσ̄) ∈ Z6 where νσ = (0, 0) and νσ̄ = −b = (-6, 4, 10, 1), so Aνσ − Iνσ̄ =
b. Finally, let c̄ = (c̄σ, c̄σ̄) ∈ Z6 where c̄σ = c and c̄σ̄ = 0. We have now reformulated
the integer program IPA,c(b) as the lattice program IP σ

L,c̄(ν). The linear relaxation
of IP σ

L,c̄(ν) is the linear subspace program LP σ
S,c̄(ν) where S = {yB : y ∈ R2}.

We can map any feasible solution of the integer program IPA,c(b) to a feasible so-
lution of the lattice program IP σ

L,c̄(ν) as follows: if x ∈ FA(b), then (x, s) ∈ Fx
L(ν)

where s = Ax− b. Recall from Example 1.5.1 that the optimal solution of IPA,c(b) is
x∗ = (2, 1), which maps to (x∗, s∗) = (2, 1, 1, 1, 5, 2) ∈ Fσ

L(ν), which is the optimal
solution of LP σ

S,c̄(ν).

We can project this lattice program onto its non-negative variables (the s variables).
To do so, we must find an equivalent cost vector c̃ = (c̃x, c̃s) such that c̃x = 0

and c̃s ≥ 0. From Lemma 2.8.4, to find c̃, we must find a vector y in the set
S∗ = {y ∈ R6 : By = 0} such that c̄x = c = yx and c̄s = 0 ≥ ys. The vector
y = (3, 4, -2, 0, -1, -1) satisfies the conditions. Then, let c̃ = c̄ − y = (0, 0, 2, 0, 1, 1).
So, IP x

L,c̄(ν) = IP x
L,c̃(ν) − yν and yν = −1. We can now project IP x

L,c̃(ν) onto
the s variables giving the lattice program IPLx,c̃s(νs). Explicitly, c̃s = (2, 0, 1, 1),
νs = (-6, 4, 10, 1), and a basis of Lx is

B∗s = AT =

(

2 -2 -2 1
3 1 -1 -1

)

.

Note that the lattice program IPLx,c̃s(νs) is in the space of the slack variables of the
integer program IPA,c(b).

From above, the optimal solution of IP x
L,c̃(ν) is (2, 1, 1, 1, 5, 2), so the optimal so-

lution of IPLx,c̃s(νs) is (1, 1, 5, 2). The optimal value of IP x
L,c̄(ν) is (2, 1, 1, 1, 5, 2) ·

(3, 4, 0, 0, 0, 0) = 10, and the optimal value of IPLx,c̃s(νs) is (1, 1, 5, 2)·(2, 0, 1, 1) = 9,
and 10 = 9−yν. Equivalently, we can directly map any feasible solution of the integer
program IPA,c(b) to a feasible solution of the lattice program IPLx,c̃s(νs) as follows:
if x ∈ FA(b), then s ∈ FLx(νs) where s = Ax − b.

2.10. TERM ORDERS 45

The lattice Lx is saturated since Lx = {x ∈ Z4 : Ãx = 0} where

Ã =

(

1 5 0 8
1 2 1 4

)

.

So, we can reformulate the lattice program IPLx,c̃s(νs) as the following integer pro-
gram: min{c̃x, Ãx = b̃, x ≥ 0, x ∈ Z4} where b̃ = Ãνs = (22, 16).

We have shown in this section that we can reformulate any integer program IP σ
A,c(b)

as a lattice program IPL,c̃(ν). The form IPL,c̃(ν) is our preferred formulation for
describing Gröbner bases of integer programs. We prefer it because all the variables
in the formulation IPL,c̃(ν) are non-negative and the non-negativity constraints on
the variables are the only inequality constraints in the formulation. We have also
effectively shown that we can reformulate the set of points Fσ

A(b) in the form FL(ν),
and this also is our preferred formulation for describing Markov bases of fibers for
the same reasons as above.

2.10 Term orders

In this section, we define term orders, which may be thought of as perturbations
of cost functions as we shall see. Terms orders as defined here are related to the
standard concept of term orders in algebraic geometry where they are also known
as monomial orders (see for example [28]).

A cost vector c ∈ Rn determines a partial order ≻ on Fσ
L(ν) for every ν ∈ Zn defined

by x ≻ y if cx > cy for x, y ∈ Fσ
L(ν). Note that x ≻ y means x � y and x 6= y.

Except in special circumstances (e.g. n = 1), ≻ is not a total order on Fσ
L(ν) for

every ν ∈ Zn since we may have cx = cy but x 6= y for some x, y ∈ Fσ
L(ν), in which

case, neither x ≻ y nor y ≻ x. However, for computing Gröbner bases and Markov
bases, we require a total order on Fσ

L(ν) for every ν ∈ Zn.

Specifically, for computing Gröbner bases and Markov bases, we need an order ≻
on Fσ

L(ν) for every ν ∈ Zn that satisfies the following conditions:

(i). ≻ is a total order on the set Fσ
L(ν) for every ν ∈ Zn,

(ii). there exists a ≻-minimal solution of Fσ
L(ν) for every ν ∈ Zn for which Fσ

L(ν) 6=
∅, and

(iii). ≻ is an additive order meaning that, for all ν ∈ Zn, for all x, y ∈ Fσ
L(ν), and for

all γ ∈ Nn, x ≻ y if and only if x+γ ≻ y+γ (note that x+γ, y+γ ∈ Fσ
L(ν+γ)).

We call an order ≻ that satisfies the above conditions a term order for Fσ
L(·) or

just a term order for L when σ = ∅.

We can define an optimisation problem using a total order instead of a cost function
as follows:

IP σ
L,≻(ν) := min

≻
{x : x − ν ∈ L, xσ̄ ≥ 0, x ∈ Zn}

46 CHAPTER 2. FOUNDATIONS

where L ⊆ Zn is a lattice, σ ⊆ {1, ..., n}, ≻ is a total order on Fσ
L(ν),and ν ∈ Zn.

Here, we wish to find the ≻-minimal point in the fiber FL(ν). We will also refer to
this problem also as a lattice program. So, if ≻ is a term order, then from condition
(ii) above, the lattice program IP σ

L,≻(ν) has an optimal solution for every feasible
ν ∈ Zn.

Crucially, for any lattice program IP σ
L,c(ν) that has an optimal solution, there exists

a term order ≻ such that the optimal solution of IP σ
L,≻(ν) is also the optimal solution

of IP σ
L,c(ν). We show this below. So, we can solve lattice programs with linear cost

functions – which is one of our overall aims – by solving lattice programs with term
orders.

Given a vector c ∈ Zn, we say that a term order ≻ is compatible with c if the
optimal solution of IP σ

L,≻(ν) is also an optimal solution of IP σ
L,c(ν) for all ν ∈ Zn

where Fσ
L(ν) 6= ∅. We can easily construct a c compatible order ≻c given some (tie-

breaking) term order ≻ as follows: x ≻c y if cx > cy, or cx = cy and x ≻ y. We
must be a little careful here though since ≻c is not necessarily a term order. The
order ≻c satisfies conditions (i) and (iii) for being a term order, but condition (ii)
is not always satisfied. The order ≻c is a term order if and only if IP σ

L,c(ν) has an
optimal solution for every ν ∈ Zn where Fσ

L(ν) 6= ∅.

We can now derive a sufficient and necessary condition for a total additive order to
be a term order, which is analogous to Corollary 2.9.2.

Lemma 2.10.1. Let ≻ be a total additive order on the set Fσ
L(ν) for every ν ∈ Zn.

The order ≻ is a term order if and only if there does not exist a vector x ∈ Fσ
L(0) =

{x ∈ L : xσ̄ ≥ 0} such that 0 ≻ x.

Proof. Assume that there exists x ∈ Fσ
L(0) = {x ∈ L : xσ̄ ≥ 0} such that 0 ≻ x.

Also, assume that IP σ
L,≻(0) has an optimal solution (a ≻-minimal solution) x∗ ∈

Fσ
L(0). Since ≻ is an additive order, 0 ≻ x implies that x∗ ≻ x + x∗ contradicting

the minimality of x∗. Therefore, IP σ
L,≻(0) has no optimal solution, so ≻ is not a

term order.

Assume that ≻ is not a term order. Then, there exists ν ∈ Zn such that IP σ
L,≻(ν)

has no optimal solution. Hence, there must exists a ≻-decreasing infinite sequence
of points in Fσ

L(ν); i.e. (x1, x2, ..., xi, ...) such that xi ≻ xi+1 for all i ∈ N. By the
Gordan-Dickson Lemma 2.5.1, there must exist an i < j such that xi

σ̄ ≤ x
j
σ̄, in which

case, xj−xi ∈ Fσ
L(0). Since ≻ is an additive order, xi ≻ xj implies that 0 ≻ (xj−xi)

as required.

The following corollary, which is analogous to Corollary 2.9.3, follows from the proof
of Lemma 2.10.1 above.

Corollary 2.10.2. Let ≻ be a total additive order on the set Fσ
L(ν) for every ν ∈ Zn.

The order ≻ is a term order if and only if IP σ
L,≻(0) has an optimal solution.

Lemma 2.10.1 above implies that there exists a term order ≻ for Fσ
L(·) only if

{x ∈ L : xσ̄ = 0} = {0} since otherwise if there exists x ∈ L such that xσ̄ = 0, then
x ≻ 0 implies 0 ≻ −x (by the additive property) and −x ∈ Fσ

L(0), so ≻ cannot be

2.10. TERM ORDERS 47

a term order by Lemma 2.10.1. Recall that the condition {x ∈ L : xσ̄ = 0} = {0}
means that there is a one-to-one correspondence between points in Fσ

L(ν) and points
in FLσ(νσ) for every ν ∈ Zn. So, if {x ∈ L : xσ̄ = 0} = {0}, then a term order ≻
for Lσ determines a term order ≻′ for Fσ

L(·) defined by x ≻′ y if xσ̄ ≻ yσ̄ for all
x, y ∈ Fσ

L(ν), and conversely, any term order ≻ for Fσ
L(·) determines a term order

≻′ for Lσ defined by xσ̄ ≻′ yσ̄ if x ≻ y for all x, y ∈ Fσ
L(ν). Therefore, instead of

solving IP σ
L,≻(ν), we can instead solve IPLσ,≻′(νσ̄) and lift the optimal solution from

FLσ(νσ̄) to Fσ
L(ν). However, we will find it conceptually useful to sometimes still

consider the lattice programs IP σ
L,≻(ν).

Total orders on Fσ
L(ν) for every ν ∈ Zn are actually straight-forward to construct.

Consider the cost vector c ∈ Rn. As we mentioned above, the cost vector determines
a partial order ≻ on every fiber Fσ

L(ν) for ν ∈ Zn defined by x ≻ y if cx > cy for
x, y ∈ Fσ

L(ν). We want a total order, so the situation we want to avoid is when
cx = cy but x 6= y for x, y ∈ Fσ

L(ν) for some ν ∈ Zn. We can choose another cost
vector c′ ∈ Rn that is linearly independent from c to try to break these ties; we
define another order ≻′ such that x ≻′ y if cx > cy or cx = cy and c′x > c′y for
x, y ∈ Fσ

L(ν) and ν ∈ Zn. The order ≻′ is a refinement of ≻ in the sense that x ≻ y

implies x ≻′ y. But, ≻′ still may not be a total order for every fiber, in which case,
we can choose another cost vector c′′ ∈ Rn that is linearly independent from c and
c′, and define another order ≻′′ such that x ≻′′ y if cx > cy or cx = cy and c′x > c′y

or cx = cy and c′x = c′y and c′′x > c′′y for x, y ∈ Fσ
L(ν) and ν ∈ Zn. The order

≻′′ is again a refinement of ≻′. We can keep choosing cost vectors in this way and
continue to refine the order until we have a total order. At most, we need n linearly
independent cost vectors c1, c2, ..., cn since if cix = ciy for i = 1, ..., n, then x = y.

What we are doing here is using a cost matrix as opposed to a cost vector. Let
C ∈ Rk×n. Then, the matrix C determines a partial order ≻C on every fiber Fσ

L(ν)
for ν ∈ Zn defined by x ≻C y if the first non-zero entry of the vector C(x − y)
is positive for x, y ∈ Fσ

L(ν) and for ν ∈ Zn. This is the same approach as above
for constructing an ordering from a sequence of cost vectors c1, c2, ..., ck where the
rows of the matrix C are the cost vectors c1, c2, ..., ck. A matrix C determines a
total order if rank(C) = n since, as above, if C(x− y) = 0, then x = y. Actually, in
general, we do not need rank(C) = n. What we specifically need is that C(x−y) = 0

implies x − y = 0, and since x − y ∈ L for x, y ∈ Fσ
L(ν) and for ν ∈ Zn, we require

that L ∩ {x ∈ Zn : Cx = 0} = {0}. The set L ∩ {x ∈ Zn : Cx = 0} is also
a lattice (as the intersection of two lattices) and we can check the condition that
L ∩ {x ∈ Zn : Cx = 0} = {0} easily using linear algebra.

One can think of using a cost matrix as a way of perturbing a cost vector. Let
C ∈ Rk×n, and let ci = Ci (i.e. ci is the ith row of C). Now, let c̃ = c1 + ǫc2 + ǫ2c3 +
...+ ǫn−1cn where ǫ ∈ R+ is very small.5 The vector c̃ may be viewed a perturbation
of the cost vector c1 because c̃ is close to c1 since ǫ is very small. Consider a fiber
Fσ

L(ν) for some ν ∈ Zn and assume for the moment that it has a finite number of
feasible points. Then, for all x, y ∈ Fσ

L(ν), x ≻C y if and only if c̃x > c̃y when ǫ is
chosen small enough. In practice, we never actually perturb a cost vector because
we may run into numerical problems, but this is still a useful way of thinking about

5Here, the expression ǫi means ǫ to the power of i, and not the ith element in a sequence.

48 CHAPTER 2. FOUNDATIONS

the order ≻C .

The total order ≻C for some matrix C ∈ Rk×n has property (iii) of term orders. If
x ≻ y where x, y ∈ Fσ

L(ν) for some ν ∈ Zn, then x+γ ≻ y+γ for every γ ∈ Nn since
C((x + γ)− (y + γ)) = C(x− y). Also, the order ≻C may be a total order on Fσ

L(ν)
for every ν ∈ Zn and thus satisfy property (i) of term orders, but there may not
be an optimal solution of IP σ

L,≻(ν) (i.e. a ≻C-minimal solution) for every feasible
ν ∈ Zn (property (ii)), in which case, ≻C is not a term order. We now examine
how we can check whether ≻C satisfies property (ii). This following corollary follows
directly from 2.10.1 after using the definition of the order ≻C .

Corollary 2.10.3. Let ≻C be a total order on the set Fσ
L(ν) for every ν ∈ Zn for

some matrix C ∈ Rk×n. The order ≻C is a term order if and only if there does not
exist x ∈ Fσ

L(0) = {x ∈ L : xσ̄ ≥ 0} such that the first non-zero entry of Cx is
negative (i.e. 0 ≻C x).

In this thesis, we only ever need to use term orders ≻C for some rational matrix C.

Consider the case where σ = ∅. If C is non-negative, then Cx ≥ 0 for all x ∈ FL(0)
since x ≥ 0; thus, for any non-negative matrix C where L ∩ {x ∈ Zn : Cx = 0} =
{0}, ≻C is a term order of L. Also, if the first row of the matrix C is a positive
vector, then the first entry of Cx is positive since x ≥ 0, and thus, for any matrix
C with a positive first row where L∩ {x ∈ Zn : Cx = 0} = {0}, ≻C is a term order
of L. Using these two sufficient conditions for term orders, we now define two of
the most useful term orders are the lexicographic term order and the degree reverse
lexicographic term order (see for example [28]).

Definition 2.10.4 (Lexicographic Order). Let L be a sub-lattice of Zn and let α, β ∈
FL(ν) for some b ∈ Zn. We say α ≻lex β if the first non-zero component of the vector
α − β is positive.

The lexicographic order is the order ≻C where C = I (the n × n identity matrix).
From our discussion above, this must be a term order for any lattice L ⊆ Zn since
C is non-negative and rank(C) = n.

Definition 2.10.5 (Degree Reverse Lexicographic Order). Let L be a sub-lattice of
Zn and let α, β ∈ FL(ν) for some b ∈ Zn. We say α ≻drlex β if

∑n

i=1(αi−βi) > 0 or
∑n

i=1(αi − βi) = 0 and the first non-zero component in the vector α− β is negative.

The degree reverse lexicographic order is the order ≻C where C is a matrix such
that the first row of C is a vectors of all ones and the rest of the matrix is −I (the
negative of the n× n identity matrix I). From our discussion above, this must be a
term order since rank(C) = n and the first row of C is positive.

Another situation in which a matrix C determines a term order ≻C is when FL(0) =
{0} and L∩{x ∈ Zn : Cx = 0} = {0}. If FL(0) = {0}, then Corollary 2.10.3 above
is trivially satisfied. Note that FL(0) = {0} means that FL(ν) is finite for all ν ∈ Zn,
so it follows that any total additive order is a term order.

Definition 2.10.6 (Reverse Lexicographic Order). Let L be a sub-lattice of Zn and
let α, β ∈ FL(ν) for some b ∈ Zn. We say α ≻rlex β if the first non-zero component
in the vector α − β is negative.

2.10. TERM ORDERS 49

The reverse lexicographic order is the order ≻C where C = −I. This is a total order
since rank(C) = n, and it is a term order if and only if FL(0) = {0}.

All of the above term orders for L can be easily extended to term orders for Fσ
L(·)

since, as we observed earlier, any term order on Lσ determines a term order on
Fσ

L(·).

Next, we demonstrate how one could solve IP σ
L,≻C

(ν) using standard integer pro-
gramming techniques given C ∈ Rk×n such that ≻C is a term order of Fσ

L(·). This
aim of this is to show that for any term order ≻C of Fσ

L(·), that we can construct a
non-negative matrix C ′ such that C ′

∗σ = 0 and C ′
∗σ̄ ≥ 0 such that ≻C′ is equivalent

to ≻C . Note that C ′
∗σ is the matrix consisting of the columns of C ′ indexed by σ,

and C ′
∗σ̄ is the matrix consisting of the columns of C ′ indexed by σ̄. Also, note that

the term order ≻C′

∗σ̄
is a term order on Lσ that is equivalent to the term order ≻C

on Fσ
L(·), which confirms that, as we discussed, for any term order on Fσ

L(·), there
is an equivalent term order on Lσ.

Let x∗ be the optimal solution of IP σ
L,≻C

(ν). Let ci = Ci (i.e. the ith row of C) for i =
1, ..., k. The first step is to solve the lattice program IP 1 := IP σ

L,c1
(ν). If IP 1 has no

optimal solution, then x ≻C y cannot be a term order because c1x > c1y implies that
x ≻C y for x, y ∈ Fσ

L(ν). So, an optimal solution exists because ≻C is a term order.
Let x1 be the optimal solution of IP 1 obtained by standard integer programming
techniques. Then, we must have c1x∗ = c1x1. Next, consider the modified lattice
program IP 2 := min{c2x : x ∈ Fσ

L(ν), c1x = c1x1}. Again, if IP 2 has no optimal
solution, then ≻C cannot be a term order because c1x = c1y and c2x > c2y implies
that x ≻C y for x, y ∈ Fσ

L(ν) ∩ {x ∈ Zn : c1x = c1x1}. Let x2 be the optimal
solution of IP 2. Then, c1x2 = cx∗ and c2x2 = cx∗. Next, we solve the modified
lattice program IP 3 := min{c3x : x ∈ Fσ

L(ν), c1x = c1x1, c2x = c2x2} and so on
until we solve IP k := min{ckx : x ∈ Fσ

L(ν), c1x = c1x1, ..., ck−1x = ck−1xk−1}. Let
xk be the optimal solution of IP k; then, xk = x∗ since c1xk = c1x∗,, ckxk = ckx∗

and ≻C is a total order.

We can write the modified lattice program IP 2 := min{c2x : x ∈ Fσ
L(ν), c1x = c1x1}

from above as a normal lattice program as follows: IP 2 = IPL2,c2(x
1) where L2 =

L∩{x ∈ Zn : c1x = 0}. Note that L2 is a lattice since {x ∈ Zn : c1x = 0} is a lattice
and the intersection of two lattices is a lattice. Let F2 = {x ∈ Fσ

L(ν) : c1x = c1x1},
so IP 2 = min{c2x : x ∈ F2}. We will show that F2 = Fσ

L2(x1); then, it follows
that IP 2 = IPL2,c2(x

1). If x ∈ Fσ
L(ν) and c1x = c1x1, then x ∈ Fσ

L2(x1) since
x− x1 ∈ L2, and thus, F2 ⊆ Fσ

L2(x1). If x ∈ Fσ
L2(x1), then x ∈ Fσ

L(ν) since L2 ⊆ L,
and also, c1x = c1x1 since x − x1 ∈ L2, and thus, x ∈ F2. Thus, Fσ

L2(x1) ⊆ F2.
Therefore, Fσ

L2(x1) = F2. and IP 2 = IPL2,c2(x
1). Extending this argument, we have

IP i = IPLi,ci(xi-1) where Li = L∩{x ∈ Zn : c1x = 0, ..., ci-1x = 0} for all i = 2, ..., k.

Now, from Lemma 2.8.4, since IP 1 has an optimal solution, we can construct a cost
vector c̄1 that is equivalent to c1 where c̄1

σ = 0 and c̄i ≥ 0. Similarly, since IP i

has an optimal solution for all i = 1, ..., k, we can construct a cost vector c̄i that is
equivalent to ci where c̄i

σ = 0 and c̄i ≥ 0. Then, the matrix C̄ where c̄i is the ith
row of C̄ determines an equivalent term order ≻C̄ to ≻C where C̄ is non-negative
and C̄∗σ = 0 by construction.

50 CHAPTER 2. FOUNDATIONS

Chapter 3

Markov bases

In this chapter, we formally define Markov bases of lattice fibers, Markov bases of
lattices, and truncated Markov bases of lattices. The Markov bases that we define in
this section are essentially the same objects as those described in the introduction,
but here we define Markov bases in the context of lattice fibers. Most of this section
consists of definitions of the different types of Markov bases with some examples. The
concept of Markov bases of lattices is well-known as it is analogous to a well-known
concept in algebraic geometry (see Appendix A). However, we found no explicit
reference to a Markov basis of one lattice fiber in the literature, but we found this
concept was quite useful in the context of integer programming. Also, the precise
concept of a truncated truncated Markov bases of a lattice has not appeared in the
literature to date as far as we are aware, but it is essentially the same as the concept
of truncation for Gröbner bases (see Section 4.3).

3.1 Markov bases of lattice fibers

In this section, we define Markov bases of lattice fibers, and we show that we can
restrict our attention to Markov bases of lattice fibers that have all non-negative
components. Markov bases of lattice fibers are analogous to Markov bases of poly-
hedral fibers as we discussed in the introduction.

A Markov basis of a lattice fiber Fσ
L(ν) is a set of vectors M ⊆ L such that, for every

pair of points x, y ∈ Fσ
L(ν), there exists a sequence of points (x1, x2, ..., xk) ⊆ Fσ

L(ν)
where x1 = x and xk = y such that either xi − xi+1 ∈ M or xi+1 − xi ∈ M for
all i = 1, ..., k − 1. In other words, we can move from any point x ∈ Fσ

L(ν) to any
other point y ∈ Fσ

L(ν) in a finite number of steps via other points in Fσ
L(ν) using

the vectors in the Markov basis. We can move from one point to another by adding
or subtracting a vector in the Markov basis. Note that we restrict Markov bases to
be subsets of L since if v ∈ Zn and v = x − y for two points x, y ∈ Fσ

L(ν), then
v ∈ L, so any vector not in L is useless.

We formally define Markov bases using the concept of fiber graphs.

Definition 3.1.1. Given a lattice L ⊆ Zn, a vector ν ∈ Zn, and a set S ⊆ L, we
define the fiber graph Gσ

L(ν, S) as the undirected graph with nodes Fσ
L(ν) and edges

51

52 CHAPTER 3. MARKOV BASES

(x, y) if x − y ∈ S or y − x ∈ S for x, y ∈ Fσ
L(ν). If σ = ∅, we will usually omit it

and write GL(ν, S).

We define Markov bases using the notion of the connectedness of fiber graphs.
Such a link between Markov bases and the connectedness of fiber graphs was made
by Thomas and Weismantel in [88]. We remind the reader that connectedness of
GL(ν, M) means that between each pair x, y ∈ Fσ

L(ν) there exists a path from x to
y in the graph Gσ

L(ν, M), and a path in the graph fiber Gσ
L(ν, M) is a sequence of

points (x1, x2, ..., xk) ⊆ Fσ
L(ν) such that either xi − xi+1 ∈ M or xi+1 − xi ∈ M for

all i = 1, ..., k − 1.

Definition 3.1.2. Given ν ∈ Zn, we call a set M ⊆ L a Markov basis of Fσ
L(ν)

if the graph Gσ
L(ν, M) is connected.

The definition of a Markov basis above is the same as the description in the beginning
of this section.

Remark 3.1.3. In some circumstances, the Markov basis of Fσ
L(ν) can be empty:

the empty set is a Markov basis of Fσ
L(ν) if and only if |Fσ

L(ν)| ≤ 1 (i.e. Fσ
L(ν) has

zero or one points).

Example 3.1.4. Consider the lattice fiber Fσ
L(ν) where L ∈ Zn is the lattice gener-

ated by the two vectors (1, 0, 2, -2, -2, 1) and (0, 1, 3, 1, -1, -1), ν = (0, 0, -6, 4, 10, 1),
and σ = {1, 2}. This is exactly the same lattice fiber that we encountered in Exam-
ple 2.9.4. This lattice fiber corresponds to the polyhedral fiber in Example 1.5.1 as
described in Example 2.9.4. There are 7 feasible solutions of Fσ

L(ν):

Fσ
L(ν) =







































(1, 2, 2, 4, 6, 0)
(2, 1, 1, 1, 5, 2)
(2, 2, 4, 2, 4, 1)
(2, 3, 7, 3, 3, 0)
(3, 2, 6, 0, 2, 2)
(3, 3, 9, 1, 1, 1)
(3, 4, 12, 2, 0, 0)







































.

The set M := {(1, 0, 2, -2, -2, 1), (0, 1, 3, 1, -1, -1)} is a Markov basis of Fσ
L(ν); we

can connect any two points in Fσ
L(ν) by adding or subtracting vectors in M . For

example, consider the points (2, 1, 1, 1, 5, 2) and (3, 2, 6, 0, 3, 2). We can step from
(2, 1, 1, 1, 5, 2) to (2, 2, 4, 2, 4, 1) by adding (0, 1, 3, 1, -1, -1), and then, we can step
from (2, 2, 4, 2, 4, 1) to (3, 2, 6, 0, 3, 2) by adding the other vector (1, 0, 2, -2, -2, 1).

The set M ′ := {(1, 0, 2, -2, -2, 1), (-1, 1, 1, 3, 1, -2)} is not a Markov basis of Fσ
L(ν)

since the point (3, 4, 12, 2, 0, 0) is not connected to any other feasible point because
adding or subtracting either vector in M ′ leads to an infeasible point (i.e. one of the
σ̄ components becomes non-negative).

There is a strong relationship between Markov bases of Fσ
L(ν) and Markov bases of

FLσ(νσ̄). Recall that Lσ is the projection of L onto the σ̄ components, and FLσ(νσ̄) is
the projection of Fσ

L(ν) onto the σ̄ components, which are the non-negative compo-
nents of Fσ

L(ν). We can always construct a Markov basis of FLσ(νσ̄) from a Markov

3.1. MARKOV BASES OF LATTICE FIBERS 53

basis of Fσ
L(ν), and conversely, we can always construct a Markov basis of Fσ

L(ν)
from a Markov basis of FLσ(νσ̄). We will explore this relationship here since it plays
an important role in describing algorithms for computing Markov bases. This rela-
tionship has not been reported in the literature, but it is only a slight extension of
known results.

First, we consider the case where ker(πσ)∩L = {0}. Recall from Section 2.9 that the
condition ker(πσ) ∩ L = {u ∈ L : uσ̄ = 0} = {0} means that there is a one-to-one
correspondence between points in Fσ

L(ν) and points in FLσ(νσ̄), or in other words,
the projective map πσ : L → Lσ is a bijection. Note that Mσ̄ is the projection of M

onto the σ̄ components in Lemma 3.1.5 below.

Lemma 3.1.5. Given Fσ
L(ν) where ker(πσ) ∩ L = {0}, the set M ⊆ L is a Markov

basis of Fσ
L(ν) if and only if Mσ̄ is a Markov basis of FLσ(νσ̄).

Proof. Let M be a Markov basis of Fσ
L(ν). Paths in the fiber graph Gσ

L(ν, M) project
to paths in the fiber graph GLσ(νσ̄, Mσ̄); that is, if (x1, x2, ..., xk) is a path in Gσ

L(ν, M),
then (x1

σ̄, x2
σ̄, ..., xk

σ̄) is a path in GLσ(νσ̄, Mσ̄). Now, let x′, y′ ∈ FLσ(νσ̄). There must
exist x, y ∈ Fσ

L(ν) such that xσ̄ = x′ and yσ̄ = y′. Since M is a Markov basis of
Fσ

L(ν), there exists a path from x to y in Gσ
L(ν, M), which projects to a path from

x′ to y′ in GLσ(νσ̄, Mσ̄). Therefore, Mσ̄ is a Markov basis of FLσ(νσ̄).

Conversely, assume that Mσ̄ is a Markov basis of FLσ(νσ̄). Paths in the fiber graph
GLσ(νσ̄, Mσ̄) lift to paths in the fiber graph Gσ

L(ν, M); that is, if (x̄1, x̄2, ..., x̄k) is a
path in GLσ(νσ̄, Mσ̄), then (x1, x2, ..., xk) ⊆ Fσ

L(ν) where xi
σ̄ = x̄i for i = 1, ..., k is

a path in Gσ
L(ν, M). Note that x̄i − x̄i+1 ∈ Mσ̄ implies that xi − xi+1 ∈ M since

ker(πσ) ∩ L = {0}, and similarly, x̄i+1 − x̄i ∈ Mσ̄ implies that xi+1 − xi ∈ M for
i = 1, ..., k − 1. Let x, y ∈ Fσ

L(ν). There must exist a path (x̄1, x̄2, ..., x̄k) from xσ̄

to yσ̄ in GLσ(νσ̄, Mσ̄) since Mσ̄ is a Markov basis of FLσ(νσ̄). From above, this path
lifts to a path from x to y in Gσ

L(ν, M).

Example 3.1.6. Consider again the lattice fiber Fσ
L(ν) from Example 3.1.4 above.

The projection of this fiber onto the σ̄ variables is the lattice fiber FLσ(νσ̄) where
Lσ ⊆ Zn is the lattice generated by the two vectors (2, -2, -2, 1) and (3, 1, -1, -1), and
νσ̄ = (-6, 4, 10, 1). Note that we have ker(πσ) ∩ L = {0}. Recall from Example 2.9.4
that Lσ = {x ∈ Z4 : Ãx = 0}, so FLσ(νσ̄) = PÃ(b̃) = {x ∈ Z4 : Ãx = b̃, x ≥ 0}
where

Ã =

(

1 5 0 8
1 2 1 4

)

, and b̃ =

(

22
16

)

.

Projecting the fiber Fσ
L(ν) onto the σ̄ components, we arrive at the set FLσ(νσ̄),

which is the following set of vectors:

{(2, 4, 6, 0), (1, 1, 5, 2), (4, 2, 4, 1), (7, 3, 3, 0), (6, 0, 2, 2), (9, 1, 1, 1), (12, 2, 0, 0)}.

Applying Lemma 3.1.5, we have that Mσ̄ := {(2, -2, -2, 1), (3, 1, -1, -1)} is a Markov
basis of FLσ(νσ̄), and the set M ′

σ̄ := {(2, -2, -2, 1), (1, 3, 1, -2)} is not a Markov basis
of FLσ(νσ̄).

If ker(πσ) ∩ L 6= {0}, then we can still easily construct a Markov basis of Fσ
L(ν)

given a Markov basis of FLσ(νσ̄). Let M ⊆ L be such that Mσ̄ is a Markov basis of

54 CHAPTER 3. MARKOV BASES

FLσ(νσ̄). Also, let S be a spanning set of the lattice ker(πσ)∩L = {u ∈ L : uσ̄ = 0}.
We show that M ∪ S is a Markov basis of Fσ

L(ν).

Lemma 3.1.7. Given Fσ
L(ν) and a spanning set S of ker(πσ)∩L, the set M∪S ⊆ L

is a Markov basis of Fσ
L(ν) if and only if Mσ̄ is a Markov basis of FLσ(νσ̄).

Proof. The proof that if M∪S ⊆ L is a Markov basis of Fσ
L(ν), then Mσ̄ is a Markov

basis of FLσ(νσ̄) follows the proof of 3.1.5 after noting that Sσ̄ = {0}, so M ∪ S

effectively projects to just Mσ̄.

Conversely, let x, y ∈ Fσ
L(ν). There must exist a path (x̄1, x̄2, ..., x̄k) from xσ̄ to yσ̄

in GLσ(νσ̄, Mσ̄) since Mσ̄ is a Markov basis of FLσ(νσ̄). Let (x1, x2, ..., xk) ⊆ Fσ
L(ν)

where xi
σ̄ = x̄i for i = 1, ..., k. Unfortunately, (x1, x2, ..., xk) is not necessarily a path

in Gσ
L(ν, M). We next show that there is a path in Gσ

L(ν, M ∪ S) from xi to xi+1 for
i = 1, ..., k − 1, which implies that there is a path from x to y in Gσ

L(ν, M ∪ S) as
required. Let i ∈ {1, ..., k−1} such that xi

σ̄−xi+1
σ̄ ∈ Mσ̄, and let mi ∈ M be such that

mi
σ̄ = xi

σ̄−xi+1
σ̄ . Let zi+1 = xi−mi; then, zi+1 ∈ Fσ

L(ν), and zi+1−xi+1 ∈ ker(πσ)∩L.
If xi+1 = zi+1, then we are done, so assume otherwise. Since S is a spanning set of
ker(πσ) ∩ L, there must exist a path from zi+1 to xi+1 in Gσ

L(ν, S), and therefore,
there is a path from xi to xi+1 in Gσ

L(ν, M ∪S). Similarly, there exists a path from xi

to xi+1 in Gσ
L(ν, M ∪S) for all i = 1, ..., k− 1 where xi+1

σ̄ − xi
σ̄ ∈ Mσ̄ as required.

Since we can always easily construct a Markov basis of Fσ
L(ν) from a Markov basis

of FLσ(νσ̄), we can restrict our attention to Markov bases of FL(ν) (all variables are
non-negative).

3.2 Markov bases of lattices

In this section, we formally present Markov bases of sets of different but related
fibers. Markov bases of lattices are analogous to the Markov bases of sets of poly-
hedral fibers as discussed in the introduction. We will first define Markov bases
of lattices and give a simple example, and then, importantly, we will give known
sufficient conditions for a set of vectors to be a Markov basis of a lattice.

Definition 3.2.1. Given a lattice L and a set σ ⊆ {1, ..., n}, we call a set M ⊆ L
a Markov basis of Fσ

L(·) if M is a Markov basis of Fσ
L(ν) for every ν ∈ Zn. If

σ = ∅, then we call M a Markov basis of L.

We will focus our attention on Markov bases of lattices (i.e. σ = ∅) since, from
Lemma 3.1.5, assuming that ker(πσ) ∩ L = {0}, M ⊆ L is a Markov basis of Fσ

L(·)
if and only if Mσ̄ is a Markov basis of Lσ. Also, in the more general case where
ker(πσ) ∩ L 6= {0}, given a set S that spans ker(πσ) ∩ L and a set M ⊆ L, the set
M ∪ S is a Markov basis of Fσ

L(·) if and only if Mσ̄ is a Markov basis of Lσ from
Lemma 3.1.7. So, we can always reconstruct a Markov basis of Fσ

L(·) from a Markov
basis of Lσ.

Note the difference between a Markov basis of a lattice and a spanning set of a
lattice: a spanning set of L is any set M ⊆ L such that any point in L can be

3.2. MARKOV BASES OF LATTICES 55

represented as a linear integer combination of the vectors in M . A Markov basis of
L is a spanning set of L, but the converse is not necessarily true.

Example 3.2.2. Consider again the projected lattice L from Example 3.1.6 that is
generated by the two vectors (2, -2, -2, 1) and (3, 1, -1, -1). Recall that the set M =
{(2, -2, -2, 1), (3, 1, -1, -1)} is a Markov basis of FL(ν) where ν = (-6, 4, 10, 1). The
set M is a spanning set of L, but we will show that it is not a Markov basis of L.

Consider ν ′ = (-6, 4, 10, -1). The fiber FL(ν ′) has two feasible solutions: (1, 1, 5, 0)
and (6, 0, 3, 2). This lattice fiber corresponds to the polyhedral fiber of Figure 1.10(a).
M is not a Markov basis of FL(ν ′) because there is no way to move from (1, 1, 5, 0)
to (6, 0, 3, 2) using the vectors in M while staying within the set FL(ν ′); in other
words, the graph GL(ν, M) is disconnected. Thus, we need the vector (5, -1, -3, 0).

The set M ′ = {(2, -2, -2, 1), (3, 1, -1, -1), (5, -1, -3, 0)} is a Markov basis of FL(ν) and
FL(ν ′), but it is still not a Markov basis of L. Consider ν ′′ = (-6, 4, 5, 1). Again, the
fiber FL(ν ′′) has only two feasible solutions: {(2, 4, 1, 0), (1, 1, 0, 2)}. This lattice fiber
corresponds to the polyhedral fiber of Figure 1.10(b). The set M ′ is not a Markov
basis of FL(ν ′′) since there is no way to move from (2, 4, 1, 0) to (1, 1, 0, 2) using the
vectors in M ′. Thus, we need the vector (1, 3, 1, -2).

The set M ′′ = {(2, -2, -2, 1), (3, 1, -1, -1), (5, -1, -3, 0), (1, 3, 1, -2)} is in fact a Markov
basis of L, but this fact is certainly not obvious even for such a small example.

In general, it is difficult to compute a Markov basis of L or to prove that a given
set is a Markov basis of L, but in some special cases, it is straight-forward to find a
small Markov basis of a lattice using some simple well-known sufficient conditions.
We will use these special cases for computing Markov bases (see Chapter 6). We
describe these special cases below.

The following lemmas use the result that if M is a spanning set of L, then M is
a Markov basis of Fσ

L(·) where σ = {1, ..., n}. This follows since there are no non-
negativity constraints for Fσ

L(ν) = {x ∈ Zn : x − ν ∈ L} for ν ∈ Zn, and thus, a
spanning set of L is all that we need for a Markov basis of Fσ

L(·).

Lemma 3.2.3. Let M ⊆ L be a spanning set of L. If there is a vector u ∈ M where
u > 0, then M is a Markov basis of L.

Proof. Let x, y ∈ GL(ν, M) for some ν ∈ Zn. Since M is a spanning set of L,
there exists a path from x to y in Gσ

L(ν, M) where σ = {1, ..., n}. We need to show
that there is a path in Gσ

L(ν, M) from x to y such that every point on the path is
non-negative since such a path is then a valid path from x to y in GL(ν, M). Let
(x0, x1, ..., xk) be a path from x to y in Gσ

L(ν, M). If this path is non-negative, then we
are done. Otherwise, we can add u to the front of the path and subtract u from the
end of the path as many times as necessary so that the path becomes non-negative;
in other words, let l ∈ N such that xi + lu ≥ 0 for all i ∈ {0, ..., k}, and consider the
new path

(x0, x0 + u, x0 + 2u, ..., x0 + lu, x1 + lu, ..., xk + lu, xk + (l − 1)u, ..., xk).

This path is non-negative since x0 = x ≥ 0, xk = y ≥ 0, and xi + lu ≥ 0 for
all i ∈ {1, ..., k}. Therefore, we have found a path from x to y in GL(ν, M) as
required.

56 CHAPTER 3. MARKOV BASES

The following lemma is a useful alternative result to Lemma 3.2.3.

Lemma 3.2.4. Let M = {u1, u2, ..., uk} ⊆ L be a spanning set of L. If the first
non-zero entry in the sequence (u1

i , u
2
i , ..., u

k
i) is positive for every i ∈ {1, ..., n}, then

M is a Markov basis of L.

Proof. Let x, y ∈ FL(ν) for some ν ∈ Zn. Since M is a spanning set of L, there exists
a path from x to y in Gσ

L(ν, M) where σ = {1, ..., n}. By construction, the first vector
u1 must be non-negative, and we can assume it is non-zero. Then, using u1 as in the
proof of Lemma 3.2.3, we can make the path from x to y in Gσ

L(ν, M) non-negative on
all components in supp(u1) = {i ∈ {1, ..., n} : u1

i 6= 0}. If supp(u) = {1, ..., n}, then
we have found a path in GL(ν, M) from x to y. Otherwise, consider u2. Note that, by
construction, if u1

i = 0, then u2
i ≥ 0. Also, we can assume supp(u2) \ supp(u1) 6= ∅

(i.e. u2
i > 0 and u1

i = 0 for some i ∈ {1, ..., n}) since otherwise we just reorder the
vectors in M . Using u2, we can make the path from x to y in Gσ

L(ν, M) non-negative
on supp(u2) \ supp(u1), and then, using u1, we can make this modified path non-
negative on supp(u1) as well. So, now we have a path from x to y that is non-negative
on supp(u1) ∪ supp(u2). Repeating a similar procedure with u3, we can find a path
from x to y that is non-negative on supp(u1)∪ supp(u2)∪ supp(u3). Continuing like
this until uk, we arrive at a path from x to y in GL(ν, M).

Note that if there exists a vector u ∈ M such that u > 0, then M would satisfy the
conditions of Lemma 3.2.4 (u1 = u), so the previous sufficient condition is a special
case of Lemma 3.2.4. Also, note that if a set M satisfies that conditions of Lemma
3.2.4, then there must exist a vector u ∈ L where u > 0 – we can construct such a
vector u by taking an appropriate non-negative combination of the vectors in M .

Example 3.2.5. If L ⊆ Zn is an n-dimensional lattice (i.e. there are n vectors in a
basis of L), then it is straight-forward to compute a Markov basis of L. Let B ∈ Zn×n

be an upper triangle matrix with positive diagonal entries and non-positive entries
elsewhere such that the rows of B form a basis of L (i.e., B is in UHNF). We can
always construct such a matrix B from any basis of L using the HNF algorithm (see
Section 2.4). The matrix B satisfies the conditions of Lemma 3.2.4 (if we list the
rows of B in reverse order), and therefore, B is a Markov basis of L.

3.3 Truncated Markov bases of lattices

Here, we explore truncation for Markov bases. A truncated Markov basis is analogous
to a truncated Markov basis as discussed in the introduction. We closely follow the
approach of Thomas and Weismantel in [85].

A truncated Markov basis is a special type of Markov basis of Fσ
L(ν) for some ν ∈

Zn that is not necessarily a Markov basis of all fibers. Essentially, a truncated Markov
basis with respect to the fiber Fσ

L(ν) is a Markov basis of Fσ
L(·) after removing all

vectors u ∈ L for which there does not exist x, y ∈ Fσ
L(ν) such that x − y = u. We

call the act of removing such vectors truncation. More explicitly, let G be a Markov
basis of Fσ

L(·); then, the set M := {u ∈ G : u = x − y for some x, y ∈ Fσ
L(ν)}

3.3. TRUNCATED MARKOV BASES OF LATTICES 57

is a truncated Markov basis. Any vector u ∈ L for which there does not exist
x, y ∈ Fσ

L(ν) such that u = x− y can never be an edge in a fiber graph – the vector
u is essentially too long to fit in the feasible region. Hence, we never need such a
vector u in a Markov basis of Fσ

L(ν). Therefore, M must be a Markov basis of the
fiber Fσ

L(ν).

The set M above is by default also a Markov basis of other related fibers. Let ν ′ ∈ Zn

where Fσ
L(ν ′) 6= ∅ and Fσ

L(ν − ν ′) 6= ∅. The set M is also a Markov basis of the fiber
Fσ

L(ν ′). Let u ∈ L for which there exists x, y ∈ Fσ
L(ν ′) such that u = x − y, and let

γ ∈ Fσ
L(ν − ν ′). Then, x + γ, y + γ ∈ Fσ

L(ν), and moreover, u = (x + γ) − (y + γ);
thus, u would not be removed during truncation. So, any vector needed in a Markov
basis of the fiber Fσ

L(ν ′) would not be removed by truncation, and therefore, M is
still a Markov basis of Fσ

L(ν ′). The set M is thus a Markov basis of the following set
of fibers:

Bσ
L(ν) := {ν ′ ∈ Zn : Fσ

L(ν ′) 6= ∅ and Fσ
L(ν − ν ′) 6= ∅}.

If σ = ∅, we usually omit σ and write BL(ν). We use this property of a truncated
Markov basis as the defining property of truncated Markov bases.

Definition 3.3.1. Given ν ∈ Zn, we call a set M ⊆ L a ν-truncated Markov

basis of Fσ
L(·) if G is a Markov basis of Fσ

L(ν ′) for every ν ′ ∈ Bσ
L(ν). If σ = ∅, we

call M a ν-truncated Markov basis of L.

The notion of truncation has been explored in [92] and [85], but only for computing
truncated Gröbner bases, and we apply it here to Markov bases. Also, the above ob-
servation that truncation involves omitting vectors that do not fit inside the feasible
set was not described in [92] and [85].

If Fσ
L(ν) 6= ∅, then ν ∈ Bσ

L(ν) since Fσ
L(0) 6= ∅. Therefore, a ν-truncated Markov

basis of Fσ
L(·) is by definition a Markov basis of Fσ

L(ν). But, a Markov basis of
Fσ

L(ν) is not necessarily a ν-truncated Markov basis Fσ
L(·); it may not contain all the

necessary vectors. Moreover, a ν-truncated Markov basis of Fσ
L(·) is not necessarily

a Markov basis of Fσ
L(·). In the special case where Fσ

L(ν) = ∅, we have Bσ
L(ν) = ∅,

which is consistent since by definition an empty set is a Markov basis of Fσ
L(ν) if

Fσ
L(ν) = ∅.

We can restrict our attention to truncated Markov bases of lattices (i.e. σ = ∅).
Importantly, ν ′ ∈ Bσ

L(ν) if and only if ν ′
σ̄ ∈ BLσ(νσ̄) because we have Fσ

L(ν ′) 6= ∅
and Fσ

L(ν − ν ′) 6= ∅ if and only if FLσ(ν ′
σ̄) 6= ∅ and FLσ(νσ̄ − ν ′

σ̄) 6= ∅. Then, from
Lemma 3.1.5, assuming that ker(πσ) ∩ L = {0}, M ⊆ L is a ν-truncated Markov
basis of Fσ

L(·) if and only if Mσ̄ is a νσ̄-truncated Markov basis of Lσ. Also, in the
more general case where ker(πσ) ∩ L 6= {0}, given a set S that spans ker(πσ) ∩ L
and a set M ⊆ L, the set M ∪ S is a ν-truncated Markov basis of Fσ

L(·) if and only
if Mσ̄ is a νσ̄-truncated Markov basis of Lσ from Lemma 3.1.7. So, we can always
reconstruct a ν-truncated Markov basis of Fσ

L(·) from a νσ̄-truncated Markov basis
of Lσ. We now focus on truncated Markov bases of lattices.

Checking whether a given vector is too long and thus not needed in a truncated
Gröbner basis is equivalent to solving a feasibility problem. Given a vector u ∈ L,
there exists x, y ∈ FL(ν) where x − y = u if and only if FL(ν − u+) 6= ∅ since

58 CHAPTER 3. MARKOV BASES

x − y = u means that x = γ + u+ and y = γ + u− for some γ ∈ Nn in which
case γ ∈ FL(ν − u+) 6= ∅. Here, u+ ∈ Nn is the positive part of u, or in other
words, u+

i = max{0, ui} for all i = 1, ..., n, and similarly, u− is the negative part of
u, so u = u+ − u−. Moreover, since u+ ∈ FL(u+) 6= ∅, we have that there exists
x, y ∈ FL(ν) where x − y = u if and only if u+ ∈ BL(ν).

Lemma 3.3.2. Given a vector u ∈ L and ν ∈ Zn, there exists x, y ∈ FL(ν) where
x − y = u if and only if FL(ν − u+) 6= ∅ or equivalently u+ ∈ BL(ν).

Crucially, a ν-truncated Markov basis of L can be much smaller than a Markov
basis of L. In some situations, the ν-truncated Markov basis of L might be empty: a
minimal ν-truncated Markov basis is empty if and only if |FL(ν)| ≤ 1 (i.e. there are
zero or one points in FL(ν)). On the other hand, in some situations, truncation has
no effect – a ν-truncated Markov basis of L may be the same size as a Markov basis
of L. We can find such a situation as follows. Let M be a finite minimal Markov
basis of L. Next, choose a vector ν ∈ Nn such that ν − u+ ≥ 0 for every u ∈ M .
Then, we have ν − u+ ∈ FL(ν − u+) 6= ∅ for every u ∈ M . Therefore, we cannot
remove any vectors from M and still have a ν-truncated Markov basis of L, so M is
also a minimal ν-truncated Markov basis of L. Intuitively, the strength of truncation
is directly related to the size of FL(ν).

Example 3.3.3. Consider again the lattice L from Example 3.2.2 that is generated
by the two vectors (2, -2, -2, 1) and (3, 1, -1, -1). The set

M = {(2, -2, -2, 1), (3, 1, -1, -1), (5, -1, -3, 0), (1, 3, 1, -2)}

is a Markov basis of L.

Consider ν = (-6, 4, 10, 1). In this case, there are no vectors in M that are truncated
since, for every vector m ∈ M , there exists x, y ∈ FL(ν) such that x − y = m. For
example, for the vector m = (2, -2, -2, 1), we have (6, 0, 3, 2), (4, 2, 4, 1) ∈ FL(ν) and
(2, -2, -2, 1) = (6, 0, 3, 2)− (4, 2, 4, 1).

Suppose that ν ′ = (-6, 4, 6, 1). Then, FL(ν ′) = {(2, 4, 2, 0), (1, 1, 1, 2), (4, 2, 0, 1)}.
In this case, the vector (5, -1, -3, 0) is truncated; the vector is too long to fit inside
the feasible set. Thus, M ′ = {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2)} is a ν ′-truncated
Markov basis of L.

We now discuss the properties of the set BL(ν) and provide some extra motivation
for the definition of a truncated Markov basis. Towards this aim, we show that
given a set M ⊆ L, the connectivity of the graph GL(ν, M) is strongly related to the
connectivity of GL(ν ′, M) for ν ′ ∈ BL(ν).

Firstly, given ν ′ ∈ BL(ν), we have x + y ∈ FL(ν) for every x ∈ FL(ν ′) and y ∈
FL(ν − ν ′), which implies that y + FL(ν ′) = {y + x : x ∈ FL(ν ′)} ⊆ FL(ν) for
every y ∈ FL(ν − ν ′). So, given M ⊆ L, any path (x0, ..., xk) in GL(ν ′, M) can be
translated by y to a path (x0 + y, ..., xk + y) in GL(ν, M) for every y ∈ FL(ν − ν ′).
Hence, if M is a Markov basis of FL(ν ′), then any two points in y +FL(ν ′) ⊆ FL(ν)
are connected in GL(ν, M).

3.3. TRUNCATED MARKOV BASES OF LATTICES 59

Furthermore, we have FL(ν ′) + FL(ν − ν ′) ⊆ FL(ν) where FL(ν ′) + FL(ν − ν ′) =
{x + y : x ∈ FL(ν ′), y ∈ FL(ν − ν ′)}. Note that ν − ν ′ ∈ BL(ν) when ν ′ ∈ BL(ν). If
M is both a Markov basis of FL(ν ′) and a Markov basis of FL(ν − ν ′), then any two
points in FL(ν ′) + FL(ν − ν ′) are connected in GL(ν, M). This is shown as follows.
Any two points in FL(ν ′) + FL(ν − ν ′) can be written in the form x1 + y1 and
x2 + y2 where x1, x2 ∈ FL(ν ′) and y1, y2 ∈ FL(ν − ν ′). Now, from above, the points
x1 + y1, x2 + y1 ∈ y1 + FL(ν ′) ⊆ FL(ν) are connected in GL(ν, M) and the points
x2 + y1, x2 + y2 ∈ x2 + FL(ν − ν ′) ⊆ FL(ν) are connected in GL(ν, M); hence, the
points x1 + y1 and x2 + y2 are connected in GL(ν, M) as required.

We have just shown how the connectivity of GL(ν ′, M) implies connectivity of
GL(ν, M) where ν ′ ∈ BL(ν), so it is reasonable that, in order to compute a Markov
basis of FL(ν), we also compute a Markov basis of GL(ν ′, M) for all ν ′ ∈ BL(ν).

60 CHAPTER 3. MARKOV BASES

Chapter 4

Gröbner bases

In this chapter, we define and discuss the properties of Gröbner bases of fibers,
Gröbner bases of lattices (see for example [25, 79, 81]), and truncated Gröbner
bases (see [92, 85]). These concepts are analogous to the concepts of Gröbner as
discussed in the introduction. We discuss how we can use Gröbner bases to solve
integer programs. Most of the material here is well-known, which we try to present in
a fresh clear and concise form. However, we found no explicit reference to a Gröbner
basis of one lattice fiber in the literature, but we found this concept was quite useful
in the context of integer programming. Also, we present a new result on the size of
truncated Gröbner bases for equality knapsack problems (see Section 4.3).

4.1 Gröbner bases of lattice fibers

In this section, we discuss Gröbner bases of lattices fibers, their properties, and
how they may be used to solve lattice programs. Gröbner bases of lattice fibers are
analogous to Gröbner bases of polyhedral fibers as discussed in the introduction.

Definition 4.1.1. Given a lattice L, σ ⊆ {1, ..., n}, ν ∈ Zn, and a term order ≻,
we call G ⊆ Zn a ≻-Gröbner basis of Fσ

L(ν) if, for every x ∈ Fσ
L(ν) that is a non-

optimal solution of IP σ
L,≻(ν), there exists a vector u ∈ G such that x − u ∈ Fσ

L(ν)
and x ≻ x − u.

A Gröbner basis is thus a set of improving vectors. The definition of a Gröbner basis
guarantees that if a feasible solution of IP σ

L,≻(ν) is not optimal, then we can improve
it by some vector in the Gröbner basis, and a feasible solution must be optimal if we
cannot improve it by some vector in the Gröbner basis. We can thus solve the lattice
program IP σ

L,≻(ν) by first finding a feasible solution and then iteratively improving
the solution using vectors in the Gröbner basis until we attain an optimal solution.

Note that we restrict Gröbner bases to be subsets of L since if u ∈ Zn and x − u ∈
Fσ

L(ν) for some point x ∈ Fσ
L(ν), then u ∈ L, so any vector not in L is useless.

Example 4.1.2. Consider again the lattice program IPL,≻c(ν) from Example 2.9.4
where L ⊆ Zn is the lattice generated by the two vectors (2, -2, -2, 1) and (3, 1, -1, -1),

61

62 CHAPTER 4. GRÖBNER BASES

c = (2, 0, 1, 1), and ν = (-6, 4, 10, 1). We leave the tie-breaking term order ≻ unspec-
ified since we never need it for this example: the cost vector c is sufficient for a total
order on FL(ν). Recall from Example 2.9.4 that L = {x ∈ Z4 : Ãx = 0}, and thus,
FL(ν) = PÃ(b̃) = {x ∈ Z4 : Ãx = b̃, x ≥ 0} where

Ã =

(

1 5 0 8
1 2 1 4

)

, and b̃ =

(

22
16

)

.

There are 7 feasible points of IPL,≻c(ν):

{(2, 4, 6, 0), (1, 1, 5, 2), (4, 2, 4, 1), (7, 3, 3, 0), (6, 0, 2, 2), (9, 1, 1, 1), (12, 2, 0, 0)}.

The point (1, 1, 5, 2) is the optimal solution of IPL,≻c(ν). From Example 3.1.4, the
set G := {(2, -2, -2, 1), (3, 1, -1, -1)} is a Markov basis of FL(ν). But, it is not a ≻c-
Gröbner basis of FL(ν) since we cannot improve the non-optimal feasible solution
(2, 4, 6, 0) by subtracting a vector in G: (2, 4, 6, 0)− (2, -2, -2, 1) = (0, 6, 8, -1), which
is not feasible, and (2, 4, 6, 0)− (3, 1, -1, -1) = (-1, 3, 7, 1), which is also not feasible.
The point (2, 4, 6, 0) is the second best solution, so if we improved it, we would arrive
at the optimal solution (1, 1, 5, 2); thus, we need the vector (2, 4, 6, 0)− (1, 1, 5, 2) =
(1, 3, 1, -2) in any ≻c-Gröbner basis of FL(ν).

The set G′ := {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2)} is a ≻c-Gröbner basis of FL(ν)
because we can improve every non-optimal solution of FL(ν).

The Normal Form algorithm below (Algorithm 1) computes the optimal solution of
a lattice program IP σ

L,≻(ν) given an initial feasible solution x ∈ Fσ
L(ν) and a set

G ⊆ L that is a ≻-Gröbner basis of x ∈ Fσ
L(ν).

Algorithm 1 Normal Form algorithm

Input: a lattice L, a vector ν ∈ Zn, a point x ∈ Fσ
L(ν), a term order ≻, and a set

G ⊆ L.
Output: a vector x∗ such that ∄u ∈ G where x∗ − u ∈ Fσ

L(ν) and x∗ ≻ x∗ − u.
x∗ := x

while ∃u ∈ G such that x∗ − u ∈ Fσ
L(ν) and x∗ ≻ x∗ − u do

x∗ := x∗ − u

end while

return x∗

We write NFσ
L(x, G) for the output of the Normal Form algorithm, and we usually

omit σ when σ = ∅ and write NFL(x, G). During the algorithm, we construct a
≻-decreasing sequence of feasible points (x1, x2, ...) ⊆ Fσ

L(ν) where xi is the value of
x∗ at the start of the ith iteration of the algorithm. This sequence must terminate
since ≻ is a term order, and therefore, the algorithm always terminates. When the
algorithm terminates with NFσ

L(x, G) = x∗, it guarantees that there does not exist a
vector u ∈ G such that x∗−u ∈ Fσ

L(ν) and x∗ ≻ x∗−u. Hence, if G is a ≻-Gröbner
basis, the point NFσ

L(x, G) = x∗ must be the optimal solution of IP σ
L,≻(ν) from

the definition of Gröbner bases. Conversely, given some set G ⊆ L, if NFσ
L(x, G)

is not the optimal solution for some x ∈ Fσ
L(ν), then G cannot be a ≻-Gröbner

4.1. GRÖBNER BASES OF LATTICE FIBERS 63

basis of Fσ
L(ν). Therefore, G is a ≻-Gröbner basis of Fσ

L(ν) if and only if, for every
x ∈ Fσ

L(ν), the point NFσ
L(x, G) is the optimal solution of IP σ

L,≻(ν).

Algorithm 1 is not quite complete in the sense that it does not specify which u ∈ G

such that x∗−u ∈ Fσ
L(ν) and x∗ ≻ x∗−u to select when there are many such vectors.

However, the method for selecting which u is not important for the correctness of
the algorithm, so we leave it unspecified.

Dubé et al. in [31] give an upper bound on the number of iterations of the Normal
Form algorithm. This upper bound is exponential in the size of the input data and
in the dimension. Given a lattice L, a vector ν ∈ Zn, a point x ∈ Fσ

L(ν), a matrix
order ≻C for some non-negative matrix C ∈ Rn×n

+ , and a finite set G ⊆ L, there are
at most (1+RC̄) iterations where R = 1

r1
(r1

r2
+1)n, C̄ = maxi{Cix}, r1 = max{Ciu :

Ciu > 0, u ∈ G, i = 1, ..., n}, and r2 = min{Ciu : Ciu > 0, u ∈ G, i = 1, ..., n}.
Recall that every term order we consider is a matrix order for some non-negative
matrix (see Section 2.10). It is not known whether this bound is tight.

Recall from Section 2.9 that we can always reformulate a lattice program IP σ
L,c(ν)

in the form IPLσ,cσ̄(νσ̄), and recall from Section 2.10 we can also reformulate a
lattice program IP σ

L,≻(ν) in the form IPLσ,≻(νσ̄). Recall that we can effectively use
the same term order ≻ for IP σ

L,≻(ν) and IPLσ,≻(νσ̄) since there must be a one-to-
one correspondence between feasible solutions of IP σ

L,≻(ν) and feasible solutions of
IPLσ,≻(νσ̄) if ≻ is a term order (see Section 2.10). So, strictly speaking, we never
need ≻-Gröbner bases of Fσ

L(ν) where σ 6= ∅. However, we will find such Gröbner
bases very useful as a conceptual tool in the Chapter 6 when describing computing
Markov bases and in Section 7.4 when solving integer programs.

There is a strong relationship between ≻-Gröbner bases of Fσ
L(ν) and ≻-Gröbner

bases of FLσ(νσ̄). Recall that Lσ is the projection of L onto the σ̄ components,
and FLσ(νσ̄) is the projection of Fσ

L(ν) onto the σ̄ components, which are the non-
negative components of Fσ

L(ν).

Lemma 4.1.3. Given Fσ
L(ν) where ker(πσ)∩L = {0}, the set G ⊆ L is a ≻-Gröbner

basis of Fσ
L(ν) if and only if Gσ̄ is a ≻-Gröbner basis of FLσ(νσ̄).

Proof. Recall that ker(πσ)∩L = {0} means that there is a one-to-one correspondence
between points in Fσ

L(ν) and points in FLσ(νσ̄). Let G be a ≻-Gröbner basis of
Fσ

L(ν). Let x ∈ Fσ
L(ν) be such that xσ̄ is a non-optimal solution of IPLσ,≻(νσ̄).

Then, x is a non-optimal solution of IP σ
L,≻(ν). Thus, there exists a vector u ∈ G

such that x − u ∈ Fσ
L(ν) and x ≻ x − u. This implies that xσ̄ − uσ̄ ∈ FLσ(νσ̄) and

xσ̄ ≻ xσ̄ − uσ̄. Thus, since uσ̄ ∈ Gσ̄, Gσ̄ is a ≻-Gröbner basis of FLσ(νσ̄).

Conversely, assume that Gσ̄ is a ≻-Gröbner basis of FLσ(νσ̄). Let x ∈ Fσ
L(ν) be a

non-optimal solution of IP σ
L,≻(ν). Then, xσ̄ is a non-optimal solution of IPLσ,≻(νσ̄).

Thus, there exists u ∈ G such that xσ̄−uσ̄ ∈ FLσ(νσ̄) and xσ̄ ≻ xσ̄−uσ̄. This implies
that x − u ∈ Fσ

L(ν) and x ≻ x − u. Thus, G is a ≻-Gröbner basis of Fσ
L(ν).

Lemma 4.1.3 above means that we can focus our attention on ≻-Gröbner bases of
FL(ν) since any results or properties of ≻-Gröbner bases of FL(ν) easily transfer to
≻-Gröbner bases of Fσ

L(ν).

64 CHAPTER 4. GRÖBNER BASES

Note that given u ∈ L and x ∈ FL(ν) where x − u ∈ FL(ν), we have x ≻ x − u

if and only if u+ ≻ u−. Recall that u+ ∈ Nn is the positive part of u and u− ∈ Nn

is the negative part and that u+, u− ∈ FL(u+) = FL(u−). This property follows
since ≻ is an additive order: x ≻ x − u ⇔ x + u+ ≻ x + u− ⇔ u+ ≻ u−. Thus, for
Gröbner bases, we only need to consider vectors in the set L≻ := {u ∈ L : u+ ≻ u−}.
Secondly, note that given a vector u ∈ L and a feasible point x ∈ FL(ν), we have
x − u ∈ FL(ν) if and only if u+ ≤ x since x − u ∈ FL(ν) ⇔ 0 ≤ x − u ⇔ u+ ≤ x.
So, we arrive at the following straight-forward but very useful lemma.

Lemma 4.1.4. Given a lattice L, ν ∈ Zn, and a term order ≻, a set G ⊆ L≻ is a
≻-Gröbner basis of FL(ν) if and only if, for every non-optimal solution x ∈ FL(ν)
of IPL,≻(ν), there exists a vector u ∈ G such that u+ ≤ x.

Conceptually, given a set G ⊆ L≻, the Normal Form algorithm, Algorithm 1 con-
structs a finite ≻-decreasing path in the graph GL(ν, G) from x to x∗ = NFL(x, G);
that is, the Normal Form algorithm constructs a ≻-decreasing sequence of feasible
points (x1, x2, ..., xk) ⊆ FL(ν) where x1 = x, the given feasible solution, and xk = x∗,
the optimal solution of IPL,≻(ν).

Example 4.1.5. Consider again the lattice program IPL,≻c(ν) from Example 4.1.2
above, and again, let G′ := {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2)}. Consider the point
(12, 2, 0, 0) ∈ FL(ν). We now apply the Normal Form algorithm 1 above for the point
(12, 2, 0, 0) and the set G′:

(12, 2, 0, 0)
(3,1,-1,-1)
−→ (9, 1, 1, 1)

(3,1,-1,-1)
−→ (6, 0, 2, 2)

(2,-2,-2,1)
−→ (4, 2, 4, 1)

(2,-2,-2,1)
−→ (2, 4, 6, 0)

(1,3,1,-2)
−→ (1, 1, 5, 2)

The sequence of feasible solutions

((12, 2, 0, 0), (9, 1, 1, 1), (6, 0, 2, 2), (4, 2, 4, 1), (2, 4, 6, 0), (1, 1, 5, 2))

is a ≻c-decreasing path in the fiber graph GL(ν, G′) from (12, 2, 0, 0) to (1, 1, 5, 2) (the
optimal solution). This is not the only possible path from (12, 2, 0, 0) to (1, 1, 5, 2).

(12, 2, 0, 0)
(3,1,-1,-1)
−→ (9, 1, 1, 1)

(2,-2,-2,1)
−→ (7, 3, 3, 0)

(3,1,-1,-1)
−→ (4, 2, 4, 1)

(3,1,-1,-1)
−→ (1, 1, 5, 2)

The sequence ((12, 2, 0, 0), (9, 1, 1, 1), (7, 3, 3, 0), (4, 2, 4, 1), (1, 1, 5, 2)) is also a ≻c-
decreasing path in the fiber graph GL(ν, G′) from (12, 2, 0, 0) to (1, 1, 5, 2). It does not
matter which particular path we choose; we are guaranteed to finish at the optimal
solution by the properties of Gröbner bases.

4.2. GRÖBNER BASES OF LATTICES 65

We can now equivalently characterise Gröbner bases in terms of paths in the graph
GL(ν, G) in Lemma 4.1.6 below.

Lemma 4.1.6. Given a lattice L, ν ∈ Zn, and a term order ≻, a set G ⊆ L≻

is a ≻-Gröbner basis of FL(ν) if and only if, for every x ∈ FL(ν), there exists a
≻-decreasing path in GL(ν, G) from x to the optimal solution of IPL,≻(ν).

Importantly, if G ⊆ L≻ is a ≻-Gröbner basis, then G is a Markov basis of L since
given x, y ∈ GL(ν, G) for some ν ∈ Zn, there exists a ≻-decreasing path from x to
the unique optimal solution in FL(ν) and from y to the same optimal solution, and
thus, x and y are connected in GL(ν, G).

Corollary 4.1.7. Given a lattice L and a vector ν ∈ Zn, if a set G ⊆ L≻ is a
≻-Gröbner basis of FL(ν) for some term order ≻, then G is a Markov basis of
FL(ν).

4.2 Gröbner bases of lattices

In this section, we discuss Gröbner bases of lattices, which have very interesting
properties that are not true of Gröbner bases of fibers. Gröbner bases of lattices are
analogous to Gröbner bases of set of integer programs where the constraint matrix
is fixed and the constant terms in constraints are allowed to vary, as discussed in
the introduction. The results in this section are known, and we try to clearly and
concisely present the most important results.

Definition 4.2.1. Given a lattice L, σ ⊆ {1, ..., n}, ν ∈ Zn, and a term order ≻,
we call G ⊆ L a ≻-Gröbner basis of Fσ

L(·) if it is a Gröbner basis of Fσ
L(ν) for

every ν ∈ Zn. If σ = ∅, then we call G a ≻-Gröbner basis of L.

A Gröbner basis of a lattice is simultaneously a Gröbner basis of every possible fiber.

We will focus our attention on Gröbner bases of lattices (i.e. σ = ∅) since, from
Lemma 3.1.5, assuming that ker(πσ) ∩ L = {0}, G ⊆ L is a ≻-Gröbner basis of
Fσ

L(·) if and only if Gσ̄ is a ≻-Gröbner basis of Lσ.

Example 4.2.2. Consider again the lattice program IPL,≻c(ν) from Example 2.9.4
and Example 4.1.2 above. Recall that G′ := {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2)} is
a ≻c-Gröbner basis of FL(ν). However, we now show that G′ is not a ≻c-Gröbner
basis of L.

Consider ν ′ = (-6, 4, 10, -1). There are two feasible solutions of FL(ν ′): (1, 1, 5, 0)
and (6, 0, 3, 2). Here, (1, 1, 5, 0) is the optimal solution of IPL,≻c(ν

′). The set G′ is
not a ≻c-Gröbner basis of FL(ν ′) since there is no vector in G′ that can improve
the non-optimal solution (6, 0, 3, 2). The vector (1, 3, 1, -2) is the only vector that
can improve (6, 0, 3, 2); thus, any ≻c-Gröbner basis of L must include the vector
(5, -1, -3, 0).

Let G′′ := {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2), (5, -1, -3, 0)}. The set G′′ is a ≻c-
Gröbner basis of FL(ν) and FL(ν ′), but it is not a ≻c-Gröbner basis of FL(ν ′′) where

66 CHAPTER 4. GRÖBNER BASES

ν ′′ = (-8, 5, 7, 1). There are four feasible solutions: (0, 5, 3, 0), (2, 3, 1, 1), (5, 4, 0, 0),
and (1, 0, 0, 3). The optimal solution is (0, 5, 3, 0), and G′′ is not a ≻c-Gröbner basis
of FL(ν ′′) since no vector in G′′ can improve the non-optimal solution (1, 0, 0, 3). The
point (1, 0, 0, 3) is the second best optimal solution, so we need the vector (1, -5, -3, 3)
in any ≻c-Gröbner basis of FL(ν ′′).

Let G′′′ := {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2), (5, -1, -3, 0), (1, -5, -3, 3)}. Again, the
set G′′′ is still not a ≻c-Gröbner basis of L. Consider ν ′′′ = (-6, 6, 6, 2). There are
six feasible solutions:

FL(ν ′′′) = {(2, 6, 2, 1), (1, 3, 1, 3), (4, 4, 0, 2), (0, 0, 0, 5), (5, 7, 1, 0), (0, 8, 4, 0)}.

The optimal solution is (0, 8, 4, 0). The set G′′′ is not a ≻c-Gröbner basis of FL(ν ′′′)
since the point (0, 0, 0, 5) cannot be improved by a vector in G′′′. This is the second
best solution, and thus, we need the vector (0, -8, -4, 5).

Finally, the set

G′′′′ = {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2), (5, -1, -3, 0), (1, -5, -3, 3), (0, -8, -4, 5)}

is a Gröbner basis of L, but this is certainly not obvious.

Gröbner bases of lattices have some special properties. Firstly, we introduce some
new notation. Given a set of vectors S ⊆ Zn, we define S+ := {s+ : s ∈ S} and
similarly S− := {s− : s ∈ S}.

Lemma 4.2.3. Given a lattice L, and a term order ≻, a set G ⊆ L≻ is a Gröbner
basis of L if and only if G+ ≤ L+

≻, which means that, for every vector v ∈ L≻, there
exists a vector u ∈ G such that u+ ≤ v+.

Proof. Assume G is a ≻-Gröbner basis of L. Let v ∈ L≻, so v+ ≻ v− and v+, v− ∈
FL(ν) for some ν ∈ Zn (for example, ν = v+ or ν = v−). Hence, v+ ∈ L+

≻ is not an
optimal solution of IPL,≻(ν), and therefore, there exists a vector u ∈ G such that
u+ ≤ v+.

Conversely, assume that G+ ≤ L+
≻. We will show that G is a ≻-Gröbner basis of

L by Lemma 4.1.4. Let x ∈ FL(ν) for some ν ∈ Zn, and let x∗ be the optimal
solution of IPL,≻(ν). If x = x∗, then there is nothing to show, so assume x 6= x∗.
Now x − x∗ ∈ L≻, and thus, there exists a vector u ∈ G such that u+ ≤ (x − x∗)+

which implies that u+ ≤ x as required (see Lemma 4.1.4).

Most importantly, using these properties, we can show that for every lattice L and
every term order ≻ there exists a finite Gröbner basis.

Lemma 4.2.4. For every lattice L and term order ≻, there exists a finite ≻-Gröbner
basis of L.

Proof. From the Gordan-Dickson’s lemma 2.5.1, there must exists a finite set of
vectors V ⊆ L+

≻ such that V ≤ L+
≻. Let G ⊆ L≻ be such that G+ = V and

|G| = |V |. Therefore, from Lemma 4.2.3, the set G is a finite ≻-Gröbner basis of
L.

4.2. GRÖBNER BASES OF LATTICES 67

If G is a ≻-Gröbner basis of L such that there exist vectors u, v ∈ G where u 6= v

and u+ ≤ v+, then the set G′ = G \ {v} is still a Gröbner basis since we must
still have G′+ ≤ L+

≻. If we remove all such vectors v, we then arrive at a minimal

≻-Gröbner basis of L (minimal with respect to set inclusion).

Lemma 4.2.5. Given a lattice L, and a term order ≻, if G, H ⊆ L≻ are minimal
≻-Gröbner bases of L, then |G| = |H|, and moreover, G+ = H+.

Proof. Let G ⊆ L≻ be a minimal ≻-Gröbner basis of L. Then, from Lemma 4.2.3, G

must be an inclusion-wise minimal subset of L≻ such that G+ ≤ L+
≻. Now, from the

Gordan-Dickon’s lemma 2.5.1, there exists a unique minimal set V ⊆ L+
≻ such that

V ≤ L+
≻. We must have G+ = V and |G| = |V | otherwise G would not be minimal.

The same is true for any minimal ≻-Gröbner basis of L, so the result follows.

In general, minimal ≻-Gröbner bases of L are not unique since the negative compo-
nents of their vectors may differ (G− 6= H−) even though the positive components
are identical (G+ = H+). There is, however, a type of minimal Gröbner basis called a
reduced Gröbner basis that is unique and which has some very interesting properties.

Definition 4.2.6. Given a lattice L and a term order ≻, let G ⊆ L+
≻ be a ≻-Gröbner

basis of L. The set G is reduced if G is minimal and for every u ∈ G, we have
G+ 6≤ u− where G+ 6≤ u− means that there does not exist a vector v ∈ G such that
v+ ≤ u−.

The first interesting property of a reduced ≻-Gröbner basis G ⊆ L+
≻ is that for each

u ∈ G, u− is the optimal solution of IPL,≻(u+) = IPL,≻(u−) since G is a ≻-Gröbner
basis of the fiber FL(u+) = FL(u−) and G+ 6≤ u−. This property implies that
reduced Gröbner bases are unique since G+ is unique by Lemma 4.2.5 and optimal
solutions are also unique.

Lemma 4.2.7. Given a lattice L and a term order ≻, there is a unique reduced
≻-Gröbner basis of L.

The previous lemmas provide deep insights into the structure of all the optimal
solutions of IPL,≻(ν) for different ν ∈ Zn. Let G be a minimal ≻-Gröbner basis of
L, and let x ∈ FL(ν). The point x is a non-optimal of IPL,≻(ν) if and only if G+ ≤ x.
Thus, if x is non-optimal, then x + γ is a non-optimal solution of IPL,≻(ν + γ) for
all γ ∈ Nn since we must have G+ ≤ (x + γ). Moreover, for every vector u ∈ G, the
vector u+ is a non-optimal solution of IPL,≻(u+). So, we can completely determine
the collective set NL,≻ of all non-optimal solutions of IPL,≻(ν) for every ν ∈ Zn as
follows:

NL,≻ = {u+ + γ : u ∈ G, γ ∈ Nn}.

This also gives us a description of the set OL,≻ consisting of the optimal solution
of IPL,≻(ν) for every ν ∈ Zn as OL,≻ = Nn \ NL,≻ since every feasible solution is
either optimal or non-optimal. Note that the set of all optimal solutions OL,≻ has
the property that if x ∈ OL,≻, then x − γ ∈ OL,≻ for all γ ∈ Nn where γ ≤ x.

There is a lot more that we know about the structure of a reduced Gröbner basis than
its uniqueness. In Lemma 4.2.8 below, we give a complete combinatorial description
of the vectors in a reduced Gröbner basis.

68 CHAPTER 4. GRÖBNER BASES

Lemma 4.2.8. Let G ⊆ L≻ be the unique reduced ≻-Gröbner basis of L. A vector
u ∈ L≻ is in G if and only if u− is the optimal solution of IPL,≻(u+) and (u+ − ei)
is the optimal solution of IPL,≻(u+ − ei) for all i ∈ supp(u+).

Proof. Let u ∈ G. Then, from above, u− is the optimal solution of IPL,≻(u+) since
G 6≤ u− from the definition of a reduced Gröbner basis. We know that u+ is a non-
optimal solution. Assume that (u+ − ei) is a non-optimal solution of IPL,≻(u+ − ei)
for some i ∈ supp(u+). Then, there exists a vector v ∈ G such that v+ ≤ (u+ − ei)
implying that v+ ≤ u+ and v+ 6= u+, which contradicts the minimality of G.

Conversely, let u ∈ L≻ such that (u+ − ei) is the optimal solution of IPL,≻(u+ − ei)
for all i ∈ supp(u+). Since u+ is non-optimal, there exists a vector v ∈ G such
that v+ ≤ u+, and since (u+ − ei) is the optimal solution of IPL,≻(u+ − ei) for all
i ∈ supp(u+), we must also have v+ 6≤ (u+ − ei), which implies that v+ = u+. Note
that v− is the optimal solution of IPL,≻(v−), which follows from the first part of this
proof. Furthermore, this implies that v− = u− since v− and u− are optimal solutions
of IPL,≻(u+) = IPL,≻(u−).

An interesting consequence of Lemma 4.2.8 is that if G is a reduced ≻-Gröbner basis
of L and u ∈ G, then u+ = x∗ + ei for some optimal solution x∗ ∈ OL,≻ and some
i ∈ {1, ..., n}. In the next example, we will use this to give upper bounds on the size
of some special Gröbner bases.

An important special case is when L ⊆ Zn is an n-dimensional lattice (i.e. there
are n vectors in a basis of L). Let B ∈ Zn×n be an upper triangle matrix with
positive diagonal entries and non-positive entries elsewhere such that the rows of B

form a basis of L. We can always construct such a matrix B from any basis of L
using the HNF algorithm (Section 2.4); that is, B is in UHNF form. The set B is
a ≻lex-Gröbner basis of L where ≻lex is the lexicographic term order. We can show
this using Lemma 4.2.3. First, observe that for every vector u = Bi for i = 1, ..., n,
we have u+ = λei for some λ ∈ N. Let u ∈ L≻lex

; we now show B+ ≤ u+ and the
result follows by Lemma 4.2.3. Let i be the first non-zero component in u. Since
u+ ≻lex u− and ≻lex is the lexicographic term order, ui > 0. Let v be the ith row
of B, so vi > 0. Now, since B is a basis of L and it is an upper triangle matrix,
vi divides ui. Therefore, v+ ≤ u+ because, by construction, vj ≤ 0 for all j 6= i.
Observe that, also by construction, B is a reduced ≻lex-Gröbner basis of L.

Since we now have a ≻lex-Gröbner basis of L, we can describe the set of all non-
optimal solutions NL,≻lex

as follows:

NL,≻ ={u+ + γ : u ∈ B, γ ∈ Nn}

={x ∈ Nn : xi ≥ Bii for some i ∈ {1, ..., n}}.

The set of all optimal solutions OL,≻lex
is actually finite in this case, which is not

true for general lattices. Moreover, this implies that the set of all non-empty fibers
is also finite because there is a one-to-one correspondence between optimal solutions
and non-empty fibers. Because of the special structure of B, we can write the set of
all optimal solutions OL,≻lex

= Nn \ NL,≻ in the following simple form:

OL,≻lex
= {x ∈ Nn : xi < Bii ∀i = 1, ..., n}.

4.3. TRUNCATED GRÖBNER BASES OF LATTICES 69

It follows that the number of optimal solutions (and the number of non-empty fibers)
is |OL,≻lex

| = det(B) since the ith component of an optimal solution can take any
value in the set {0, 1, ..., Bii − 1}.

This result on the number of optimal solutions combined with Lemma 4.2.8 gives an
upper bound on the size of a reduced ≻-Gröbner basis of L for any term order ≻.
Let OL,≻ be the set of all optimal solutions, and let G be a reduced ≻-Gröbner basis
of L. Then, from above, we know that |OL,≻| = det(B) since the number of possible
optimal solutions is equal to the number of non-empty fibers, which is det(B) as we
saw above. Furthermore, from Lemma 4.2.8, we know that

G+ ⊆ {x∗ + ei : x∗ ∈ OL,≻, i ∈ {1, ..., n}}.

Therefore, |G| = |G+| ≤ n det(B) because there are det(B) optimal solutions and
we can potentially add n different unit vectors ei to each optimal solution to arrive
at the set |G+|. This bound was also obtained by Faugère et al. in [34], and Sturmfels
et al. prove the tighter bound in [81] that |G| ≤ (n − 1) det(B) + 1 and they claim
that this can be strengthened to |G| ≤ (n − 2) det(B) + n + 1. Sturmfels et al. also
give a tighter bound in [81] and Clements in [22] gives a sharp bound, but we will
not investigate this question further.

Until now, we have given a combinatorial description of a reduced Gröbner basis,
but there it is also possible to describe vectors in a reduced Gröbner basis using
a geometric viewpoint. Sturmfels et al. in [81] show that there are only two types
of vectors in a reduced Gröbner basis. We present the idea without proof (see [81])
because we do not use this result nor its proof in the rest of the thesis. Let u be a
vector in a reduced ≻-Gröbner bases of L. Then,

(i). u− = 0 and u+ is an extreme point of the polyhedron conv(FL(0) \ {0}), or

(ii). u− 6= 0 and u+ and u− are adjacent extreme points of conv(FL(u−)) where by
adjacent we mean that u is an edge of the polyhedron from u+ and u−.

Note that conv(FL(0) \ {0}) is the set of all possible convex combinations of points
in FL(0) \ {0}, which is a polyhedron, and similarly, conv(FL(u−)) is the set of all
possible convex combinations of points in FL(u−), which again is a polyhedron.

4.3 Truncated Gröbner bases of lattices

Analogously to truncated Markov bases, we define truncated Gröbner bases. Again,
truncated Gröbner bases of lattices are analogous to the truncated Gröbner bases
that we saw in the introduction. Most results in this section are known, but we
do present a new result giving a pseudo-polynomial upper bound on the size of a
truncated Gröbner basis for equality knapsacks. We closely follow the approach of
Thomas and Weismantel in [85].

Definition 4.3.1. Given a lattice L, σ ⊆ {1, ..., n}, ν ∈ Zn, and a term order
≻, we call a set G ⊆ L a ν-truncated ≻-Gröbner basis of Fσ

L(·) if G is a ≻-
Gröbner basis of Fσ

L(ν ′) for every ν ′ ∈ Bσ
L(ν). If σ = ∅, then we call G a ν-truncated

≻-Gröbner basis of L.

70 CHAPTER 4. GRÖBNER BASES

As in the Markov basis case, a ν-truncated ≻-Gröbner basis is by definition a ≻-
Gröbner basis of FL(ν), but a ≻-Gröbner basis of FL(ν) is not necessarily a ν-
truncated ≻-Gröbner basis and furthermore, a ν-truncated ≻-Gröbner basis of L is
not necessarily a ≻-Gröbner basis of L. Also again, we can restrict our attention
to truncated Gröbner bases of lattices (i.e. σ = ∅). Recall that ν ′ ∈ Bσ

L(ν) if and
only if ν ′

σ̄ ∈ BLσ(νσ̄). Then, from Lemma 3.1.5, assuming that ker(πσ) ∩ L = {0},
G ⊆ L is a ν-truncated ≻-Gröbner basis of Fσ

L(·) if and only if Gσ̄ is a νσ̄-truncated
≻-Gröbner basis of Lσ.

Example 4.3.2. Consider again the lattice program IPL,≻c(ν) from Example 2.9.4
and Example 4.1.2 above. Recall that the set

G′′′′ = {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2), (5, -1, -3, 0), (1, -5, -3, 3), (0, -8, -4, 5)}

is a ≻c-Gröbner basis of L. Recall that there are 7 feasible points of IPL,≻c(ν):

{(2, 4, 6, 0), (1, 1, 5, 2), (4, 2, 4, 1), (7, 3, 3, 0), (6, 0, 2, 2), (9, 1, 1, 1), (12, 2, 0, 0)}.

The vector (2, -2, -2, 1) ∈ G′′′′ fits within the feasible set since (4, 2, 4, 1)−(2, 4, 6, 0) =
(2, -2, -2, 1). All the other vectors of G′′′′ fit within the feasible set except for the two
vectors (1, -5, -3, 3) and (0, -8, -4, 5), which are too long to fit within the feasible set
FL(ν). Thus, the set

T = {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2), (5, -1, -3, 0)}

is a ν-truncated ≻c-Gröbner basis of FL(ν), but it is not a ≻c-Gröbner basis of L
as we have seen in Example 4.2.2.

Recall from the previous section, that a Gröbner basis of a lattice has some very
special properties. Fortunately, these properties transfer nicely to the truncated
case. We will define minimal truncated Gröbner bases and show that their size is
invariant, and we will also define reduced truncated Gröbner bases and show that
they are unique. Moreover, we will show that, after removing all the vectors that
are truncated from the unique reduced Gröbner basis of a lattice (non-truncated),
we obtain the unique reduced truncated Gröbner basis of a lattice.

Firstly, for every lattice L ⊆ Zn, term order ≻, and vector ν ∈ Zn, there must exist
a finite ν-truncated ≻-Gröbner basis of L since a ≻-Gröbner basis of L is also, by
definition, a ν-truncated Gröbner basis of L and, from Lemma 4.2.4, there always
exists a finite ≻-Gröbner basis of L. Also, there is an analogous result to Lemma 4.2.3
for the truncated case, which we present below in Lemma 4.3.3. The proof of this
lemma follows the proof of Lemma 4.2.3, but we have reproduced it for the truncated
case for the sake of clarity. First, we need a truncated version of the set L≻. Given a
lattice L and a vector ν ∈ Zn, we define L≻(ν) := {u ∈ L : u+ ≻ u−, u+ ∈ BL(ν)}.

Lemma 4.3.3. Given a lattice L, a term order ≻, and a vector ν ∈ Zn, a set
G ⊆ L≻ is a ν-truncated Gröbner basis of L if and only if G+ ≤ L+

≻(ν).

Proof. This proof follows the proof of Lemma 4.2.3. Assume G is a ν-truncated
≻-Gröbner basis of L. Let v ∈ L+

≻(ν), so v+ ≻ v− and v+, v− ∈ FL(ν ′) for some

4.3. TRUNCATED GRÖBNER BASES OF LATTICES 71

ν ′ ∈ BL(ν) (for example, ν ′ = v+ or ν ′ = v−). Hence, v+ is not an optimal solution
of IPL,≻(ν ′), and therefore, there exists a vector u ∈ G such that u+ ≤ v+.

Conversely, assume that G+ ≤ L+
≻(ν). We will show that G is a ν-truncated ≻-

Gröbner basis of L by Lemma 4.1.4. Let x ∈ FL(ν ′) for some ν ′ ∈ BL(ν), and let
x∗ be the optimal solution of IPL,≻(ν ′). If x = x∗, then there is nothing to show, so
assume x 6= x∗. Now, x−x∗ ∈ L≻, and we need to show that x−x∗ ∈ L≻(ν); that is,
we need to show that (x−x∗)+ ∈ BL(ν). Let ν ′′ = (x−x∗)+. Then, ν ′′ ∈ BL(ν ′) since
x, x∗ ∈ BL(ν ′), so FL(ν ′−ν ′′) 6= ∅. Lastly, FL(ν−ν ′) 6= ∅ and FL(ν ′−ν ′′) 6= ∅ together
imply that FL(ν − ν ′′) 6= ∅, and thus, ν ′′ ∈ BL(ν). Therefore, since G+ ≤ L+

≻(ν),
there exists a vector u ∈ G such that u+ ≤ (x− x∗)+, which implies that u+ ≤ x as
required.

As in the non-truncated case, if G is a ν-truncated ≻-Gröbner basis of L such that
there exist vectors u, v ∈ G where u 6= v and u+ ≤ v+, then the set G′ = G \ {v} is
still a truncated Gröbner basis since we must still have G′+ ≤ L+

≻(ν). Also, if v ∈ G

such that v+ 6∈ BL(ν), then again G′ = G \ {v} is still a ν-truncated ≻-Gröbner
basis of L. If we remove all such vectors v, we then arrive at a minimal ν-truncated
≻-Gröbner basis of L.

If G is a minimal ≻-Gröbner basis of L (not truncated) and we remove all vectors
u ∈ G such that u+ 6∈ BL(ν), then we are left with a a set G′ (G′ = G ∩ L≻(ν))
that is a ν-truncated ≻-Gröbner basis of L, and moreover, the set G′ must also be
a minimal ν-truncated ≻-Gröbner basis of L. If G′ were not minimal, then there
would exist vectors u, v ∈ G′ where u 6= v and u+ ≤ v+, but these vectors would
also be in G implying that G is also not minimal.

Lemma 4.3.4. Given a lattice L, a term order ≻, and a vector ν ∈ Zn, if G ⊆ L≻

is a minimal ≻-Gröbner basis of L, then G ∩ L≻(ν) is a minimal ν-truncated ≻-
Gröbner bases of L.

Minimal truncated Gröbner bases have the same size and the same positive compo-
nents. The argument for this is essentially the same as in the non-truncated case (see
Lemma 4.2.5). This result also follows from the above observation that truncating
a minimal Gröbner basis of a lattice gives a minimal truncated Gröbner basis of a
lattice.

Lemma 4.3.5. Given a lattice L, a term order ≻, and a vector ν ∈ Zn, if G, H ⊆
L≻(ν) are minimal ν-truncated ≻-Gröbner bases of L, then |G| = |H|, and moreover,
G+ = H+.

We also define reduced truncated Gröbner bases in exactly the same way as in the
non-truncated case. That is, a set G that is a ν-truncated ≻-Gröbner basis of L
is reduced if G is minimal and for every u ∈ G, we have G+ 6≤ u−. Recall that
G+ 6≤ u− means that there does not exist a vector v ∈ G such that v+ ≤ u−.

Let G be a reduced ν-truncated ≻-Gröbner basis of L. Then, by definition G is
minimal, which means that u+, u− ∈ BL(ν) for all u ∈ G by Lemma 3.3.2 since
otherwise the vector u is too long. Also, since G is reduced, we have G+ 6≤ u−, which
implies that u− is the unique optimal solution in FL(u−) since G is a ≻-Gröbner

72 CHAPTER 4. GRÖBNER BASES

basis of IPL,≻(u−). Thus, as in the non-truncated case, a reduced truncated Gröbner
basis must be unique since G+ is unique by Lemma 4.3.5 and G− is also unique.

Lemma 4.3.6. Given a lattice L, a term order ≻, and a vector ν ∈ Zn, there is a
unique reduced ν-truncated ≻-Gröbner basis of L.

Fortunately, the unique reduced Gröbner basis of a lattice after removing truncated
vectors gives us exactly the unique truncated reduced Gröbner basis of the lattice.
Let G be the reduced ≻-Gröbner basis of L (non-truncated), and let G′ be the
ν-truncated ≻-Gröbner basis of L obtained by truncating G (G′ = G ∩ L≻(ν)).
From our discussion above, G′ is a minimal ν-truncated ≻-Gröbner basis of L, and
moreover, it also must be a reduced ν-truncated ≻-Gröbner basis of L.

Lemma 4.3.7. Given a lattice L, a term order ≻, and a vector ν ∈ Zn, if G ⊆ L≻

is the unique reduced ≻-Gröbner bases of L, then G ∩ L≻(ν) is the unique reduced
ν-truncated ≻-Gröbner basis of L.

As in the non-truncated case, for the same reasons, given a ν-truncated ≻-Gröbner
basis of L, we can give an explicit description of the collective set NL,≻(ν) of all
non-optimal solutions of IPL,≻(ν ′) for every ν ′ ∈ BL(ν) as follows:

NL,≻(ν) = {(u+ + γ) ∈ BL(ν) : u ∈ G, γ ∈ Nn}.

This also gives us a description of the collective set OL,≻(ν) of optimal solutions of
IPL,≻(ν ′) for every ν ′ ∈ BL(ν) as OL,≻(ν) = {x ∈ Nn : x 6∈ NL,≻(ν), x ∈ BL(ν)}.
Note that the set of all optimal solutions OL,≻(ν) also has the property that if
x ∈ OL,≻(ν), then x − γ ∈ OL,≻(ν) for all γ ∈ Nn where γ ≤ x since if x ∈ BL(ν),
then x − γ ∈ BL(ν).

In Lemma 4.3.8 below, we give a complete combinatorial description of the vectors
in a reduced truncated Gröbner basis analogously to Lemma 4.2.8. The proof is
essentially the same after observing that if u+ ∈ BL(ν), then (u+ − ei) ∈ BL(ν) for
all i ∈ supp(u+).

Lemma 4.3.8. Let G ⊆ L≻(ν) be the unique ν-truncated reduced ≻-Gröbner basis of
L. A vector u ∈ L≻(ν) is in G if and only if u− is the optimal solution of IPL,≻(u+)
and (u+ − ei) is the optimal solution of IPL,≻(u+ − ei) for all i ∈ supp(u+).

As in the non-truncated case, an interesting consequence of Lemma 4.3.8 above is
that if G is a reduced ν-truncated ≻-Gröbner basis of L and u ∈ G, then u+ = x∗+ei

for some optimal solution x∗ ∈ OL,≻(ν) and some i ∈ {1, ..., n}.

In the next example, we will use this to give upper bounds on the size of truncated
Gröbner bases for equality knapsack problems. This has not been done before to the
best of our knowledge.

In the special case of equality knapsack problems, we can give a pseudo-polynomial
upper bound on the size of a minimal truncated Gröbner basis. An equality knap-
sack problem is an integer program with one equality constraint and non-negativity
constraints on the variables:

KPa,c(b) = max{cx : ax = b, x ≥ 0, x ∈ Zn}

4.3. TRUNCATED GRÖBNER BASES OF LATTICES 73

where c ∈ Nn, a ∈ Nn, and b ∈ N. Let L = {x ∈ Zn : ax = 0}, and let ν ∈ Zn

such that aν = b. Then, {x ∈ Zn : ax = b, x ≥ 0} = FL(ν). We will show that
a minimal ν-truncated ≻-c-Gröbner basis of L has at most nb vectors. We assume
that KPa,c(b) is feasible otherwise an empty set is a ν-truncated ≻-c-Gröbner basis
of L. Let ν ′ ∈ BL(ν); then, FL(ν ′) 6= ∅ and FL(ν − ν ′) 6= ∅. Let y ∈ FL(ν ′) and
let z ∈ FL(ν − ν ′), so y + z ∈ FL(ν). Now, ay ≥ 0, az ≥ 0, and a(y + z) = b,
which implies that 0 ≤ ay ≤ b. This implies that there are only at most b + 1 many
distinct fibers in BL(ν) because each fiber corresponds to a b′ which is between 0

and b inclusive. Thus, OL,≻-c(ν) contains all the optimal solutions of all the knapsack
problems KPa,c(b

′) for every b′ ∈ Nn where b′ ≤ b and KPa,c(b
′) is feasible. This

means that |OL,≻-c(ν)| ≤ b + 1 since there is only one optimal solution per distinct
fiber in BL(ν).

Recall from above that if G is a reduced ν-truncated ≻-Gröbner basis of L and
u ∈ G, then u+ = x∗ + ei for some optimal solution x∗ ∈ OL,≻-c(ν) and some
i ∈ {1, ..., n}. Therefore, there are at most n(b + 1) vectors in a ν-truncated ≻-
Gröbner basis of L. This upper bound can be improved to nb vectors since if x∗ is
the optimal solution of ν (i.e. ax∗ = b), then x∗ + ei 6∈ BL(ν) for every i ∈ {1, ..., n},
so there are at most b optimal solutions that we must consider. We then arrive at
the following lemma.

Lemma 4.3.9. Let a ∈ Nn, c ∈ Nn, L = {x ∈ Zn : ax = 0}, and ν ∈ Zn. A minimal
ν-truncated ≻

-c-Gröbner basis of L has at most naν vectors.

We could also improve this bound to nk where k is the actual number of feasible
distinct fibers in BL(ν) excluding ν itself.

It is possible to extend this result to integer programs in the following form: max{cx :
Ax = b, x ≥ 0, x ∈ Zn} where c ∈ Nn, A ∈ Nn×m, and b ∈ Nm. For analogous reasons
as the single dimensional knapsack above, an upper bound on the size of a truncated
Gröbner basis in this case is n[

∏n
i=1(bi + 1)].

74 CHAPTER 4. GRÖBNER BASES

Chapter 5

Computing Gröbner bases

In this chapter, we describe the completion procedure or Buchberger algorithm (see
[15, 14, 28]) for computing a Gröbner basis of a lattice or a truncated Gröbner basis
of a lattice starting from a Markov basis of a lattice or truncated Markov basis of
a lattice respectively. This algorithm has been translated from algebraic geometry
into a combinatorial context following the lead of Thomas in [86].1 Although the
main building blocks of the completion procedure as presented here are well known,
we do offer some novel optimisations of the algorithm, which we will identify where
appropriate. For example, our approach to truncation is novel in some respects.

In this chapter, we only discuss ≻-Gröbner bases of L and not the more general
form of ≻-Gröbner bases of Fσ

L(·). As we saw in Section 4.2, we can construct a
≻-Gröbner basis of Fσ

L(·) from a ≻-Gröbner basis of FLσ(·). As a result of this, all
of the results in this chapter can equally be applied to the more general case. The
same applies when using truncation (see Section 4.3).

5.1 Completion procedure

In this section, we present the basic completion procedure for computing a ≻-
Gröbner basis of L from a Markov basis of L. The completion procedure is the
standard procedure for computing Gröbner bases.

The definition of a Gröbner basis explicitly refers to the optimal solution of IPL,≻(ν)
as does the Lemma 4.1.6. We now describe Gröbner bases in terms of reduction
paths, so that we avoid explicitly mentioning the optimal solution of a fiber. A path
(x0, . . . , xk) in GL(ν, G) is a ≻-reduction path if, for all i ∈ {1, . . . , k−1}, we have
either x0 ≻ xi or xk ≻ xi. For example, see Figure 5.1.

Lemma 5.1.1. Given ν ∈ Zn, a set G ⊆ L≻ is a ≻-Gröbner basis of FL(ν) if
and only if, for each pair x, y ∈ FL(ν), there exists a ≻-reduction path in GL(ν, G)
between x and y.

1In computational algebraic geometry, the Buchberger algorithm computes a Gröbner bases of
an ideal of a polynomial ring with respect to some term order.

75

76 CHAPTER 5. COMPUTING GRÖBNER BASES

q

q

q

q

q

q

q

q����@
@
 aa

aa�
�S

S
S
x0

xk

x1

x2

x3 x4 x5

x6

6
≺

Figure 5.1: Reduction path between x and y.

Proof. Let G ⊆ L≻ be a ≻-Gröbner basis of FL(ν), and let x, y ∈ FL(ν). From
Lemma 4.1.6, GL(ν, G) contains ≻-decreasing paths from x and from y to the unique
optimal solution of IPL,≻(ν), then joining the two paths (and removing cycles if
necessary) forms a ≻-reduction path between x and y.

For the other direction, we assume that there is a ≻-reduction path between each
pair x, y ∈ FL(ν). Let x∗ be the the unique optimal solution of IPL,≻(ν); thus, every
x ∈ FL(ν) is connected to x∗ by a ≻-reduction path in FL(ν). By the definition of
a ≻-reduction path, if x 6= x∗, then the first node x1 6= x in this path must satisfy
x ≻ x1 and x − x1 ∈ G, and therefore, G is a Gröbner basis by the definition of a
Gröbner basis.

Checking for a given G ⊆ L≻ whether there exists a ≻-reduction path in GL(ν, G)
for every ν ∈ Zn and for each pair x, y ∈ FL(ν) involves many situations that need
to be checked. In fact, far fewer checks are needed: we only need to check for a
≻-reduction path from x to y if there exists a ≻-critical path from x to y.

Definition 5.1.2. Given G ⊆ L≻ and ν ∈ Zn, a path (x, z, y) in GL(ν, G) is a
≻-critical path if z ≻ x and z ≻ y.

If (x, z, y) is a ≻-critical path in GL(ν, G), then x + u = z = y + v for some pair
u, v ∈ G, in which case, we call (x, z, y) a ≻-critical path for (u, v) (see Figure 5.2).

q

q

q

�
�@
@
@x

z

y

u v6
≺

Figure 5.2: A critical path for (u, v) between x, z, and y.

Lemma 5.1.3. Given ν ∈ Zn, let G ⊆ L≻ where G is a Markov basis of FL(ν). The
set G is a ≻-Gröbner basis of FL(ν) if and only if, for every ≻-critical path (x, z, y)
in GL(ν, G), there exists a ≻-reduction path in GL(ν, G) between x and y .

Proof. Firstly, assume that G is a Gröbner basis of FL(ν). Then, from Lemma 5.1.1,
there exists a ≻-reduction path in GL(ν, G) between x and y for every x, y ∈ FL(ν)
including those x and y for which there exists a ≻-critical path (x, z, y) in GL(ν, G).

Secondly, assume that there exists a ≻-reduction path between x and y for every ≻-
critical path (x, z, y) in GL(ν, G). We now show that G is a Gröbner basis by showing
that there exists a ≻-reduction path from x to y for every x, y ∈ FL(ν). Assume on

5.1. COMPLETION PROCEDURE 77

the contrary that there exists x, y ∈ FL(ν) such that there is no ≻-reduction path
from x to y. Among all possible paths (not reduction paths) from x to y in GL(ν, G),
(x = x0, . . . , xk = y), choose one such that max≻{x0, . . . , xk} is minimal. At least
one such path exists since G is a Markov basis of FL(ν), and a minimal such path
exists since ≻ is a term order. Let j ∈ {0, . . . , k} where xj attains this maximum. By
assumption (x0, . . . , xk) is not a ≻-reduction path, and thus, xj ≻ x0 and xj ≻ xk,
and since xj is maximal, we have xj ≻ xj−1 and xj ≻ xj+1. Let u = xj − xj−1 and
v = xj − xj+1; then, u, v ∈ L≻, and also, u, v ∈ G, and thus, (xj−1, xj , xj+1) forms
a ≻-critical path for (u, v). Consequently, we can replace the path (xj−1, xj, xj+1)
with the ≻-reduction path (xj−1 = x̃0, . . . , x̃s = xj+1) in the path (x0, . . . , xk) to
obtain a new path between x and y with the property that the ≻-maximum of the
intermediate nodes is strictly less than xj = max≻{x

0, . . . , xk} (see Figure 5.3). This
contradiction proves our claim.

q

q

q

q

q

q

q

q

%
%
%
�
�T
T
T
T
Q
Q
Q
Q!!!!

%
%
%S

S
S

x1

x8

x2

x3
x4

x5

x6

x7

vu

q

q

q

x0

x1

x2 x3

x4

6
≺

Figure 5.3: Replacing a critical path by a reduction path

We can extend Lemma 5.1.3 to Gröbner bases of lattices. It is a straight-forward
consequence of Lemma 5.1.3, but nevertheless, it is worthwhile stating explicitly.

Corollary 5.1.4. Given a lattice L and a term order ≻, let G ⊆ L≻ such that G

is a Markov basis of L. The set G is a ≻-Gröbner basis of L if and only if, for all
ν ∈ Zn, there exists a ≻-reduction path between x and y for every ≻-critical path
(x, z, y) in GL(ν, G).

It is not necessary to check for a ≻-reduction path from x to y for every ≻-critical
path (x, z, y) in GL(ν, G) for all ν ∈ Zn. If there exists another ≻-critical path
(x′, z′, y′) in GL(ν ′, G) for some ν ′ ∈ Zn such that (x, z, y) = (x′ + γ, y′ + γ, z′ + γ)
for some γ ∈ Nn, then a ≻-reduction path from x′ to y′ in GL(ν ′, G) translates by γ

to a ≻-reduction path from x to y in GL(ν, G). More formally, if (x0, x1, ..., xk) is a
≻-reduction path from x′ to y′ in GL(ν ′, G), then (x0 + γ, x1 + γ, ..., xk + γ) is a ≻-
reduction path from x to y in GL(ν, G). So, we only need to check for a ≻-reduction
path from x′ to y′ and not from x to y.

We call a ≻-critical path (x, z, y) minimal if there does not exist another ≻-critical
path (x′, z′, y′) such that (x, z, y) = (x′ + γ, y′ + γ, z′ + γ) for some γ ∈ Nn where
γ 6= 0, or equivalently, min{xi, yi, zi} = 0 for all i = 1, . . . , n. Consequently, if there
exists a ≻-reduction path between x and y for all minimal ≻-critical paths (x, z, y)
in GL(ν, G) for all ν ∈ Zn, then there exists a ≻-reduction path between x′ and y′

for all ≻-critical paths (x′, z′, y′) in GL(ν ′, G) for all ν ′ ∈ Zn.

78 CHAPTER 5. COMPUTING GRÖBNER BASES

For each pair of vectors u, v ∈ G, there exists a unique minimal ≻-critical path
(x(u,v), z(u,v), y(u,v)) in GL(ν(u,v), G) determined by z(u,v) := u+ ∨ v+ (i.e. z

(u,v)
i =

max{0, ui, vi} for all i = 1, ..., n), x(u,v) := z(u,v) − u, y(u,v) := z(u,v) − v, and ν(u,v) :=
z(u,v). So, any ≻-critical path for (u, v) is of the form (x(u,v) + γ, z(u,v) + γ, y(u,v) + γ)
for some γ ∈ Nn. Using minimal ≻-critical paths, we can rewrite Corollary 5.1.4, so
that we only need to check for a finite number of ≻-reduction paths.

Lemma 5.1.5. Given a lattice L and a term order ≻, let G ⊆ L≻ such that G is a
Markov basis of L. The set G ⊆ L≻ is a ≻-Gröbner basis of L if and only if, for all
u, v ∈ G, there exists a ≻-reduction path between x(u,v) and y(u,v) in GL(ν(u,v), G).

We now turn Lemma 5.1.5 into an algorithmic tool to compute Gröbner bases.
Algorithm 2 below, called a completion procedure ([15]), starts from a Markov basis
of L and computes a ≻-Gröbner basis of L.

Given a set M ⊆ L, the completion procedure first sets G := M , and then directs
all vectors in G according to ≻ such that G ⊆ L≻. Note that G is a Markov basis of
L since M is a Markov basis and we have only changed the direction of vectors. The
completion procedure then determines whether the set G satisfies Lemma 5.1.5; in
other words, it tries to find a reduction path from x(u,v) to y(u,v) for every pair u, v ∈
G where ν(u,v) ∈ BL(ν). If G satisfies Lemma 5.1.5, then we are done. Otherwise, no
≻-reduction path was found for some pair u, v ∈ G, in which case, we add a vector
to G so that a ≻-reduction path exists, and then again, test whether G satisfies
Lemma 5.1.5 and so on.

(a)

x(u,v)
q

C
C
C`̀
ee

q
q

x′, y′q

y(u,v)
q

�
�
�
@@���

q

q

6
≺ (b)

x(u,v)
q

C
C
C
Q
Q

q

x′
q

y(u,v)
q!!!

c
c
��

q

q

y′qr���:

6
≺

Figure 5.4: Checking for a reduction path from x(u,v) to y(u,v).

To check for a ≻-reduction path from x(u,v) to y(u,v), we run the Normal Form
algorithm (Algorithm 1) to construct a ≻-decreasing path in GL(ν(u,v), G) from x(u,v)

to some x′ = NFL(x(u,v), G) and from y(u,v) to some y′ = NFL(y(u,v), G). If x′ = y′

(see Figure 5.4a), then we have found a ≻-reduction path from x(u,v) to y(u,v) by
joining the path from x to x′ to the path from y to y′ (and removing cycles if
necessary). Otherwise, we add the vector r ∈ L≻ to G where r := x′ − y′ if x′ ≻ y′,
and r := y′ − x′ otherwise, and then, there is now a ≻-reduction path from x(u,v) to
y(u,v) in GL(ν(u,v), G), which is again formed by joining the path from x to x′ to the
path from y to y′ where the vector r′ is used to step between x′ and y′ (see Figure
5.4b).

We write CPL(≻, M) for the output of the completion procedure. Also, as mentioned
at the start of the section, we can compute a ≻-Gröbner basis of Fσ

L(·) using the
Completion Procedure, in which case, we write CPσ

L(≻, M) for the output of the
completion procedure.

5.1. COMPLETION PROCEDURE 79

Algorithm 2 Completion procedure

Input: a lattice L, a term order ≻, and a Markov basis M ⊆ L.
Output: a ≻-Gröbner basis G ⊆ L≻ of L.

G := {u : u+ ≻ u−, u ∈ M} ∪ {−u : u− ≻ u+, u ∈ M}
C := {(u, v) : u, v ∈ G}
while C 6= ∅ do

Select (u, v) ∈ C

C := C \ {(u, v)}
r := NFL(x(u,v), G) −NFL(y(u,v), G)
if r 6= 0 then

if r− ≻ r+ then r := −r end if

C := C ∪ {(w, r) : w ∈ G}
G := G ∪ {r}

end if

end while

return G.

Lemma 5.1.6. Algorithm 2 terminates and satisfies its specifications.

Proof. We first show that the algorithm terminates. Note that before we add r to
G, since the paths from x to x′ and from y to y′ are maximal, there does not exist
u ∈ G such that x′ ≥ u+ or y′ ≥ u+. Therefore, there does not exist u ∈ G such
that r+ ≥ u+. This condition is needed to ensure that the completion procedure
terminates. Let (r1, r2, . . .) be the sequence of vectors r that are added to the set
G during the Algorithm 2. Since before we add r to G, there does not exist u ∈ G

such that r+ ≥ u+, the sequence satisfies (ri)+ 6≤ (rj)+ whenever i < j. Thus,
the sequence (r1, r2, . . .) must be finite by the Gordan-Dickson Lemma 2.5.1, and
therefore, Algorithm 2 must terminate.

When the algorithm terminates, the set G is a Markov basis of L, and G must satisfy
the property that for each u, v ∈ G there exists a ≻-reduction path from x(u,v) to
y(u,v), and therefore, by Lemma 5.1.5, G is a Gröbner basis of L. Note that when the
algorithm terminates, the set G is a Markov basis of L since it is initially a Markov
basis and we only add vectors to G during the algorithm.

The worst-case complexity of the completion procedure for computing Gröbner bases
of polynomials ideals is known to be doubly exponential in the number of variables
(see for example [60, 65]), but it is not known what the worst-case complexity of the
completion procedure is for the special case of computing Gröbner bases of lattices.
However, there is a result by Sturmfels in [78] that gives a singly exponential (in
the number of variables) upper bound on the l1-norm2 of the vectors in Gröbner
bases of saturated lattices whereas the more general bound for polynomial ideals
is doubly exponential (see for example [60, 65]). So, the worst-case complexity of
the completion procedure for computing Gröbner bases of lattices may possibly be
singly exponential and not doubly exponential.

2Given a vector v ∈ Zn, the l1-norm of v is
∑

n

i=1
|vi|.

80 CHAPTER 5. COMPUTING GRÖBNER BASES

The completion procedure as written in Algorithm 2 is technically incomplete since
it does not specify how to select a critical pair (u, v) ∈ C. However, the order in
which we select critical pairs from C does not affect the correctness of the algorithm.
In practice, a good approach is to treat the set of critical pairs C as a first-in-first-out
queue, and thus, any critical pairs involving new vectors in G are always selected after
critical pairs of old vectors in G. Specifically, we consider the set G := {v1, v2, ..., vk}
as an ordered list of vectors, and we set C := {(vi, vj) : 1 ≤ i < j ≤ k}. Then, we
choose the critical pair (vi1 , vj1) ∈ C before the critical pair (vi2, vj2) ∈ C if j1 < j2,
or j1 = j2 and i1 < i2, and when adding vectors to G, we always add a new vector
to the end of the list of vectors in G. The initial order of the set G is not important
for this approach; what matters is that new vectors are placed at the end of the list.
Also, Gionvini et al. in [42] discuss other strategies for choosing the order in which
to select critical pairs (u, v) ∈ C in the completion procedure. Furthermore, for
some lattices, there exists a critical pair selection strategy such that the completion
procedure is guaranteed to compute a minimal Gröbner basis; this is known as the
homogeneous completion procedure.

Example 5.1.7. Consider again the lattice L as in Example 3.1.6. Again let c :=
(2, 0, 1, 1). We now present an example computation of a ≻c-Gröbner basis of a L
using the completion procedure (Algorithm 2). In this case, we leave the tie-breaking
term order ≻ unspecified since it is never needed during the algorithm: the cost c is
sufficient to direct all the vectors encountered during the algorithm.

The set M :={(3,1,-1,-1),(1,3,1,-2),(2,-2,-2,1),(5,-1,-3,0)}. is a Markov basis of L as
shown in Example 3.2.2. We will construct a Gröbner basis starting from this set.

Firstly, we set G := M and direct all vectors in G according to the term order ≻c.
Note that each of the vectors in M has a positive cost, so we do not have to change
the direction of any vector in G. Then secondly, we construct the set of critical pairs
C := {(u, v) : u, v ∈ G}. We will select critical pairs in the order given above where
the vectors in the set G are ordered as written above for the set M .

Now, for each critical pair of vectors (u, v) ∈ C, we check whether NFL(x(u,v), G) =
NFL(y(u,v), G). If this is true, then G is a ≻c-Gröbner basis of L. Otherwise if
NFL(x(u,v), G) 6= NFL(y(u,v), G) for some pair (u, v) ∈ C, then we add the vector
r = NFL(x(u,v), G) − NFL(y(u,v), G) or −r to G whichever is correctly directed
according to the cost. Then, we check again whether the larger set G is a Gröbner
basis.

(i). Select (u, v) =((3,1,-1,-1),(1,3,1,-2)). Then, we have z(u,v) = (3, 3, 1, 0), x(u,v) =
(0, 2, 2, 1) and y(u,v) = (2, 0, 0, 2). Next, we compute the normal form of x(u,v)

and the normal form of y(u,v). Since there is no vector w ∈ G such that w+ ≤
x(u,v), we must have x(u,v) = NFL(x(u,v), G). Since (2,-2,-2,1)+ ≤ y(u,v), we
compute a new vector

y′ = (2, 0, 0, 2) − (2,-2,-2,1) = (0, 2, 2, 1).

Now since there is no vector w ∈ G such that w+ ≤ y′, we must have y′ =
NFL(y(u,v), G). Since NFL(x(u,v), G) = NFL(y(u,v), G), we have found a path
from x(u,v) to y(u,v), so there is nothing left to do for this critical pair of vectors.

5.1. COMPLETION PROCEDURE 81

(ii). Select (u, v) =((3,1,-1,-1),(2,-2,-2,1)). Then, we have x(u,v) = (0, 0, 1, 2) =
NFL(x(u,v), G), and

y(u,v) = (1, 3, 2, 0)
(1,3,1,-2)
−→ (0, 0, 1, 2) = NFL(y(u,v), G).

So, NFL(x(u,v), G) = NFL(y(u,v), G).

(iii). Select (u, v) =((1,3,1,-2),(2,-2,-2,1)). Then, we have x(u,v) = (1, 0, 0, 3) =
NFL(x(u,v), G), and y(u,v) = (0, 5, 3, 0) = NFL(y(u,v), G). Therefore, we have
NFL(x(u,v), G) 6= NFL(y(u,v), G)! Therefore, we have found a critical pair
(u, v) such that there is no reduction path from x(u,v) to y(u,v) in GL(ν(u,v), G),
and thus, from Lemma 5.1.1, we have proven that G is not a ≺c-Gröbner basis
of L. Let r = NFL(x(u,v), G)−NFL(y(u,v), G) =(1,-5,-3,3). We must now add
(v, r) to C for all v ∈ G and add r to G. So, now

G := {(3, 1, -1, -1), (1, 3, 1, -2), (2, -2, -2, 1), (5, -1, -3, 0), (1, -5, -3, 3)}.

(iv). Select (u, v) =((3,1,-1,-1),(5,-1,-3,0)). Then, we have y(u,v) = (0, 2, 3, 0) =
NFL(y(u,v), G), and

x(u,v) = (2, 0, 1, 1)
(2,-2,-2,1)
−→ (0, 2, 3, 0) = NFL(x(u,v), G).

So, NFL(x(u,v), G) = NFL(y(u,v), G).

(v). Select (u, v) =((1,3,1,-2),(5,-1,-3,0)). Then, we have y(u,v) = (0, 4, 4, 0) =
NFL(y(u,v), G), and

x(u,v) = (4, 0, 0, 2)
(2,-2,-2,1)
−→ (2, 2, 2, 1)

(2,-2,-2,1)
−→ (0, 4, 4, 0) = NFL(x(u,v), G).

So, NFL(x(u,v), G) = NFL(y(u,v), G).

(vi). Select (u, v) =((2,-2,-2,1),(5,-1,-3,0)). Then, we have y(u,v) = (0, 1, 3, 1) =
NFL(y(u,v), G), and

x(u,v) = (3, 2, 2, 0)
(3,1,-1,-1)
−→ (0, 1, 3, 1) = NFL(x(u,v), G).

So, NFL(x(u,v), G) = NFL(y(u,v), G).

(vii). Select (u, v) =((3,1,-1,-1),(1,-5,-3,3)). Then, we have x(u,v) = (0, 0, 1, 4) =
NFL(x(u,v), G), and

y(u,v) = (2, 6, 3, 0)
(1,3,1,-2)
−→ (1, 3, 2, 2)

(1,3,1,-2)
−→ (0, 0, 1, 4) = NFL(y(u,v), G).

So, NFL(x(u,v), G) = NFL(y(u,v), G).

82 CHAPTER 5. COMPUTING GRÖBNER BASES

(viii). Select (u, v) =((1,3,1,-2),(1,-5,-3,3)). Then, we have x(u,v) = (0, 0, 0, 5) =
NFL(x(u,v), G), and y(u,v) = (0, 8, 4, 0) = NFL(y(u,v), G). Thus, we have found
another critical pair (u, v) such that there is no reduction path from x(u,v) to
y(u,v) in GL(ν(u,v), G) because NFL(x(u,v), G) 6= NFL(y(u,v), G), and thus from
Lemma 5.1.1, we have proven that G is still not a ≺c-Gröbner basis of L. Let
r = NFL(x(u,v), G) −NFL(y(u,v), G) =(0,-8,-4,5). We must now add (v, r) to
C for all v ∈ G and add r to G. So, now G :=

{(3, 1, -1, -1), (1, 3, 1, -2), (2, -2, -2, 1), (5, -1, -3, 0), (1, -5, -3, 3), (0, -8, -4, 5)}.

(ix). Select (u, v) =((2,-2,-2,1),(1,-5,-3,3)). Then, we have x(u,v) = (0, 2, 2, 2) =
NFL(x(u,v), G), and

y(u,v) = (1, 5, 3, 0)
(1,3,1,-2)
−→ (0, 2, 2, 2) = NFL(y(u,v), G).

So, NFL(x(u,v), G) = NFL(y(u,v), G).

(x). Select (u, v) =((5,-1,-3,0),(1,-5,-3,3)). Then, we have x(u,v) = (0, 1, 3, 3) =
NFL(x(u,v), G), and

y(u,v) = (4, 5, 3, 0)
(3,1,-1,-1)
−→ (1, 4, 4, 1)

(1,3,1,-2)
−→ (0, 1, 3, 3) = NFL(y(u,v), G).

So, NFL(x(u,v), G) = NFL(y(u,v), G).

(xi). Select (u, v) =((3,1,-1,-1),(0,-8,-4,5)). Then,

x(u,v) = (0, 0, 1, 6)
(0,-8,-4,5)
−→ (0, 8, 5, 1) = NFL(x(u,v), G).

y(u,v) = (3, 9, 4, 0)
(1,3,1,-2)
−→ (2, 6, 3, 2)

(1,3,1,-2)
−→ (1, 3, 2, 4)

(1,3,1,-2)
−→ (0, 0, 1, 6)

(0,-8,-4,5)
−→ (0, 8, 5, 1) = NFL(y(u,v), G).

So, NFL(x(u,v), G) = NFL(y(u,v), G).

(xii). Select (u, v) =((1,3,1,-2),(0,-8,-4,5)). Then,

x(u,v) = (0, 0, 0, 7)
(0,-8,-4,5)
−→ (0, 8, 4, 2) = NFL(x(u,v), G).

y(u,v) = (1, 11, 5, 0)
(1,3,1,-2)
−→ (0, 8, 4, 2) = NFL(y(u,v), G).

So, NFL(x(u,v), G) = NFL(y(u,v), G).

5.2. TRUNCATED COMPLETION PROCEDURE 83

(xiii). Select (u, v) =((2,-2,-2,1),(0,-8,-4,5)). Then, we have x(u,v) = (0, 2, 2, 4) =
NFL(x(u,v), G), and

y(u,v) = (2, 8, 4, 0)
(1,3,1,-2)
−→ (1, 5, 3, 2)

(1,3,1,-2)
−→ (0, 2, 2, 4) = NFL(y(u,v), G).

So, NFL(x(u,v), G) = NFL(y(u,v), G).

(xiv). Select (u, v) =((5,-1,-3,0),(0,-8,-4,5)). Then,

x(u,v) = (0, 1, 3, 5)
(0,-8,-4,5)
−→ (0, 9, 7, 0) = NFL(x(u,v), G).

y(u,v) = (5, 8, 4, 0)
(5,-1,-3,0)
−→ (0, 9, 7, 0) = NFL(y(u,v), G).

So, NFL(x(u,v), G) = NFL(y(u,v), G).

(xv). Select (u, v) =((1,-5,-3,3),(0,-8,-4,5)). Then, we have x(u,v) = (0, 5, 3, 2) =
NFL(x(u,v), G), and

y(u,v) = (1, 8, 4, 0)
(1,3,1,-2)
−→ (0, 5, 3, 2) = NFL(y(u,v), G).

So, NFL(x(u,v), G) = NFL(y(u,v), G).

So now, for all u, v ∈ G, there exists a ≺c-reduction path from x(u.v) to y(u,v), so

G :={(3,1,-1,-1),(1,3,1,-2),(2,-2,-2,1),(5,-1,-3,0),(1,-5,-3,3),(0,-8,-4,5)}.

is a ≺c-Gröbner basis of L.

5.2 Truncated completion procedure

In this section, we present existing algorithms for truncated Gröbner bases including
a new approach to truncation. We follow the approach of Weismantel and Thomas
in [85] and extend the approaches they give for truncation. The algorithm for com-
puting truncated Gröbner bases of lattices is based on the algorithm for computing
Gröbner bases of lattices presented in the previous section with some additional
steps added for performing truncation.

Firstly, recall that, given a lattice L, a vector ν ∈ Zn, and a term order ≻, a ν-
truncated Gröbner basis of L is a set of vectors that is simultaneously a Gröbner
basis of FL(ν ′) for every ν ′ ∈ BL(ν). In the previous section, we computed a Gröbner
basis of a lattice which is a Gröbner basis of FL(ν ′) for every ν ′, so now we wish to
only compute a Gröbner basis for a subset of fibers.

Firstly, we extend Lemma 5.1.3 to truncated Gröbner bases of lattices.

84 CHAPTER 5. COMPUTING GRÖBNER BASES

Corollary 5.2.1. Given a lattice L, a term order ≻, and a vector ν ∈ Zn, let
G ⊆ L≻ be such that G is a ν-truncated Markov basis of L. The set G is a ν-
truncated ≻-Gröbner basis of L if and only if there exists a ≻-reduction path between
x′ and y′ for every ≻-critical path (x′, z′, y′) in GL(ν ′, G) for all ν ′ ∈ BL(ν).

As before for Gröbner bases of lattices, we do not need to check for a ≻-reduction
path from x′ to y′ for every ≻-critical path (x′, z′, y′) in GL(ν ′, G) for all ν ′ ∈ BL(ν),
but instead, it is sufficient just to check for a ≻-reduction path from x(u,v) to y(u,v)

for every critical path (x(u,v), z(u,v), y(u,v)) in GL(ν(u,v), G) for all u, v ∈ G where
ν(u,v) ∈ BL(ν).

Lemma 5.2.2. Given a lattice L, a term order ≻, and a vector ν ∈ Zn, let G ⊆ L≻

such that G is a ν-truncated Markov basis of L. The set G is a ν-truncated ≻-
Gröbner basis of L if and only if, for all u, v ∈ G where ν(u,v) ∈ BL(ν), there exists
a ≻-reduction path between x(u,v) and y(u,v) in GL(ν(u,v), G).

Proof. If G ⊆ L≻ is a ν-truncated ≻-Gröbner basis of L, then by Corollary 5.2.1,
there exists a reduction path from x(u,v) to y(u,v) for all u, v ∈ G where ν(u,v) ∈ BL(ν).

Conversely, assume that G is a ν-truncated Markov basis of L and that for all u, v ∈
G where ν(u,v) ∈ BL(ν), there exists a ≻-reduction path between x(u,v) and y(u,v) in
GL(ν(u,v), G). Let (x′, z′, y′) be a ≻-critical path in GL(ν ′, G) where ν ′ ∈ BL(ν), and let
u, v ∈ G where x′+u = z′ = y′+v. Hence, (x′, z′, y′) = (x(u,v)+γ, z(u,v)+γ, y(u,v)+γ)
for some γ ∈ Nn. Crucially, it follows that ν(u,v) ∈ BL(ν) since γ ∈ FL(ν ′−ν(u,v)) 6= ∅
and FL(ν − ν ′) 6= ∅ which imply that FL(ν − ν(u,v)) 6= ∅. By assumption, there is
a ≻-reduction path x(u,v) to y(u,v), and thus, there is a ≻-reduction path from x′ to
y′. Therefore, by Corollary 5.2.1, G is a ν-truncated Gröbner basis of L.

As above for Gröbner bases of lattices, we now turn Lemma 5.1.5 into an algorithmic
tool to compute truncated Gröbner bases of lattices. Algorithm 2 below, called a
truncated completion procedure ([15]), starts from a truncated Markov basis of L
and computes a truncated ≻-Gröbner basis of L. An important part of this algorithm
is checking whether ν ′ ∈ BL(ν) for some ν ′ ∈ Zn. How exactly we perform this check
in practice is discussed at length after first presenting the overall algorithm.

Given a set S ⊆ L, the completion procedure first sets G := S, and then directs
all vectors in G according to ≻ such that G ⊆ L≻. It also removes from the set G

any vectors u ∈ G such that u+ 6∈ BL(ν) – recall that these vectors are not needed
in a truncated Markov basis. Note that at this point GL(ν ′, S) = GL(ν ′, G) for all
ν ′ ∈ BL(ν), and thus, G is also a ν-truncated Markov basis of L. The completion
procedure then determines whether the set G satisfies Lemma 5.2.2; in other words,
it tries to find a reduction path from x(u,v) to y(u,v) for every pair u, v ∈ G where
ν(u,v) ∈ BL(ν). If G satisfies Lemma 5.2.2, then we are done. Otherwise, no ≻-
reduction path was found for some (u, v), in which case, we add a vector to G so
that a ≻-reduction path exists, and then again, test whether G satisfies Lemma 5.2.2
and so on.

We write CPL,ν(≻, S) for the output of the truncated completion procedure. We
can also use the truncated completion procedure to compute ν-truncated ≻-Gröbner

5.2. TRUNCATED COMPLETION PROCEDURE 85

Algorithm 3 Truncated completion procedure

Input: a vector ν ∈ Zn, a term order ≻, and a ν-truncated Markov basis S ⊆ L.
Output: a ν-truncated Gröbner basis G ⊆ L≻.

G := {u : u+ ≻ u−, u ∈ S} ∪ {−u : u− ≻ u+, u ∈ S}
G := {u : u ∈ G, u+ ∈ BL(ν)}
C := {(u, v) : u, v ∈ G, ν(u,v) ∈ BL(ν)}
while C 6= ∅ do

Select (u, v) ∈ C

C := C \ {(u, v)}
r := NFL(x(u,v), G) −NFL(y(u,v), G)
if r 6= 0 then

if r− ≻ r+ then r := −r end if

C := C ∪ {(w, r) : w ∈ G, ν(w,r) ∈ BL(ν)}
G := G ∪ {r}

end if

end while

return G.

basis of Fσ
L(·), in which case, we write CPσ

L,≻(S,) for the output of the truncated
completion procedure.

There is a trade-off between the computational benefit of computing a ν-truncated
Markov basis (computing a smaller set) and the computational cost of computing
whether ν ′ ∈ BL(ν) for some ν ′ ∈ Zn many times. In general, it is NP-hard to
determine whether ν ′ ∈ BL(ν) since we must know if FL(ν ′) 6= ∅ and FL(ν−ν ′) 6= ∅.
Instead, we can check a sufficient condition for when ν ′ 6∈ BL(ν), so we compute a
superset of a ν-truncated Gröbner basis since we keep some vectors that are not
needed.

Firstly, note that in Algorithm 2, whenever we check whether ν ′ ∈ BL(ν), we always
have FL(ν ′) 6= ∅ since either ν ′ = u+ ≥ 0 for some u ∈ L or ν ′ = ν(u,v) ≥ 0 for some
u, v ∈ L and in either case ν ′ ∈ FL(ν ′) 6= ∅. So, in the algorithm, we only need to
check whether FL(ν − ν ′) 6= ∅.

We could instead check for feasibility of a relaxation of the feasible set FL(ν − ν ′).
One possible relaxation of FL(ν − ν ′) to check is

Fσ
L(ν − ν ′) := {x : x − (ν − ν ′) ∈ L, x ∈ Zn}

where σ = {1, ..., n}, so we have relaxed all of the non-negativity constraints. But
since ν−ν ′ ∈ Zn, we have ν−ν ′ ∈ Fσ

L(ν−ν ′) 6= ∅, so this is trivially always satisfied.
Another possible relaxation is the linear relaxation of FL(ν − ν ′):

FS(ν − ν ′) := {x : x − (ν − ν ′) ∈ S, x ∈ Rn
+}

where S ⊆ Rn is the smallest subspace containing L (see Section 2.9). We can thus
solve a linear program to check whether FS(ν−ν ′) = ∅ implying that FL(ν−ν ′) = ∅.
Note that FL(ν−ν ′) = FS(ν−ν ′)∩Fσ

L(ν−ν ′), but FS(ν−ν ′) 6= ∅ and Fσ
L(ν−ν ′) 6= ∅

do not imply that FL(ν − ν ′) 6= ∅.

86 CHAPTER 5. COMPUTING GRÖBNER BASES

In practice, computational experiments show that it is usually not worthwhile per-
forming the full check whether FS(ν−ν ′) = ∅, so instead, we use a sufficient condition
for when FS(ν − ν ′) = ∅ and thus ν ′ 6∈ BL(ν) that is quick to check. Consider the
set

S∗ ∩ Rn
+ := {a ∈ Rn

+ : as = 0 ∀s ∈ S}.

Recall that S∗ is the dual of S. Note that S∗ ∩Rn
+ is a pointed convex cone. Firstly,

observe that, for any a ∈ S∗∩Rn
+ and any ν ′ ∈ Zn, we have ax = aν ′ for all x ∈ FL(ν ′)

because x − ν ′ ∈ L ⊆ S. Secondly, if a ∈ S∗ ∩ Rn
+, then, for all ν ′ ∈ BL(ν), we have

aν ≥ aν ′ since if x ∈ FL(ν − ν ′) 6= ∅, then a(ν − ν ′) = ax and ax ≥ 0 because a ≥ 0
and x ≥ 0. Therefore, if aν < aν′, then FS(ν − ν ′) = ∅ implying FL(ν − ν ′) = ∅,
and thus ν ′ 6∈ BL(ν). Moreover, it follows from Farkas’ lemma (see Lemma 2.8.3)
that FS(ν − ν ′) = ∅ if and only if there exists an a ∈ S∗ ∩ Rn

+ where aν < aν′,
and furthermore, FS(ν − ν ′) = ∅ if and only if there exists an extreme ray a of the
cone S∗ ∩Rn

+ where aν < aν′. The set of extreme rays is finite but there are far too
many of them in general to check this condition. So, we need a way of selecting one
a ∈ S∗ ∩ Rn

+ or a small set of a. Choosing different a’s can produce very different
results, and the best a’s to choose vary from fiber to fiber.

We now present a novel approach for selecting a good a ∈ S∗ ∩ Rn
+. Now, note that

when we run Algorithm 2 and check whether ν ′ ∈ BL(ν), we have aν ′ ≥ 0 for all
a ∈ S∗ ∩Rn

+ since from above FL(ν ′) 6= ∅ (ν ′ ≥ 0). Ideally, there exists a ∈ S∗ ∩Rn
+

where aν = 0, implying that aν ′ = 0 (i.e. if ai 6= 0, then ν ′
i = 0) for every ν ′ ∈ BL(ν).

This condition is very strong and is quick to check and effectively means that we
compute using a sub-lattice of L. Otherwise if aν > 0 for all a ∈ S∗ ∩ Rn

+, then
a useful heuristic is to choose a single a ∈ S∗ ∩ Rn

+ such that aν is minimal with
respect to some norm || · || of a. More formally, we solve the following problem:

argmin{aν : ||a|| = 1, a ∈ S∗ ∩ Rn
+}.

If we use the l1-norm (i.e. ||a||1 =
∑

i ai), then we can find a using linear program-
ming. In this case, note that we only need to solve one linear program to compute
a as opposed to solving a linear program every time we check whether ν ′ ∈ BL(ν).

Example 5.2.3. Consider again the lattice program IPL,≻c(·) from Example 2.9.4
and Example 4.2.2 above. Recall that the set

G := {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2), (5, -1, -3, 0), (1, -5, -3, 3), (0, -8, -4, 5)}

≻c-Gröbner basis of L. We now examine truncated ≻c-Gröbner basis for two differ-
ent fibers.

(i). Consider ν = (-6, 4, 10, -1). There are two feasible solutions of IPL,≻c(ν):
(1, 1, 5, 0) and (6, 0, 3, 2). Since the feasible set consists of only two feasible
solutions, the minimal ν-truncated ≻c-Gröbner basis contains only one vector,
(5, -1, -3, 0): the vector between the two feasible solutions. Therefore, the set
{(5,-1,-3,0)} is a ν-truncated ≻c-Gröbner basis of L.

If we run the truncated completion procedure, Algorithm 3, using FS(ν−ν ′) 6= ∅
as a check for truncation, we compute the set CPL,ν(≻, s) = {(5, -1, -3, 0)},
which is exactly the minimal ν-truncated ≻c-Gröbner basis of L.

5.2. TRUNCATED COMPLETION PROCEDURE 87

If we run the truncated completion procedure using the quick test aν < aν′

where a := 1
14

(1, 5, 0, 8) = argmin{aν : ||a||1 = 1, a ∈ S∗ ∩ Rn
+}, we again

compute the set CPL,ν(≻, s) = {(5, -1, -3, 0)}. Note that aν = 1
14

(1, 5, 0, 8) ·
(-6, 4, 10, -1) = 3

7
. Then, for example, the vector (2, -2, -2, 1) is not needed in a

ν-truncated ≻c-Gröbner basis of L because aν ′ = 1
14

(1, 5, 0, 8) · (2, -2, -2, 1)+ =
5
7

> aν.

On the other hand, if we used the vector a := 1
12

(3, 0, 5, 4) ∈ S∗ ∩ Rn
+, then

the quick truncation check aν < aν′ is useless, and we would compute all six
vectors of G, the ≻c-Gröbner basis of L.

(ii). Consider ν ′ := (-6, 4, 5, 1); then, FL(ν ′) = {(2, 4, 1, 0), (1, 1, 0, 2)}. Since, the
feasible set consists of only two feasible solutions, the set {(1, 3, 1, -2)}} is a
ν ′-truncated ≻c-Gröbner basis of L.

Using FS(ν ′ − ν ′′) 6= ∅ as a check for truncation, we compute the following ν-
truncated ≻c-Gröbner basis of L: G := {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2)}.
So, we have computed two additional vectors that are not strictly needed since
FL(ν ′ − ν ′′) = ∅ even though FS(ν ′ − ν ′′) 6= ∅ where ν ′′ := (2, -2, -2, 1)+ =
(2, 0, 0, 1) or ν ′′ := (3, 1, -1, -1)+ = (3, 1, 0, 0).

Instead, using a := 1
12

(3, 0, 5, 4) = argmin{aν ′ : ||a||1 = 1, a ∈ S∗ ∩ Rn
+}

as a quick check for truncation, we compute the following three vectors of G:
{(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2)}. So here, we have again computed two
additional unnecessary vectors.

If instead we use the vector 1
14

(1, 5, 0, 8), then we would compute the following
four vectors of the set G: {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2), (5, -1, -3, 0)}.

The following example demonstrates the potential speed increase from computing a
truncated Gröbner basis as opposed to computing a full Gröbner basis. We use three
different methods for checking whether ν ′ ∈ BL(ν) in order of increasing effectiveness
but also increasing in time complexity:

(i). aν < aν′ where a = argmin{aν : ||a||1 = 1, a ∈ S∗ ∩ Rn
+},

(ii). FS(ν − ν ′) = ∅, or

(iii). FL(ν − ν ′) = ∅.

Since criterion (i) is in general much faster to check than (ii), we always check
(i) before (ii), and similarly, since criterion (i) and (ii) are in general much faster
to check than (iii), we always check them both before applying criterion (iii). In
practice, we solve FS(ν − ν ′) = ∅ using a simplex algorithm implementation in the
GLPK (GNU Linear Programming Kit) package.3 We solve FL(ν − ν ′) = ∅ using a
branch-and-bound implementation in GLPK.

3GLPK is open source and freely available from http://www.gnu.org/software/glpk/

88 CHAPTER 5. COMPUTING GRÖBNER BASES

ν a ∈ S∗ ∩ Rn
+ FS(ν − ν ′′) FL(ν − ν ′′)

ν1 307 0.02 1 0.09 0 0.10
ν2 418 0.10 36 0.19 0 0.31
ν3 6494 1.61 201 1.20 0 2.18
ν4 12191 6.31 5028 4.43 158 186.81
ν5 24748 108.19 24334 107.25 24284 > 3600

Table 5.1: Timings for computing truncated Gröbner bases.

Example 5.2.4. Let L = LA := {u : Au = 0, u ∈ Zn} where

A =









15 4 14 19 2 1 10 17 11 9 4 15 20
18 11 13 5 16 16 8 19 18 21 5 7 1
11 7 8 19 15 18 14 6 1 23 11 3 10
17 10 13 17 16 14 15 18 3 2 1 17 1









The size of a minimal Markov basis of L is 10868.

Let c = (3, 15, 1, 5, 2, 17, 16, 16, 15, 9, 7, 11, 13). The size of a minimal ≺c-Gröbner
basis of L for some term order ≺ is 24941. This takes 106.96 seconds to compute
using 4ti2. In Table 5.1, we list the time taken to compute ν-truncated Gröbner bases
of L from the minimal Markov basis of L for the following five different ν ∈ Zn:

ν1 (1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0)
ν2 (1, 0, 1, 0, 3, 0, 1, 5, 0, 1, 0, 9, 0)
ν3 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
ν4 (1, 2, 0, 3, 5, 0, 1, 3, 0, 4, 0, 1, 0)
ν5 (19, 7, 3, 8, 13, 11, 1, 15, 4, 8, 17, 9, 5)

The first column in Table 5.1 lists which ν was used. In the following columns, we
list the size of the computed set and the time taken for each of the three possible
ways to check whether ν ′ ∈ BL(ν).

For the example above, choosing a := argmin{aν : ||a||1 = 1, a ∈ S∗ ∩ Rn
+} works

reasonably well when used for checking for truncation. However, in general, using
more than one such a might be significantly better particularly when the support of
a (the set of non-zero components) is small. So, an alternate approach is to search
for a set of a′s such that their combined support is as large as possible.

Observe that to compute a truncated Gröbner basis in the previous example, we
first needed to compute a Markov basis, and in some cases, computing the Markov
basis took significantly longer than computing the truncated Gröbner basis. This
provides motivation for computing truncated Markov bases.

5.3 Optimising the completion procedure

The completion procedure as it is presented in Sections 5.1 and 5.2 is not very ef-
ficient. In this section, we show how to increase the efficiency of the completion

5.3. OPTIMISING THE COMPLETION PROCEDURE 89

procedure and the truncated completion procedure. These optimisations are indis-
pensable for any practical implementation of the completion procedure. We have
endeavoured to provide a description of the optimisations that we found to be the
most important; the list of optimisations we present is not exhaustive. There are
certainly many minor optimisations that greatly improve the performance of the
algorithm, but it is not appropriate to present them here. For simplicity, we only
explicitly describe optimisations for the completion procedure, but all the optimisa-
tions described here also apply to the truncated completion procedure.

5.3.1 Critical pair elimination criteria

The completion procedures (Algorithms 2 and 3) must test for a reduction path
between x(u,v) and y(u,v) for each pair of vectors u, v ∈ G to compute a Gröbner
basis. Computational profiling shows that testing for reduction paths is the most
time consuming part of the computation. So, we wish to reduce the number of critical
pairs that we need to test and to avoid this expensive test as often as possible. We
present three criteria that can reduce the number of critical pairs that need to
be tested. All three criteria presented here are direct translations of critical pair
elimination criteria for the completion procedure in algebraic geometry (we provide
references where appropriate).

Criterion 1: The Disjoint-Positive-Support criterion

We now present Criterion 1, which we also call the disjoint-positive-support cri-
terion for reasons that will become apparent. Criterion 1 has been translated from
the theory of Gröbner bases of polynomial rings into a geometric context. See for
example [13, 14] for the original description.

Definition 5.3.1. Given a lattice L and a set G ⊆ L, we say the critical pair
u, v ∈ G satisfies Criterion 1 if supp(u+) ∩ supp(v+) = ∅.

For a given pair u, v ∈ G, Criterion 1 is a simple and quick test for a ≻-reduction
path from x(u,v) to y(u,v). Essentially, if (u, v) satisfies Criterion 1, then there exists a
simple ≻-reduction path x(u,v) to y(u,v) only using the vectors u and v: there exists a
≻-reduction path (x(u,v), z̄, y(u,v)) in GL(ν(u,v), G) such that x(u,v)−v = z̄ = y(u,v)−u

(see Figure 5.5). Such a path exists if and only if z̄ ≥ 0. Recall that z(u,v) := u+∨v+,

q

q

q

��
��\

\
\

x(u,v)

z(u,v)

y(u,v)
u v

6
≺

q

q

qS
S
S��

��
�

x(u,v)

z

y(u,v)

uv

6
≺

Figure 5.5: Criterion 1.

x(u,v) := z(u,v) −u, and y(u,v) := z(u,v) − v, so z̄ = z(u,v) −u− v = (u+ ∨ v+)−ui − vi.

90 CHAPTER 5. COMPUTING GRÖBNER BASES

Thus, for some i ∈ {1, ..., n}, we have z̄i < 0 if and only if ui > 0 and vi > 0.
Therefore, z̄ ≥ 0 if and only if supp(u+) ∩ supp(v+) = ∅.

We can now add criterion 1 to Lemma 5.1.5 as follows.

Lemma 5.3.2. Given a lattice L and a term order ≻, let G ⊆ L≻ be such that G

is a Markov basis of L. The set G ⊆ L≻ is a ≻-Gröbner basis of L if and only if,
for all pairs u, v ∈ G that do not satisfy criterion 1, there exists a ≻-reduction path
between x(u,v) and y(u,v) in GL(ν(u,v), G).

Criterion 2: The Cancellation criterion

We now discuss Criterion 2, which we also call the cancellation criterion. Criterion
2 is specific to lattice ideals and follows from the theory behind the homogeneous
Buchberger algorithm ([16, 89]) for computing Gröbner bases of polynomial rings.
However, Criterion 2 as presented here is slightly more general in a way that we will
explain below.

To explain criterion 2, we need the concept of a grading. Let a ∈ S∗ ∩ Rn
+, and

recall that ax = ay for all x, y ∈ FL(ν) for all ν ∈ Zn. We call a a grading of L.
Importantly, if τ is the set of bounded components, then there exists a grading a of
L such that supp(a) = τ . A component i ∈ {1, ..., n} is bounded if IPL,-ei(ν) :=
max{xi : x − ν ∈ L, x ≥ 0, x ∈ Zn} is bounded for every ν ∈ Zn, otherwise i is
unbounded. Note that ei is the ith unit vector. We now show that if τ is the set of
bounded components that there exists a grading s ∈ S∗∩Rn

+ such that supp(a) = τ .
Recall from Lemma 2.9.1 that IPL,-ei(ν) for all ν ∈ Zn is bounded if and only if
the linear space program LPS,-ei(ν) is bounded for all ν ∈ Zn. Furthermore, from
Lemma 2.8.3, the linear space program LPS,-ei(ν) is bounded for all ν ∈ Zn if and
only if -ei ∈ FS(0)∗ = {y ∈ Rn : y ≥ s, s ∈ S∗} or equivalently there exists s ∈ S∗

such that s ≥ ei. Any vector s ∈ S∗ such that s ≥ ei is a grading, and if we
take the sum of all such gradings for every bounded component, we have a grading
a such that supp(a) = τ . Note that, using the arguments from above, we cannot
have a grading a such that ai > 0 where i is unbounded. Thus, the set of bounded
components precisely describes the maximum support of any grading.

First, we prove an analogous result to Corollary 5.1.4.

Lemma 5.3.3. Given a lattice L, and a term order ≻, let G ⊆ L≻ be such that
G is a Markov basis of L, and let τ be the bounded components. The set G is a
≻-Gröbner basis of L if and only if for every ≻-critical path (x, z, y) in GL(ν, G) for
all ν ∈ Zn where supp(x)∩ supp(y)∩ τ = ∅, there exists a ≻-reduction path between
x and y in GL(ν, G).

Proof. The forward implication follows from Corollary 5.1.4. For the backward im-
plication, we need to show that for every ≻-critical path (x, z, y) in GL(ν, G) for all
ν ∈ Zn where supp(x) ∩ supp(y) ∩ τ 6= ∅, there exists a ≻-reduction path from x to
y in GL(ν, G), in which case, there is a ≻-reduction path for all ≻-critical paths, so
by Corollary 5.1.4, G is a Gröbner basis. Assume on the contrary that this is not
the case.

5.3. OPTIMISING THE COMPLETION PROCEDURE 91

Let a ∈ S∗ ∩ Rn
+ where supp(a) = τ . Then, amongst all possible ≻-critical paths

(x, z, y) in GL(ν, G) for some ν ∈ Zn such that there is no ≻-reduction path from x

to y (supp(x) ∩ supp(y) ∩ τ 6= ∅), choose a path (x, z, y) such that aν = ax = ay

is minimal. Let γ := x ∧ y (the component-wise minimum, γi = min{xi, yi} for
all i = 1, ..., n), x̄ := x − γ, ȳ := y − γ, and ν̄ = ν − γ. Note that γ 6= 0 since
supp(x) ∩ supp(y) ∩ τ 6= ∅. Because G is a Markov basis of L, there must exist a
path from x̄ to ȳ in GL(ν̄, G). Also, since supp(a) = τ , we have aν̄ = ax̄ < ax = aν;
therefore, by the minimality assumption on aν, we can now conclude that for all ≻-
critical paths in GL(ν̄, G) there exists a ≻-reduction path. Consequently, by Lemma
5.1.3, there exists a ≻-reduction path between x̄ and ȳ in GL(ν̄, G). This ≻-reduction
path, however, can be translated by γ to a ≻-reduction path from x to y in GL(ν, G)
(see Figure 5.6a). But this contradicts our assumption that there is no such ≻-
reduction path between x and y.

(a)

q

q

qZ
Z
Z
Z!!!!x(u,v)

z(u,v)

y(u,v)
v

u

q

q

q

q

q

q

q

q
x̄

ȳ

6
6

γ
γ

6

≺ (b)

q

q

qZ
Z
Z
Z!!!!x(u,v)

z(u,v)

y(u,v)
v

u

q

q

q

x′

y′

q

q

q

q

q

q

q

q

q

q

x̄

ȳ

6

6

γ

γ

6

≺

Figure 5.6: Criterion 2.

Now, given u, v ∈ G, if supp(x(u,v))∩supp(y(u,v))∩τ 6= ∅, then supp(x)∩supp(y)∩τ 6=
∅ for all ≻-critical paths (x, z, y) for (u, v). Using this observation, we arrive at an
analogous result to Lemma 5.1.5.

Lemma 5.3.4. Let G ⊆ L be a Markov basis of L; then, G is a ≺-Gröbner basis
of L if and only if, for each pair u, v ∈ G where supp(x(u,v)) ∩ supp(y(u,v)) ∩ τ = ∅,
there exists a ≻-reduction path between x(u,v) and y(u,v) in GL(ν(u,v), G).

We can extend these results further leading to a more powerful elimination criterion.
We now present Criterion 2: let u, v ∈ G. We say the pair (u, v) satisfies Criterion
2 if there exists x′, y′ ∈ FL(ν(u,v)) such that there exists a ≻-decreasing path in
GL(ν(u,v), G) from x(u,v) to x′ and from y(u,v) to y′, and supp(x′) ∩ supp(y′) ∩ τ 6= ∅
where τ is the set of bounded components. Importantly, if (u, v) satisfies Criterion
2, then we do not have to test for a ≻-reduction path from x(u,v) to y(u,v). Thus, we
arrive at an extension of the above result. Observe that the previous results are just
a special case where x′ = x(u,v) and y′ = y(u,v).

Lemma 5.3.5. Let G ⊆ L be a Markov basis of L; then, G is a ≺-Gröbner basis
of L if and only if, for each pair u, v ∈ G where (u, v) does not satisfy Criterion 2,
there exists a ≻-reduction path between x(u,v) and y(u,v) in GL(ν(u,v), G).

92 CHAPTER 5. COMPUTING GRÖBNER BASES

If there is a ≻-reduction path from x′ to y′, then there exists a ≻-reduction path
from x(u,v) to y(u,v). Since supp(x′) ∩ supp(y′) ∩ τ 6= ∅, then γ = x′ ∧ y′ 6= 0. So, if
there exists a ≻-reduction path from (x′ − γ) to (y′ − γ), then there must exist a
≻-reduction path from x′ to y′, and therefore also, there must exist a ≻-reduction
path from x(u,v) to y(u,v) (see Figure 5.6b). Again, we let a be a strictly positive
grading of L, so similarly to above, aν̄ < aν(u,v). So, the proof of Lemma 5.3.5 is
essentially as before.

For a pair u, v ∈ G, Criterion 2 can be checked not only before we search for a ≻-
reduction path from x(u,v) to y(u,v) but also while searching for a ≻-reduction path.
When searching for a ≻-reduction path, we construct a ≻-decreasing path from x(u,v)

to NFL(x(u,v), G) and a ≻-decreasing path from y(u,v) to NFL(y(u,v), G). Therefore,
we can take any point x′ on the ≻-decreasing path from x(u,v) to NFL(x(u,v), G)
and any point y′ on the decreasing path from y(u,v) to NFL(y(u,v), G) and check
Criterion 2, that is, we check if supp(x′) ∩ supp(y′) ∩ τ 6= ∅. If this is true, then we
can eliminate (u, v).

We wish to point out explicitly here that Criterion 2 can be applied without choosing
the vector pairs u, v ∈ G in a particular order during Algorithm 2. In fact, when
running Algorithm 2, if we apply Criterion 2 to eliminate a pair u, v ∈ G, it does not
necessarily mean that there is a ≻-reduction path from x(u,v) to y(u,v) in GL(ν(u,v), G)
at that particular point in time in the algorithm but instead that a ≻-reduction path
will exist when the algorithm terminates. This approach is in contrast to existing
approaches that use the homogeneous Buchberger algorithm to compute a Gröbner
basis whereby vector pairs u, v ∈ G must be chosen in an order compatible with
increasing aν(u,v) for some strictly positive grading a. This can be computationally
costly. When we use these existing approaches, if a pair (u, v) is eliminated by
Criterion 2, then it is necessarily the case that there already exists a ≻-reduction
path from x(u,v) to y(u,v).

Observe that we can apply Criteria 1 and 2 simultaneously, so we only need to check
for a reduction path for a critical pair if it does not satisfy Criteria 1 and 2. Actually
in practice, Criterion 2 is usually more effective for eliminating critical pairs than
Criterion 1, and thus, it is better to check Criterion 2 and then check Criterion 1.

Note that the effectiveness of Criterion 2 depends on the set τ of bounded compo-
nents. In particular, if τ = ∅, then Criterion 2 is useless. For cases that are mostly
unbounded (empirically, when less than one third of the components are bounded),
we need another criterion for eliminating critical pairs.

We now redo the completion procedure computation in example 5.1.7 using Criterion
2 to eliminate critical pairs in order to demonstrate the effectiveness of Criterion 2.

Example 5.3.6. Consider again the lattice L as in Example 5.1.7. Again let ν :=
(-6, 4, 10, 1), and let c := (2, 0, 1, 1). We now present an example computation of a
≻c-Gröbner basis of a L using the completion procedure (Algorithm 2) and this time,
we also use Criterion 2 and Criterion 1 to eliminate critical pairs. Note that for this
example, every component is bounded.

Again let M :={(3,1,-1,-1),(1,3,1,-2),(2,-2,-2,1),(5,-1,-3,0)}. Then, set G := M and
and set C := {(u, v) : u, v ∈ G}. We now process the critical pairs C of G.

5.3. OPTIMISING THE COMPLETION PROCEDURE 93

(i). Select (u, v) =((3,1,-1,-1),(1,3,1,-2)). Criterion 2 eliminates this pair since
supp(u−) = {3, 4} and supp(v−) = {4}; hence, supp(u−) ∩ supp(v−) 6= ∅.

(ii). Select (u, v) =((3,1,-1,-1),(2,-2,-2,1)). Criterion 2 eliminates this pair.

(iii). Select (u, v) =((1,3,1,-2),(2,-2,-2,1)). Neither Criterion 2 nor Criterion 1 elim-
inate this pair. Then, x(u,v) = (1, 0, 0, 3) = NFL(x(u,v), G), and, y(u,v) =
(0, 5, 3, 0) = NFL(y(u,v), G). So, NFL(x(u,v), G) 6= NFL(y(u,v), G)! Therefore,
we have found a critical pair (u, v) such that there is no reduction path from
x(u,v) to y(u,v) in GL(ν(u,v), G), and thus from Lemma 5.1.1, we have proven
that G is not a ≺c-Gröbner basis of L.

Let r = NFL(x(u,v), G)−NFL(y(u,v), G) =(1,-5,-3,3). We must now add (v, r)
to C for all v ∈ G and add r to G. So, now

G := {(3, 1, -1, -1), (1, 3, 1, -2), (2, -2, -2, 1), (5, -1, -3, 0), (1, -5, -3, 3)}.

(iv). Select (u, v) =((3,1,-1,-1),(5,-1,-3,0)). Criterion 2 eliminates this pair.

(v). Select (u, v) =((1,3,1,-2),(5,-1,-3,0)). Neither Criterion 2 nor Criterion 1 elim-
inate this pair. Then, y(u,v) = (0, 4, 4, 0) = NFL(y(u,v), G).

x(u,v) = (4, 0, 0, 2)
(2,-2,-2,1)
−→ (2, 2, 2, 1)

(2,-2,-2,1)
−→ (0, 4, 4, 0) = NFL(x(u,v), G).

So, NFL(x(u,v), G) = NFL(y(u,v), G).

(vi). Select (u, v) =((2,-2,-2,1),(5,-1,-3,0)). Criterion 2 eliminates this pair.

(vii). Select (u, v) =((3,1,-1,-1),(1,-5,-3,3)). Criterion 2 eliminates this pair.

(viii). Select (u, v) =((1,3,1,-2),(1,-5,-3,3)). Neither Criterion 2 nor Criterion 1 elim-
inate this pair. Then, x(u,v) = (0, 0, 0, 5) = NFL(x(u,v), G), and, y(u,v) =
(0, 8, 4, 0) = NFL(y(u,v), G). So, NFL(x(u,v), G) 6= NFL(y(u,v), G)! There-
fore, we have found another critical pair (u, v) such that there is no reduction
path from x(u,v) to y(u,v) in GL(ν(u,v), G), and thus from Lemma 5.1.1, we have
proven that G is still not a ≺c-Gröbner basis of L.

Let r = NFL(x(u,v), G)−NFL(y(u,v), G) =(0,-8,-4,5). We must now add (v, r)
to C for all v ∈ G and add r to G. So, now G :=

{(3, 1, -1, -1), (1, 3, 1, -2), (2, -2, -2, 1), (5, -1, -3, 0), (1, -5, -3, 3), (0, -8, -4, 5)}.

(ix). Select (u, v) =((2,-2,-2,1),(1,-5,-3,3)). Criterion 2 eliminates this pair.

(x). Select (u, v) =((5,-1,-3,0),(1,-5,-3,3)). Criterion 2 eliminates this pair.

(xi). Select (u, v) =((3,1,-1,-1),(0,-8,-4,5)). Criterion 2 eliminates this pair.

(xii). Select (u, v) =((1,3,1,-2),(0,-8,-4,5)). Criterion 1 eliminates this pair since
supp(u+) = {1, 2, 3} and supp(v+) = {4}, so supp(u+) ∩ supp(v+) = ∅.

94 CHAPTER 5. COMPUTING GRÖBNER BASES

(xiii). Select (u, v) =((2,-2,-2,1),(0,-8,-4,5)). Criterion 2 eliminates this pair.

(xiv). Select (u, v) =((5,-1,-3,0),(0,-8,-4,5)). Criterion 2 eliminates this pair.

(xv). Select (u, v) =((1,-5,-3,3),(0,-8,-4,5)). Criterion 2 eliminates this pair.

So now, for all u, v ∈ G, there exists a ≺c-reduction path from x(u.v) to y(u,v), so

G :={(3,1,-1,-1),(1,3,1,-2),(2,-2,-2,1),(5,-1,-3,0),(1,-5,-3,3),(0,-8,-4,5)}.

is a ≺c-Gröbner basis of L. Note how effective the two criteria were in decreasing the
number of pairs that we must check for a reduction path. In only one case (step (v))
was there a reduction path for a pair that wasn’t eliminated. Also, note that criterion
2 was more effective than criterion 1. In general, computational experiments show
that most critical pairs are eliminated with criterion 2 and some with criterion 1 so
that there are not many pairs that must be checked for a reduction path.

Criterion 3: The (u, v, w) criterion

We now explain Criterion 3, which we also call the (u, v, w) criterion. This is the
most complicated of the three criteria and as such it is also the most time consuming
to check. However, it is particularly useful when most components are unbounded.
Criterion 3 has been translated from the theory of Gröbner bases of polynomial rings
into a geometric context. See for example [41, 28] for the original description.

Before presenting the (u, v, w) criterion, we need a another result, Lemma 5.3.7, that
is a less strict version of Lemma 5.1.3. First, we need to define a new type of path.
A path (x0, . . . , xk) is z-bounded (with respect to ≻) if z ≻ xi for all i = 0, . . . , k.
So, z is a strict upper bound on the path. Note that for a ≻-critical path (x, z, y),
a ≻-reduction path from x to y is by definition a z-bounded path.

Lemma 5.3.7. Given ν ∈ Zn, let G ⊆ L≻ where G is a Markov basis of FL(ν).
The set G is a ≻-Gröbner basis of FL(ν) if and only if there exists a z-bounded path
between x and y for every ≻-critical path (x, z, y) in GL(ν, G).

If we now re-examine the proof of Lemma 5.1.3, we find that we only need z′-bounded
paths between x′ and y′ for every ≻-critical path (x′, z′, y′) in GL(ν, G), and that, a
≻-reduction path from x′ and y′ is more than we need. The proof then proceeds in
the same way as Lemma 5.1.3.

From Lemma 5.3.7, we arrive at an analogous result to Lemma 5.1.5.

Corollary 5.3.8. Given a lattice L and a term order ≻, let G ⊆ L≻ such that G is
a Markov basis of L. The set G ⊆ L≻ is a ≻-Gröbner basis of L if and only if, for all
u, v ∈ G, there exists a z(u,v)-bounded path between x(u,v) and y(u,v) in GL(ν(u,v), G).

Corollary 5.3.8 does not mean that we should change Algorithm 2 since to test for
a z(u,v)-bounded path from x(u,v) to y(u,v), we still test for a ≻-reduction path from
x(u,v) to y(u,v) which is a z(u,v)-bounded path. However, we can use Corollary 5.3.8

5.3. OPTIMISING THE COMPLETION PROCEDURE 95

to reduce the number of critical pairs u, v ∈ G for which we need to compute a
≻-reduction path.

Now, we are able to present the (u, v, w) criterion. Let u, v, w ∈ G where z(u,v) ≥ w+

(or equivalently, z(u,v) ≥ z(u,w) and z(u,v) ≥ z(w,v)), and let z̄ = z(u,v) −w (see Figure
5.7). Then, a z(u,v)-bounded path from x(u,v) to z̄, and a z(u,v)-bounded path from
z̄ to y(u,v) combine to form a z(u,v)-bounded path from x(u,v) to y(u,v). Moreover,
(x(u,v), z(u,v), z̄) is a ≻-critical path for (u, w) (see Figure 5.7), so x(u,v) = x(u,w) + γ,
z(u,v) = z(u,w)+γ, and z̄ = y(u,w)+γ for some γ ∈ Nn, and thus, a z(u,w)-bounded path
from x(u,w) to y(u,w) translates to a z(u,v)-bounded path from x(u,v) to z̄. Furthermore,
(z̄, z(u,v), y(u,v)) is a ≻-critical path for (w, v), and thus, a z(w,v)-bounded path from
x(w,v) to y(w,v) translates to a z(u,v)-bounded path from z̄ to y(u,v). Therefore, a z(u,w)-
bounded path from x(u,w) to y(u,w) and a z(w,v)-bounded path from x(w,v) to y(w,v)

combine to form a z(u,v)-bounded path from x(u,v) to y(u,v), so we can remove (u, v)
from C.

(a)

q

q

q

q

�
�
�
�
�S
S
S
S

�
�
�
�
�

x(u,v)

z(u,v)

y(u,v)
z

u vw

6
≻ (b)

q

q

q

q�
�
�
�
�S
S
S
S

�
�
�

x(u,v)

z(u,v)

y(u,v)

z

u vw
6
≻

Figure 5.7: Criterion 3.

Note that in Figure 5.7a, a ≻-reduction path from x(u,v) to z̄ and a ≻-reduction path
from z̄ to y(u,v) do combine to give a ≻-reduction path from x(u,v) to y(u,v); however,
this is not the case in Figure 5.7b, which is why we need the concept of bounded
paths.

We can extend the previous result. Let u, v,∈ G, and w1, . . . , wk ∈ G such that
z(u,v) ≥ (wi)

+
for all i = 1, . . . , k. If there exists a z(u,v) bounded path for the critical

pairs (u, w1), (wk, v), and (wi, wi+1) for all i = 1, . . . , k− 1, then there is a bounded
path for (u, v). However, note that this can also be implied by a bounded path for
(u, wi) and (wi, v) for any i = 1, . . . , k.

Unfortunately, we cannot just remove from C all pairs u, v ∈ G where there exists a
w ∈ G such that z(u,v) ≥ w+. It may happen that in addition to z(u,v) ≥ w+, we also
have z(u,w) ≥ v+, in which case, we would eliminate both the pairs (u, v) and (u, w)
leaving only (v, w) which is not sufficient. Moreover, at the same time, we may also
have z(w,v) ≥ u+, and we would eliminate all three pairs. To avoid these circular
relationships, Gebauer and Möller [41] devised the following critical pair elimination
criteria, which we use in practice in 4ti2.

Let G = {u1, u2, . . . , u|G|}, and let ui, uj ∈ G where i < j. We now define Criterion
3. the pair (ui, uj) satisfies Criterion 3 if there exists uk ∈ G such that one of the
following conditions hold:

(i). z(ui,uj)
 z(ui,uk), and z(ui,uj)
 z(uj ,uk);

96 CHAPTER 5. COMPUTING GRÖBNER BASES

(ii). z(ui,uj) = z(ui,uk), z(ui,uj)
 z(uj ,uk), and k < j;

(iii). z(ui,uj)
 z(ui,uk), z(ui,uj) = z(uj ,uk), and k < i; or

(iv). z(ui,uj) = z(ui,uk) = z(uj ,uk), and k < i < j.

So, if a pair (ui, uj) satisfies Criterion 3, we can eliminate it. For example, if G =
{u1, u2, u3} where zu1u2

= zu1u3

 zu2u3

, then applying Criterion 3 to all three pairs
(u1, u2), (u1, u3), and (u2, u3) would eliminate only (u1, u3).

After eliminating all pairs that satisfy Criterion 3, we are left with a set of critical
pairs C ′ ⊆ C = {(u, v) : u, v ∈ G} such that if there exists a z(u′,v′)-bounded path
from x(u′,v′) to y(u′,v′) for all (u′, v′) ∈ C ′, then there exists a z(u,v)-bounded path from
x(u,v) to y(u,v) for all (u, v) ∈ C. However, this set of pairs may not be minimal. In [16],
Caboara, Kreuzer, and Robbiano describe an algebraic algorithm for computing a
minimal set of critical pairs with computational results. Their computational results
show that the Gebauer and Möller criteria give a good approximation to the minimal
set of critical pairs. We found that the Gebauer and Möller criteria were sufficient
for our computations.

5.3.2 Finding reduction paths

As mentioned above, computational profiling shows that most of the time spent in
the completion procedure is spent in checking for a reduction path from x(u,v) to
y(u,v) in the graph GL(ν(u,v), G) for some set of vectors G and vectors u, v ∈ G. In
general, this is the case even after applying the critical pair elimination criteria to
avoid performing the check as often as possible. In this section, we describe how we
can improve the algorithm for checking for a reduction path.

Recall that to check for a reduction path from x to y in the graph GL(ν, G), we
construct a maximal decreasing path from x to x′ = NFL(x, G) using the Normal
Form algorithm, and also, we construct a maximal decreasing path from y to y′ =
NFL(y, G), and then, if x′ = y′ (i.e. the paths cross), we have found a reduction
path by joining the two decreasing paths and removing cycles if necessary.

In situations where x′ = y′ (i.e. we have found a reduction path from x to y),
this simple approach potentially performs some unnecessary steps. This happens
when the path from x to x′ and the path from y to y′ cross in the middle of the
paths, and thus, when we join the paths, we create cycles. We can improve the
algorithm by avoiding these cycles and only computing the paths up until the point
where they first cross. More formally, let (x1, ..., xk) be the decreasing path from
x to x′ constructed by the Normal Form algorithm, and similarly, let (y1, ..., yl)
be a decreasing path from y to y′ constructed by the Normal Form algorithm. It
may happen that xi = yj for some i < k and j < l. In this case, we only need
to compute the shorter paths (x1, ..., xi) and (y1, ..., yj) since joining them creates
a reduction path from x to y, and in only computing these shorter paths, we have
avoided performing some iterations of the Normal Form algorithm.

To avoid performing unnecessary steps of the Normal Form algorithm, we compute
the two decreasing paths in parallel. For example, assume that we have computed

5.3. OPTIMISING THE COMPLETION PROCEDURE 97

x(u,v)
q

q

q

@@
AA
ee
x′, y′q

y(u,v)
q

q

���

6
≺

Figure 5.8: Intersecting decreasing paths from x(u,v) and y(u,v).

(x1, ..., xi) and (y1, ..., yj). If xi = yj, then we stop. Otherwise, if xi ≻ yj, then we
try to decrease xi, or if yi ≻ xj , then we try to decrease yi. In doing this, we avoid
cycles.

5.3.3 Finding a reductor

The main step of the reduction path algorithm and the Normal Form algorithm,
Algorithm 1, is to find a vector u ∈ G such that u+ ≤ x for some x ∈ Nn, in which
case, we call u a reductor of x. This single operation is the most expensive operation
of the completion procedure, and overall, the time spent performing this operation
accounts for the most computation time in the completion procedure. So, any en-
hancements to this operation make a substantial improvement to the performance
of the completion procedure and the Normal Form algorithm. There are many pos-
sible ways of implementing this operation. The approach that we present here is the
way that we found to be the best after evaluating many different approaches. To
the best of our knowledge, no other software packages for computing Gröbner bases
use the approach presented in this chapter. We do not wish to present all the other
possibilities that we considered, but instead, we will focus on the method that we
found to be the best in practice. Fortunately, we found that the method presented
here really dominates other approaches that we tried in the sense that it performs
at least as well if not better for all different types of sets G of a reasonable size.

The simplest approach to finding a vector u ∈ G such that u+ ≤ x is to treat the
set G as an ordered list of vectors – G = {u1, u2, ..., uk} – and to iterate through
the list from start to end checking for each vector uj ∈ G whether (uj)+ ≤ x. The
simplicity of this approach means that it performs well when G is small (less than
a few hundred vectors), but we are interested in cases where G is well over 100,000
vectors. It is worth noting here that when adding a new vector to the list G during
the completion procedure, in our experience, this simple method performs better
when new vectors are added at the end of the list and not at the beginning. We can
improve on this simple method a little by noting that u+ ≤ x only if ||u+||1 ≤ ||x||1.
So, we sort the list of vectors in G in order of increasing norm || · ||1 and if two
vectors have the same norm, the vectors are ordered from oldest to newest. In this
way, we only have to iterate through the list until ||u+||1 > ||x||1, at which point, if
we have not yet found a reductor of x, then none exists.

We can again improve upon this method using the observation that u+ ≤ x only if

98 CHAPTER 5. COMPUTING GRÖBNER BASES

supp(u+) ⊆ supp(x). Thus, we first check if supp(u+) ⊆ supp(x) before checking if
u+ ≤ x. Also, since potentially many different vectors in G have the same positive
support, we group the vectors in G into sets of vectors with the same positive
support. By doing this, we only need to perform one positive support check per
group, which is a big advantage of this method. Let G = G1 ∪ G2 ∪ ... ∪ Gl where
Gj is a list of vectors in G with the same support, and let S = {s1, s2, ..., sl} where
sj = supp(u+) for all u ∈ Gj for j = 1, ..., l. Then, to find a vector u ∈ G such that
u+ ≤ x, we can iterate through the list S from start to end checking for each sj ∈ S

whether sj ⊆ supp(x) and if so, then we iterate through Gj as above looking for a
vector uj ∈ Gj where (uj)+ ≤ x. Note that, as above, we can sort the vectors of
each Gj in order of increasing norm || · ||1 and if two vectors have the same norm,
the vectors are ordered from oldest to newest. We can again improve this method
by observing that supp(u+) ⊆ supp(x) only if | supp(u+)| ≤ | supp(x)|, so we can
order the groups in increasing size of the positive support. In this way, we only have
to iterate through the list of groups until |sj| > | supp(x)| for some j = 1, ..., l.

The approach is inefficient when the number of different groups of vectors with the
same positive support is larger than a few thousand, in which case, it is no longer
efficient to iterate through the list S of positive supports from start to end. Instead,
we use a tree structure to search for s ∈ S such that s ⊆ supp(x). Let T = (V, E) be
a tree where V are the vertices or nodes and E are the edges. Each node v ∈ V of the
tree T except the root node has a label lv ∈ {1, ..., n}, and by convention, we give
the root node the label 0. The label of each node is always strictly greater than the
label of its parent node, and we require that the label of a node is unique amongst
its siblings, although the label might not be unique amongst all nodes. For any node
v ∈ V , the list of labels of its ancestors including its own label but excluding the
root node’s label is a subset of {1, ..., n}. Moreover, this subset is unique for every
node of the tree since labels are increasing as we move down the tree and that labels
are unique amongst the siblings of a node. So, given a list of supports S, we can
construct a tree T such that each support s ∈ S and the set of vectors in G with
positive support s is associated with one node of the tree. Let sv be the support
associated with node v and let Gv be the set of vectors associated with node v that
all have positive support sv.

Then, if we wish to find a vector u ∈ G such that u+ ≤ x we traverse the tree T in
a depth first search fashion starting from the root node where we only visit a node
v ∈ V if lv ∈ supp(x). So, if we visit a node v ∈ V in the tree T , then lv ∈ supp(x)
and also lv′ ∈ supp(x) for every node v′ ∈ V that is an ancestor of v excluding
the root node implying that sv ⊆ supp(x), in which case, we should check whether
u+ ≤ x for every u ∈ Gv. If we do not visit a node v ∈ V , then lv′ 6∈ supp(x) for
some ancestor of v′ of v excluding the root node implying that sv 6⊆ supp(x) and
thus u+ 6≤ x for every u ∈ Gv.

Example 5.3.9. Consider again the lattice L and cost vector c from Example 4.2.2.
We saw that the set

G = {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2), (5, -1, -3, 0), (1, -5, -3, 3), (0, -8, -4, 5)}

was a ≻c-Gröbner basis of L. We list the positive supports of these vectors in Table
5.2 below.

5.4. ALTERNATIVE ALGORITHMS 99

Vector Positive Support
1 (2,-2,-2,1) {1,4}
2 (3,1,-1,-1) {1,2}
3 (1,3,1,-2) {1,2,3}
4 (5,-1,-3,0) {1}
5 (1,-5,-3,3) {1,4}
6 (0,-8,-4,5) {4}

Table 5.2: Positive supports of vectors in G.

We have depicted the support tree for the set G in Figure 8.2(a). The set of numbers
to the bottom right of each node is the set of vectors of G (numbered as in Table
5.2) that are associated with the node. In Figure 5.9(b), we show the part of the
support tree that we traverse using a depth first search approach when looking for a
vector u ∈ G such that u+ ≤ x = (2, 2, 0, 0). Note that supp(x) = {1, 2}. We have
highlighted the nodes that are visited.

0

1

3

42

4
{4} {6}

{1,5}{2}

{3}

(a) 0

1

3

42

4
{4} {6}

{1,5}{2}

{3}

(b)

Figure 5.9: A support tree.

5.4 Alternative Algorithms

In this section, we discuss some alternative approaches for computing a Gröbner ba-
sis of a lattice that do not use the completion procedure to compute a Gröbner basis
as presented above. Our purpose here is not to describe in detail the alternatives,
but instead only to make the reader aware that there are possible alternatives to
the completion procedure and what those alternatives are.

5.4.1 Graver basis algorithm

The first alternative approach to compute a ≻-Gröbner basis of L is to compute a
Graver basis of L instead.

Definition 5.4.1. A Graver basis of L is a set of vectors G ⊂ L such that, for
every v ∈ Zn, there exists u ∈ G such that u+ ≤ v+ and u− ≤ v−.

It then follows directly from the definition that if G is a Graver basis of L, then
G+ ≤ L+

≻, and thus, G is a ≻-Gröbner basis of L by Lemma 4.2.3. Interestingly,

100 CHAPTER 5. COMPUTING GRÖBNER BASES

it also follows that, since G is defined independently of ≻, a Graver basis of L is a
≻-Gröbner basis of L for every possible term order ≻. Importantly, every lattice L
has a finite Graver basis (see for example [50]).

There is a specialised algorithm to compute a Graver basis of a lattice by Hemmecke
called the “Project-and-Lift” algorithm ([48, 49]). This algorithm does not require
a Markov basis to start with. The fundamental idea behind this algorithm is that
we can compute a Graver basis of L from a Graver basis of Li for any i ∈ {1, ..., n}.
Recall that Li is the lattice L projected onto all components except i. More generally,
this implies that we can compute a Graver basis of Lσ-i from a Graver basis of Lσ

for any set σ ⊆ {1, ..., n} and for any i ∈ σ. This follows since Lσ-i is a lattice and
the lattice Lσ is a projection of Lσ-i onto all components except i. The Project-and-
Lift algorithm starts from the trivial case where σ = {1, ..., n}. Then, we iteratively
compute a Graver basis of Lσ-i for some i ∈ σ, and set σ = σ-i and repeat until
σ = ∅, in which case, we have a Graver basis of L.

A Graver basis of L may be a lot larger than a ≻-Gröbner basis of L, but for
some lattices with special structure, a Gröbner basis is essentially the same as a
Graver basis, and also a Markov basis is essentially the same as a Graver basis (see
for example [79, 80]). In the situations where a Graver basis is not much larger
than a Gröbner basis it may be computationally worthwhile to compute a Graver
basis using the Project-and-Lift algorithm of Hemmecke instead of the completion
procedure.

We should also point out that it is possible modify the Project-and-Lift algorithm
to compute a subset of a Graver basis of L called a truncated Graver basis of L,
which is related to a truncated Gröbner bases of L. Also, it is possible to exploit
symmetry when computing a Graver basis (see [51]).

5.4.2 Gröbner walk algorithm

One alternative method is called the Gröbner walk algorithm (see [24, 36]). This
algorithm computes a ≻-Gröbner basis of L starting from a ≻′-Gröbner basis of
L for some other term order ≻′. This approach involves computing a sequence of
Gröbner bases of L for every term order in a sequence of terms orders ≻1,≻2, ...,≻k

where ≻1 = ≻′ and ≻k = ≻. The fundamental ideal behind this approach is that
we choose the sequence of term orders in such a way that ≻i is almost equivalent
to ≻i+1 for i = 1, ..., k − 1, and consequently, converting from a ≻i-Gröbner bases
of L to a ≻i+1-Gröbner basis of L can be done very quickly using a specialised
technique that is based upon the completion procedure. We have implemented this
approach, but in practice, we did not find that it was competitive with the com-
pletion procedure, because the number of term orders needed in the sequence may
be prohibitively large; however, it is certainly possible that this technique is useful
under some circumstances, so this approach deserves further investigation.

5.4. ALTERNATIVE ALGORITHMS 101

5.4.3 Knapsack algorithm

Next we discuss a new alternative pseudo-polynomial time algorithm for computing
a truncated Gröbner basis of the equality knapsack problem

KPa,c(b) = max{cx : ax = b, x ≥ 0, x ∈ Zn}

where a ∈ Nn, c ∈ Nn, and b ∈ N. Let L = {x ∈ Zn : ax = 0}, and let ν ∈
Zn such that aν = b. Then, KPa,c(b) ≡ IPL,≻c(ν). This alternative algorithm is
fundamentally different from the completion procedure, and the main idea behind
the algorithm comes from Lemma 4.3.8. This algorithm is not interesting in practice
for reasons we will explain below, but it is theoretically interesting because of the
bound on the time complexity it provides for computing Gröbner bases of equality
knapsack problems. We have not found this algorithm in the literature, but the
concepts behind this algorithm are derived from the algorithm presented by Faugère
et al. in [34]. The algorithm we briefly discuss here can compute a ν-truncated ≻-c-
Gröbner basis of L in O(n2b) time. Recall that a minimal ν-truncated ≻-c-Gröbner
basis of L has at most nb vectors from the end of Section 4.3.

Let OL,≻-c(ν) be the set of optimal solutions of all the knapsack problems KPa,c(b
′)

for every feasible b′ ∈ {0, ..., b} as in Section 4.3. From Lemma 4.3.8, if G is a reduced
ν-truncated ≻-c-Gröbner basis of L and u ∈ G, then u− is the optimal solution of
IPL,≻-c(u

+) and u+ = x∗ +ei for some optimal solution x∗ ∈ OL,≻-c(ν) and some i ∈
{1, ..., n}. We can compute the set OL,≻-c(ν) using dynamic programming methods
in O(nb) time (see for example [76, 95]). For every optimal solution x∗ ∈ OL,≻-c(ν)
and every i ∈ {1, ..., n} such that a(x∗ + ei) = b′ ≤ b, we check whether x∗ + ei is
the optimal solution of KPa,c(b

′), or in other words, x∗ + ei ∈ OL,≻-c(ν). We can
perform this check in O(n) time. If x∗ + ei ∈ OL,≻-c(ν), there is nothing to do.
If x∗ + ei 6∈ OL,≻-c(ν) and a(x∗ + ei) ≤ b, then we construct the vector u where
u+ = x∗ + ei and u− is the optimal solution of KPa,c(b

′). We can construct u in
O(n) time. By Lemma 4.3.8, u is a vector in the reduced ν-truncated ≻-c-Gröbner
basis of L. At the end of this procedure, we have a ν-truncated ≻-c-Gröbner basis
of L.

There are O(nb) iterations and each iteration takes O(n) time, so the algorithm
is O(n2b) time. This algorithm is not interesting in practice since the reason for
computing a ν-truncated ≻-c-Gröbner basis of L would be to solve KPa,c(b), but
we solve KPa,c(b) during the algorithm when we compute the set OL,≻-c(ν) using
dynamic programming.

5.4.4 FLGM algorithm

We next discuss an alternative algorithm for computing a ≻-Gröbner basis of a lat-
tice L ⊆ Zn for the special case where L is an n-dimensional lattice. This algorithm
uses the same basic idea as the above algorithm for computing Gröbner bases for
equality knapsack problems. As above, this algorithm is derived from an algorithm
in algorithm geometry by Faugère et al. in [34] (it is named after the authors).4 The

4The original FLGM algorithm computes Gröbner bases of zero-dimensional ideals of polynomial
rings.

102 CHAPTER 5. COMPUTING GRÖBNER BASES

algorithm is also similar in some ways to an algorithm presented by Hosten and
Thomas in [58] for computing a ≻-Gröbner basis of a lattice L ⊆ Zn where L is
an n-dimensional lattice. The main idea behind the algorithm comes from Lemma
4.2.8. Recall from the end of Section 4.2 that a minimal ≻-Gröbner basis of L has
at most n det(B) vectors where B is a basis of L and that there are det(B) possible
optimal solutions since there are det(B) different possible non-empty fibers.

As in Section 4.2, let OL,≻ be the set of all optimal solutions. We can compute
the set of optimal solutions OL,≻ using a dynamic programming or shortest path
type algorithm as suggested by Gomory in [44]. Recall from Lemma 4.2.8 that if
G is a reduced ≻-Gröbner basis of L and u ∈ G, then u− is the optimal solution
of IPL,≻(u+) and u+ = x∗ + ei for some optimal solution x∗ ∈ OL,≻ and some
i ∈ {1, ..., n}. We can proceed as per the knapsack problem above. For every optimal
solution x∗ ∈ OL,≻c , we check whether x∗ + ei ∈ OL,≻c for all i = {1, ..., n}. If
x 6∈ OL,≻c, then we construct the vector u where u+ = x∗ +ei and u− is the optimal
solution of FL(x∗ + ei). By Lemma 4.2.8, u is a vector in the reduced ≻-Gröbner
basis of L. At the end of this procedure, we have a ≻-Gröbner basis of L.

As for the truncated knapsack algorithm in the previous section, this algorithm is
not interesting in practice as an algorithm to solve IPL,≻(ν). However, this procedure
may be interesting when used as part of other algorithms for computing Gröbner
bases and Markov bases.

5.4.5 Hosten and Thomas’s algorithm

There is also an alternative algorithm suggested by Hosten and Thomas in [58]
for computing a ≻-Gröbner basis of a lattice L. This algorithm does not use the
completion procedure; instead it uses ideas similar to the idea behind the FLGM
algorithm. We will explain the algorithm in only very rough terms.

The fundamental idea behind the algorithm is that we can construct a ≻-Gröbner
basis of a lattice L from the ≻-Gröbner bases of F i

L(·) for every i ∈ {1, ..., n} such
that ≻ is a term order for F i

L(·). We are effectively decomposing the problem of
computing a ≻-Gröbner basis of L. We can apply this idea recursively and construct
a ≻-Gröbner basis of F i

L(·) from the ≻-Gröbner bases of F i∪j
L (·) for every j ∈

{1, ..., n} and j 6= i such that ≻ is a term order for F i∪j
L (·). Extending this recursive

idea to the general case, the algorithm constructs a ≻-Gröbner basis of Fσ
L(·) from

the ≻-Gröbner bases of Fσ∪i
L (·) for every i ∈ σ̄ such that ≻ is a term order for

Fσ∪i
L (·). We cannot keep decomposing the problem of computing a Gröbner basis

indefinitely. We eventually reach the base case where we must construct a ≻-Gröbner
basis of Fσ

L(·) where ≻ is not term order of Fσ∪i
L (·) for any i ∈ σ̄. Hosten and Thomas

propose a special algorithm for computing a ≻-Gröbner basis in a base case situation
in [58]. Actually, this special algorithm for the base case is very similar to the
FLGM algorithm from the previous section, and we could actually use the FLGM
algorithm instead. We are not sure whether this algorithm would be competitive
with the completion procedure, because we know of no available implementation of
the algorithm.

Chapter 6

Computing Markov bases

In this chapter, we finally present three algorithms to compute a Markov basis
of L: the new “Project-and-Lift” algorithm, the “Saturation” algorithm (Hosten
and Sturmfels [57]), and the “Lift-and-Project” algorithm (Bigatti, LaScala, and
Robbiano [12]). Each algorithm produces a Markov basis of L that is not necessarily
minimal, so once a Markov basis of L is known, a minimal Markov basis of L can
be computed by a single Gröbner basis computation (see [16] for more details). The
fundamental idea behind all three algorithms is essentially the same, and the main
algorithmic building block of the algorithms is the completion procedure.

We also present a truncated version of the Project-and-Lift algorithm that com-
putes a truncated Markov basis. By definition, any algorithm that computes a non-
truncated Markov basis also by definition computes a truncated Markov basis. The
advantage of the truncated Project-and-Lift over non-truncated algorithms is that it
specifically computes a truncated Markov basis and not necessarily a non-truncated
Markov basis, so in situations in which a Markov basis is much larger than a trun-
cated Markov basis, the truncated Project-and-Lift algorithm is potentially much
faster.

In this chapter, we present the Project-and-Lift algorithm first because we feel that
it is most straight-forward of the three algorithms and thus the best algorithm for
presenting the fundamental idea behind all three algorithms. Next, we present a
truncated version of the Project-and-Lift algorithm. Then, we present the Satura-
tion algorithm, and we give the first translation of the Saturation algorithm into
a combinatorial context. Finally, we present the Lift-and-Project algorithm, which
uses ideas from the Saturation algorithm.

We conclude the chapter with a computational comparison of our implementation
of the Project-and-Lift algorithm in 4ti2 with implementations of the Saturation
algorithm and the Lift-and-Project algorithm implemented in 4ti2 and CoCoA. Our
algorithm outperforms the other algorithms in every single instance we have tried.

In this chapter, we only discuss computing Markov bases of L and not the more
general form of Markov bases of Fσ

L(·). As we saw in Section 4.2, we can construct
a Markov basis of Fσ

L(·) from a Markov basis of FLσ(·). As a result of this, all of the
results in this chapter can equally be applied to the more general case. The same
applies when using truncation (see Section 3.3).

103

104 CHAPTER 6. COMPUTING MARKOV BASES

6.1 Project-and-Lift algorithm

In this section, we present our algorithm for computing Markov basis of lattices,
which we call the Project-and-Lift algorithm.

The fundamental idea behind the Project-and-Lift algorithm is that, given a Markov
basis of F i

L(·) for some i ∈ {1, . . . , n}, we can compute a Markov basis of FL(·) (a
Markov basis of L). Note that, given ν ∈ Zn, the fiber F i

L(ν) is the relaxation
of FL(ν) given by relaxing the non-negativity constraint on xi; that is, FL(ν) =
F i

L(ν) ∩ {x ∈ Zn : xi ≥ 0}. Recall that a set M ⊆ L is a Markov basis of F i
L(·) if

there is a path from x to y in Gi
L(ν, M) for all x, y ∈ F i

L(ν) for all ν ∈ Zn and M is a
Markov basis of FL(·) if there is a path from x to y in GL(ν, M) for all x, y ∈ FL(ν)
for all ν ∈ Zn. In some sense, a Markov basis of F i

L(·) is almost a Markov basis
of FL(·). The difference is that a Markov basis of F i

L(·) guarantees the existence
of paths between feasible points of any fiber FL(ν) ⊆ F i

L(ν) that are non-negative
on all components except the ith component which may be negative whereas a
Markov basis of FL(·) guarantees the existence of paths between feasible points of
any fiber FL(ν) that are non-negative on all components. In the Project-and-Lift
algorithm, we use the completion procedure to transform paths that are non-negative
on all components except the ith component into paths that are non-negative on
all components thereby transforming a Markov basis of F i

L(·) into a Markov basis
of FL(·). Recall that a Markov basis of F i

L(·) is essentially the same as a Markov
basis of FLi(·) (a Markov basis of Li). So, this fundamental idea equivalently says
that we can compute a Markov basis of L from a Markov basis of Li. Hence, this
approach is called the Project-and-Lift algorithm – we start with a Markov basis of
Li, a projection of L, and lift it to a Markov basis of L.

We can extend this fundamental idea: for some σ ⊆ {1, . . . , n}, given a Markov basis
of Lσ, we can compute a Markov basis of Lσ-i for some i ∈ σ, or equivalently, given
a Markov basis of Fσ

L(·), we can compute a Markov basis of Fσ-i
L (·). Recall that a

Markov basis of Fσ
L(·) is essentially the same as a Markov basis of Lσ, and similarly,

a Markov basis of Fσ-i
L (·) is essentially the same as a Markov basis of Lσ-i. Note that

the fiber Fσ
L(ν) for ν ∈ Zn is the relaxation of Fσ-i

L (ν) given by relaxing the non-
negativity constraint on xi; that is, Fσ-i

L (ν) = Fσ
L(ν)∩ {x ∈ Zn : xi ≥ 0}. A Markov

basis of Fσ
L(·) guarantees the existence of paths between feasible points of any fiber

FL(ν) that are non-negative on the σ̄ components whereas a Markov basis of Fσ-i
L (·)

guarantees the existence of paths between feasible points of any fiber FL(ν) ⊆ F i
L(ν)

that are non-negative on the σ̄ components as well as the ith component.

The Project-and-Lift algorithm is then as follows. First, we find a σ ⊆ {1, ..., n} such
that it is straight-forward to find a Markov basis of Fσ

L(·). Then, for some i ∈ σ,
we compute a Markov basis of Fσ-i

L (·) from a Markov basis of Fσ
L(·), and then, we

set σ = σ-i, and repeat. Intuitively, we start out with a set such that there are
paths between feasible points of any fiber that are guaranteed to be non-negative
on some subset of the components, and then, we iteratively construct paths that are
non-negative on one more component until there are paths between any two feasible
points of any fiber that are non-negative on all components.

Now, we show how to construct a Markov basis of FL(·) from a Markov basis of

6.1. PROJECT-AND-LIFT ALGORITHM 105

F i
L(·). There are two cases to consider here. The first case is where the component

i is bounded and the second where i is unbounded. Recall that i is bounded if
IPL,-ei(ν) := max{xi : x − ν ∈ L, x ≥ 0, x ∈ Zn} is bounded for every ν ∈ Zn,
otherwise i is unbounded. Note that ei is the ith unit vector. First, we consider
when i is bounded.

The result that we are working towards is that, when i is bounded, a ≻-ei-Gröbner
basis of F i

L(·) is a Markov basis of FL(·). Thus, given a Markov basis of F i
L(·), we

can compute a Markov basis of FL(·) by a Gröbner basis computation. Computing
a ≻-ei-Gröbner basis means computing a Gröbner basis to solve the lattice program
IPL,-ei(ν) to maximise the ith component. So, conceptually, by computing such a
Gröbner basis, we force paths that are non-negative on all components except i to
become non-negative on i as well.

First, we introduce the concept of weak Gröbner bases. We will describe Markov
bases in terms of weak Gröbner bases. Given some vector c ∈ Rn, a path (x1, . . . , xk)
in Gσ

L(ν, G) is a c-reduction path if, for all j ∈ {1, . . . , k}, we have either cx1 ≥ cxj

or cxk ≥ cxj (i.e. max{cx1, cxk} ≥ cxj). In some sense, a c-reduction path is a weak
form of a ≻c-reduction path. A set G ⊆ L is a c-Gröbner basis of Fσ

L(ν) if for
every pair x, y ∈ Fσ

L(ν), there exists a c-reduction path from x to y in Gσ
L(ν, G).

Again, in some sense, a c-Gröbner basis of Gσ
L(ν, G) is a weak form of a ≻c-Gröbner

basis. As in the case of ≻c-Gröbner bases, we assume here that IP σ
L,c(ν) is bounded

for every ν ∈ Zn and that ker(πσ)∩L = {0}. A set G ⊆ L is a c-Gröbner basis of
Fσ

L(·) if G is a c-Gröbner basis of Fσ
L(ν) for all ν ∈ Zn (or a c-Gröbner basis of L if

σ = ∅).

In particular, we are interested in (-ei)-Gröbner bases of L where i is bounded
because they are actually equivalent to Markov bases of L. Observe that a path
(x1, . . . , xk) in GL(ν, G) is an (-ei)-reduction path if x

j
i ≥ min{x1

i , x
k
i } for all j ∈

{1, ..., k}. By definition, an (-ei)-Gröbner basis of L is a Markov basis of L since
there is a (-ei)-reduction path between any two feasible points in a fiber. Conversely,
a Markov basis of L is also an (-ei)-Gröbner basis of L. We can show this as follows.
Given a Markov basis of L, for any x, y ∈ FL(ν) for any ν ∈ Zn, there must exist a
path (x1, ..., xk) from (x−λei) to (y−λei) in GL(ν −λei, G) where λ = min{xi, yi}.
This path is an (-ei)-reduction path from (x − λei) to (y − λei) in GL(ν − λei, G)
because x

j
i ≥ min{x1

i , x
k
i } = min{xi − λ, yi − λ} = 0 for all j ∈ {1, ..., k}. Then, by

translating such a path by λei giving (x1+λei, ..., xk+λei), we get an (-ei)-reduction
path from x to y in GL(ν, G). So, we arrive at the following lemma.

Lemma 6.1.1. Let L ⊆ Zn and i ∈ {1, . . . , n} where i is bounded. A set S ⊆ L is
a (-ei)-Gröbner basis of FL(·) if and only if S is a Markov basis of FL(·).

The following lemma is fundamental to the Project-and-Lift algorithm; it says that
(-ei)-Gröbner bases of F i

L(·) are identical to (-ei)-Gröbner bases of FL(·). This
is important since (-ei)-Gröbner bases of FL(·) are identical to Markov bases of
FL(·) from Lemma 6.1.1 above, so the following lemma identifies Markov bases of
FL(·) with (-ei)-Gröbner bases of F i

L(·). Note that if i is bounded in FL(·), then
IP i

L,-ei(ν) := max{xi : x − ν ∈ L, xı ≥ 0, x ∈ Zn} is bounded for all ν ∈ Zn where
ı = {1, ..., n} \ i, and also, by Corollary 2.9.2, i is bounded if and only if there not

106 CHAPTER 6. COMPUTING MARKOV BASES

exist x ∈ L such that x ≥ 0 and xi > 0, which implies that ker(πi) ∩ L = {0}, and
thus, (-ei)-Gröbner bases of F i

L(·) are well-defined.

Lemma 6.1.2. Let L ⊆ Zn, i ∈ {1, . . . , n} where i is bounded. A set S ⊆ L is a
(-ei)-Gröbner basis of F i

L(·) if and only if S is also a (-ei)-Gröbner basis of FL(·).

Proof. Let S be a (-ei)-Gröbner basis of F i
L(·), and let x, y ∈ FL(ν) for some ν ∈ Zn.

We need to show that there is an (-ei)-reduction path from x to y in GL(ν, S). By
assumption, there exists an (-ei)-reduction path (x1, x2, . . . , xk) in Gi

L(ν, S). So, we
have either x

j
i ≥ xi or x

j
i ≥ yi for all j = 1, ..., k. Thus, xj ∈ FL(ν) for all j = 1, ..., k.

Therefore, (x1, x2, . . . , xk) is an (-ei)-reduction path in GL(ν, S) as required.

Conversely, assume S is a (-ei)-Gröbner basis of FL(·). Let x, y ∈ F i
L(ν) for some ν ∈

Zn. We must show that there exists an (-ei)-reduction path from x to y in Gi
L(ν, S).

Let λ = min{xi, yi}. By assumption, there exists a (-ei)-reduction path (x0, . . . , xk)
from (x−λei) to (y−λei) in GL(ν−λei, S). Note that x−λei ≥ 0, y−λei ≥ 0, and
x− λei, y− λei ∈ FL(ν − λei). Therefore, the path (x = x0 + λei, . . . , xk + λei = y)
is a (-ei)-reduction path in Gi

L(ν, S) from x to y as required.

Given any vector c ∈ Zn and a term order ≻ for Fσ
L(·), recall that for the order ≻c,

we have x ≻c y if cx < cy or cx = cy and x ≻ y. Also, recall that the order ≻c is
a term order if and only if IP σ

L,c(ν) is bounded for every ν ∈ Zn. Importantly, since
x ≻c y implies cx ≥ cy, a ≻c-reduction path is also a c-reduction path, and thus, a
≻c-Gröbner basis of Fσ

L(·) is a c-Gröbner basis of Fσ
L(·).

If i is bounded, then ≻-ei is a term order of F i
L(·). For brevity, we write ≻i instead of

≻-ei. Thus, a ≻i-Gröbner basis of F i
L(·) is a (-ei)-Gröbner basis of F i

L(·). So, given a
Markov basis of F i

L(·), using the completion procedure Algorithm 2, we can compute
a (-ei)-Gröbner basis of Li which is a Markov basis of FL(·) by Lemma 6.1.2 and
Lemma 6.1.1. More explicitly, given a set M that is a Markov basis of F i

L(·), the set
M ′ = CP i

L(≻i, M) is a a Markov basis of L. Furthermore, as we state in Lemma 6.1.3
below, the set M ′ is actually also a ≻i-Gröbner basis of F i

L(·). The proof of Lemma
6.1.3 is essentially the same as the proof of Lemma 6.1.2. The following lemma is
not strictly necessary in order to describe the algorithm; however, we present it here
nevertheless because we feel that is a nice extension of Lemma 6.1.2.

Lemma 6.1.3. Let L ⊆ Zn, i ∈ {1, . . . , n} where i is bounded. A set G ⊆ L is a
≻i-Gröbner basis of F i

L(·) if and only if G is also a ≻i-Gröbner basis of FL(·).

We have shown how we can use a Gröbner basis computation to compute a Markov
basis of FL(·) from a Markov basis of F i

L(·) when i is bounded. Next, we describe
how this is done when i is unbounded.

If i is unbounded, then finding a Markov basis of L from a Markov basis of F i
L(·) is

actually more straight-forward than if i is bounded. Crucially, from Corollary 2.9.2,
i is unbounded if and only if there exists u ∈ L ∩ Nn where ui > 0. Then, given
a set M ⊆ L that is a Markov basis of F i

L(·), it suffices to add u to M to create
a Markov basis of L (see Lemma 6.1.4 below). We can use linear programming to
check whether i is unbounded and also to find a u ∈ L∩Nn where ui > 0 by Lemma
2.9.1.

6.1. PROJECT-AND-LIFT ALGORITHM 107

Lemma 6.1.4. Let i ∈ {1, . . . , n} and u ∈ L ∩ Nn where ui > 0. If M ⊆ L is a
Markov basis of F i

L(·), then M ∪ {u} is a Markov basis of FL(·).

Proof. Let x, y ∈ FL(ν) for some ν ∈ Zn. Since M is a Markov basis of F i
L(·),

there exists a path from x to y in Gi
L(ν,). We can convert this path into a path in

GL(ν, M ∪{u}) by adding u to the start of the path as many times as necessary and
subtracting u from the end of the path the same number of times. This works since
ui > 0 and u ≥ 0.

We have shown how we can use the a Gröbner basis computation to compute a
Markov basis of FL(·) from a Markov basis of F i

L(·) when i is bounded or unbounded.
Assuming that ker(πσ)∩L = {0}, we can extend these results to compute a Markov
basis of Fσ-i

L (·) from a Markov basis of Fσ
L(·) when i ∈ σ is bounded or unbounded

in Fσ
L(·). Explicitly, given set M ⊆ L that is a Markov basis Fσ

L(·), if i is bounded,
then M ′ = CPσ

L(≻i, M) is a Markov basis of Fσ-i
L (·). Note that we require the

ker(πσ)∩L = {0}, otherwise ≻i is not a term order of Fσ
L(·). Also, if i is unbounded,

then there exists a vector u ∈ L such that uσ̄ ≥ 0 and ui > 0, from Corollary 2.9.2,
and then, M ∪ {u} is a Markov basis of Fσ-i

L (·).

We can now present our Project-and-Lift algorithm (Algorithm 4).

Algorithm 4 Algorithm: Project-and-Lift

Input: a lattice L.
Output: a Markov basis M of L.

Find a set σ ⊆ {1, . . . , n} such that ker(πσ) ∩ L = {0}.
Compute a set M ⊆ L that is a Markov basis of Fσ

L(·).
while σ 6= ∅ do

Select i ∈ σ

if i is bounded then

M := CPσ
L(≻i, M)

else

Find u ∈ L such that uσ̄ ≥ 0 and ui > 0.
M := M ∪ {u}

end if

σ := σ-i
end while

return M .

Lemma 6.1.5. Algorithm 4 terminates and satisfies its specifications.

Proof. Algorithm 4 terminates, since Algorithm 2, which computes CPσ
L(≻i, M),

always terminates.

We claim that for each iteration of the algorithm, M is a Markov basis of Fσ
L(·) and

ker(πσ)∩L = {0}; therefore, at termination, M is a Markov basis of L. This is true
for the first iteration, so we assume it is true for the current iteration.

If σ = ∅, then there is nothing left to do, so assume otherwise. Since by assumption,
ker(πσ) ∩ L = {0}, we must have ker(πσ-i) ∩ L = {0}. Let i ∈ σ, and σ′ := σ-i.

108 CHAPTER 6. COMPUTING MARKOV BASES

If i is bounded, then let M := CPσ
L(≻i, M). Then, M is now a ≻i-Gröbner basis

of Fσ
L(·), and then by Lemma 6.1.2, M is a Markov basis of Fσ-i

L (·). Otherwise, let
M := M ∪{u} where uσ̄ ≥ 0 and ui > 0, and by Lemma 6.1.4, M is a Markov basis
of Fσ-i

L (·). Thus, the claim is true for the next iteration.

Initially in the Project-and-Lift algorithm, we need to find a set σ ⊆ {1, . . . , n}
such that ker(πσ) ∩ L = {0}, and then, we need to compute a Markov basis for
Fσ

L(·). This is actually quite straight-forward and can be done in polynomial time.
Let B be a basis for the lattice L (L is spanned by the rows of the matrix B). Let
k := rank(B). Any k linearly independent columns of B then suffice to give a set σ̄

such that there is a one-to-one correspondence between vectors in Lσ and vectors in
L; that is, ker(πσ) ∩ L = {0}. Such a set σ can be found via Gaussian elimination.
Let S = πσ(B); then, S spans Lσ, and S ∈ Zk×k since |σ̄| = k. Let S ′ be an upper
triangle matrix with positive diagonal entries and non-positive entries elsewhere such
that (the rows of) S ′ span Lσ (S ′ is in Upper Hermite Normal Form). We can always
construct such a matrix S ′ from S in polynomial time using the Hermite Normal
Form (HNF) algorithm (see for example [71]). As required, S ′ is a Markov basis of
Lσ as we saw in Example 3.2.5.

The next example shows an example computation using the Project-and-Lift algo-
rithm.

Example 6.1.6. Consider again the projected lattice L from Example 3.1.6 that is
generated by the vectors (2, -2, -2, 1) and (3, 1, -1, -1). Recall that the set

M = {(2, -2, -2, 1), (3, 1, -1, -1), (5, -1, -3, 0), (1, 3, 1, -2)}

is a Markov basis of L. We will compute this set using the Project-and-Lift algorithm.

The set B = {(2, -2, -2, 1), (3, 1, -1, -1)} is a basis of L. Let σ = {3, 4}. Then,
ker(πσ) ∩ L = {0}. Let S = πσ(B) = {(2, -2), (3, 1)}. The set S is a Markov
basis of Lσ by Lemma 3.2.3 because there is a strictly positive vector in S. This
implies that B = π-1

σ (S) is a Markov basis of Fσ
L(·). As suggested above, we also

could have found a Markov basis of Lσ by computing the UNHF of S, which is
S ′ := {(1, -5), (0, 8)}, which is also a Markov basis of Lσ by Lemma 3.2.4. Here,
B′ = π-1

σ (S ′) = {(1, -5, -3, 3), (0, 8, 4, -5)}. Then, the set B′ is also a Markov basis of
Fσ

L(·). It does not matter which Markov basis we use for the algorithm. We choose
to use B′.

Set M = {(1, -5, -3, 3), (0, 8, 4, -5)}.

(i). Select i := 3. Then, i is unbounded since u = (0, 8, 4, -5) ∈ L and uσ̄ ≥ 0

and ui > 0. Thus the set M = {(1, -5, -3, 3), (0, 8, 4, -5)} is a Markov basis of
Fσ-i

L (·). Set σ = {4}.

(ii). Select i := 4. Then, i is bounded. The set M = CPσ
L(≻i, M) =

{(-5, 1, 3, 0), (-2, 2, 2, -1), (1, 3, 1, -2), (3, 1, -1, -1), (8, 0, -4, -1)}.

is a minimal ≻i-Gröbner basis of Fσ
L(·). Note that we have removed unneces-

sary vectors from M to arrive at a minimal Gröbner basis after running the
completion procedure. So, M is a Markov basis of Fσ-i

L (·) = FL(·).

6.2. TRUNCATED PROJECT-AND-LIFT ALGORITHM 109

The set M = {(-5, 1, 3, 0), (-2, 2, 2, -1), (1, 3, 1, -2), (3, 1, -1, -1), (8, 0, -4, -1)} is thus
a Markov basis of L. Note that we computed one more vector than necessary: the
vector (8, 0, -4, -1) is not needed in a Markov basis of L. See [16] for an algorithm
to compute a minimal Markov basis.

Lastly, it is worth mentioning that the Project-and-Lift algorithm presented in this
section for computing Markov basis of lattices is very similar to the Project-and-
Lift algorithm for computing Graver bases of lattices by Hemmecke in [48, 49].
This Project-and-Lift algorithm here computes Markov basis of Lσ incrementally for
σ ⊆ {1, ..., n}, and the Project-and-Lift of Hemmecke compute Graver basis of Lσ

incrementally for σ ⊆ {1, ..., n}. For some lattices with special structure, a Markov
basis of Lσ is effectively the same as a Graver basis of Lσ for any σ ⊆ {1, ..., n}, in
which case, the two algorithms are fundamentally the same under some assumptions.

6.2 Truncated Project-and-Lift algorithm

In this section, we give a truncated Project-and-Lift algorithm for computing trun-
cated Markov bases of lattices. The algorithm is essentially the same as the Project-
and-Lift algorithm for computing Markov bases of lattices as presented in the pre-
vious section except that we use the truncated completion procedure instead, so we
now show that the results presented in the previous section are still valid when used
with truncation.

Essentially the same fundamental idea is behind the truncated Project-and-Lift al-
gorithm as the Project-and-Lift algorithm: for some ν ∈ Zn, given a ν-truncated
Markov basis of F i

L(·) for some i ∈ {1, . . . , n}, we can compute a ν-truncated Markov
basis of FL(·) (a ν-truncated Markov basis of L). Equivalently, we can compute a
ν-truncated Markov basis of L from a Markov basis of νı-truncated Markov basis of
Li where νı is the projection of ν onto all components except the ith component.
Extending this, we can compute a ν-truncated Markov basis of Fσ-i

L (·) from a ν-
truncated Markov basis of Fσ

L(·). The truncated Project-and-Lift algorithm is then as
follows: given an initial ν-truncated Markov basis of Fσ

L(·) for some σ ⊆ {1, . . . , n},
we compute a ν-truncated Markov basis of Fσ-i

L (·) for some i ∈ σ, and then, we set
σ = σ-i, and repeat until we attain a ν-truncated Markov basis of L.

Now, we show how to construct a ν-truncated Markov basis of FL(·) from a ν-
truncated Markov basis of F i

L(·). As in the non-truncated situation, there are two
cases to consider: i is bounded and i is unbounded. We consider the case where i is
bounded first.

We now derive an analogous result to Lemma 6.1.1 for truncated Gröbner bases
of lattices, which shows that we can describe truncated Markov bases in terms of
truncated weak Gröbner bases. The proof is essentially the same as the proof of
Lemma 6.1.1. First, we must extend the notion of weak Gröbner bases to truncated
weak Gröbner bases. Given L ⊆ Zn, c ∈ Rn, and let ν ∈ Zn, a set G ⊆ L is a
ν-truncated c-Gröbner basis of Fσ

L(·) if G is a c-Gröbner basis of Fσ
L(ν ′) for

every ν ′ ∈ BL(ν).

110 CHAPTER 6. COMPUTING MARKOV BASES

Lemma 6.2.1. Let L ⊆ Zn, i ∈ {1, . . . , n} where i is bounded, and let ν ∈ Zn. A set
S ⊆ L is a ν-truncated (-ei)-Gröbner basis of FL(·) if and only if S is a ν-truncated
Markov basis of FL(·).

Proof. By definition, a ν-truncated (-ei)-Gröbner basis of FL(·) is a ν-truncated
Markov basis of FL(·) since there is a (-ei)-reduction path between any two feasible
points in any fiber in BL(ν).

Conversely, assume S is a ν-truncated Markov basis of FL(·). Let x, y ∈ FL(ν ′)
for some ν ′ ∈ BL(ν), and let λ = min{xi, yi}. First, note that (ν ′ − λei) ∈ BL(ν)
because FL(ν ′ − λei) 6= ∅ and FL(ν − (ν ′ − λei)) 6= ∅ since FL(ν − ν ′) 6= ∅. There
must exist a path (x1, ..., xk) from (x − λei) to (y − λei) in GL(ν ′ − λei, G) since
(ν ′ − λei) ∈ BL(ν). This path is an (-ei)-reduction path from (x− λei) to (y − λei)
in GL(ν ′ − λei, G), so by translating such a path by λei, we get an (-ei)-reduction
path from x to y in GL(ν ′, G).

We can also derive an analogous result to Lemma 6.1.2 for truncated Gröbner bases
of lattices. This result is fundamental to the truncated Project-and-Lift algorithm.
The proof proceeds in much the same fashion as the proof of Lemma 6.1.2. First, note
that BL(ν) ⊆ Bi

L(ν) since FL(ν ′) 6= ∅ and FL(ν − ν ′) 6= ∅ implies that F i
L(ν ′) 6= ∅

and F i
L(ν − ν ′) 6= ∅.

Lemma 6.2.2. Let L ⊆ Zn, i ∈ {1, . . . , n} where i is bounded, and let ν ∈ Zn.
If a set M ⊆ L is a ν-truncated (-ei)-Gröbner basis of F i

L(·), then M is also a
ν-truncated (-ei)-Gröbner basis of FL(·).

Proof. Let M be a (-ei)-Gröbner basis of F i
L(·), and let x, y ∈ FL(ν ′) for some

ν ′ ∈ BL(ν). We need to show that there is an (-ei)-reduction path from x to y in
GL(ν, S). Since ν ′ ∈ Bi

L(ν), by assumption, there exists an (-ei)-reduction path from
x to y in Gi

L(ν, S), which is also a (-ei)-reduction path from x to y in GL(ν, S) as
required.

In contrast with the non-truncated case, the converse of Lemma 6.2.2 is not necessar-
ily true: if S is a ν-truncated (-ei)-Gröbner basis of FL(·), then S is not necessarily a
ν-truncated (-ei)-Gröbner basis of F i

L(·). The reason being that BL(ν) ⊆ Bi
L(ν) and

we may have BL(ν) (Bi
L(ν), in which case, there may be a vector u ∈ L such that

there exists x, y ∈ F i
L(ν ′) for some ν ′ ∈ Bi

L(ν) where x − y = u but there does not
exist x, y ∈ F i

L(ν ′′) for any ν ′′ ∈ BL(ν) where x− y = u. However, if BL(ν) = Bi
L(ν),

then the converse is true.

If i is bounded, then the order ≻i is a term order for F i
L(·), so given a set S ⊆ L that

is a ν-truncated Markov basis of F i
L(·), we can compute a ν-truncated (-ei)-Gröbner

basis of F i
L(·) using Algorithm 3. In other words, the set S ′ = CP i

L,ν(≻i, S) is a
ν-truncated (-ei)-Gröbner basis of F i

L(·), and by Lemma 6.2.2, the set S ′ is a ν-
truncated Markov basis of L. Moreover, the set S ′ is also a ν-truncated ≻i-Gröbner
basis of FL(·). The proof proceeds as in Lemma 6.2.2. This result is not strictly
needed to describe the algorithm, but we find that it is a nice extension of Lemma
6.2.2.

6.2. TRUNCATED PROJECT-AND-LIFT ALGORITHM 111

Lemma 6.2.3. Let L ⊆ Zn, ν ∈ Zn, and i ∈ {1, . . . , n} where i is bounded. If
G ⊆ L is a ν-truncated ≻i-Gröbner basis of F i

L(·), then G is also a ν-truncated
≻i-Gröbner basis of FL(·).

As in the non-truncated case, if i is unbounded, then computing a ν-truncated
Markov basis of L from a ν-truncated Markov basis of F i

L(·) is actually more straight-
forward than otherwise.

Lemma 6.2.4. Let L ⊆ Zn, i ∈ {1, . . . , n}, ν ∈ Zn, and u ∈ L∩Nn where ui > 0. If
S ⊆ L is a ν-truncated Markov basis of F i

L(·), then S∪{u} is a ν-truncated Markov
basis of FL(·).

The proof of Lemma 6.2.4 proceeds as per the proof of Lemma 6.1.4.

We can now present the truncated Project-and-Lift algorithm (Algorithm 5).

Algorithm 5 Truncated Project-and-Lift algorithm

Input: a lattice L and a vector ν ∈ Zn.
Output: a ν-truncated Markov basis M of L

Find a set σ ⊆ {1, . . . , n} such that ker(πσ) ∩ L = {0}.
Compute a set M ⊆ L that is a ν-truncated Markov basis of Fσ

L(·).
while σ 6= ∅ do

Select i ∈ σ

if i is bounded then

M := CPσ
L,ν(≻i, M)

else

Compute u ∈ L such that uσ̄ ≥ 0 and ui > 0
M := M ∪ {u}

end if

σ := σ-i
M := {u ∈ M : u+

σ̄ ∈ BLσ(νσ̄)}
end while

return M .

Algorithm 5 is the same as Algorithm 4 except that we use the truncated completion
procedure and there is an extra step at the end: M := {u ∈ M : u+

σ̄ ∈ BLσ(νσ̄)}. A
vector u ∈ L fits inside the feasible region Fσ

L(ν) if and only if uσ̄ fits inside FLσ(νσ̄),
and by Lemma 3.3.2, uσ̄ fits inside FLσ(νσ̄) if and only if u+

σ̄ ∈ BLσ(νσ̄). Thus, this
extra step just truncates vectors that are too long and the proof of correctness and
termination of Algorithm 5 is essentially the same as for Algorithm 4.

Initially in the truncated Project-and-Lift algorithm, we need to find a set σ ⊆
{1, . . . , n} such that ker(πσ)∩Lσ = {0}, and then, we need to compute a ν-truncated
Markov basis for Fσ

L(·). We proceed in exactly the same way as per the non-truncated
case in the previous section.

The next example shows an example computation using the truncated Project-and-
Lift algorithm.

112 CHAPTER 6. COMPUTING MARKOV BASES

Example 6.2.5. Consider again the lattice L from Example 3.1.6 that is generated
by the vectors (2, -2, -2, 1) and (3, 1, -1, -1). Recall from Example 3.3.3 that the set

M = {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2)}

is a ν-truncated Markov basis of L where ν = (-6, 4, 6, 1). We will compute a ν-
truncated Markov basis of L using the truncated Project-and-Lift algorithm. Recall
from Example 6.1.6 that the set B = {(1, -5, -3, 3), (0, 8, 4, -5)} is a Markov basis of
Fσ

L(·) where σ = {3, 4}; thus, B is also a ν-truncated Markov basis of Fσ
L(·).

Set M = {(1, -5, -3, 3), (0, 8, 4, -5)}.

(i). Select i := 3. Then, i is unbounded since u = (0, 8, 4, -5) ∈ L and uσ̄ ≥ 0 and
ui > 0. Thus the set M = {(1, -5, -3, 3), (0, 8, 4, -5)} is a ν-truncated Markov
basis of Fσ-i

L (·). Set σ = {4}.

(ii). Select i := 4. Then, i is bounded. The set

M = CPσ
L,ν(≻i, M) = {(-2, 2, 2, -1), (1, 3, 1, -2), (3, 1, -1, -1)}.

is a minimal ν-truncated ≻i-Gröbner basis of Fσ
L(·). So, M is a ν-truncated

Markov basis of Fσ-i
L (·).

The set M = {(-2, 2, 2, -1), (1, 3, 1, -2), (3, 1, -1, -1)} is thus a ν-truncated Markov
basis of L.

In the next example, we show the computational benefits of computing a truncated
Markov basis as opposed to the full Markov basis.

Example 6.2.6. Let L = LA for the matrix A given in Example 5.2.4. The size of
a minimal Markov basis of L is 10868. It takes 36.39 seconds to compute.

Let ν = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). The size of a minimal ν-truncated Markov
basis of L is 0. In Table 6.1, we list the times taken to compute a ν-truncated Markov
basis using the three different criteria for truncation. The first column lists which
truncation criteria was used (the first row is the case without using truncation). The
next five columns list the sizes of the intermediate Gröbner basis computations at
the end of each iteration of the truncated Project-and-Lift algorithm (the column
heading is the iteration number). Note how the intermediate sizes of the truncated
computations remain much smaller than the final size of a full Markov basis of L.
The last column lists the time taken.

In Table 6.2, we list the times taken to compute a minimal truncated Markov basis
for the same five different ν as in Example 5.2.4. The first column lists which ν was
used. In the next columns, we list the size of the computed set and the time taken for
each of the three possible ways to check whether ν ′ ∈ BL(ν). Not only have we reduced
the time to compute a Markov basis, we also have reduced the time to compute a trun-
cated Gröbner basis by using a truncated Markov basis instead of a full Markov basis.
Table 6.3 lists the times for computing a truncated Gröbner basis from a truncated
Markov basis using the same cost vector c = (3, 15, 1, 5, 2, 17, 16, 16, 15, 9, 7, 11, 13)
as before.

6.3. SATURATION ALGORITHM 113

Truncation 1 2 3 4 5 Time

none 545 1822 3681 12573 10868 36.39s
a ∈ S∗ ∩ Rn

+ 545 977 1302 1846 564 1.20s
FS(ν − ν ′′) 545 977 878 697 194 2.16s
FL(ν − ν ′′) 545 6 3 4 0 20.73s

Table 6.1: Comparison of different truncation approaches.

ν a ∈ S∗ ∩ Rn
+ FS(ν − ν ′′) FL(ν − ν ′′)

ν1 4 0.76 1 0.90 0 3.33
ν2 158 16.70 36 21.28 0 > 3600
ν3 546 1.20 194 2.16 0 20.73
ν4 7381 7.61 3734 11.47 146 > 3600
ν5 10814 39.04 10761 44.07 10739 > 3600

Table 6.2: Timings for computing truncated Markov bases of different fibers.

Observe that in the previous example, the size of a truncated Markov basis for
the fiber where ν = (1, 0, 1, 0, 3, 0, 1, 5, 0, 1, 0, 9, 0) was very small, but it took much
longer to compute than a much larger truncated Markov basis of other fibers. This
anomaly can be attributed to the order in which the variables are chosen during the
Project-and-Lift algorithm. If we reorder the variables so that the zero components
in ν = (1, 0, 1, 0, 3, 0, 1, 5, 0, 1, 0, 9, 0) are chosen first, then the algorithm computes a
truncated Markov basis much faster. Hence, the efficiency of the algorithm is sensi-
tive to the order in which the variables are chosen; therefore, future experimentation
is needed to determine a heuristic for choosing a good variable order.

6.3 Saturation algorithm

In this section, we describe the Saturation algorithm. The description of the Satura-
tion algorithm in this section is the first translation of the Saturation algorithm from
algebraic geometry into a combinatorial setting. The underlying concept behind the
algorithm is called saturation. Saturation is concerned with the connectivity of the
fiber graphs of a set T in relation to the connectivity of the fiber graphs of another
set S.

Definition 6.3.1. Let σ ⊆ {1, . . . , n}, and let S, T ⊆ L. The set T is σ-saturated

on S if for all ν ∈ Zn and for all x, y ∈ FL(ν) where x and y are connected in
Gσ
L(ν, S), the points x and y are connected in GL(ν, T).

In other words, the definition of saturation says that T is σ-saturated on S if when-
ever two feasible points x, y ∈ FL(ν) for some ν ∈ Zn are connected by a path
using the vectors in S that is non-negative on the σ̄ components, then the same
two feasible points x and y are connected by a path using the vectors in T that is
non-negative on all components.

114 CHAPTER 6. COMPUTING MARKOV BASES

ν a ∈ S∗ ∩ Rn
+ FS(ν − ν ′′) FL(ν − ν ′′)

ν1 4 0.00 1 0.00 0 0.00
ν2 167 0.00 36 0.19 0 0.00
ν3 844 0.05 201 0.11 0 0.00
ν4 11768 5.92 5028 4.07 158 5.98
ν5 24729 109.57 24334 107.18 24284 > 3600

Table 6.3: Timings for computing a truncated Gröbner basis from a truncated
Markov basis.

The following lemma is the most important result concerning saturation.

Lemma 6.3.2. Let S, T ⊆ L where S spans L. If T is {1, ..., n}-saturated on S,
then T is a Markov basis of L.

Proof. First, recall that any set S that spans L is a Markov basis of Fσ
L(·) where

σ = {1, ..., n} (no non-negativity requirements). Let x, y ∈ FL(ν) for some ν ∈ Zn.
Since S is a Markov basis of Fσ

L(·), x and y are connected in Gσ
L(ν, S), which implies

that x and y are connected in GL(ν, T) since T is σ-saturated on S. Hence, T is a
Markov basis of L.

The fundamental idea behind the Saturation algorithm is given S, T ⊆ L where T

is σ-saturated on S for some σ ⊆ {1, . . . , n}, we can compute a set T ′ that is a
(σ ∪ i)-saturated on S for any i ∈ σ̄. Note that, by definition, any set of vectors is
∅-saturated on itself. Therefore, given a set S ⊆ L that spans L, starting from a set
T = S, which is ∅-saturated on S, if we do this repeatedly for each i ∈ {1, . . . , n},
we arrive at a set T ′ ⊆ L that is {1, . . . , n}-saturated on S and, therefore, a Markov
basis of L.

The following lemma is essential to the saturation algorithm. The implication of
Lemma 6.3.3 below is that if we wish to compute a set T ′ that is (σ ∪ i)-saturated
on S given a set T that is σ-saturated on S, then we just need to ensure that T ′ is
i-saturated on T .

Lemma 6.3.3. Let σ, τ ⊆ {1, . . . , n} and S, T, U ⊆ L. If U is σ-saturated on S,
and T is τ -saturated on U , then T is (σ ∪ τ)-saturated on S.

Proof. Let ν ∈ Zn, and x, y ∈ FL(ν) where x and y are connected in G(σ∪τ)
L (ν, S);

that is, using the vectors in S, there exists a path from x to y that is non-negative
on the σ̄ ∩ τ̄ variables. Let (x1, x2, ..., xk) be a path from x to y in G(σ∪τ)

L (ν, S). Let
γ ∈ Nn such that γτ̄ = 0 and γτ + xi

τ ≥ 0 for i = 1, ..., k. Such a γ always exists.
Consider the path (x1+γ, x2+γ, ..., xk +γ) from x+γ to y+γ. By construction, this
path is now non-negative on the τ components, and the τ̄ components are unaltered.
Thus, this path is a path from x+ γ to y + γ in Gσ

L(ν + γ, S). Since U is σ-saturated
on S, this implies that there is a path from x + γ to y + γ in GL(ν + γ, U). Let
(x̄1, x̄2, ..., x̄k) be such a path from x + γ to y + γ. Then, (x̄1 − γ, x̄2 − γ, ..., x̄k − γ)
is a path from x to y in Gτ

L(ν, U) since γτ̄ = 0. Then, since T is τ -saturated on U ,
x and y are connected in GL(ν, T) as required.

6.3. SATURATION ALGORITHM 115

We now focus on computing a set T that is i-saturated on S. There are two situations
to consider: i is bounded and i is unbounded. We first consider when i is bounded.
Recall that ker(πi) ∩ L = {0} implies that i is bounded by Corollary 2.9.2.

Lemma 6.3.4. Let S, T ⊆ L and i ∈ {1, ..., n} where ker(πi) ∩ L = {0}. The set
T is i-saturated on S if and only if, for all ν ∈ Zn and for all x, y ∈ FL(ν) where
x and y are connected in GL(ν, S), there exists a (-ei)-reduction path from x to y in
GL(ν, T).

Proof. Assume T is i-saturated on S. Let x, y ∈ FL(ν) for some ν ∈ Zn where x and y

are connected in GL(ν, S). Let λ = min{xi, yi}. Let (x1, x2, ..., xk) be a path from x to
y in GL(ν, S). Then, (x1−λei, x2−λei, ..., xk−λei) is a path from (x−λei) to (y−λei)
in Gi

L(ν−λei, S). Since T is i-saturated on S, (x−λei) and (y−λei) are connected in
GL(ν−λei, S). Let (x̄1, x̄2, ..., x̄k) be a path from (x−λei) to (y−λei) in GL(ν−λei, S).
Note that, by construction, either x̄1

i = (x − λei)i = 0 or x̄k
i = (y − λei)i = 0, so

x̄
j
i ≥ x̄1

i or x̄
j
i ≥ x̄k

i for all j = 1, ..., k. Then, (x̄1 + λei, x̄2 + λei, ..., x̄k + λei)
is a path from x to y in GL(ν, S) where either (x̄j + λei)i ≥ (x̄1 + λei)i = xi or
(x̄j + λei)i ≥ (x̄k + λei)i = yi. Therefore, (x̄1 + λei, x̄2 + λei, ..., x̄k + λei) is an
(-ei)-reduction path from x to y as required.

Conversely, let x, y ∈ FL(ν) such that x and y are connected in Gi
L(ν, S). Let

(x1, x2, ..., xk) be a path from x to y in Gi
L(ν, S). Let λ ∈ N such that x

j
i + λ ≥ 0

for all j = 1, ..., k. Then, (x1 + λei, x2 + λei, ..., xk + λei) is a path from (x + λei)
to (y + λei) in GL(ν + λei, S); the path is now non-negative on the ith component.
By assumption, there exists a (-ei)-reduction path from (x + λei) to (y + λei) in
GL(ν + λei, T). Let (x̄1, x̄2, ..., x̄k) be such a path. Then, either x̄

j
i ≥ x̄1

i or x̄
j
i ≥ x̄k

i

for j = 1, ..., k, so x̄j −λei ≥ 0 for j = 1, ..., k. Thus, (x̄1 −λei, x̄2 −λei, ..., x̄k −λei)
is an path from x to y in GL(ν, T) as required.

Since we assume i is bounded, the order ≻-ei (or ≻i) is thus a term order for L.
Importantly then, a ≻i-reduction path is also an (-ei)-reduction path. So, if we
compute a set T such that for all ν ∈ Zn and x, y ∈ FL(ν) where x and y are
connected in GL(ν, S), there exists a ≻i-reduction path from x to y in GL(ν, T), then
T is i-saturated on S. We can actually compute such a set T using the completion
procedure, Algorithm 2. At first, this does not seem possible since the completion
procedure requires that we start with a Markov basis, but we can relax this require-
ment on the completion procedure and run the completion procedure with a set
that is not a Markov basis. To know what exactly we would compute by running
the completion procedure on a set that is not a Markov basis, we need more general
versions of Lemma 5.1.3, Corollary 5.1.4, and Lemma 5.1.5 from Section 5.1.

The following lemma is a more general version of Lemma 5.1.3. The lemma is es-
sentially the same as Lemma 5.1.3 – the proof is the same – but it does not assume
that the given set of vectors is a Markov basis.

Lemma 6.3.5. Let ν ∈ Zn, and let G ⊆ L≻. If there exists a ≻-reduction path
between x′ and y′ for every ≻-critical path (x′, z′, y′) in GL(ν, G), then there exists a
≻-reduction path between x and y for all x, y ∈ FL(ν) where x and y are connected
in GL(ν, G).

116 CHAPTER 6. COMPUTING MARKOV BASES

We can easily extend the previous lemma to arrive at a corresponding result to
Corollary 5.1.4.

Corollary 6.3.6. Let L be a lattice, and let ≻ be a term order, and let G ⊆ L≻. If
there exists a ≻-reduction path between x′ and y′ for every ≻-critical path (x′, z′, y′)
in GL(ν, G) for all ν ∈ Zn, then there exists a ≻-reduction path between x and y for
all x, y ∈ FL(ν) where x and y are connected in GL(ν, G) for all ν ∈ Zn.

For the exactly same reasons behind Lemma 5.1.5, we only need to check for a
reduction path between minimal critical paths, and thus, we have the follow Lemma
corresponding to Lemma 5.1.5.

Lemma 6.3.7. Let L be a lattice, and let ≻ be a term order, and let G ⊆ L≻. If for
all u, v ∈ G, there exists a ≻-reduction path between x(u,v) and y(u,v) in GL(ν(u,v), G),
then then there exists a ≻-reduction path between x and y for all x, y ∈ FL(ν) for
all ν ∈ Zn where x and y are connected in GL(ν, G).

If we re-examine the completion procedure, we see that, given some starting set G,
which may or may not be a Markov basis, the completion procedure adds vectors to
G until there exists a ≻-reduction path between x(u,v) and y(u,v) in GL(ν(u,v), G) for all
u, v ∈ G. Thus, by Lemma 6.3.7 above, after running the completion procedure, there
exists a ≻-reduction path between x and y for all x, y ∈ FL(ν) for all ν ∈ Zn where
x and y are connected in GL(ν, G). We must be careful however when optimising
the completion procedure without a Markov basis since Criterion 2 is no longer
valid, but fortunately, Criteria 1 and 3 are still valid though. It is possible to use a
weaker form of Criterion 2, but we will not detail it here since Criteria 1 and 3 are
usually adequate for a fast implementation. Additionally, the truncated completion
procedure no longer works without a Markov basis. Again, it is possible to use a
weaker form of the truncated completion procedure, but we will not detail it here.

Let T = CP i
L(≻i, S). Then, by the properties of the completion procedure as dis-

cussed above, for all ν ∈ Zn and x, y ∈ FL(ν) where x and y are connected in
GL(ν, S), there exists a ≻i-reduction path from x to y in GL(ν, T); T is therefore
i-saturated on S.

We now discuss the case where i is unbounded, which is actually easier than the
case where i is bounded. Let T be σ-saturated on S. If i is unbounded, then there
exists a vector u ∈ L ∩ Nn such that ui > 0, and thus, by Lemma 6.3.8 below, the
set T ′ = T ∪ {u} is i-saturated on T ; therefore, T ′ is (σ ∪ i)-saturated on S.

Lemma 6.3.8. Let S ⊆ L. If there exists u ∈ S where u ∈ L ∩ Nn and u 6= 0, then
S is supp(u)-saturated on S.

Proof. Let x, y ∈ FL(ν) for some ν ∈ Zn where x and y are connected in Gσ
L(ν, S)

where σ = supp(u). We can translate a path from x to y in Gσ
L(ν, S) (i.e. a path

that is non-negative on the σ̄ components) to a path in GL(ν, S) (i.e. a path that is
non-negative on all components) by adding u to the start of the path as many times
as necessary and subtracting u from the end of the path the same number of times.
Therefore, x and y are connected in GL(ν, S) as required.

6.3. SATURATION ALGORITHM 117

Algorithm 6 Saturation algorithm

Input: a lattice L, and a spanning set S of L.
Output: a Markov basis M of L.

M := S

σ := ∅
while σ 6= {1, ..., n} do

Select i ∈ σ̄

if i is bounded then

M := CPL(≻i, M)
else

Compute u ∈ L ∩ Nn such that ui > 0
M := M ∪ {u}

end if

σ := σ ∪ i

end while

return M .

We now arrive at the Saturation algorithm below.

Lemma 6.3.9. Algorithm 6 terminates and satisfies its specifications.

Proof. Algorithm 6 terminates, since Algorithm 2 always terminates. We show at
the beginning of each iteration that M is σ-saturated on S, so at the end of the
algorithm M is {1, . . . , n}-saturated on S, and therefore, M is a Markov basis of
L. At the beginning of the first iteration, M is σ-saturated on S since σ = ∅ and
M = S. So, we can assume it is true for the current iteration, and now, we show it is
true for the next iteration. Assume that i is bounded. Let M ′ := CPL(≻i, M). Then,
by Lemma 6.3.4, M ′ is i-saturated on M , so by Lemma 6.3.3, M ′ is (σ∪ i)-saturated
on S. On the other hand, assume that i is unbounded. Let M ′ := M ∪ {u} for some
u ∈ L ∩ Nn where ui > 0. Then, by Lemma 6.3.8, M ′ is i-saturated on M and thus
(σ∪ i)-saturated on S. So whether i is bounded or unbounded, M is σ-saturated on
S at the beginning of the next iteration.

During the Saturation algorithm, we saturate n times, once for each i ∈ {1, . . . , n}.
However, as proven in [56], it is in fact only necessary to perform at most ⌊n

2
⌋

saturations. Given S, T ⊆ L, we can show that there always exists a σ ⊆ {1, . . . , n}
where |σ| ≤ ⌊n

2
⌋ such that if T is σ-saturated on S, then T is {1, . . . , n}-saturated

on S. The following two lemmas prove the result.

Lemma 6.3.10. Let σ ⊆ {1, . . . , n}, S, T ⊆ L where T is σ-saturated on S, and
u ∈ S. If supp(u−) ⊆ σ or supp(u+) ⊆ σ, then T is (supp(u) ∪ σ)-saturated on S.

Proof. Assume that supp(u−) ⊆ σ. Let τ = supp(u). Let x, y ∈ FL(ν) for some
ν ∈ Zn where x and y are connected in Gτ∪σ

L (ν, S). We must show that x and y are
connected in GL(ν, T). A path from x to y in Gτ∪σ

L (ν, S) can be transformed into a
path from x to y in Gσ

L(ν, S) by adding u to the start of the path as many times as
necessary and subtracting u from the end of the path the same number of times in

118 CHAPTER 6. COMPUTING MARKOV BASES

such a way that the supp(u+) components of the path become non-negative. Such a
path transformation also affects the supp(u−) components, but since supp(u−) ⊆ σ,
the resulting path is a path in Gσ

L(ν, S). Then, since T is σ-saturated on S, there
exists a path from x to y in GL(ν, S) as required.

The case where T is supp(u+) ⊆ σ is essentially the same as above.

Note that Lemma 6.3.8 is a special case of Lemma 6.3.10 above where supp(u−) = ∅.

Lemma 6.3.11. Let S, T ⊆ L. There exists a σ ⊆ {1, . . . , n} where |σ| ≤ ⌊n
2
⌋ such

that if T is σ-saturated on S, then T is {1, . . . , n}-saturated on S.

Proof. We show this by construction. Without loss of generality, we assume that L
is not contained in any of the linear subspaces {xi : xi = 0, x ∈ Rn} for i = 1, . . . , n,
otherwise we may simply delete this component.

Let σ = ∅, τ = ∅, and U = ∅. Repeat the following steps until τ = {1, . . . , n}.

(i). Select u ∈ S such that supp(u) \ τ 6= ∅.

(ii). If | supp(u+) \ τ | ≥ | supp(u−) \ τ |, then σ := σ ∪ supp(u−), else σ := σ ∪
supp(u+).

(iii). Set τ := τ ∪ supp(u), and set U := U ∪ {u}.

The procedure must terminate since during each iteration we increase the size of
τ . Note that, at termination, U ⊆ S,

⋃

u∈U supp(u) = τ = {1, . . . , n}, and for
all u ∈ U either supp(u+) ⊆ σ or supp(u−) ⊆ σ. Therefore, by applying Lemma
6.3.10 recursively for each u ∈ U , we have that if T is σ-saturated on S, then T is
{1, . . . , n}-saturated on S. Lastly, since in each iteration we add at least twice as
many components to τ as to σ, we conclude that at termination |σ| ≤ ⌊n

2
⌋.

Example 6.3.12. Consider again the projected lattice L from Example 3.1.6 that
is generated by the vectors (2, -2, -2, 1) and (3, 1, -1, -1). Recall that the set

M = {(2, -2, -2, 1), (3, 1, -1, -1), (5, -1, -3, 0), (1, 3, 1, -2)}

is a Markov basis of L. We will compute this set using the Saturation algorithm.

We start the Saturation using the set S := {(2, -2, -2, 1), (3, 1, -1, -1)}, which is a
spanning set of L. Then, by Lemma 6.3.10, since supp((3, 1, -1, -1)+) = {1, 2} and
supp((3, 1, -1, -1)−) = {3, 4}, if a set T ⊆ L is {1, 2}-saturated on S, then T is
{1, 2, 3, 4}-saturated on S, and thus, a Markov basis of L. So, to compute a Markov
basis of L, we only need to saturate on {1, 2}.

First, set T := S.

(i). Select i := 1. The component i is bounded. Set

T := CPL(≻i, T) = {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2)}.

So, T is {1}-saturated on S. Note that T is not a Markov basis of L.

6.3. SATURATION ALGORITHM 119

(ii). Select i := 2. The component i is bounded. Set

T := CPL(≻i, T) = {(2, -2, -2, 1), (3, 1, -1, -1), (1, 3, 1, -2), (5, -1, -3, 0)}.

So, T is {1, 2}-saturated on S.

From our discussion above, since T is {1, 2}-saturated on S, T is also {1, 2, 3, 4}-
saturated on S, and therefore, T is a Markov basis of L.

In the last part of this section on the Saturation algorithm, we will compare what the
Saturation algorithm computes with what the Project-and-Lift algorithm of Section
6.1 computes. First, recall from Section 6.1 that the Project-and-Lift algorithm
sequentially computes Markov bases of Fσ

L(·) for each value of σ starting from some
initial set until the empty set where we incrementally remove elements from σ. It
follows from Lemma 6.3.13 below that the Saturation algorithm also sequentially
computes Markov bases of Fσ

L(·), so in this respect the algorithms are very similar.

Lemma 6.3.13. Let S, T ⊆ L where S spans L. If T is σ-saturated on S, then T

is a Markov basis of F σ̄
L(·).

Proof. First, recall that any set S that spans L is a Markov basis of F τ
L(·) where

τ = {1, ..., n}. Let x, y ∈ F σ̄
L(ν) for some ν ∈ Zn. Since S is a Markov basis of

F τ
L(·), x and y are connected in Gτ

L(ν, S). Let (x1, ..., xk) be a path from x to y in
Gτ
L(ν, S). Then, let γ ∈ Zn such that γσ = 0 and γσ̄ + xi

σ̄ ≥ 0 for i = 1, ..., k. Then,
(x1 + γ, ..., xk + γ) is a path from x + γ to y + γ in Gσ

L(ν + γ, S), and thus, since T

is σ-saturated on S, x + γ to y + γ are connected in GL(ν + γ, T). Let (x̄1, ..., x̄k) be
a path from x + γ to y + γ in GL(ν + γ, T). Then, (x̄1 − γ, ..., x̄k − γ) is a path from
x to y in Gσ̄

L(ν, T) since γσ = 0. Hence, T is a Markov basis of F σ̄
L(·).

The Saturation algorithm sequentially computes σ-saturated sets for values σ start-
ing from the empty set until {1, ..., n}, which implies that the Saturation algorithm
sequentially computes Markov bases of F τ

L(·) starting from τ = {1, ..., n} until τ = ∅.

Although a σ-saturated set is a Markov basis of F σ̄
L(·), the converse is not true. Let

x, y ∈ Fσ̄(L)ν for some ν ∈ Zn such that x and y are connected in GL(ν, S) for
some set S that spans L. If a set T is σ-saturated on S, then there exists a path
from x to y in GL(ν, T), or in other words, a path from x to y that is non-negative
on all components. On the other hand, if T is a Markov basis of F σ̄

L(·), then there
exists a path from x to y in Gσ̄

L(ν, T), or in other words, there is a path from x to
y that remains non-negative on the σ components, but we can infer nothing about
the non-negativity of the σ̄ components on the path. So, a σ-saturated set is more
than just a Markov basis of F σ̄

L(·). For this reason, σ-saturated sets can be much
larger than Markov bases of F σ̄

L(·), so the Project-and-Lift algorithm computes with
smaller intermediate sets because it only really computes Markov bases of F σ̄

L(·).
We will see this in the Section 6.5.

120 CHAPTER 6. COMPUTING MARKOV BASES

6.4 Lift-and-Project algorithm

The idea behind this algorithm is to lift a spanning set S of L ⊆ Zn to a spanning
set S ′ ⊆ Zn+1 of L′ ⊆ Zn+1 in such a way that we can compute a set G′ ⊆ L′ that
generates L′ in only one saturation step. Then, we project G′ to G ⊆ L, so that G

is a Markov basis of L.

Let S be a spanning set of L ⊆ Zn. Let S ′ := {(u, 0) : u ∈ S} ∪ {(1, . . . , 1, -1)}, and
let L′ ⊆ Zn+1 be the lattice spanned by S ′. Since the vector (1, . . . , 1, -1) is in S ′, it
follows from Lemma 6.3.10, that if a set G′ ⊆ L′ is {n + 1}-saturated on S ′, then
G′ is {1, . . . , n + 1}-saturated on S, and hence, G′ is a Markov basis of L′. Also, by
construction, the new component n+1 is bounded since there does not exist a non-
negative vector L′ with a strictly positive (n + 1)th component. Now, using exactly
the same idea behind the Saturation algorithm, if we let G′ := CPL′(≻n+1, S

′), then
G′ must be {n+1}-saturated on S ′ by Lemma 6.3.4 and thus a Markov basis of L′ .

So, at the moment, we have a Markov basis G′ for L′, and from this, we need to
extract a Markov basis of L. We define the linear map ρ : Zn+1 7→ Zn where

ρ(u′) := (u′
1 + u′

n+1, u
′
2 + u′

n+1, . . . , u
′
n + u′

n+1).

Observe that ρ maps Zn+1 onto Zn, maps L′ onto L, and maps FL′(ν ′) onto FL(ν)
where ν = ρ(ν ′). Let G := {ρ(u′) : u′ ∈ G′} \ {0}. So, G ⊂ L, and we now show
that in fact G is a Markov basis of L. Let x, y ∈ FL(ν) for some ν ∈ Zn, and let
x′ := (x, 0), y′ := (y, 0), and ν ′ := (ν, 0); hence, ρ(x′) = x, ρ(y′) = y, and ρ(ν ′) = ν.
Since G′ is a Markov basis of L′ there must exist a path from x′ to y′ in GL′(ν ′, G′). Let
(x′0, . . . , x′k) be a path in GL′(ν ′, G′) from x′ to y′. Then, (ρ(x′0), . . . , ρ(x′k)) is a walk
from x to y in GL(ν, G), so after removing cycles, we have a path from x to y. Cycles
may exist because the kernel of ρ is non-trivial: ker(ρ) = {(γ, . . . , γ,−γ) : γ ∈ Z}.
Hence, G is a Markov basis of L. We thus arrive at the Lift-and-Project algorithm.

Algorithm 7 Lift-and-Project algorithm

Input: a set S ⊆ L that spans L.
Output: a Markov basis G of L

S ′ := {(u, 0) : u ∈ S} ∪ {(1, . . . , 1, -1)}
G′ := CPL′(≻n+1, S

′)
G := {ρ(u′) : u′ ∈ G′} \ {0}
return G.

Example 6.4.1. Consider again the projected lattice L from Example 3.1.6 that is
generated by the vectors (2, -2, -2, 1) and (3, 1, -1, -1). Recall that the set

M = {(2, -2, -2, 1), (3, 1, -1, -1), (5, -1, -3, 0), (1, 3, 1, -2)}

is a Markov basis of L. We will compute this set using the Lift-and-Project algorithm.

The set S := {(2, -2, -2, 1), (3, 1, -1, -1)} spans L. Next, we extend the lattice L to L′,
and we extend spanning set S to S ′ := {(2, -2, -2, 1, 0), (3, 1, -1, -1, 0), (1, 1, 1, 1, -1)},

6.4. LIFT-AND-PROJECT ALGORITHM 121

which is a spanning set of L′. Next, we compute G′ = CPL′(≻5, S
′). This has the

following eight vectors:

G′ :=















































(-5, 1, 3, 0, 0)
(-2, 2, 2, -1, 0)
(-3, -1, 1, 1, 0)
(4, 2, 0, 0, -1)

(-1, -3, -1, 2, 0)
(6, 0, -2, 1, -1)
(9, 1, -3, 0, -1)

(14, 0, -6, 0, -1)















































.

Note that G′ is twice as large as a Markov basis of L. Next, we perform the trans-
formation G := {ρ(u′) : u′ ∈ G′} \ {0} removing any duplicate vectors (or vectors
that are negative multiples of each other). We then have the following six vectors:

G := {(-5, 1, 3, 0), (-2, 2, 2, -1), (-3, -1, 1, 1), (-1, -3, -1, 2), (8, 0, -4, -1), (13, -1, -7, -1)}.

The set G is a Markov basis of L.

To make the algorithm more efficient, we can use a different additional vector to
(1, . . . , 1, -1). By Lemma 6.3.11, we know that given a spanning set S, there exists
a σ where |σ| ≤ ⌊n

2
⌋ such that if T is σ-saturated on S, then T is a Markov basis

of L. Then, instead of (1, . . . , 1, -1), it suffices to use the additional vector s =
∑

i∈σ ei−en+1, which has the important property that supp(s+) = σ and supp(s−) =
{n + 1}. Set S ′ := {(u, 0) : u ∈ S} ∪ {s}, and let L′ be the lattice spanned by S ′.
Then, from Lemma 6.3.10, since s ∈ S ′, if a set G′ ⊆ L′ is {n + 1}-saturated on
S ′, then G′ is (σ ∪ {n + 1})-saturated on S ′. Also, since {(u, 0) : u ∈ S} ⊆ S ′,
from the proof of Lemma 6.3.11, it follows that if G′ is σ-saturated on S ′, then
G′ is {1, . . . , n}-saturated. Hence, G′ is {1, . . . , n + 1}-saturated, and therefore, a
Markov basis of L′. So again, we can compute a Markov basis G′ of L′ in one
saturation step. Also, we similarly define the linear map ρσ : Zn+1 7→ Zn where
ρσ(x′) := (x′

1, x
′
2, . . . , x

′
n)+(

∑

i∈σ ei)xn+1. Then, G := {ρσ(x′) : x′ ∈ G′} is a Markov
basis of L. As a general rule, the smaller the size of σ, the faster the algorithm.

Example 6.4.2. Consider again the projected lattice L from Example 3.1.6 that is
generated by the vectors (2, -2, -2, 1) and (3, 1, -1, -1). Recall that the set

M = {(2, -2, -2, 1), (3, 1, -1, -1), (5, -1, -3, 0), (1, 3, 1, -2)}

is a Markov basis of L. We will compute this set using the Lift-and-Project algorithm
with the above improvement. We will see that using the above improvement means
that a smaller set is computed.

The set S := {(2, -2, -2, 1), (3, 1, -1, -1)} spans L. Next, we extend the lattice L to
L′ such that S ′ = {(2, -2, -2, 1, 0), (3, 1, -1, -1, 0), (1, 1, 0, 0, -1)} spans L′. Note that,
from Lemma 6.3.10, if a set G′ is {n + 1}-saturated on S ′, then G′ is {1, 2, n + 1}-
saturated on S ′ since supp((1, 1, 0, 0, -1)−) = {n + 1} and supp((1, 1, 0, 0, -1)+) =
{1, 2}. Moreover, if G′ is {1, 2, n+1}-saturated on S ′, then G′ is {1, 2, 3, 4}-saturated

122 CHAPTER 6. COMPUTING MARKOV BASES

on S ′ since supp((3, 1, -1, -1)+) = {1, 2} and supp((3, 1, -1, -1)−) = {3, 4}, and G′ is
a Markov basis of L′. Thus, we only need to perform one saturation step on n + 1.

So, we compute G′ = CPL′(≻5, S
′). This has the following seven vectors:

G′ :=







































(-5, 1, 3, 0, 0)
(-2, 2, 2, -1, 0)
(-2, 0, 1, 1, -1)
(1, 1, 0, 0, -1)
(0, -2, -1, 2, -1)
(3, -1, -2, 1, -1)
(6, 0, -3, 0, -1)







































.

Note that G′ is smaller than in Example 6.4.1, but it is still a bit larger than a
Markov basis of L. Next, we perform the transformation G := {ρσ(u′) : u′ ∈ G′}\{0}
removing any duplicate vectors (or vectors that are negative multiples of each other).
We then have the following four vectors:

G := {(-5, 1, 3, 0), (-2, 2, 2, -1), (-3, -1, 1, 1), (-1, -3, -1, 2)}.

The set G is a Markov basis of L.

There are two major problems with the Lift-and-Project algorithm. The first being,
as we saw in the examples, that the size of the set computed may be much larger
than necessary, and, as with the Saturation algorithm, we cannot use Criterion 3
when running the completion procedure since we are not computing with a Markov
basis. Another problem is that we cannot perform any truncation until after we have
computed the Markov basis also because we are not computing with a Markov basis.

Bigatti et al. in [12] describe some improvements for the completion procedure specif-
ically for computing G′ := CPL(≻n+1, S

′), so the improvements are specific to the
Lift-and-Project algorithm. We will not discuss these improvements here except to
say that they do not decrease the size of G′, so the main problem with the approach
remains.

6.5 Comparison of algorithms

In this section, we compare the performance of implementations of the Saturation
algorithm, Lift-and-Project algorithm, and the Project-and-Lift algorithm in 4ti2

v.1.3 ([1]) with the implementation of the Saturation algorithm and the Lift-and-
Project algorithm in CoCoA 4.6 ([23]). We will also compare the performance of
these algorithms with an implementation of the algorithm of Hemmecke ([50]) to
compute a Graver basis in 4ti2 v.1.3 ([1]) (see Section 5.4.1). Recall that a Graver
basis is a Gröbner basis and thus a Markov basis and usually much larger than a
minimal Markov basis, but sometimes a Graver basis is a minimal Markov basis.
The software package Singular ([46]) also has an implementation of the Saturation
algorithm and the Lift-and-Project algorithm, but CoCoA seems the faster imple-
mentation, at least on the example problems in this section, so we only compare

6.5. COMPARISON OF ALGORITHMS 123

4ti2 with CoCoA. In summary, the computational results show that the Project-
and-Lift algorithm is significantly faster than the other algorithms. The exception
to this rule is in the special case where a Markov basis is the same as a Graver basis,
in which case, the Graver basis algorithm is faster.

In Table 6.5, we list the time taken to compute Markov bases of different problems.
The computations were done on a Intel XEON 3.2 GHz machine with 4Gb of RAM
running Linux Redhat. Computation times are given in seconds rounded to the
nearest one-hundredth of a second. The table entries with a “∗” indicate after several
hours of computation time the computation was still nowhere near completion. In
the first column of Table 6.5, we list the problems for which we computed the
Markov bases. The second column is the number of variables in the problem. The
third column is the size of a minimal MB basis. The last six columns correspond to
the different algorithms and their different implementations. The column headings
are explained in Table 6.5 below.

Name Software Algorithm
C-SAT CoCoA v4.6 Saturation
C-L&P CoCoA v4.6 Lift-and-Project
SAT 4ti2 v1.3 Saturation
L&P 4ti2 v1.3 Lift-and-Project
P&L 4ti2 v1.3 Project-and-Lift
Grav 4ti2 v1.3 Graver basis

Table 6.4: Software and algorithm

The problems that we compute the Markov basis for are as follows. The first 4 prob-
lems, (333, 334, 335, and 344) correspond to three-dimensional contingency tables.
The example grin4x8 is taken from [57], and the examples grin4x10 and grin4x13

are extensions of the example grin4x8, an the examples hppi10,hppi12,hppi14

correspond to the computation of homogeneous primitive partition identities (see
for example Chapters 6 and 7 in [79]). Finally, the examples cuww1,cuww3,cuww5

arise from knapsack problems presented in [27].

The running times give a clear ranking of three of the algorithms: first comes our
Project-and-Lift method, second comes the Saturation algorithm, and last comes
the Lift-and-Project method. For all large problems, the presented Project-and-Lift
algorithm wins significantly amongst the above three algorithms, and moreover, the
Project-and-Lift algorithm seems quite robust in the sense that the computations
times reflect the size of the minimal Markov bases.

The Graver basis algorithm, listed in the last column, is the faster algorithm for the
examples hppi10,hppi12,hppi14.1 For these examples, a Graver basis is essentially the

1We should point out here that the implementation of the Graver basis algorithm does not
check for integer arithmetic overflow, but the implementation of the Project-and-Lift algorithm
does, and without this overflow checking the implementations take about the same time for the
examples hppi10,hppi12,hppi14. Also, the Graver basis implementation computes with vectors that
are half the size as in the Project-and-Lift implementation, which is an advantage for the Graver
basis implementation.

124 CHAPTER 6. COMPUTING MARKOV BASES

Problem Vars Size C-SAT C-L&P SAT L&P P&L Grav

333 27 81 0.05 0.19 0.07 1.49 0.00 0.08
334 36 450 1.72 2095.61 2.92 8309.15 0.12 27.52
335 45 2670 176.25 ∗ 136.50 ∗ 2.80 8192.56
344 48 4068 2798.02 ∗ 1177.61 ∗ 27.20 ∗
grin4x8 8 211 0.02 0.02 0.03 0.09 0.01 ∗
grin4x10 10 1412 1.34 2.36 1.84 4.24 0.37 ∗
grin4x13 13 10868 2100.32 3609.54 257.35 417.09 35.75 ∗
hppi10 20 1830 5.14 6.51 8.54 25.80 0.50 0.26
hppi12 24 8569 600.22 614.20 419.57 1299.59 13.94 6.81
hppi14 14 34355 18510.63 ∗ 9261.00 ∗ 276.14 144.41
cuww1 5 5 1.72 1.42 0.00 0.00 0.00 ∗
cuww3 6 16 6.31 4.94 0.11 0.12 0.00 ∗
cuww5 8 27 467.72 0.15 376.68 0.11 0.00 ∗

Table 6.5: Comparison of computing times.

same as a Markov basis, and moreover, the Graver basis algorithm is essentially the
same as the Project-and-Lift algorithm, so the specialised algorithm and implemen-
tation of a Graver basis is faster than the more general Project-and-Lift algorithm
and implementation for Markov bases. The Graver basis algorithm is much slower
however on the other examples for which the Graver basis is much larger than a
minimal Markov basis. For example, for the problem 335, a minimal Markov basis
has 2670 many elements, but a Graver basis has 263610 many elements. Note that
the running times of our Project-and-Lift algorithm are not far from the running
times of the Graver basis algorithm, and indeed, the algorithms are very similar.

The advantage of our Project-and-Lift algorithm is that it effectively performs com-
putations in projected subspaces of L. Thus, we obtain comparably small intermedi-
ate sets during the computation. Only the final iteration that deals with all variables
reaches the true output size. In contrast with this, the Saturation algorithm usually
comes close to the final output size even after just the first iteration of the algorithm
and then continues computing with as many vectors. See Figure 6.1, for a compari-
son of intermediate set sizes in each iteration for computing 3 × 4 × 4 contingency
tables.

�
�
�
�
�
�

�� hh((

r

r r r r r r r

r r
r

r r r r r r r r r r

((��
�
�
((�

�
��

r r r r r r r r r r r r r r r
r

r

r
r

r

r

0

5000

10000

P&L

SAT

Figure 6.1: Comparison of intermediate set sizes in each iteration.

6.5. COMPARISON OF ALGORITHMS 125

Moreover, the Project-and-Lift algorithm, performs Gröbner basis computations us-
ing a Markov basis, and thus can take full advantage of Criterion 2 which, as compu-
tational experience shows, is extremely effective. In fact, we only applied Criterion
2 and 1 (applied in that order) for the Project-and-Lift algorithm since Criterion 3
only slowed down the algorithm. However, for the Saturation algorithm where we
cannot apply Criterion 2 fully, Criterion 3 was very effective. In this case, we applied
Criterion 1, then 3, and then 2, in that order.

126 CHAPTER 6. COMPUTING MARKOV BASES

Chapter 7

Applications

In this chapter, we present applications of Gröbner bases and Markov bases. First,
we present an application of computing Markov bases in algebraic statistics. Using
the algorithms that are developed in this thesis for computing Markov bases, we
were able to solve an open challenge in algebraic statistics. Next, we describe an
application using Markov bases to show that a semigroup is not normal. Then, we
present a new Gröbner basis approach for computing a feasible solution of an integer
program, which is based upon an extension of the Project-and-Lift method for com-
puting Markov bases. We also further extend the Project-and-Lift method again to
arrive at a Gröbner bases approach for solving integer programs that uses problem
specific structure to solve an integer program. Lastly, we present an approach to the
feasibility enumeration problem, and we discuss how this method could be used in
our optimisation algorithm for integer programs.

7.1 Algebraic statistics

We now discuss one of the main applications of Markov bases to provide some mo-
tivation for defining and computing Markov bases. An application of Markov bases
is in algebraic statistics where we wish to test whether the relative frequencies of
observed events follow a given frequency distribution. The events should be inde-
pendent and have the same distribution, and the outcomes of each event must be
mutually exclusive. We only give a very brief account of this application of Markov
bases. See [30] for a more detailed discussion.

For example, we wish to test the hypothesis that there is an association between
birthday and deathday. In this case, that we have two observables: the month of
birth and the month of death. Table 7.1 gives the frequencies of a person being born
in a specific month and dying in a specific month from a sample of people consisting
of 82 descendants of Queen Victoria (data from [30]).

We want to know if the sample data is statistically significantly different from the
expected data if the months of birth and death were independent. If the sample
data is statistically significantly different, we conclude that there is a statistically
significant relationship between the variables. Note that a statistically significant

127

128 CHAPTER 7. APPLICATIONS

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total
Jan 1 0 0 0 1 2 0 0 1 0 1 0 6
Feb 1 0 0 1 0 0 0 0 0 1 0 2 5
Mar 1 0 0 0 2 1 0 0 0 0 0 1 5
Apr 3 0 2 0 0 0 1 0 1 3 1 1 12
May 2 1 1 1 1 1 1 1 1 1 1 0 12
Jun 2 0 0 0 1 0 0 0 0 0 0 0 3
Jul 2 0 2 1 0 0 0 0 1 1 1 2 10
Aug 0 0 0 3 0 0 1 0 0 1 0 2 7
Sep 0 0 0 1 1 0 0 0 0 0 1 0 3
Oct 1 1 0 2 0 0 1 0 0 1 1 0 7
Nov 0 1 1 1 2 0 0 2 0 1 1 0 9
Dec 0 1 1 0 0 0 1 0 0 0 0 0 3
Total 13 4 7 10 8 4 5 3 4 9 7 8 82

Table 7.1: A contingency table of month of birth versus month of death ([30]).

relationship may not be theoretically or practically important or even very large – a
relationship need only exist. A test of statistical significance tells us how confidently
we can generalise to a larger population from a sample of that population. In other
words, we test whether our actual results are different enough from what is expected
to surpass a certain probability that they are due to sampling error.

The question first is then what do we expect? If the months of birth and death were
independent, then we would expect that the number of people who were born in
month b and died in month d in the sample is pb·pd

p
where p is the total number

of people in the sample, pb is the total number of people born in month b, and pd

is the total number of people who died in month d. For example, we would expect
that there are 13×12

82
≈ 1.9 people in the sample who were born in April and died in

January.

Now that we know what we would expect, we need some way of measuring how
different the observed data is to the expected data. We can measure the difference
between the observed data and the expected data using using the chi-square statistic:

χ2 =
∑

b∈M,d∈M

(Obd − Ebd)
2

Ebd

where M is the set of 12 months, Obd is the observed number of people who were
born in month b and died in month d, and Ebd is the expected number of people
who were born in month b and died in month d. The χ2 statistic for this table is
115.6 suggesting no association between birthday and deathday. The next question
is whether this value is statistically significant or in other words whether the value
large enough to imply that the sample data is statistically significantly different
from the expected data.

One way of determining whether the χ2 statistic for this table is statistically sig-
nificant is to compare it to the χ2 statistic for all the other possible tables with

7.1. ALGEBRAIC STATISTICS 129

the same row and columns sums as the sample table (and thus the same expected
values as the sample). We define the p-value of a sample of data for this example
is the proportion of tables among all those possible tables with the same row and
column sums as the sample for which the value of the chi-square statistic equals or
exceeds the chi-square statistic for the sample data. So, if the p-value is small, then
the sample data is statistically significantly different from the expected value and
we have strong evidence against the hypothesis that the months of birth and death
are independent ([68]).

The traditional method for computing the p-value is to use the chi-square approx-
imation, which is valid when all the cell counts are reasonably large (at least 5).
This assumption is certainly not valid for the sample data for our example. Another
method, Fisher’s exact test is equivalent to enumerating all the possible tables with
the same row sums and column sums as the sample. The set of all tables with the
sample row sums and columns sums as our sample data is the set

F = {x ∈ N144 :
∑

b∈M

xbd = pb ∀b ∈ M,
∑

d∈M

xbd = pd ∀d ∈ M}

where pb the total number of people born in month b and pd is the total number
of people who died in month d. However, enumerating all the possible contingency
tables is really only tractable for small size tables (smaller than a 3×3 table). Indeed,
Diaconis and Sturmfels in [30] give an example and a 4 × 4 contingency table for a
sample data set with 592 observations for which there are 1,225,914,276,276,768,514
tables with the same row sums and columns sums as the sample data.

Instead of enumerating all the possible tables, we collect a sample of tables to ap-
proximate the p-value. The set of possible tables above F is a fiber. Let

L = {x ∈ Z144 :
∑

b∈M

xbd = 0 ∀b ∈ M,
∑

d∈M

xbd = 0 ∀d ∈ M}

and let ν = s where s ∈ Z144 is the given sample data. Then, F = FL(ν). We can
therefore construct a sample of all the possible tables in FL(ν) using a Markov basis
of this fiber as described in the Section 1.6 in the introduction. The technique for
collecting a sample of all the possible tables is called Markov chain Monte Carlo
(see for example [40]).

Diaconis and Sturmfels in [30] give a histogram of the χ2 statistic given by sampling
from all possible tables with the same column and row sums as in Table 7.1. The
histogram also suggests that there is no association between birthday and deathday.

Note that a Markov basis of L is a Markov basis for all 12 × 12 tables with any
possible set of fixed row sums and fixed column sums. For this application, it is
particularly useful to compute a Markov basis of L because then we only ever need
to compute it once for all 12 × 12 tables that we would ever need. Additionally, in
theory, we can apply the techniques in this section for two dimensional contingency
tables of any size, and moreover, we can extend this techniques for contingency
tables in higher dimensions.

Using our Project-and-Lift algorithm, we were able to solve a computational chal-
lenge posed by Seth Sullivant concerning three dimensional 4 × 4 × 4 contingency

130 CHAPTER 7. APPLICATIONS

tables with fixed row sums in the x, y and z direction. This is a problem involving
64 variables. The challenge posed by Seth Sullivant amounts to checking whether a
given set of 145, 512 integer vectors in Z64 is a Markov basis of three dimensional
4×4×4 contingency tables with every possible variation of fixed rows sums in every
direction.

Specifically, we computed a minimal Markov basis of the lattice

4
∑

i=1

xijk = 0 for j, k = 1, . . . , 4,

4
∑

j=1

xijk = 0 for i, k = 1, . . . , 4,

4
∑

k=1

xijk = 0 for i, j = 1, . . . , 4.

Computing an entire Markov basis for this problem was previously intractable with
only partial results previously known. Aoki and Takemura in [4] had computed these
145, 512 and claimed that these vectors formed a minimal Markov basis. However, we
managed to compute a complete minimal Markov basis, which has 148, 968 vectors.
We computed the Markov basis within less than 7 days on a Sun Fire V890 Ultra
Sparc IV processor with 1200 MHz.

The 148, 968 vectors of a minimal Markov basis actually fall into 15 different equiv-
alence classes due to the inherent symmetry of the problem; for example, we can
permute the rows in the table and still have a valid 4 × 4 × 4 table. We currently
are not able to use this symmetry to speed up the computation. This leaves room
for significant further improvement of the Project-and-Lift method if it could also
take symmetry into account.

7.2 Normality of semigroups

Another application of a Markov basis of a lattice concerns the normality of the
semigroup {Ax : x ∈ Nn} where A ⊆ Zm×n such that the columns of A span Zm

({Ax : x ∈ Zn} = Zm). We say that this semigroup is normal if {Ax : x ∈ Nn} =
{Ax : x ∈ Rn

+} ∩ Zn. A simple example of a semigroup that is not normal is the
semigroup given by the matrix

A =

[

1 1 1
0 2 3

]

.

For this matrix, we have (1, 1) ∈ {Ax : x ∈ Rn
+} ∩ Zn, but (1, 1) 6∈ {Ax : x ∈ Nn},

so {Ax : x ∈ Nn} is not a normal semigroup. The question of whether a semigroup
is normal or not relates to the linear integer feasibility problem (see [82]). The
semigroup normality question also arises in other areas such as statistical learning
theory (see [53]).

7.2. NORMALITY OF SEMIGROUPS 131

There is an algorithm for determining whether a semigroup is normal or not (see
[54]), but this algorithm involves computing the Hilbert basis of {Ax : x ∈ Rn

+}∩Zn,
which may be computationally intractable. Instead, by analysing the vectors in a
Markov basis of LA = {x ∈ Nn : Ax = 0}, we may find evidence that the semigroup
{Ax : x ∈ Nn} is not normal. Note that if we do not find such evidence, then we
cannot conclude that the semigroup is normal.

The following lemma gives a criterion for when a semigroup is not normal ([72]).
We will show after the lemma how we can use the criterion with Markov bases. For
the lemma, we need the concept of an indispensable vector. We say that a vector
u ∈ LA is indispensable if FLA

(u+) = {u+, u−}.

Lemma 7.2.1. Let A ⊆ Zm×n. The semigroup {Ax : x ∈ Nn} is not normal if
there exists an indispensable vector u ∈ LA such that ui > 1 and uj < -1 for some
i, j ∈ {1, ..., n}.

Proof. Let u ∈ M such that u is indispensable and ui > 1 and uj < -1 for some
i, j ∈ {1, ..., n}. We can thus write u+ = (x+2ei) for some x ∈ Nn and u− = (y+2ej)
for some y ∈ Nn. Also, since u is indispensable, the only two points in FLA

(x + 2ei)
are (x+2ei) and (y+2ej). Note that since Au = 0, we have A(x+2ei) = A(y+2ej),
and thus, A(x+ei−ej) = 1

2
A(x+y). We now show that A(x+ei−ej) 6∈ {Ax : x ∈ Nn}

and the result follows since A(x + ei − ej) = 1
2
A(x + y) ∈ {Ax : x ∈ Rn

+} ∩ Zn.
Suppose that A(x + ei − ej) ∈ {Ax : x ∈ Nn}, so there exists z ∈ Nn such that
Az = A(x+ei −ej). Then, (z +ei +ej) ∈ FLA

(x+2ei), but (z +ei +ej) 6= (x+2ei)
since xj = 0 and (z + ei + ej) 6= (y + 2ej) since yi = 0, which contradicts that u is
indispensable.

Any indispensable vector u ∈ LA must be in every possible Markov basis of LA since
otherwise the graph of the fiber FLA

(u+) would be disconnected. Thus, any Markov
basis of LA must contain every indispensable vector. Not every vector in a Markov
basis is indispensable, but we can check whether a vector is indispensable using the
other vectors in the Markov basis from the following lemma.

Lemma 7.2.2. Let M be a Markov basis of LA and let u ∈ M . A vector u ∈ M is
indispensable if and only if, for all v ∈ M where v 6= u, we have v+ 6≤ u+, v+ 6≤ u−,
v− 6≤ u+, and v− 6≤ u−.

Proof. Assume u is not indispensable. Then there exists another point in FLA
(u+)

besides u+ and u−. Since M is a Markov basis of LA, there must be a path in the
fiber graph from either u+ or u− to the other point. Thus, we must be able to move
from either u+ or u− to the other point using another vector v ∈ M , which means
that either u+−v, u−−v, u+ +v, or u−+v is in FLA

(u+) or equivalently that either
v+ ≤ u+, v+ ≤ u−, v− ≤ u+, or v− ≤ u−.

Conversely, if there exists v ∈ M such that u 6= v and v+ ≤ u+, then u+ − v ∈
FLA

(u+) and u+ − v 6= u−. An analogous argument holds for v+ ≤ u−, v− ≤ u+, or
v− ≤ u−.

132 CHAPTER 7. APPLICATIONS

So, to prove that the semigroup {Ax : x ∈ Nn} is not normal, we compute a Markov
basis of LA and extract the indispensable vectors from the Markov basis, and then,
for each indispensable vector u, we check whether ui > 1 and uj < -1 for some
i, j ∈ {1, ..., n}.1

7.3 Feasibility of Integer Programs

In this section, we present a new Gröbner basis approach for finding a feasible
solution of Fσ

L(ν). We will focus on the special case where σ = ∅ (i.e. FL(ν)) because
it is straight-forward to lift a feasible solution of FLσ(νσ̄) to a feasible solution of
Fσ

L(ν).

We show that the Project-and-Lift algorithm from Section 6.1 that computes Markov
bases of lattices can be modified to find a feasible solution of FL(ν) for any ν ∈ Zn as
well as compute a Markov basis of L. The increase in computation time to compute
the feasible solution is trivial in comparison to the time taken to compute the Markov
basis. It is important for solving lattice programs using Gröbner bases that we can
compute feasible solutions because we need a feasible solution of the lattice program
to solve the lattice program using a Gröbner basis. Furthermore, we can also compute
a feasible solution of FL(ν) for a finite set of ν ∈ Zn simultaneously while computing
a Markov basis of L, or if we only want a feasible solution for one ν ∈ Zn, we can use
a modification of the truncated Project-and-Lift algorithm. We will present the case
where we only want a feasible solution for one ν ∈ Zn, but the algorithm we present
may be easily extended for the more general case of computing feasible solutions for
more than one ν ∈ Zn.

It is possible to modify the other algorithms for computing Markov bases to compute
a feasible solution of FL(ν) for any ν ∈ Zn as well as compute a Markov basis of L.
But, we will only present the modification to the Project-and-Lift algorithm since
it is generally the fastest of the Markov basis algorithms.

The basic idea is that, given a feasible solution of F i
L(ν) for some i ∈ {1, . . . , n},

we can construct a feasible solution of FL(ν) if such a feasible solution exists. Note
that F i

L(ν) is the same as FL(ν) except that we have removed the non-negativity
constraint on the ith component. Hence, for some σ ⊆ {1, . . . , n}, starting with a
feasible solution of Fσ

L(ν) (we choose σ such that this feasible solution is easy to
find), we can compute a feasible solution of Fσ-i

L (ν) for some i ∈ σ. By doing this
repeatedly for every i ∈ σ, we attain a feasible solution of FL(ν).

We now show how to construct a feasible solution of FL(ν) from a feasible solution
of F i

L(ν) for some i ∈ {1, ..., n}. Let ν ∈ Zn, and x ∈ F i
L(ν). If xi ≥ 0, then we are

done. So, assume xi < 0. There are two distinct cases to handle: i is bounded and i

is unbounded.

1The Markov basis may be too large to compute it in its entirety. Instead, we can compute a
partial Markov basis by stopping the Markov basis computation prematurely, and then, we can
check whether the vectors in the partial Markov basis are indispensable by using a Hilbert basis
computation (see [54] for how to prove a vector is indispensable using a Hilbert basis computation).

7.3. FEASIBILITY OF INTEGER PROGRAMS 133

Firstly, if i is unbounded, then there exists u ∈ L where u ≥ 0 and ui > 0 from
Corollary 2.9.2; therefore, x + λu for some λ ∈ N is non-negative on the ith compo-
nent and thus a feasible solution of FL(ν).

Secondly, if i is bounded, then we compute an optimal solution of IP i
L,-ei(ν) =

max{xi : x−ν ∈ L, xı ≥ 0}, which must have an optimal solution since i is bounded.
Let x∗ be the optimal solution of IP i

L,-ei(ν). If x∗
i < 0, then FL(ν) = ∅, otherwise x∗

is a feasible solution of FL(ν). To compute an optimal solution of IP i
L,-ei(ν), we can

compute the optimal solution of IP i
L,≻i

(ν) using a a ν-truncated ≻i-Gröbner basis
of F i

L(·). More explicitly, given a ν-truncated Markov basis of F i
L(·), we compute a

set G ⊆ L that is a ν-truncated ≻i-Gröbner basis of F i
L(·). Then, x′ = NFL(x, G)

is the optimal solution of IP i
L,≻i

(ν) and also an optimal solution of IP i
L,-ei(ν). Con-

ceptually, when computing NFL(x, G), we are just maximising the ith component
which will thus become non-negative if a feasible solution of FL(ν) exists.

In summary, the basic feasibility algorithm for finding a feasible solution of FL(ν) is
as follows. First, we find a set σ ⊆ {1, ..., n} where ker(πσ) ∩ L = {0} such that we
can find a ν-truncated Markov basis of Fσ

L(·) and a feasible solution of Fσ
L(ν). We

need the condition ker(πσ) ∩ L = {0} so that we can find term orders of Fσ
L(·) (see

Section 2.10). Let x be such a feasible solution of Fσ
L(ν), and let M be a ν-truncated

Markov basis of Fσ
L(ν). Then, we select i ∈ σ. If i is unbounded, then we can find a

vector u ∈ L such that uσ̄ ≥ 0 and ui > 0. Then, x + λu ∈ Fσ-i
L (ν) for some λ ∈ N.

Also, we add u to M so that M is a ν-truncated Markov basis of Fσ-i
L (·) by Lemma

6.2.4. If i is bounded, then using the ν-truncated Markov basis M , we compute a set
G ⊆ L that is a ≻i-Gröbner basis of Fσ

L(·) (i.e. G = CPσ
L,ν(≻i, M)), and then, we

compute the normal form x := NFL(x, G), and if xi < 0, then FL(ν) = ∅. Also, we
set M = G so that M is again ν-truncated Markov basis of Fσ-i

L (·) by Lemma 6.2.2.
Lastly, we set σ := σ-i and repeat the above steps until σ = ∅. Note that the set M

is a truncated Markov basis for the next iteration by construction. See Algorithm 8
for a description of this feasibility algorithm. We could easily modify this algorithm
so that we compute feasible solutions for many different ν ∈ Zn simultaneously.

To compute a feasible solution of FL(ν), we need to start from a feasible solution
of Fσ

L(ν) and a ν-truncated Markov basis of Fσ
L(·) for some σ ⊆ {1, ..., n} where

ker(πσ)∩L = {0}. As before in Chapter 6, we can find a set σ ⊆ {1, .., n} such that
ker(πσ) ∩ Lσ = {0}: σ is any set of k independent columns of a basis B of L where
rank(B) = L. Moreover, as in Chapter 6, we can also find a set S ⊆ Lσ such that
S is a basis of Lσ, and S is an upper triangle square matrix with positive diagonal
entries and non-positive entries elsewhere (i.e. S is in Upper Hermite Normal Form
– see Section 2.4). Now, the vector νσ̄ is a solution to the relaxation F σ̄

Lσ(νσ̄) (all
non-negativity constraints are removed). Then, we can add appropriate non-negative
multiples of the vectors in S to νσ̄ such that it becomes non-negative, and thus, we
arrive at a feasible solution of FLσ(νσ̄). From a feasible solution of FLσ(νσ̄), we can
compute a feasible solution of Fσ

L(ν). Also, S is a Markov basis of Lσ as we saw in
Example 3.2.5. We can then lift this to a Markov basis of Fσ-i

L (·).

The steps in this algorithm are essentially the same steps as those in the truncated
Project-and-Lift algorithm (Algorithm 5) for computing a truncated Markov basis.
So, at the same time as computing a Markov basis, we can compute a feasible

134 CHAPTER 7. APPLICATIONS

Algorithm 8 Feasibility algorithm

Input: a lattice L and a vector ν ∈ Zn.
Output: a feasible solution x ∈ FL(ν) or infeasible.

Find a set σ ⊆ {1, . . . , n} such that ker(πσ) ∩ L = {0}.
Compute a set G ⊆ L that is a ν-truncated Markov basis of Fσ

L(·).
Compute a feasible solution x ∈ Fσ

L(ν).
while σ 6= ∅ do

Select i ∈ σ

if i is bounded then

G := CPσ
L,ν(≻i, G)

x := NFσ
L(x, G)

if xi < 0 then return infeasible end if

else

Find u ∈ L such that uσ̄ ≥ 0 and ui > 0.
x := x + λu where λ ∈ N such that (x + λu)i ≥ 0
G := G ∪ {u}

end if

σ := σ-i
M := {u ∈ M : u+

σ̄ ∈ BLσ(νσ̄)}
end while

return x.

solution.

Example 7.3.1. We apply the above method to find a feasible solution of equality
constrained integer knapsack problems (see [2]):

F = {x : Ax = b, x ∈ Nn}

where A ∈ N1×n and b ∈ N. Let L = LA := {u : Au = 0, u ∈ Zn}. Then F = FL(ν)
where ν ∈ {x : Ax = b, x ∈ Zn}. Finding such a vector ν can be done in polynomial
time using the HNF algorithm. If no such ν exists, then the original problem F is
infeasible. Computing a Markov basis and thus solving the feasibility problem of any
such knapsack problem involves only one Gröbner basis computation because there
are n−1 vectors in any lattice basis of LA and so the initial size of σ is always one.2

Consider the following knapsack feasibility problem:

F := {x : 12223x1 + 12224x2 + 36674x3 + 61119x4 + 85569x5 = 89643481 : x ∈ N5}.

Let L = LA where A =
[

12223 12224 36674 61119 85569
]

. The set

S = {(-12224,12223,0,0,0),(2,-5,1,0,0),(-1,-4,0,1,0),(1,-8,0,0,1)}

is a basis of L. Let ν = (-4889, 12222, 0, 0, 0), then FL(ν) = F . Let σ = {1}. Then,
ker(πσ) ∩ L = {0}. The projection of S onto all components except 1 is a Markov

2This Gröbner basis method for computing a feasible solution for the special case of equality
constrained integer knapsack problems was found independently by Bjarke H. Roune ([74]), who
also shows how this method may be extended to compute the Frobenius number.

7.4. INTEGER PROGRAMMING 135

basis of Lσ:

πi(S) = S ′ = {(12223,0,0,0),(-5,1,0,0),(-4,0,1,0),(-8,0,0,1)}

since this set satisfies Lemma 3.2.4. Thus, S is a Markov basis of Fσ
L(·) by Lemma

3.1.5. The set G =

{(-7336,3,2444,0,0),(-7334,-2,2445,0,0),(-2,5,-1,0,0),(-1,-4,0,1,0), (-1,-3,-1,0,1)}

is a ≻i-Gröbner basis of F i
L(·). We can compute G using the completion procedure.

Note that x = (-4889, 12222, 0, 0, 0) ∈ F i
L(ν). The normal form of x is NF i

L(x, G) =
x′ = (-1, 2, 2444, 0, 0). This is not a feasible solution of FL(ν), and the problem is
therefore infeasible.

We list the knapsack problems in Table 7.2, and we list the times to solve the feasi-
bility problem in Table 7.3 as well as the size of the Gröbner bases that was computed
to solve the knapsack problem. In each case, the problem was infeasible. The right
hand sides used for each knapsack was the Frobenius number – the largest infeasible
right hand side. These knapsack instances were taken from the paper [2] by Aardal
and Lenstra; the first five instances first appeared in the paper [27] by Cornuejols et
al. The first fifteen instances were designed such that there is a basis of the lattice LA

(A is equality constraint matrix) containing one vector which is much longer than
the others. The last ten instances were generated randomly in such a way that the
determinant of a basis of the lattice LA was about the same order of magnitude as
the first fifteen instances. This may explain why the sizes of the Gröbner bases are
small for the first fifteen problems and larger for the remaining ten problems.

In the paper [2], the feasibility problem is solved for the same set of equality con-
strained integer knapsack problems by using a reduced lattice basis approach. The
solutions times in [2] and our solutions times are all less than a second, so it would
be interesting to compare the two methods on larger problems with a significant com-
putation time.

This approach for computing a feasible solution of a fiber could potentially be used
when computing a truncated Markov basis by the Project-and-Lift algorithm since
during the algorithm, we check whether ν ′ ∈ BL(ν) which is the feasibility problem
FL(ν − ν ′) 6= ∅. Note that the feasibility approach is well-suited to computing
feasibility for many different fibers simultaneously. It would be interesting to see the
performance of this approach.

Lastly, we wish to point out that Hemmecke in [50] proposed an approach for finding
feasible solutions using Graver bases. This approach is useful when the size of a
Gräver basis is not much larger than the size of a Markov basis.

7.4 Integer programming

In this section, we discuss the use of Gröbner bases to solve the lattice program

IP σ
L,c(ν) := min{cx : x ∈ Fσ

L(ν)}.

136 CHAPTER 7. APPLICATIONS

Equality constraint (A) RHS (b)

1 12223 12224 36674 61119 85569 89643481

2 12228 36679 36682 48908 61139 73365 89716838

3 12137 24269 36405 36407 48545 60683 58925134

4 13211 13212 39638 52844 66060 79268 92482 104723595

5 13429 26850 26855 40280 40281 53711 53714 67141 45094583

6 25067 49300 49717 62124 87608 88025 113673 119169 3367335

7 11948 23330 30635 44197 92754 123389 136951 140745 14215206

8 39559 61679 79625 99658 133404 137071 159757 173977 58424799

9 48709 55893 62177 65919 86271 87692 102881 109765 60575665

10 28637 48198 80330 91980 102221 135518 165564 176049 62442884

11 20601 40429 42407 45415 53725 61919 64470 69340 78539 95043 22382774

12 18902 26720 34538 34868 49201 49531 65167 66800 84069 137179 27267751

13 17035 45529 48317 48506 86120 100178 112464 115819 125128 129688 21733990

14 13719 20289 29067 60517 64354 65633 76969 102024 106036 199930 13385099

15 45276 70778 86911 92634 97839 125941 134269 141033 147279 153525 106925261

16 11615 27638 32124 48384 53542 56230 73104 73884 112951 130204 577134

17 14770 32480 75923 86053 85747 91772 101240 115403 137390 147371 944183

18 15167 28569 36170 55419 70945 74926 95821 109046 121581 137695 6765260

19 11828 14253 46209 52042 55987 72649 119704 129334 135589 138360 80230

20 13128 37469 39391 41928 53433 59283 81669 95339 110593 131989 1663281

21 35113 36869 46647 53560 81518 85287 102780 115459 146791 147097 109710

22 14054 22184 29952 64696 92752 97364 118723 119355 122370 140050 752109

23 20303 26239 33733 47223 55486 93776 119372 136158 136989 148851 783879

24 20212 30662 31420 49259 49701 62688 74254 77244 139477 142101 677347

25 32663 41286 44549 45674 95772 111887 117611 117763 141840 149740 1037608

Table 7.2: Hard Knapsack Constraint Instances.

Recall from Section 2.9 that if IP σ
L,c(ν) has an optimal solution (which can be deter-

mined using Linear Programming methods), then we can reformulate the problem
as IPLσ,cσ̄(νσ) (assuming without loss of generality that cσ = 0), and any optimal so-
lution of IPLσ,cσ̄(νσ) may be lifted to an optimal solution of IP σ

L,c(ν). So, we restrict
our attention to the special case where σ = ∅.

The most straight-forward way to solve IPL,c(ν) using Gröbner basis methods is to
solve IPL,≻c(ν) for some term order ≻ by first computing a Markov basis of L and
a feasible solution of FL(ν) and then computing a ≻c-Gröbner basis of L for some
term order ≻, and finally, computing the normal form of the feasible solution (see
Algorithm 1) giving the optimal solution. With this method, if we want to solve
IPL,c(ν) for a finite set of ν, we only need to compute a feasible solution of FL(ν)
for every ν in the set and redo the normal form computation without needing to
recompute the Markov basis or the Gröbner basis. Note that the feasible solutions
can be computed at the same time as computing the Markov basis without much
additional computational overhead (see Section 7.3).

If we wish to solve IPL,≻c(ν) for just one ν, then we should use information specific
to that fiber to solve the problem. Towards this aim, we can compute a ν-truncated

7.4. INTEGER PROGRAMMING 137

1 2 3 4 5 6 7 8 9 10 11 12 13

Time 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.30 0.00 0.01

Size 5 15 16 7 27 50 17 47 76 51 92 40 49

14 15 16 17 18 19 20 21 22 23 24 25

Time 0.01 0.05 0.48 0.32 0.78 0.23 0.17 0.75 0.22 0.51 0.29 0.45

Size 43 94 514 619 600 407 549 496 394 514 581 782

Table 7.3: Hard Knapsack Constraint Instance Timings.

Markov basis L and a ν-truncated ≻c-Gröbner basis of L. This method is still not
satisfactory in many cases because a ν-truncated Gröbner basis of L may still be
prohibitively large thus making this approach undesirable. We must therefore search
for new ways of reducing the size of a truncated Gröbner basis. There are two ways
in which we can decrease the size of a truncated Gröbner basis.

The first way to reduce the size of a truncated Gröbner basis is to relax some of
the non-negativity constraints of IPL,≻c(ν) such that solving the relaxation still
solves IPL,≻c(ν). That is, we find σ ⊆ {1, ..., n}, such that an optimal solution of
IP σ

L,≻c
(ν) is a feasible solution of IPL,≻c(ν) and thus optimal. The idea being that a

≻c-truncated Gröbner basis of the relaxation Fσ
L(·) is hopefully much smaller than

a ≻c-truncated Gröbner basis of L – it is certainly no larger.

Some of the non-negativity constraints may be redundant, so we can relax them
without changing the set of feasible solutions, and therefore, solving the relaxation
solves the original problem. Somewhat counter intuitively and rather unfortunately,
redundant constraints do affect the size of a truncated Gröbner basis. The reason
for this is that, although a non-negativity constraint may be redundant for FL(ν),
it is usually not redundant for FL(ν ′) for all ν ′ ∈ BL(ν), and a ν-truncated Gröbner
basis of L must be a Gröbner basis of FL(ν ′) for all ν ′ ∈ BL(ν).

Irredundant constraints that are not active for IPL,≻c(ν) – they do not affect the
feasibility of points near the optimal solution – may also be relaxed without essen-
tially changing the problem. Again, such constraints do affect the size of a truncated
Gröbner basis since, although they are not active for IPL,≻c(ν), they are usually ac-
tive for some problems IPL,≻c(ν

′) for which ν ′ ∈ BL(ν).

Remark 7.4.1. The standard view is that it is the integrality constraints on the
variables that make the problem IPL,c(ν) difficult to solve since the linear relaxation
of IPL,c(ν) can be solved efficiently using standard linear programming techniques.
So, standard techniques relax the integrality constraints when trying to solve IPL,c(ν)
as discussed in Section 1.4. We however take a slightly different view that it is the
non-negativity constraints on the x variables that make the problem difficult; hence,
it is these constraints that we relax.

The difficulty here is to find a set σ such that the optimal solution of IP σ
L,≻c

(ν)
is feasible and thus optimal for IPL,≻c(ν). The solution is to solve a hierarchy of
relaxations. We start from some initial relaxation IP σ

L,≻c
(ν) for some σ ⊆ {1, ..., n}

such that IP σ
L,≻c

(ν) has an optimal solution Fσ
L(ν). We compute the optimal solution

of IP σ
L,≻c

(ν) by first computing a ν-truncated Markov basis of Fσ
L(·) and a feasible

138 CHAPTER 7. APPLICATIONS

solution x ∈ Fσ
L(ν), and then, from the Markov basis, computing a ν-truncated ≻c-

Gröbner basis of Fσ
L(·), and finally, using the Gröbner basis, computing the normal

form of x giving the optimal solution x∗ of IP σ
L,≻c

(ν). If x∗ is feasible for IPL,≻c(ν)
(i.e. x∗ ≥ 0), then we are done. Otherwise, we add a constraint that is violated by
the optimal solution of the relaxation (i.e. if x∗

i < 0, then we set σ = σ-i), and
repeat. The algorithm must terminate with a solution because in the worst case
we end up solving the original problem IPL,≻c(ν) (i.e. σ = ∅). In each iteration
of the above approach, we need to compute a truncated Markov basis, a feasible
solution, and a truncated Gröbner basis. In a similar fashion to the Project-and-Lift
algorithm (Algorithm 4) and the feasibility algorithm (Algorithm 8), we can compute
the truncated Markov basis and the feasible solution incrementally as opposed to
computing them from scratch for each iteration.

This iterative approach, solving a hierarchy of relaxations, for solving lattice pro-
grams or integer programs was certainly previously known (see for example [94, 59,
87]). Our contribution to the approach is to show that we can use Gröbner bases
to solve the relaxations in an effective way by computing Gröbner bases, Markov
bases, and feasible solutions for successive iterations incrementally; that is, we do
not need to compute the Gröbner basis, Markov basis, and feasible solution for each
relaxation from scratch each time.

The relaxation that we start with is called a group relaxation (introduced by Gomory
in [44]). Let B be a basis of L, and let σ ⊆ {1, ..., n} be k = rank(B) linearly
independent columns of B such that IP σ

L,c(ν) has an optimal solution. The program
IP σ

L,≻c
(ν) is called a group relaxation. Such a set σ can be found using the simplex

algorithm by solving the linear relaxation of IPL,c(ν).3 Recall from Example 3.2.5
that it is straight-forward to compute a Markov basis of Fσ

L(·), and also, from Section
7.3, it is straight-forward to compute a feasible solution of Fσ

L(ν). Thus, we can
compute a ν-truncated ≻c-Gröbner basis of Fσ

L(·), and then, compute the optimal
solution x∗ of IP σ

L,≻c
(ν). If the optimal solution x∗ of IP σ

L,≻c
(ν) is not feasible and

thus optimal for IPL,≻c(ν), then we need to add some non-negativity constraints
to solve the problem. We call these relaxations created by adding non-negativity
constraints to the group problem an extended group relaxation.

An iteration of the optimisation algorithm proceeds as follows. We assume that at
the start of the iteration we have a set σ ⊆ {1, ..., n} such that ker(πσ) ∩ L = {0},
a ν-truncated Markov basis of Fσ

L(ν), and a feasible solution of Fσ
L(ν). We can

assume this in the first iteration as discussed in the previous paragraph, and we will
ensure it is true in the next iteration; thus by induction, it is true for every iteration.
First, we compute a ν-truncated ≻c-Gröbner basis of L: G := CPσ

L,ν(≻c, M). Then,
we compute the normal form of x thus solving IP σ

L,≻c
(ν): x := NFσ

L(x, G). If the
optimal solution x∗ of IP σ

L,≻c
(ν) is feasible for IPL,≻c(ν) (x∗ ≥ 0), then we have

found the optimal of IPL,≻c(ν). Otherwise, we next compute a ν-truncated Markov
basis of Fσ-i

L (·) and a feasible solution of Fσ-i
L (ν) as in the feasibility algorithm

(Algorithm 8) as follows. If i is unbounded, then we can find a vector u ∈ L such
that uσ̄ ≥ 0 and ui > 0. Then, x + λu ∈ Fσ-i

L (ν) for some λ ∈ N. Also, we add u

to M so that M is a ν-truncated Markov basis of Fσ-i
L (·) by Lemma 6.2.4. If i is

3Here, σ is the set of basic variables of the optimal tableau.

7.4. INTEGER PROGRAMMING 139

bounded, from M , we compute a set G ⊆ L that is a ν-truncated ≻i-Gröbner basis
of Fσ

L(·) (i.e. M = CPσ
L,ν(≻i, M)), and then, M is a ν-truncated Markov basis of

Fσ-i
L (·) by Lemma 6.2.2. Also, we compute the normal form x := NFL(x, G), and

if xi < 0, then FL(ν) = ∅. So, we have computed a Markov basis and a feasible
solution for the next iteration for σ := σ-i.

See Algorithm 9 for a description of the optimisation algorithm. At each iteration,
we must select the next i. An obvious choice is to select the component of the optimal
solution for the previous iteration with the most violated non-negativity constraint;
that is, the most negative component.

Algorithm 9 Optimisation algorithm

Input: an integer program IPL,c(ν).
Output: an optimal solution x ∈ FL(ν) or infeasible.

Find a set σ ⊆ {1, . . . , n} such that ker(πσ) ∩ L = {0}.
Compute a set M ⊆ L that is a ν-truncated Markov basis of Fσ

L(·).
Compute a feasible solution x ∈ Fσ

L(ν).
loop

G := CPσ
L,ν(≻c, M)

x := NFσ
L(x, G)

if x ≥ 0 then return x end if

Select i ∈ σ such that xi < 0.
if i is bounded then

M := CPσ
L,ν(≻i, M)

x := NFσ
L(x, M)

if xi < 0 then return infeasible end if

else

Find u ∈ L such that uσ̄ ≥ 0 and ui > 0.
x := x + λu where λ ∈ N such that (x + λu)i ≥ 0
M := M ∪ {u}

end if

σ := σ-i
end loop

The second way to reduce the size of a truncated Gröbner basis is to reduce the
size of the feasible set FL(ν) by adding constraints. As a general rule, the size
of a truncated Gröbner basis is directly related to the size of FL(ν) because the
smaller the feasible set FL(ν) the fewer vectors in a Gröbner basis of a lattice
that fit within the feasible set; in some cases, the truncated Gröbner basis is as
large as the non-truncated Gröbner basis. At a first glance, this approach of adding
constraints to reduce the size of a truncated Gröbner basis is in direct opposition to
our earlier approach of relaxing redundant or inactive constraints to reduce the size
of a truncated Gröbner basis. However, there is a special type of constraint that can
be added to the formulation that will never increase the size of a truncated Gröbner
basis; the constraints we refer to are upper bound constraints on the cost – most
other constraints will increase the size of a truncated Gröbner basis. So, given some

140 CHAPTER 7. APPLICATIONS

upper bound k ∈ Z on IPL,c(ν), we reformulate the problem as follows:

IPL,c(ν) :=min{cx : x − ν ∈ L, x ∈ Nn}

=min{cx : x − ν ∈ L, cx ≤ k, x ∈ Nn}

=min{−y : x − ν ∈ L, cx + y = k, x ∈ Nn, y ∈ N} + k

=min{−y : x − ν = u, y − (k − cν) = −cu, u ∈ L, x ∈ Nn, y ∈ N} + k

=min{−y : (x − ν, y − (k − cν)) = (u,−cu), u ∈ L, (x, y) ∈ Nn+1} + k

=min{−y : (x, y) − (ν, k − cν) ∈ L′, (x, y) ∈ Nn+1} + k

= IPL′,c′(ν
′) + k.

where L′ := {(u, -cu) : u ∈ L} ⊆ Zn+1 (which is a lattice), ν ′ := (ν, k − cν), and
c′ = -en+1. Thus, IPL,c(ν) = IPL′,c′(ν

′)+k. Hopefully, the feasible set FL′(ν ′) is a lot
smaller than FL(ν), and consequently, a ν ′-truncated ≻c′-Gröbner basis of L′ is a lot
smaller than a ν-truncated Gröbner basis of L and thus a lot quicker to compute.
How much smaller a ν ′-truncated ≻c′-Gröbner basis of L′ is than a ν-truncated
Gröbner basis of L will depend on the strength of the upper bound. It is potentially
just the empty set.

We can combine this approach with the previous approach of solving a hierarchy of
relaxations; that is, we use Algorithm 9 to solve IPL′,≻c′

(ν ′) with a slight modification
that we add the non-negativity constraint on the (n + 1)th component in the first
iteration of Algorithm 9 otherwise it would never be added since it is always satisfied
by any optimal solution of a relaxation.

Crucially, as we mentioned above, the size of a minimal ν ′-truncated ≻c′-Gröbner
basis of L′ cannot exceed the size of a minimal ν-truncated ≻c-Gröbner basis, so we
are not computing more than before. Consider the set Fn+1

L′ (ν ′). Note that we have
relaxed the non-negativity constraint on the (n+1)th component, or in other words,
we have relaxed the upper bound constraint. Thus, we have πn+1(F

n+1
L′ (ν ′)) = FL(ν)

since πn+1(L′) = L and πn+1(ν
′) = ν. So, Lemma 4.1.3 implies that a set G′ ⊆ L′

is a ν ′-truncated ≻c′-Gröbner basis of Fn+1
L′ (·) if and only if πn+1(G

′) ⊆ L is a
ν-truncated ≻c-Gröbner basis of FL(·) since ≻c and ≻c′ are really the same term
order. Thus, ν ′-truncated ≻c′-Gröbner bases of Fn+1

L′ (·) are essentially the same as
ν-truncated ≻c-Gröbner bases of FL(·). Also, by Lemma 6.2.2, if a set G′ ⊆ L′ is
a ν ′-truncated ≻c′-Gröbner basis of Fn+1

L′ (·), then G′ is a ν ′-truncated ≻c′-Gröbner
basis of FL′(·) since c′ = -en+1. Thus, a minimal ν ′-truncated ≻c′-Gröbner basis
of FL′(·) cannot exceed the size of a minimal ν ′-truncated ≻c′-Gröbner basis of
Fn+1

L′ (·) or equivalently the size of a minimal ν-truncated ≻c-Gröbner basis of FL(·).
However, a G′ is a ν ′-truncated ≻c′-Gröbner basis of FL′(·) may be smaller than a
ν ′-truncated ≻c′-Gröbner basis of Fn+1

L′ (·).

Standard methods for integer programming can take advantage of a good feasible
solution of IPL,c(ν), but previous Gröbner basis methods could not. However, we
can take advantage of a good feasible solution since a feasible solution gives us
an upper bound on IPL,c(ν) that can be used to strengthen truncation; that is,
if we are given a feasible solution x ∈ FL(ν), then we can set k = cx − 1 as
an upper bound on the cost. If x is the optimal solution of IPL,c(ν), then setting
k = cx− 1, we have FL′(ν ′) = ∅. Therefore, a minimal ν ′-truncated Markov basis of

7.4. INTEGER PROGRAMMING 141

L′ is empty and a minimal ν ′-truncated ≻c′-Gröbner basis of L′ is also empty. So,
potentially, computing a ν ′-truncated ≻c′-Gröbner basis of L′ is a lot more efficient
than computing a ν-truncated ≻c-Gröbner basis of L; we only have to compute an
empty set to show optimality!

Even if the bound k is not very good and thus does not help truncation much, it
is still definitely worthwhile to solve IPL′,c′(ν

′) instead of IPL,c(ν). The reason is
that by introducing the constraint cx ≤ k into the problem, more components may
become bounded and thus the Gröbner basis and the Markov basis computations
for the extended group relaxations, IP σ

L′,c′(ν
′), are faster (see the section in [52] on

Criterion 2).

Example 7.4.2. Let L = LA for the matrix A given in Example 5.2.4. In the
following table, we list the time taken to compute the optimal solution of IPL,c(ν)
for the same five different ν’s as in Example 5.2.4 given a feasible solution where the
cost is c = (3, 15, 1, 5, 2, 17, 16, 16, 15, 9, 7, 11, 13). The column “Initial σ” gives the
starting value of σ (i.e. the value of σ from the group relaxation), and the column
“Final σ” gives the final value of σ when the problem was solved. The column labelled
“Old Time” gives the solution times in seconds that it took to compute the optimal
solution using the previous Gröbner basis method of computing a truncated Markov
basis and a truncated Gröbner basis of the original problem and then optimising using
the Normal Form algorithm. The column labelled “New Time” gives the solutions
times using the techniques in this section. Here, we used the check for truncation
using a vector a ∈ S∗ ∩ Rn

+ where S∗ is the smallest linear subspace containing L
(see Section 4.3).

ν Initial σ Final σ Old Time New Time

ν1 {3, 4, 5, 10} {3, 4, 5, 10} 0.76 0.28
ν2 {1, 5, 8, 12} {1, 5, 8, 12} 16.70 0.02
ν3 {3, 4, 5, 10} {5, 10} 1.25 0.61
ν4 {3, 4, 5, 10} {3, 5, 10} 13.53 0.46
ν5 {3, 4, 5, 10} {3, 4, 5, 10} 148.61 0.28

Note how more stable the technique is now than previously, meaning that the tech-
nique is not very sensitive to the fiber for which we are computing the optimal solu-
tion and the times no longer reflect the size of the feasible set.

All times are using 4ti2 version 1.3 on a Pentium 4 3.0 GHz machine with 1.0Gb
of RAM running Linux.

Another possible improvement to the algorithm above would be to try and improve
the given feasible solution x ∈ FL(ν) while running the algorithm to reach a better
feasible solution and thus a better upper bound using vectors that we have already
computed in intermediate iterations.

If we do not have a good feasible solution or any feasible solution at all available, we
can still use the extended formulation. Assume that we are given a lower bound l

on the optimal value, which we can always find by solving the linear relaxation. We
then try to find a feasible solution by computing a ν ′-truncated Markov basis of L′

142 CHAPTER 7. APPLICATIONS

where k = l. If we find a feasible solution, then it must be optimal. Otherwise, we
recompute a ν ′-truncated Markov basis of L′ where k = l+1 and again try to find a
feasible solution. We repeat this procedure by incrementing k until we find a feasible
solution which must be an optimal solution. This procedure has the advantage that
we only compute feasible solutions and not optimal solutions, and thus, we avoid
some Gröbner basis computations; that is we avoid computing a truncated Gröbner
basis with respect to ≻c.

The re-computation of ν ′-truncated Markov bases to find initial solutions initially
seems inefficient; however, this is not the case because we can reuse previous com-
putations. Let ν ′ = (ν, k − cν) and ν ′′ = (ν, k + 1 − cν). Then ν ′ ∈ BL(ν ′′) since
(0, 1) ∈ FL′(ν ′′ − ν ′) and so BL(ν ′) ⊆ BL(ν ′′). Hence, to compute a ν ′′-truncated
Gröbner basis or Markov basis of L requires also computing a ν ′-truncated Gröbner
basis or Markov basis respectively anyway. This applies not only at the final stage
of the algorithm for each value of k, but also at each intermediate stage for the
extended group relaxations of IPL′,c′(ν

′). So, it requires storing all the intermediate
stages because we may need to reuse them. This algorithm is much more complex
than the first algorithm presented in this section. We have not implemented such
an approach yet. It would be interesting to see how it performs. Given a very good
initial feasible solution, we would expect that the previous method is faster.

7.5 Enumeration

In this section, we describe approaches for enumerating the points of a fiber FL(ν).

Markov bases can be used to enumerate all the feasible points of a finite set FL(ν).
Let M be a Markov basis of FL(ν). Since the graph GL(ν, M) is connected, we can
enumerate all feasible points in FL(ν) by traversing the graph GL(ν, M) using any
standard graph traversal algorithm such as the breadth-first search or depth-first
search method starting from some initial feasible point x ∈ FL(ν). We assume that
we are given a feasible solution x ∈ FL(ν), but as shown in Section 7.3, a feasible
solution can easily be computed as a by-product of computing a Markov basis of
FL(ν).

Using a set G that is a ≻-Gröbner basis of FL(ν) for some term order ≻, we can
also enumerate all feasible points as above since a Gröbner basis is also a Markov
basis (see Corollary 4.1.7). Moreover, using the properties of a Gröbner basis, we
can enumerate all the feasible solutions in a ≻-increasing order starting from the
optimal solution of IPL,≻(ν). This enumeration method can be useful for solving
integer programs. Consider the integer program IP := min≻{x : x ∈ FL(ν) ∩ Q}
where Q ⊆ Nn represents some additional complicating constraints which may be
non-linear. The idea is that we can solve IP by solving the relaxation IPL,≻(ν) :=
min≻{x : x ∈ FL(ν)}, and if the optimal solution x∗ ∈ IPL,≻(ν) is feasible for the
original problem IP (i.e. x∗ ≥ 0), then we are done, otherwise we enumerate the
feasible points of IPL,≻(ν) in a ≻-increasing order starting from the optimal solution
of IPL,≻(ν), and the first solution that we encounter that is also feasible for IP must
be the optimal solution of IP . In doing this, we hope that the relaxation IPL,≻(ν) is
much easier to solve than the original problem IP , that determining whether x ∈ Q

7.5. ENUMERATION 143

is relatively inexpensive, and that the optimal solution to the original problem IP

is not too far away from the optimal solution of the relaxation IPL,≻(ν).

This approach is due to Tayur, Thomas, and Natraj in [83], who applied this ap-
proach for scheduling different jobs on different machines with setup costs and where
the demands for the different jobs’ outputs are correlated random variables. We can
also possibly use this approach with the Optimisation Algorithm 9, since at inter-
mediate stages of the algorithm, we could enumerate the feasible points of a group
relaxation in a ≻-increasing order to try and find an optimal solution for the original
problem.

Recall that, from Lemma 4.1.6, there exists a ≻-decreasing path from every feasible
solution of FL(ν) to the optimal solution of IPL,≻(ν). Or in other words, there is a
≻-increasing path from the optimal solution to every feasible solution. So, it follows
that, in the graph traversal algorithm, we can process the nodes of GL(ν, M) (the
feasible points of FL(ν)) in a ≻-increasing order starting from the optimal solution.

The algorithm works as follows (see Algorithm 10). We use two sets: a set F to
store the feasible solutions of FL(ν) that we have processed and a set H to store the
feasible solutions that we need to process. At the beginning F = ∅, and H = {x∗}
where x∗ is the optimal solution of IPL,≻(ν). Then, while H 6= ∅, we repeat the
following steps: firstly, we find the ≻-minimal point in H (x := min≻{x ∈ H}),
remove it from H (H := H \ x), and add it to F (F := F ∪ x); and secondly, we
add to H all the feasible solutions x′ that are adjacent to x in the graph GL(ν, G)
where x′ ≻ x (H := H ∪ {x + u : u− ≤ x, u ∈ G}). Then, we are done.

Algorithm 10 Enumeration Algorithm

Input: a set G a ≻-Gröbner basis of FL(ν), and x∗ the optimal solution of IPL,ν().
Output: a set F = FL(ν).

F := ∅.
H := {x∗}.
while H 6= ∅ do

x := min≻{x ∈ H}.
F := F ∪ x.
H := H \ x.
H := H ∪ {x + u : u− ≤ x, u ∈ G}.

end while

return F

As we indicated above, the set {x + u : u− ≤ x, u ∈ G} is the set of all the feasible
solutions x′ that are adjacent to x in the graph GL(ν, G) where x′ ≻ x. We can show
this as follows. Firstly, if x′ is adjacent to x in GL(ν, G) and x′ ≻ x, then there exists
a vector u ∈ G such that x′ − x = u (x′ = x + u), in which case, we must have
u− ≤ x′. Secondly, for some u ∈ G, if u− ≤ x, then x + u is feasible and adjacent to
x in GL(ν, G), and also, x + u ≻ x since u+ ≻ u−.

The algorithm is correct because, at the start of each iteration of the while loop,
we have x ≻ xF for every x ∈ FL(ν) \ F and xF ∈ F , so it follows that we add
points to F in a ≻-increasing order starting from the optimal solution of IPL,≻(ν).
This is certainly true in the first iteration since F = ∅, and it is true for the second

144 CHAPTER 7. APPLICATIONS

iteration since F = {x∗}. So, we assume it is true for the current iteration (at least
the second iteration) and we show it is true for the next iteration. If FL(ν) = F ,
then we are done, otherwise let x := min≻{x ∈ FL(ν) \F}. Since G is a ≻-Gröbner
basis and x is non-optimal, there exists u ∈ G such that x ≻ x − u ∈ FL(ν). By
construction, x − u is adjacent to x, and by assumption, x − u ∈ F ; thus, we must
have x ∈ H and x = min≻{x ∈ H}. Therefore, at the start of the next iteration, we
have F := F ∪x, and the property that x ≻ xF for every x ∈ FL(ν) \F and xF ∈ F

still holds as required.

This completes the part of the thesis devoted to Gröbner bases and Markov bases.
Next we consider computing extreme rays of cones and circuits of matrices.

Chapter 8

Computing extreme rays

The next two chapters concern extreme rays of polyhedral cones and circuits of
matrices. They are completely separate from the previous chapters on Markov bases
and Gröbner bases. In this chapter, we present an algorithm to compute the extreme
rays of a pointed cone

Cσ(A) := {x ∈ Rn : Aσ̄x = 0, Aσx ≥ 0}.

where A ∈ Rm×n, σ ⊆ {1, ..., m} and σ̄ = {1, ..., m} \ σ. Note that Aσ is the
submatrix of A consisting of the rows indexed by σ, and Aσ̄ is the submatrix of A

consisting of the rows of A indexed by σ̄; that is, we have partitioned the rows of
the matrix A into two submatrices Aσ and Aσ̄. So, σ refers to the rows of the matrix
A that give inequality constraints, and σ̄ refers to the rows of the matrix A that
give equality constraints. The cone Cσ(A) is thus the intersection of a linear space
S(Aσ̄) = {x ∈ Rn : Aσ̄x = 0} and the cone C(Aσ) = {x ∈ Rn : Aσx ≥ 0}.

The problem of computing the extreme rays of Cσ(A) has been studied considerably.
Despite this, to the best of our knowledge, it is an open problem whether there exists
a extreme ray enumeration algorithm that runs in polynomial time in both the input
size (the number of bits required to encode the constraint matrix) and the output
size (the number of bits required to encode the size of the set of extreme rays) (see
[6]). Note that it is impossible that an algorithm exists that runs in polynomial time
in the just input size since the number of extreme rays of a d-dimensional cone with
m constraints is O(m⌊ d

2
⌋) and this bound is achieved (see [66, 67, 47]).

Recall from Section 2.3 that computing the vertices and extreme rays of a d-
dimensional polyhedron is equivalent to computing the extreme rays of a d + 1-
dimensional cone, which makes algorithms for computing extreme rays very versa-
tile. Interestingly, it was shown by Khachiyan et al. in [62] that no polynomial time
(in input and output size) algorithm exists to compute just the vertices of a poly-
hedron without the extreme rays of the polyhedron. From Section 2.3, computing
the vertices of a d-dimensional polyhedron without the extreme rays is equivalent
to computing the extreme rays of a d + 1-dimensional cone that are strictly positive
in one component. Note that here the output size is the size of the set of vertices
not including the extreme rays, so this result does not preclude a polynomial time
algorithm (in input and output size) for computing the extreme rays of a cone since

145

146 CHAPTER 8. COMPUTING EXTREME RAYS

a polyhedron may have exponentially many extreme rays but only polynomially
many vertices, and thus, a polynomial time algorithm for computing both vertices
and extreme rays may not be a polynomial time algorithm for computing just the
vertices.

There are two main classes of algorithms for the extreme ray enumeration problem:
insertion algorithms and pivoting algorithms. The algorithm that we focus one here
fits within the class of insertion algorithms, but before presenting this algorithm,
we will give a brief overview of existing algorithms for computing extreme rays of
cones.

We first describe the class of pivoting algorithms. For a d-dimensional cone, a basis
is a set τ ⊆ σ of d − 1 constraints where |τ | = d − 1 such that F := Cσ\τ (A) is
a one-dimensional face of Cσ(A) (i.e. F is generated by an extreme ray of Cσ(A)).
We say that two bases are adjacent if they differ by one constraint, and a pivot
is the operation of moving from one basis to an adjacent basis; that is, we add
one constraint into the basis and we remove one constraint from the basis. This
pivoting operation is the same as in the simplex algorithm. A pivoting algorithm
begins by finding a basis of some initial extreme ray of the cone Cσ(A), and starting
from this initial basis, we can generate all bases of Cσ(A), and thus, all extreme
rays of Cσ(A) using the pivot operation. Algorithms that fall into this class are the
gift wrapping algorithm of Chand and Kapur [17], Seidel’s algorithm [75], and the
well-known reverse search algorithm of Avis and Fukuda [7, 8, 9]. A popular and
efficient implementation of the reverse search algorithm is the software package lrs
[5]. The performance of this class of algorithm depends upon how many different
bases there are in comparison to the number of extreme rays. If there is exactly
one basis per extreme ray, then pivoting algorithms are polynomial in the input and
output size, in which case we say that the cone is non-degenerate. However, there
may be more than one basis per extreme ray, in which case, we say that the cone is
degenerate, and for some polytopes, the number of bases is exponential in the input
and output size. For these polytopes, the pivoting algorithm first perturbs the cone,
either numerically or symbolically, so that there is one basis per extreme ray for the
perturbed cone – the perturbed cone is non-degenerate – and the set of bases of
the perturbed cone is a subset of the bases of the original cone. The perturbation is
performed in such a way that, even though the number of extreme rays has possibly
increased, the number of bases in the perturbed cone is hopefully much smaller than
the number of bases in the original unperturbed cone. Then, we compute the bases
of the perturbed cone, and from these bases, we compute the extreme rays of the
original cone removing duplicates if necessary. Avis and Bremmer show in [6] that
it is not always possible to find a perturbation such that the number of extreme
rays of the perturbed cone is polynomial in the input and output size of the original
cone.

We now describe the class of insertion algorithms. Insertion algorithms compute the
set of extreme rays of a cone incrementally by computing the extreme rays of a hier-
archy of relaxations. Initially, we compute the extreme rays for a relaxation that is a
simple cone – a simple cone is a d-dimensional cone with d facets. Then, we sequen-
tially add the relaxed constraints incrementally computing the extreme rays for each
relaxation. The insertion algorithm we present here is the double description method

8.1. DOUBLE DESCRIPTION METHOD 147

which was originally discovered by Motzkin et al. [69]. It has been rediscovered many
times: the method known as Chernikova’s algorithm (see [19]), and the beneath-and-
beyond method (see [75, 32, 70]) are essentially the same as the double description
method.1 The beneath-beyond method is the dual of the double description method
(i.e. computes a constraint representation from a generator representation). The
most well-known and widely used implementation of the double description method
is the software package cdd by Fukuda (see [35]). Another insertion algorithm is the
Fourier-Motzkin elimination method, which is more general than the double descrip-
tion method according to Fukuda and Prodon [37]. The software package PORTA [20]
is an efficient implementation of the Fourier-Motzkin elimination method. Finally,
there are the randomised algorithm of Clarkson and Shor [21] and the derandomised
algorithm of Chazelle [18], which rely on triangulation.2.

The double description method and its variants and the Fourier-Motzkin elimina-
tion method perform one insertion step in polynomial time in the size of the cone
for the current iteration. However, the method is not necessarily polynomial since
the size of a cone for an intermediate iteration can be exponentially larger than
the size of the original cone. The choice of insertion order is a crucial factor. Avis
and Bremmer show in [6] that there exists a class of cones for which any insertion
algorithm that inserts constraints in a fixed order (independent of the input) must
construct exponentially large intermediate cones in the worst case. It is an open
problem whether there exists an insertion order, which may depend on the input
and also on the output of the previous iteration, that would mean that the double
description method is polynomial in input and output size. The methods relying
upon triangulation have a worst-case exponential complexity in input and output
size irrespective of the insertion order chosen and even when the intermediate cones
have a small size ([6]).

As a general rule, we found that the reverse search method is the better method in
practice for non-degenerate cones or cones with low degeneracy, otherwise the dou-
ble description method is the better method (also, the Fourier-Motzkin elimination
method may be useful in these circumstances).

In this thesis, we will focus on the double description method. We present new opti-
misations for the method, which work well in practice.

8.1 Double Description Method

The fundamental idea behind the double description method is that we can compute
the extreme rays of a pointed cone Cσ(A) := {x ∈ Rn : Aσ̄x = 0, Aσx ≥ 0} from
the set of extreme rays of a pointed cone Ci

σ(A) := {x ∈ Rn : Aσ̄x = 0, Aσ\ix ≥ 0}
where i ∈ σ. The cone Ci

σ(A) is a relaxation of Cσ(A) given by relaxing the constraint
Aix ≥ 0, or in other words, Cσ(A) = Ci

σ(A) ∩ {x ∈ Rn : Aix ≥ 0}. We shall see
that the set of extreme rays of Cσ(A) consists of all extreme rays r of Ci

σ(A) that

1References were taken from [37] and [6].
2References were taken from [6].

148 CHAPTER 8. COMPUTING EXTREME RAYS

are feasible for Cσ(A) (i.e. Air ≥ 0) and some new extreme rays that lie on the
hyperplane {x ∈ Rn : Aix = 0}.

Initially in the double description method, we choose some initial relaxation of Cσ(A)
given by relaxing some of the inequality constraints such that the relaxation is still
a pointed cone and we can easily find the extreme rays of the relaxation. That is,
we choose some τ ⊆ σ such that the cone Cτ

σ(A) = {x ∈ Rn : Aσ̄x = 0, Aσ\τx ≥ 0}
is a pointed cone, and we can easily find the extreme rays of Cτ

σ(A). The cone Cτ
σ(A)

is a relaxation of Cσ(A) given by relaxing the inequality constraints Aτx ≥ 0. Then,
we iteratively apply the above fundamental idea: we compute the extreme rays of
the cone Cτ -i

σ (A) = {x ∈ Rn : Aσ̄x = 0, Aσ\τx ≥ 0, Aix ≥ 0} from the set of extreme
rays of the cone Cτ

σ(A), and we set τ = τ \ i, and repeat until τ = ∅. Note that Cτ
σ(A)

is the relaxation of the cone Cτ -i
σ (A) given by removing the constraint Aix ≥ 0; that

is, Cτ -i
σ (A) = Cτ

σ(A) ∩ {x ∈ Rn : Aix ≥ 0}.

Before presenting the main result behind the algorithm, Lemma 8.1.5, we first in-
troduce the notion of adjacency of extreme rays of pointed cones. This concept will
prove to be invaluable since the extreme rays of the cone Cσ(A) are either extreme
rays of Ci

σ(A) or created from adjacent extreme rays of Ci
σ(A). This notion of adja-

cency corresponds exactly with the intuitive notion of what it means for two extreme
rays of a cone to be adjacent. For the definition, note that two extreme rays r1 and
r2 are distinct if suppA(r1) 6= suppA(r2) or equivalently r1 6= λr2 for any λ ∈ R+.

Definition 8.1.1. Two distinct extreme rays r1 and r2 of a pointed cone C are
adjacent if F = {λ1r

1 + λ2r
2 : λ1, λ2 ∈ R+} is a face of C, or in other words, r1

and r2 generate a face F of C.

We now discuss some results concerning the adjacency of extreme rays. These results
will be pivotal in proving the main result behind the double description method.
Also, some of these results are used in the double description method to determine
whether two given extreme rays are adjacent, which is a crucial part of the algorithm.

Note that, for two rays r1 and r2 of a pointed cone Cσ(A), we have suppA(r1 + r2) =
suppA(r1) ∪ suppA(r2) = {i ∈ {1, ..., m} : Air

1 6= 0, Air
2 6= 0}, and moreover, the

face F = Cτ (A) where τ = suppA(r1 + r2) is the inclusion-minimal face of Cσ(A)
containing both rays r1 and r2.

Lemma 8.1.2. Two distinct extreme rays r1 and r2 of the pointed cone Cσ(A) are
adjacent if and only if dim(F) = 2 where F = Cτ (A) and τ = suppA(r1 + r2).

Proof. Assume r1 and r2 are adjacent. Then, they generate some face F of Cσ(A).
This face has dimension two and must be the inclusion-minimal face containing both
r1 and r2.

Let F = Cτ (A) where τ = suppA(r1+r2). By definition, F is a face of Cσ(A). Assume
that dim(F) = 2. Since r1 and r2 are extreme rays of Cσ(A), they are also extreme
rays of F . The face F is a two-dimensional pointed cone, and thus, it has exactly
two extreme rays. So, r1 and r2 are the only extreme rays of F , and therefore, by
Lemma 2.2.15, r1 and r2 generate F : F = {λ1r

1 + λ2r
2 : λ1, λ2 ∈ R+}.

8.1. DOUBLE DESCRIPTION METHOD 149

Combining Lemma 8.1.2 with Lemma 2.2.11, we arrive at the following corollary,
which is an important algebraic characterisation of adjacency. This corollary is im-
portant because it provides a means for computing whether two given extreme rays
are adjacent.

Corollary 8.1.3. Two distinct extreme rays r1 and r2 of the pointed cone Cσ(A)
are adjacent if and only if rank(Aτ̄) = n − 2 where τ = suppA(r1 + r2).

From Lemma 8.1.2 follows Lemma 8.1.4 below, which is a useful combinatorial char-
acterisation of adjacency. This lemma is important because it also provides a means
for computing whether two given extreme rays are adjacent.

Lemma 8.1.4. Let r1 and r2 be distinct extreme rays of a pointed cone Cσ(A). The
rays r1 and r2 are adjacent if and only if there does not exist another extreme ray r

of Cσ(A) distinct from r1 and r2 where suppA(r) ⊆ suppA(r1 + r2).

Proof. Assume r1 and r2 are adjacent extreme rays and let r be an extreme ray
of Cσ(A) distinct from r1 and r2. By saying that r is distinct from r1 and r2, we
mean that suppA(r) 6= suppA(r1) and suppA(r) 6= suppA(r2). By Lemma 8.1.2, r1

and r2 generate a face F of C: F = {λ1r1 + λ2r2 : λ1, λ2 ∈ R+}. Moreover, F

is the inclusion-minimal face of Cσ(A) containing r1 and r2: F = Cτ (A) where τ =
suppA(r1+r2). Now, suppose suppA(r) ⊆ suppA(r1+r2); then, r ∈ F , and therefore,
r = λ1r1 + λ2r2 for some λ1, λ2 ∈ R+. If λ1 > 0, then suppA(r1) ⊆ suppA(r), and
if λ2 > 0, then suppA(r2) ⊆ suppA(r). Since we cannot have both λ1 = 0 and
λ2 = 0, either suppA(r1) ⊆ suppA(r) or suppA(r2) ⊆ suppA(r). But, since r is an
extreme ray of Cσ(A), by Lemma 2.2.13, we must have either suppA(r1) = suppA(r)
or suppA(r2) = suppA(r), which is a contradiction.

Conversely, assume that there does not exist an extreme ray r of C distinct from r1

and r2 where suppA(r) ⊆ suppA(r1 + r2). Let F = Cτ (A) where τ = suppA(r1 + r2).
Then, r1 and r2 are the only extreme rays of Cσ(A) in the face F since r ∈ F implies
suppA(r) ⊆ suppA(r1 + r2). Thus, r1 and r2 are the only extreme rays of F , and
then, from Lemma 2.2.15, r1 and r2 generate F .

The following lemma, Lemma 8.1.5, is the most important lemma for computing
extreme rays. We illustrate the idea behind Lemma 8.1.5 in Figure 8.1. Here, we
show how new extreme points of a polytope are created when intersecting a half-
space with a polytope. We find that the concepts behind the lemma are better
demonstrated using a polytope than using a cone.

Consider the polytope P in Figure 8.1 given by the vertices a, b, c, d, e, f, g, and h.
Consider the affine hyperplane H which intersects P at a, c, i, and j, and consider
the half-space H defined by H and extending into the page (i.e. d is in H but b is
not in H). The vertices of the new polytope P ∩H are a, c, d, e, g, h, i, and j. This
list of vertices includes all the vertices of P that lie in the half-space H as well as
two new vertices i and j created where the defining hyperplane of H intersects the
interior of the edges of P. The vertex i is created by intersecting the edge from e to
f with H and the vertex j is created by intersecting the edge from f to g with H .

150 CHAPTER 8. COMPUTING EXTREME RAYS

a

b

c

d

e

f

g

h

i

j

Figure 8.1: The intersection of a polytope P and a half-space H.

Generalising this observation, for any polytope P and any half-space H with affine
hyperplane H , the vertices of P ∩ H are precisely the vertices of P that lie in H
and also new vertices created by intersecting H with the interior of an edge in P.
Recall that to compute the extreme points of a polytope, we embed it in a cone and
compute the extreme rays of that cone. The extreme rays of the cone correspond
to the extreme points of the polytope. Also, the 2-dimensional faces of the cone
correspond to the edges of the polytope (the 1-dimensional faces of the polytope).
Thus, applying this observation to cones, we induce that, for any cone C and any
half-space H with hyperplane H (not affine), the extreme rays of C ∩H are precisely
the extreme rays of C that lie in H and new extreme rays created by intersecting H

with the interior of a 2-dimensional face of C. This generalisation is true, and it is
exactly what Lemma 8.1.5 says.

More formally, Lemma 8.1.5 gives an exact description of the extreme rays of Cσ(A)
from the extreme rays of Ci

σ(A) for some i ∈ σ. Recall that Ci
σ(A) is a relaxation of the

Cσ(A) given by removing the constraint Aix ≥ 0, or in other words, Cσ(A) = Ci
σ(A)∩

{x ∈ Rn : Aix ≥ 0}. Lemma 8.1.5 says that the set of extreme rays of Cσ(A) consists
precisely of all the extreme rays r of Ci

σ(A) that are feasible for Cσ(A) (i.e. Air ≥ 0)
and all the rays created by intersecting the hyperplane H = {x ∈ Rn

+ : Aix = 0}
with every two-dimensional face F of Ci

σ(A) where the hyperplane H intersects the
interior of the face F . Note that every two-dimensional face F of Ci

σ(A) is generated
by two adjacent extreme rays r1 and r2, and that H intersects the interior of F if
Air

1 > 0 and Air
2 < 0 (or vice-versa). Also, the ray created by intersecting F and

H is exactly the ray r = (−Air
2)r1 + (Air

1)r2.

We can formulate Ci
σ(A) in the form Cσ′(A′) where σ′ = σ \ i and A′ = Aı (the

matrix A without the ith row), so we may use all of the previous results on cones.
In particular, note that, given a ray r ∈ Ci

σ(A) = Cσ′(A′), the support of r is
suppA′(r) = suppA(r) \ i and the complement of the support is suppA(r) \ i.

Lemma 8.1.5. Given a pointed cone Cσ(A) and i ∈ σ such that Ci
σ(A) is also a

pointed cone, a ray r ∈ Cσ(A) is an extreme ray of Cσ(A) if and only if either r

is also an extreme ray of Ci
σ(A) or (exclusively) there exist adjacent extreme rays

r1, r2 ∈ Ci
σ(A) such that Air

1 > 0, Air
2 < 0 and r = λ((−Air

2)r1 + (Air
1)r2) for

some λ ∈ R+.

8.1. DOUBLE DESCRIPTION METHOD 151

Proof. Let r ∈ Cσ(A) be an extreme ray of Cσ(A). Assume r is not an extreme ray
of Ci

σ(A). We must have Air = 0, otherwise if r′ is an extreme ray of Ci
σ(A) such

that suppA(r′) \ i (suppA(r) \ i, then suppA(r′) (suppA(r) contradicting that r

is an extreme ray of Cσ(A). The face F = Cτ (A) = {x ∈ Rn : Aτ̄x = 0, Aτx ≥ 0}
where τ = suppA(r) is the inclusion-minimal face of the cone Cσ(A) containing r,
and dim(F) = 1 by Lemmas 2.2.10 and 2.2.11. Similarly, the face F ′ = Ci

τ (A) =
{x ∈ Rn : Aτ̄\ix = 0, Aτx ≥ 0} is the inclusion minimal face of Ci

σ(A) containing
r. Since r is not an extreme ray of Ci

σ(A), the face F ′ must have dimension greater
than one by Lemma 2.2.10. Moreover, since F = F ′ ∩ {x ∈ Rn : Aix = 0} and
F has dimension 1, F ′ must have dimension 2, so F ′ is generated by two adjacent
extreme rays r1 and r2 of Ci

σ(A); thus, r = λ1r
1 + λ2r

2 for some λ1, λ2 ∈ R+ since
r ∈ F ′. Now, suppA(r1) \ i 6= suppA(r) \ i and suppA(r2) \ i 6= suppA(r) \ i because
r is not an extreme ray of Ci

σ(A), so λ1 6= 0 and λ2 6= 0. We must have Air
1 6= 0

and Air
2 6= 0 since otherwise r1 ∈ Cσ(A) and suppA(r1) (suppA(r) or r2 ∈ Cσ(A)

and suppA(r2) (suppA(r) contradicting that r is an extreme ray of Cσ(A). So, since
Air = 0, either Air

1 > 0 and Air
2 < 0 or Air

1 < 0 and Air
2 > 0. Assume that

Air
1 > 0 without loss of generality. It follows that that r = λ((−Air

2)r1 +(Air
1)r2)

for some λ ∈ Rn as required.

We now prove the converse. First, let r ∈ Cσ(A) be an extreme ray of Ci
σ(A). Then,

suppA(r)\ i is minimal in Cσ(A) implying that suppA(r) is minimal in Cσ(A). There-
fore, r is an extreme ray of Cσ(A). Second, let r1 and r2 be adjacent extreme rays
of Ci

σ(A) where Air
1 > 0 and Air

2 < 0, and let r = (−Air
2)r1 + (Air

1)r2. Let r′

be a ray of Cσ(A) where suppA(r′) ⊆ suppA(r). This implies that suppA(r′) \ i ⊆
suppA(r) \ i = suppA(r1 + r2) \ i, and thus, r′ is in the face of Ci

σ(A) generated by r1

and r2 because r1 and r2 are adjacent extreme rays of Ci
σ(A). Thus, r′ = λ1r

1 +λ2r
2

for some λ1, λ2 ∈ R+. However, note that Air
′ = 0 since suppA(r′) ⊆ suppA(r) and

Air = 0 by construction. Thus, we must have λ1 = λ(−Air
2) and λ2 = λ(Air

1) for
some λ ∈ R+. Hence, r′ = λr, and therefore, r is an extreme ray of Ci

σ(A) because
it is a support-minimal ray.

We can directly translate this result to the case where we wish to compute the
extreme rays of the cone Cτ -i

σ (A) from the extreme rays of a pointed cone Cτ
σ(A)

where τ ⊆ σ, and i ∈ τ . This is really just a matter of notation. Recall that
the cone Cτ

σ(A) is a relaxation of the Cσ(A) where we have relaxed the inequality
constraints indexed by τ ; i.e. Cτ

σ(A) = {x ∈ Rn : Aσ̄x = 0, Aσ\τx ≥ 0}. Also,
Cτ -i

σ (A) = Cτ
σ(A) ∩ {x ∈ Rn : Aix ≥ 0}. Therefore, if R is the set of extreme

rays of Cτ
σ(A), then the extreme rays of Cτ -i

σ (A) consists of the extreme rays in R

that are feasible for Cτ -i
σ (A) (i.e. r ∈ R such that Air ≥ 0) combined with all rays

r = (−Air
2)r1 + (Air

1)r2 where r1, r2 ∈ R, Air
1 > 0, Air

2 < 0, and r1 and r2 are
adjacent in Cτ

σ(A).

We can now describe the double description method (Algorithm 11) for computing
extreme rays of a pointed cone Cσ(A). The algorithm starts by computing a minimal
set of extreme rays of Cτ

σ(A) for some τ such that Cτ
σ(A) is pointed. Then, using

Lemma 8.1.5, we compute the extreme rays of Cτ -i
σ (A). We then remove i from τ

and repeat until τ = ∅.

We can formulate Cτ
σ(A) in the form Cσ′(A′) where σ′ = σ \ τ and A′ = Aτ̄ (the

152 CHAPTER 8. COMPUTING EXTREME RAYS

matrix A without the rows indexed by τ), so we may use all of the previous results
on cones. In particular, note that, given a ray r ∈ Cτ

σ(A) = Cσ′(A′), the support of
r is suppA′(r) = suppA(r) \ τ and the complement of the support is suppA(r) \ τ .

The algorithm is incomplete: firstly, it does not specify how to find an initial τ ⊆ σ

such that Cτ
σ(A) is pointed and such that we can compute the extreme rays of Cτ

σ(A);
secondly, it does not specify how to select i ∈ τ ; and thirdly and lastly, it does not
specify how to check that r1 and r2 are adjacent. We will address these issues below.

Algorithm 11 Ray Algorithm

Input: a pointed cone Cσ(A)
Output: the set R of extreme rays of Cσ(A).

Find a set τ ⊆ σ such that Cτ
σ(A) is pointed.

Compute the minimal set R of extreme rays of Cτ
σ(A).

while τ 6= ∅ do

Select i ∈ τ .
R+ := {r ∈ R : Air > 0}.
R− := {r ∈ R : Air < 0}.
R := R \ R−.
for all r1 ∈ R+ and r2 ∈ R− do

if r1 and r2 are adjacent in Cτ
σ(A) then

r := (−Air
2)r1 + (Air

1)r2.
R := R ∪ {r}.

end if

end for

τ := τ \ i.
end while

return R

Next, we show how to find a set τ ⊆ σ such that Cτ
σ(A) is pointed and such that we

can find the extreme rays of Cτ
σ(A) easily. In order to show this, we will first discuss

some properties of special types of cones.

Consider the cone C(A) := {x ∈ Rn : Ax ≥ 0} where A ∈ Rn×n and rank(A) = n.
We can easily find the extreme rays of cones of this type. Note that C(A) is a pointed
cone because lin(C(A)) := {x ∈ Rn : Ax = 0} = {0} since rank(A) = n. From linear
algebra, the matrix A is invertible. Let R be the inverse matrix of A; i.e. AR = I.
Let ri = R∗i, the ith column of the matrix R. Thus, we have Ari = ei, so ri ∈ C(A).
Moreover, suppA(ri) = i, so ri is support-minimal, and therefore, ri is an extreme
ray of C(A) by Lemma 2.2.13. So the columns of R are all extreme rays of C(A).
Moreover, the columns of R are the only possible extreme rays of C(A) because any
ray r ∈ C(A) must have supp(ri) ⊆ supp(r) for some i ∈ {1, ..., m}. In conclusion,
for this special cone, there are n extreme rays, which we can find in polynomial time.

Next, consider the cone Cσ(A) := {x ∈ Rn : Aσ̄x = 0, Aσx ≥ 0} for some σ ⊆
{1, ..., n} where again A ∈ Rn×n and rank(A) = n. We can also easily find extreme
rays for cones of this type. This cone is also pointed since rank(A) = n. Again let
R be the inverse matrix of A, and let ri = R∗i. Then, ri is an extreme ray of Cσ(A)

8.1. DOUBLE DESCRIPTION METHOD 153

if i ∈ σ for the same reason as above. But, if i ∈ σ̄, then ri is not an extreme
ray of Cσ(A) since ri 6∈ Cσ(A). Note that, for any ray r ∈ Cσ(A), we must have
suppA(r) ⊆ σ, and thus, supp(ri) ⊆ supp(r) for some i ∈ σ. Therefore, the rays
ri where i ∈ σ are the only extreme rays of Cσ(A). So, the columns of R∗σ are all
extreme rays of C(A). In conclusion, for this cone, there are |σ| extreme rays of
Cσ(A), which also can be found in polynomial time.

Now, we show how to find a set τ ⊆ σ such that Cτ
σ(A) is pointed (rank(A) = n)

and such that we can find the extreme rays of Cτ
σ(A) easily in polynomial time. Note

that Cτ
σ(A) is pointed if rank(Aτ̄) = n since Cτ

σ(A) = Cσ\τ (Aτ̄). Let k = rank(Aσ̄).
We can assume that the matrix Aσ̄ has full row rank (i.e. |σ̄| = k) because Cσ(A) :=
{x ∈ Rn : Aσ̄x = 0, Aσx ≥ 0}, so we can remove any linearly dependent rows of Aσ̄

without changing the cone. Now, let τ ⊆ {1, ..., m} be such that |τ̄ | = n, σ̄ ⊆ τ̄ , and
rank(Aτ̄) = n. Thus, the cone Cτ

σ(A) is pointed, and we can find the extreme rays
of Cτ

σ(A) by computing the inverse matrix of Aτ̄ as we discussed above. Note that,
in this case, there are n − k extreme rays of Cτ

σ(A), and for each extreme ray r, we
have suppA(r) \ τ̄ = ei for some i ∈ σ \ τ .

The performance of the algorithm is extremely sensitive to how we select i ∈ τ ,
called the insertion order. There are several heuristic approaches that we found
useful. There is the max-cut-off approach for which we select i ∈ τ such that the
constraint Air ≥ 0 is violated by the largest number of extreme rays r of Cτ

σ(A),
and also, there is the opposite min-cut-off approach for which we select i ∈ τ such
that the constraint Air ≥ 0 is violated by the smallest number of extreme rays r of
Cτ

σ(A). There is the lexicographic approach for which we select the constraints Ai in
a lexicographic order. Lastly, there is the max-intersection approach for which we
select i ∈ τ such that we have Air = 0 for the largest number of extreme rays r of
Cτ

σ(A). The max-cut-off, min-cut-off, and lexicographic approaches were suggested
by Fukuda and Prodon in [37], but we came across the max-intersection approach.
As a general rule, it is difficult to say which of these orderings will be better for a
particular problem. There are instances in which each one of them is better than
the others, and it is not obvious why one is better than the others for a particular
instance.

There are two approaches for checking whether two extreme rays r1 and r2 of Cτ
σ(A)

are adjacent or not. The first approach is to check whether dim(F) = 2 (see Lemma
8.1.2) where F = Cτ

ρ (A) = {x ∈ Rn : Aρ̄\τx = 0, Aρ\τx ≥ 0} and ρ = suppA(r1 +r2).
We check whether dim(F) = 2 by computing the rank of the matrix Aρ̄\τ since
dim(F) = n − rank(Aρ̄\τ). We refer to this approach as the algebraic approach,
The second approach, which we refer to as the combinatorial approach, is to check
whether there exists another extreme ray r3 (not r1 nor r2) such that suppA(r3)\τ ⊆
suppA(r1+r2)\τ . If such a vector exists, then r1 and r2 are not adjacent (see Lemma
8.1.4). Our implementation of the extreme ray algorithm only uses integral data, so
all rational data is scaled so that it is integral. From our computational experience,
the algebraic approach seems better than the combinatorial approach when the input
data is small. However, if the input data is large, so large that we must use arbitrary
precision arithmetic, then the “combinatorial” approach is better since computing
the rank of matrices with arbitrary precision is quite expensive. The effectiveness of
these two approaches depends greatly on the efficiency of the implementation. We

154 CHAPTER 8. COMPUTING EXTREME RAYS

discuss how these approaches can be optimised in the next section.

Example 8.1.6. We present a small example computation of the extreme rays of
the cone of magic squares. A magic square is an n × n grid of non-negative real
numbers such that the rows, columns, and diagonals all add up to the same value.
For example, the following 3×3 grid is a magic square where each row, column, and
diagonal adds up to 3:

0 2 1
2 1 0
1 0 2

The set of all n × n magic squares is a cone since adding two magic squares gives
another magic square and multiplying all the entries in a magic square by a positive
constant also gives another magic square. For this example, we will compute the
extreme rays of the cone of magic squares; that is, we will compute a minimal set
of magic squares such that every other magic square may be written as a conic
combination of the set of magic squares.

More explicitly, the set of n × n magic squares is the set of all non-negative n × n

matrices X ∈ Rn×n
+ subject to

n
∑

k=1

X1k =
n

∑

j=1

Xij ∀i = 2, ..., n and
n

∑

k=1

X1k =
n

∑

i=1

Xij ∀j = 1, ..., n,

which says that the sum of each row equals the sum of the first row and the sum of
each column equals the sum of the first row, and also subject to

n
∑

k=1

X1k =
n

∑

i=1

Xii and
n

∑

k=1

X1k =
n

∑

i=1

Xi(n−i+1),

which says that sum of the two diagonals equals the sum of the first row.

We will compute the extreme rays for the 3 × 3 case. First, we formulate the set of
3 × 3 magic squares in a more familiar form. We write the magic square X ∈ R3×3

in vector form x ∈ R9 where x = (X11, X12, X13, X21, X22, X23, X31, X32, X33). Then,
we can formulate the set of 3 × 3 cones in the following more familiar form: C =
{x ∈ R9 : Ax = 0, x ≥ 0} where

A =





















1 1 1 -1 -1 -1 0 0 0
1 1 1 0 0 0 -1 -1 -1
0 1 1 -1 0 0 -1 0 0
1 0 1 0 -1 0 0 -1 0
1 1 0 0 0 -1 0 0 -1
0 1 1 0 -1 0 0 0 -1
1 1 0 0 -1 0 -1 0 0





















.

Note that the first row of the matrix A is the equality constraint that says that the
first row sum equals the second row sum. We can write the cone C as C = Cσ(A′) =

8.1. DOUBLE DESCRIPTION METHOD 155

{x ∈ R9 : A′
σ̄x = 0, A′

σx ≥ 0} where σ = {1, ..., 9} and A′ ∈ R(7+9)×9 where
A′

σ̄ = A and A′
σ = I. Note that, for any ray r ∈ C = Cσ(A′), the support of r is

suppA′(r) = suppI(r) = {i ∈ {1, ..., 9} : ri 6= 0}.

We will use the combinatorial check for adjacency (see Lemma 8.1.4). For this
particular cone C = Cσ(A′), two extreme rays r1 and r2 of Cσ(A′) are adjacent if
and only if there does not exist another distinct extreme ray r of Cσ(A′) such that
suppI(r) ⊆ suppI(r

1+r2). Also, for a relaxation Cτ
σ(A′) = {x ∈ R9 : Ax = 0, xτ̄ ≥ 0}

for some τ ⊆ σ, two extreme rays r1 and r2 of Cτ
σ(A′) are adjacent if and only if

there does not exist another distinct extreme ray r of Cτ
σ(A′) such that suppI(r)\τ ⊆

suppI(r
1 + r2) \ τ .

We now proceed with the extreme ray algorithm (Algorithm 11).

Let τ = {4, 5, 6, 7, 8, 9} ⊆ σ. The following three rays are all the extreme rays of the
cone C = Cτ

σ(A′) = {x ∈ R9 : Ax = 0, xτ̄ ≥ 0} where τ̄ = {1, 2, 3}:

R =







(3, 0, 0, -2, 1, 4, 2, 2, -1)
(0, 3, 0, 1, 1, 1, 2, -1, 2)
(0, 0, 3, 4, 1, -2, -1, 2, 2)







.

We have scaled the extreme rays so that all data is integral, which we will do for
all data in this example. Let ri be the ith row of R: that is, ri = Ri. Note that
suppI(r

1) \ τ = {1}, suppI(r
2) \ τ = {2}, and suppI(r

3) \ τ = {3}, so r1, r2, and r2

have a support size of 1; thus, they are all the extreme rays of C.

(i). Note that τ = {4, 5, 6, 7, 8, 9}. Select i = 4. So, R+ = {r2, r3} and R− = {r1}.
We now process all pairs of extreme rays from R+ and R− and check for
adjacency.

(a) Select r1 = (3, 0, 0, -2, 1, 4, 2, 2, -1) and r2 = (0, 3, 0, 1, 1, 1, 2, -1, 2). The
two extreme rays r1 and r2 are adjacent since suppI(r

3) \ τ = {3} 6⊆
suppI(r

1 + r2) \ τ = {1, 2} and r3 is the only extreme ray distinct from
r1 and r2. We then create the new extreme ray

r = (−A′
ir

1)r2 + (A′
ir

2)r1 = (−r1
i)r

2 + (r2
i)r

1 = (3, 6, 0, 0, 3, 6, 6, 0, 3).

In practice, since we use only integral data, it is computationally worth-
while to remove common divisors from extreme rays to avoid numerical
problems. So, we divide r by 3 giving (1, 2, 0, 0, 1, 2, 2, 0, 1), which is ef-
fectively the same extreme ray.

(b) Select r1 = (3, 0, 0, -2, 1, 4, 2, 2, -1) and r3 = (0, 0, 3, 4, 1, -2, -1, 2, 2). These
two extreme rays are also adjacent. We then create the new extreme ray

r = (−r1
i)r

3 + (r3
i)r

1 = (12, 0, 6, 0, 6, 12, 6, 12, 0).

Again, we remove common divisors from r giving (2, 0, 1, 0, 1, 2, 1, 2, 0).

We now add the new extreme rays to R and remove the extreme rays in R−

from R:

R =















(0, 3, 0, 1, 1, 1, 2, -1, 2)
(0, 0, 3, 4, 1, -2, -1, 2, 2)
(1, 2, 0, 0, 1, 2, 2, 0, 1)
(2, 0, 1, 0, 1, 2, 1, 2, 0)















.

156 CHAPTER 8. COMPUTING EXTREME RAYS

Set τ = τ \ i.

(ii). Note that τ = {5, 6, 7, 8, 9}. Select i = 8. So, R+ = {r2, r4} and R− = {r1}.

(a) Select r1 = (0, 3, 0, 1, 1, 1, 2, -1, 2) and r2 = (0, 0, 3, 4, 1, -2, -1, 2, 2). These
two extreme rays are adjacent, and they create the following new extreme
ray: (0, 2, 1, 2, 1, 0, 1, 0, 2).

(b) Select r1 = (0, 3, 0, 1, 1, 1, 2, -1, 2) and r4 = (2, 0, 1, 0, 1, 2, 1, 2, 0). These
two extreme rays are not adjacent because suppI(r

2) \ τ = {1, 2} ⊆
suppI(r

1 + r4) \ τ = {1, 2, 3, 4}.

We now add the new extreme rays to R and remove the extreme rays in R−

from R:

R =















(1, 2, 0, 0, 1, 2, 2, 0, 1)
(0, 0, 3, 4, 1, -2, -1, 2, 2)
(2, 0, 1, 0, 1, 2, 1, 2, 0)
(0, 2, 1, 2, 1, 0, 1, 0, 2)















.

Set τ = τ \ i.

(iii). Note that τ = {5, 6, 7, 9}. Select i = 6. So, R+ = {r1, r3} and R− = {r2}.

(a) Select r2 = (0, 0, 3, 4, 1, -2, -1, 2, 2) and r1 = (2, 0, 1, 0, 1, 2, 1, 2, 0). These
two extreme rays are adjacent, and they create the following new extreme
ray: (1, 0, 2, 2, 1, 0, 0, 2, 1).

(b) Select r2 = (0, 0, 3, 4, 1, -2, -1, 2, 2) and r3 = (1, 2, 0, 0, 1, 2, 2, 0, 1). These
two extreme rays are not adjacent because suppI(r

1) \ τ = {1, 2} ⊆
suppI(r

2 + r3) \ τ = {1, 2, 3, 4, 8}.

We now add the new extreme rays to R and remove the extreme rays in R−

from R:

R =















(0, 2, 1, 2, 1, 0, 1, 0, 2)
(2, 0, 1, 0, 1, 2, 1, 2, 0)
(1, 2, 0, 0, 1, 2, 2, 0, 1)
(1, 0, 2, 2, 1, 0, 0, 2, 1)















.

Set τ = τ \ i.

(iv). Note that τ = {5, 7, 9}. Select i = 7. So, R+ = {r1, r3} and R− = ∅. Since
R− = ∅, there are no extreme rays pairs to check for adjacency, so we can
immediately proceed to the next iteration. The set R remains the same. This
reason is that the non-negativity constraint on xi is redundant. Set τ = τ \ i.

(v). Note that τ = {5, 9}. Select i = 9. So, R+ = {r1, r3, r4} and R− = ∅. Again,
there is nothing to do for this iteration, and R remains the same. Set τ = τ \ i.

(vi). Note that τ = {5}. Select i = 5. So, R+ = {r1, r2, r3, r4} and R− = ∅. Yet
again, there is nothing to do, and R remains the same. Set τ = τ \ i.

(vii). Note that τ = ∅, and the algorithm terminates.

8.2. OPTIMISATIONS 157

Thus, there are four extreme rays of the cone of magic squares:

R =















(0, 2, 1, 2, 1, 0, 1, 0, 2)
(2, 0, 1, 0, 1, 2, 1, 2, 0)
(1, 2, 0, 0, 1, 2, 2, 0, 1)
(1, 0, 2, 2, 1, 0, 0, 2, 1)















.

We can write these four vectors as 3 × 3 magic squares as follows:

0 2 1
2 1 0
1 0 2

2 0 1
0 1 2
1 2 0

1 2 0
0 1 2
2 0 1

1 0 2
2 1 0
0 2 1

So, every possible 3 × 3 magic square is a conic combination of these squares.

8.2 Optimisations

How well the double description method performs depends to an enormous extent on
the efficiency of the implementation. Often algorithms are presented without men-
tioning the necessary optimisations to make them efficient, which makes it difficult
if not impossible to reproduce the computational results. For this reason, we present
the most important optimisations of the algorithm. Almost all of the optimisations
presented in this section are our own.

When running Algorithm 11, almost all of the computation time is spent in checking
whether two extreme rays are adjacent for both the algebraic and combinatorial
approach. This is largely due to the enormous number of adjacency checks we need
to perform. For example, consider the cone of 6×6 magic squares. This cone is a 24-
dimensional pointed cone with a total of 97,548 extreme rays, and during the double
description method, we need to perform the adjacency check 1,277,014,866 many
times. Despite this, using the optimisations in this section, we are able to compute
all of the 97,548 extreme rays and perform all of the 1,277,014,866 adjacency checks
in just 8.0 seconds on a Pentium 4 3.0 GHz machine with 1.0Gb of RAM running
Linux. All of the optimisations we present in this section are designed to speed-up
the procedure for checking whether two extreme rays are adjacent or not.

8.2.1 Eliminating extreme ray pairs

In this section, we describe quick sufficient checks for when two extreme rays are
or are not adjacent. These quick checks are absolutely necessary for any practical
implementation of the double description method. The checks are not enough, so
we will still need to rely on the algebraic and combinatorial checks if all of the
quick checks fail to determine adjacency. The first check of Lemma 8.2.1 below is
well-known (see for example [37]), but the rest of the checks is this section are novel.

Let Cσ(A) be a pointed cone, and let r1 and r2 be two extreme rays of Cσ(A).
We have seen that r1 and r2 are adjacent if and only if n − rank(Aτ̄) = 2 where

158 CHAPTER 8. COMPUTING EXTREME RAYS

τ = suppA(r1 + r2). The rank of the matrix Aτ̄ is clearly at most |τ̄ |; this fact
suggests the following lemma, which gives the most important optimisation for the
double description method. Note that, for a ray r ∈ Cσ(A), we write suppA(r)
meaning the complement of suppA(r) in the set {1, ..., m}, or more explicitly, we
have suppA(r) := {i ∈ {1, ..., m} : Air = 0}.

Lemma 8.2.1 ([37]). Let Cσ(A) be a pointed cone and let r1 and r2 be two extreme
rays of Cσ(A). The rays r1 and r2 are not adjacent if |suppA(r1 + r2)| < n − 2.

Observe that |suppA(r1 + r2)| = m− | suppA(r1 + r2)|, so Lemma 8.2.1 equivalently
says that r1 and r2 are not adjacent if | suppA(r1 + r2)| > m − n + 2. The intuition
behind this result is that if the support of r1 + r2 is too large – the vector r1 + r2

satisfies too few inequalities at equality, then the vector r1 + r2 cannot lie on a two
dimensional face of Cσ(A) and it must lie somewhere more towards the interior of
Cσ(A).

This result appears rather innocuous, but in practice, it is surprisingly useful. For
example, for the cone of 6 × 6 magic squares, recall that we need to perform the
adjacency check 1,277,014,866 many times. In this case, the above quick check deter-
mines that two extreme rays are not adjacent 1,276,593,070 many times. So, 99.97%
of the time, the quick check was useful! That leaves 421,796 extreme ray adjacency
checks. Of these, 271,464 extreme ray pairs were not adjacent, and 150,332 extreme
ray pairs were adjacent thus creating new extreme rays. This number of adjacent
extreme rays is larger than 97,548 because many of the 150,332 new extreme rays
were created in an intermediate relaxation and were not feasible for the original
cone.

The above lemma gives a sufficient condition for when r1 and r2 are not adjacent.
We now present a sufficient condition for when r1 and r2 are adjacent.

Lemma 8.2.2. Let Cσ(A) be a pointed cone and let r1 and r2 be two distinct extreme
rays of Cσ(A). The rays r1 and r2 are adjacent if | suppA(r2) \ suppA(r1)| = 1 or
| suppA(r1) \ suppA(r2)| = 1.

Proof. Assume that | suppA(r2) \ suppA(r1)| = 1. Since r1 is an extreme ray of
Cσ(A), we must have n − rank(Aτ̄) = 1 where τ = suppA(r1). This implies that
n − rank(Aρ̄) ≤ 2 where ρ = suppA(r1 + r2) since |ρ̄| = |τ̄ | − 1 by assumption.
However, we must have n− rank(Aτ̄) ≥ 2 since r1 and r2 are distinct extreme rays.
Therefore, n − rank(Aρ̄) = 2, and r1 and r2 are adjacent extreme rays.

The case where | suppA(r1) \ suppA(r2)| = 1 is the same as before after switching
the roles of r1 and r2.

Using Lemma 8.2.2 above after applying Lemma 8.2.1, we can further reduce the
number of times that we need to perform more expensive algebraic or combinatorial
checks for adjacency. For the cone of 6 × 6 magic squares, where 150,332 extreme
ray pairs created new extreme rays, we find that 81,398 of the 150,332 pairs satisfied
Lemma 8.2.2 leaving 68,934 that didn’t. Hence, we reduce the number of expensive
adjacency checks from 421,796 to 340,398.

There is a special case where Lemmas 8.2.1 and 8.2.2 both apply giving a necessary
and sufficient condition for when two extreme rays are adjacent.

8.2. OPTIMISATIONS 159

Lemma 8.2.3. Let Cσ(A) be a pointed cone and let r1 and r2 be two extreme rays
of Cσ(A) where |suppA(r1)| = n − 1. The rays r1 and r2 are adjacent if and only if
| suppA(r2) \ suppA(r1)| = 1.

Proof. If | suppA(r2) \ suppA(r1)| > 1, then |suppA(r1 + r2)| < n − 2 since by
assumption |supp(r1)| = n − 1; therefore, r1 and r2 are not adjacent by Lemma
8.2.1. On the other hand, if | suppA(r2)\ suppA(r1)| = 1, then r1 and r2 are adjacent
by Lemma 8.2.2.

Using this lemma, we can decrease the number of times we need to perform the
check from Lemma 8.2.1.

During an iteration of the double description method, we must check whether every
r1 ∈ R+ is adjacent to every r2 ∈ R−. So, at the start of an iteration, we check
whether |suppA(r1)| = n− 1 for all r1 ∈ R+ and whether |suppA(r2)| = n− 1 for all
r2 ∈ R−. Then, for every pair r1 ∈ R+ and r2 ∈ R− where |suppA(r1)| = n − 1, r1

and r2 are adjacent if and only if | suppA(r2)\suppA(r1)| = 1, and similarly, for every
pair r1 ∈ R+ and r2 ∈ R− where |suppA(r2)| = n − 1, r1 and r2 are adjacent if and
only if | suppA(r1)\suppA(r2)| = 1. So, if |suppA(r1)| = n−1 or |suppA(r2)| = n−1,
then we do not have to compute compute |suppA(r1 + r2)| for every r2, which we
would normally do as part of the quick check from 8.2.1. For our cone of magic
squares example, by doing this check, we reduce the number of times we need to
check Lemma 8.2.1 from 1,277,014,866 to 168,216,044 while we need to perform the
check of Lemma 8.2.3 only 154,041 times (i.e. checking whether |suppA(r1)| = n− 1
for all r1 ∈ R+ and whether |suppA(r2)| = n − 1 for all r2 ∈ R−). We must still
check Lemma 8.2.2 the same number of times.

There is one final optimisation that we present in this section, which is also a very
important one. It is simple but effective. Recall from Lemma 8.1.4 that two distinct
extreme rays r1 and r2 of a cone Cσ(A) are adjacent if and only if there does not exist
another distinct extreme ray r such that suppA(r) ⊆ suppA(r1 +r2). We can express
the condition suppA(r) ⊆ suppA(r1 + r2) equivalently as suppA(r) \ suppA(r1) ⊆
suppA(r2) \ suppA(r1), and this is true only if we have | suppA(r) \ suppA(r1)| ≤
| suppA(r2)\suppA(r1)|. Now, in the double description method, as we mentioned be-
fore, we check whether one extreme ray r1 of Cσ(A) is adjacent to many other extreme
rays of Cσ(A). So, given an extreme ray r of Cσ(A) where | suppA(r)\suppA(r1)| = 1,
we would expect that the condition suppA(r) \ suppA(r1) ⊆ suppA(r2) \ suppA(r1)
is often true as r2 varies over the extreme rays of Cσ(A).

So, during the double description method, when checking for adjacent extreme rays
of some r1 ∈ R+, we first find all extreme rays r such that | suppA(r)\suppA(r1)| = 1,
and then we use these extreme rays as a first check when determining if r2 ∈ R− is
not adjacent to r1. Let R be the set of extreme rays of Cσ(A), and let

I := {i ∈ {1, ..., m} : ∃r ∈ R, | suppA(r) \ suppA(r1)| = {i}}.

Then, r2 is not adjacent to r1 if suppA(r2)∩ I 6= ∅ and | suppA(r2) \ suppA(r1)| 6= 1.
We show in the following sections that it is possible to compute the set I very quickly
using either the algebraic approach or the combinatorial approach thus making it

160 CHAPTER 8. COMPUTING EXTREME RAYS

computationally worthwhile to perform this check. This check is surprisingly useful
in practice. For our cone of magic squares example, if we apply this check, without
any other checks, then out of the 1,277,014,866 many times that we need to check the
adjacency of two extreme rays, this checks proves that 1,255,820,367 many extreme
ray pairs are not adjacent. So, 98.3% of the time, this check was useful. Moreover, if
we apply all of the checks of this section, then we find that we only need to perform
an expensive adjacency check only 156,410 many times, and out of this, a pair of
extreme rays was found to be adjacent 68,934 many times. Although, this check is
not as effective as the check of Lemma 8.2.2, we found that we could implement it
faster in practice, so we perform this check first before any of the other checks.

In Algorithm 12, we have added all the above checks to Algorithm 11 in a way that
closely resembles the actual implementation in software.

8.2.2 Combinatorial approach

In this section, we show how to optimise the “combinatorial” approach for checking
whether two extreme rays of a pointed cone are adjacent. Recall that two extreme
rays r1 and r2 of a pointed cone Cσ(A) are adjacent if and only if there does not exist
another extreme ray r3 of C (not r1 nor r2) such that suppA(r3) ⊆ suppA(r1 + r2).

The most straight-forward approach to determine whether two distinct extreme rays
r1 and r2 are adjacent is to store a list of all supports of all extreme rays of Cσ(A) and
to iterate through the list from start to finish searching for a different extreme ray
r3 such that suppA(r3) ⊆ suppA(r1 + r2). More formally, we proceed as follows. Let
R := {r1, r2, ..., rk} be the set of extreme rays of Cσ(A), and let S := {s1, s2, ..., sk}
be the supports of the extreme rays: si = suppA(ri) for i = 1, ..., k. So, for a given
pair of distinct extreme rays rj1 and rj2 for some j1, j2 ∈ {1, ..., k}, we check whether
si ⊆ sj1 ∪ sj2 for each i = 1, ..., k where i 6= j1, j2. We can improve upon this simple
method a little by noting that si ⊆ sj1 ∪ sj2 only if |si| ≤ |sj1 ∪ sj2|. So, we sort the
list of extreme rays R in order of increasing support size. In this way, we only have
to iterate through S until either si ⊆ sj1 ∪ sj2 and i 6= j1, j2, or |si| > |sj1 ∪ sj2|.

This straight-forward approach is efficient when the number of extreme rays is a less
than a thousand, but otherwise we need a more sophisticated approach. Instead,
we use a tree structure as opposed to a list to store the support of all the extreme
rays. This tree structure has proven in practice to be a very efficient mechanism for
determining adjacency of extreme rays. The tree is constructed in such a way that
each leaf of the tree will correspond to the support of one extreme ray.

Let T = (V, E) be a tree where V are the vertices or nodes and E are the edges.
Each node v ∈ V of the tree T except the root node has a label lv ∈ {1, ..., m}, and
by convention, we give the root node the label 0. The label of each node is always
strictly greater than the label of its parent node, and we require that the label of a
node is unique amongst its siblings, although the label might not be unique amongst
all nodes. For any leaf node v ∈ V , the list of labels of its ancestors including its
own label but excluding the root node’s label is a subset of {1, ..., m}. Moreover,
this subset is unique for every leaf of the tree since labels are increasing as we move
down the tree and labels are unique amongst the siblings of a node. So, given a list

8.2. OPTIMISATIONS 161

Algorithm 12 Optimised Ray Algorithm

Input: a pointed cone Cσ(A)
Output: the set R of extreme rays of Cσ(A).

Find a set τ ⊆ σ such that Cτ
σ(A) is pointed.

Compute the minimal set R of extreme rays Cτ
σ(A).

while τ 6= ∅ do

Select i ∈ τ .
R+ := {r ∈ R : Air > 0}.
R− := {r ∈ R : Air < 0}.
R := R \ R−.
R1+ := {r ∈ R+ : |suppA(r) \ τ | = n − 1}.
R1− := {r ∈ R− : |suppA(r) \ τ | = n − 1}.
for all r1 ∈ R1+ and r2 ∈ R− do

if |(suppA(r2)\τ)\(suppA(r1)\τ)| = 1 then R := R∪{(−Air
2)r1+(Air

1)r2}
end if

end for

for all r1 ∈ R+ \ R1+ and r2 ∈ R1− do

if |(suppA(r1)\τ)\(suppA(r2)\τ)| = 1 then R := R∪{(−Air
2)r1+(Air

1)r2}
end if

end for

for all r1 ∈ R+ \ R1+ and r2 ∈ R− \ R1− do

I := {i ∈ {1, ..., m} : (suppA(r) \ τ) \ (suppA(r1) \ τ) = {i}, r ∈ R}
if suppA(r2) \ τ ∩ I = ∅ then

if |suppAτ̄
(r1 + r2)| < n − 2 then

if |(suppA(r1) \ τ) \ (suppA(r2) \ τ)| = 1 then

R := R ∪ {(−Air
2)r1 + (Air

1)r2}.
else if r1 and r2 are adjacent in Cτ

σ(A) then

R := R ∪ {(−Air
2)r1 + (Air

1)r2}.
end if

end if

else if |(suppA(r2) \ τ) \ (suppA(r1) \ τ)| = 1 then

R := R ∪ {(−Air
2)r1 + (Air

1)r2}.
end if

end for

τ := τ \ i.
end while

return R

162 CHAPTER 8. COMPUTING EXTREME RAYS

of supports of extreme rays, we can construct a tree T such that the support of each
extreme ray is associated with exactly one leaf of the tree.

Now, as above, let R := {r1, r2, ..., rk} be the set of extreme rays of Cσ(A), and let
S := {s1, s2, ..., sk} be the supports of the extreme rays. Also, let T = (V, E) be the
tree of the supports in S as described above. So, if we wish to check that a given
pair of distinct extreme rays rj1 and rj2 for some j1, j2 ∈ {1, ..., k} are adjacent, we
must check whether there exists i ∈ {1, ..., k} such that si ⊆ sj1 ∪ sj2 and i 6= j1, j2.
We then proceed as follows. Starting from the root node, we traverse the tree T is
a depth first search fashion where we only visit a vertex v ∈ V if lv ∈ sj1 ∪ sj2 . If we
reach a leaf v ∈ V of the tree associated with the support set si ∈ {1, ..., m}, then
we must have si ⊆ sj1 ∪ sj2 since lv′ ∈ sj1 ∪ sj2 for every ancestor v′ of v excluding
the root node. So, if i 6= j1, j2, then we have shown that rj1 and rj2 are not adjacent
and we can stop searching, otherwise we continue to traverse the tree. If we have
traversed the entire tree without finding a support set si where si ⊆ sj1 ∪ sj2 and
i 6= j1, j2, then rj1 and rj2 are adjacent.

Example 8.2.4. In Table 8.1, we list the supports of 20 extreme rays of the cone
of 4× 4 magic squares. Figure 8.2 is the tree associated with these 20 extreme rays.
In this diagram, we have numbered the leaves of the tree, and the number of a leaf
corresponds to the number of the support it represents in Table 8.1. Consider for
instance, the leaf labelled 7 in Figure 8.2. Its label is 14, and its ancestors are labelled
12, 7, 1, and 0 moving up the tree. Therefore, the set associated with this leaf is
{1, 7, 12, 14}, which is exactly the same as support number 7 in Table 8.1.

support # support
1 {1,2,5,7,10,12,15,16} 11 {2,5,7,11,12,13,16}
2 {1,2,6,7,12,13,15} 12 {2,7,9,16}
3 {1,3,7,8,9,10,14,16} 13 {2,8,11,13}
4 {1,3,8,10,11,13,14} 14 {3,4,6,7,9,11,13,14}
5 {1,4,5,6,10,13,15} 15 {3,4,6,8,9,11,13,14}
6 {1,7,8,9,11,14} 16 {3,5,10,16}
7 {1,7,12,14} 17 {3,6,8,9,10,13,16}
8 {1,8,10,15} 18 {3,6,12,13}
9 {2,4,5,6,11,12,13,15} 19 {4,5,11,14}
10 {2,4,5,10,11,15,16} 20 {4,6,9,15}

Table 8.1: Extreme ray supports.

Consider j1 = 12 and j2 = 19; hence, sj1 = {2, 7, 9, 16} and sj2 = {4, 5, 11, 14},
and sj1 ∪ sj2 = {2, 4, 5, 7, 9, 11, 14, 16}. In this case, the extreme rays rj1 and rj2 are
adjacent. In Figure 8.3, we show the part of tree of supports that we would traverse
using a depth first search approach. Note that only the leaves 12 and 19 are visited
thus proving that rj1 and rj2 are adjacent.

In Section 8.2.1, the last quick check for deducing that two extreme rays are not
adjacent requires that, given an extreme ray r of the cone Cσ(A), we find the set
I ⊆ {1, ..., m} where i ∈ I if suppA(r′) \ suppA(r) = {i} for some extreme ray r′

8.2. OPTIMISATIONS 163

0

1 2 3 4

2 3 4 7

7

8

5

10

10

12

15 15

16

6

7

7

5

12

12

8

9

10

14

16

8

11

13

14

5

4 45 5 56 67 8

9

15

11

1413

8

9

10

13

16

10

16

8

9

11

14

12

14

10

15

5

6

11

12

13

15

10

11

15

16

6

10

13

15

7

11

12

13

16

9

16

11

13

6

7

9

11

13

14

8

9

11

13

14

1

2

3

4 5

6

7 8

9

10 11

12 13

14 15

16

17

18 19 20

Figure 8.2: A support tree.

of Cσ(A). We can find this set efficiently by traversing the support tree T = (V, E)
as follows. We traverse the tree in a depth first search fashion and we visit a node
v ∈ V if lv ∈ suppA(r) with the exception that we may visit v where lv 6∈ suppA(r)
if v does not have an ancestor v′ such that lv′ 6∈ suppA(r). In this way, if we visit a
leaf associated with extreme ray r′, we know | suppA(r′) \ suppA(r)| = 1 or r′ = r.
So, we can compute the set I from the set of leaves that we visited.

In the example tree of Figure 8.2, there are many vertices with only one child and
often there is a sequence of vertices with only one child ending at a leaf node.
Traversing such structures is not very efficient. One improvement of the current tree
structure would be to avoid such sequence of vertices. If a vertex has only one child,
then we combine it with its child node. In this way, a sequence of vertices each with
just one child node becomes one vertex, and the label of this new vertex would be
the set of indices consisting of the labels of each of the vertices that this new vertex
replaces. We have not yet implemented such a tree; it would be interesting to see if
there is a significant improvement in performance.

Independently, Terzer and Stelling wrote an article [84] about a different tree struc-
ture for speeding up the combinatorial approach. The tree they suggest is a binary
tree where every node is labelled either 0 or 1 (and the root node is not labelled).
So, for a given leaf node v, the list of labels of its ancestors from the root node
downwards is sequence of 0’s and 1’s of length k (i.e. a subset of {1, 0}k) where k is
depth of the leaf node. A sequence q ∈ {1, 0}k represents a set s ⊆ {1, ..., k} where
i ∈ s if qi = 1. Similarly to our tree structure, they associate a support set with
every leaf of the tree, so, given a support set s, they can search the binary tree for a

164 CHAPTER 8. COMPUTING EXTREME RAYS

0

1 2 3 4

4 5 5 67 8

11

14

5

6 10

7

11

12

9

16

12 19

Figure 8.3: Traversing the support tree.

support set s′ such that s′ ⊆ s. Independently, we also implemented such a binary
tree structure, but we found that the tree as described above lead to faster compu-
tations, which we believe is because the binary tree has a larger depth. However,
they do suggest to limit the depth of the tree so a leaf corresponds only to a subset
of a support, so there may be more than one support set associated with a leaf, and
they also suggest another optimisation for the tree for which we refer the reader to
[84].

More research is needed here to determine a good tree structure.

8.2.3 Algebraic approach

In this section, we describe important new optimisations to speed-up the algebraic
adjacency check, which involves computing the rank of a matrix. Recall that for a
cone Cσ(A), two distinct extreme rays r1 and r2 of Cσ(A) are adjacent if and only if
rank(Aτ̄) = n−2 where τ = suppA(r1+r2). So, to determine the adjacency of r1 and
r2, we must compute the rank of the matrix Aτ̄ , which is an |suppA(r1 + r2)| by n

matrix. Fukuda and Prodon in [37] claim that this approach is not as efficient as the
combinatorial approach, but we found the opposite, and as did Gagneur and Klamt
in [39]. The algebraic approach has an advantage over the combinatorial approach
in that the complexity of performing the algebraic adjacency check does not depend
on how many extreme rays there are, whereas the combinatorial adjacency check
does.

Clearly, we need an efficient method for computing the rank of a matrix, and note
that it may be possible to stop the rank computation early when it becomes clear
that rank(Aτ̄) < n−2. We will not discuss the details of computing ranks of matrices
any further here, so we assume that we have an efficient method. Instead, we present
methods for reducing the size of the matrix by using different formulations of the
cone Cσ(A) since reducing the size of the matrix usually results in a quicker rank
computation in practice. We will consider three different possible formulations of
a cone: C = {x ∈ Rn : Ax ≥ 0}, C = {x ∈ Rn : Ax = 0, x ≥ 0}, and lastly
C = {x ∈ Rn : Ax ≥ 0, x ≥ 0}. We show that any cone Cσ(A) can be transformed

8.2. OPTIMISATIONS 165

into an equivalent cone in one of the above three forms. We examine the effect of
the transformation on the size of the matrix needed to perform the rank check.

We show that it might be beneficial to reformulate the cone Cσ(A) where A ∈ Rm×n

into the form C(A′) = {x ∈ Rn : A′x ≥ 0} for some matrix A′ ∈ Rm×k where k ≤ n.
We show that performing this transformation means that we need to compute the
rank of a smaller matrix. First, we show how to perform the transformation. We can
assume that the matrix Aσ̄ is full row rank (i.e. rank(Aσ̄) = |σ̄|) since we can remove
any linearly dependent rows of Aσ̄ and still have the same cone. Let τ ⊆ {1, ..., m}
be |σ̄| many linearly independent columns of Aσ̄. Let T ∈ R|σ̄|×|σ̄| be the inverse
matrix of Aσ̄τ (i.e. TAσ̄τ = I). Note that Aσ̄τ is the submatrix of A consisting of the
rows of A index by σ̄ and the columns of A indexed by τ and Aσ̄τ ∈ R|σ̄|×|σ̄|. Then,

Cσ(A) :={x ∈ Rn : Aσ̄x = 0, Aσx ≥ 0}

={x ∈ Rn : TAσ̄x = 0, Aσx ≥ 0}

={x ∈ Rn : TAσ̄τxτ + TAσ̄τ̄xτ̄ = 0, Aστxτ + Aστ̄xτ̄ ≥ 0}

={x ∈ Rn : xτ = −TAσ̄τ̄xτ̄ , (−AστTAσ̄τ̄ + Aστ̄)xτ̄ ≥ 0}.

Finally, it follows that if we wish to compute the generators of Cσ(A), then it suffices
to compute the generators of the cone C(A′) ⊆ R|τ̄ | where A′ = −AστTAσ̄τ̄ + Aστ̄

since there are no inequality constraints involving the variables xτ and thus we
can effectively ignore them. We can reconstruct the generators of Cσ(A) from the
generators of C(A′) by using the equation xτ = −TAσ̄τ̄xτ̄ . Note that the matrix A′

is an (m− |σ̄|) by (n − |σ̄|) matrix. Intuitively, we have eliminated the xτ variables
from Cσ(A) to arrive at C(A′), or in other words, we have projected Cσ(A) onto the
xτ̄ variables.

We now discuss what effect this transformation has on the rank check for adjacency.
The set suppA(r) is the same as suppA′(r′) since the cones C(A′) and Cσ(A) have
essentially the same set of inequalities, but |suppA′(r′)| = |suppA(r)| − |σ̄|. Now, let
r̃1, r̃2 ∈ C(A′) where r1

τ̄ = r̃1 and r2
τ̄ = r̃2. Then, determining whether r1 is adjacent

to r2 in Cσ(A) is equivalent to determining whether r̃1 is adjacent to r̃2 in C(A′)
where we only need to determine the rank of a matrix of size |suppA′(r̃1 + r̃2)| by
(n− |σ̄|) where |suppA′(r̃1 + r̃2)| = |suppA(r1 + r2)| − |σ̄|. Hence, we have decreased
the numbers of columns by |σ̄| and the number of rows by |σ̄| of the matrix needed
to perform the rank check. So, it is possibly worth performing the transformation
from Cσ(A) to C(A′).

However, in general, C(A′) is not always the best formulation for performing the rank
check. Consider the cone Cσ(A) for some A ∈ Rm×n. Let r1 and r2 be two distinct
extreme rays of Cσ(A). We have observed in practice that, for some cones, the size
of the set suppA(r1 + r2) can be much smaller than the size of suppA(r1 + r2). If the
pair of extreme rays passes the test from Lemma 8.2.1, then suppA(r1 + r2) ≥ n− 2
or equivalently suppA(r1 + r2) ≤ m − n + 2. So, if n is large and m is not much
larger than n, then suppA(r1 + r2) must be small compared to suppA(r1 + r2). It is
also true that suppA(r1 + r2) is often much smaller than suppA(r1 + r2) when the
cone is quite degenerate. For these cases, we would prefer to compute the rank of a
matrix whose size depends more on suppA(r1 + r2) rather than on suppA(r1 + r2) as

166 CHAPTER 8. COMPUTING EXTREME RAYS

it does for cones in the form Cσ(A) and C(A). Next, we give a formulation for which
this is the case.

Consider a cone in the form C = {x ∈ Rn : Ax = 0, x ≥ 0} for some matrix
A ∈ Rm×n. In our implementation, we only use cones in this form. Note that C =
Cσ(A′) := {x ∈ Rn : A′

σ̄x = 0, A′
σx ≥ 0} where

A′ =

[

I

A

]

and σ = {1, ..., m} (i.e. A′
σ̄ = A and A′

σ = I). The matrix A′ ∈ R(m+n)×n has special
structure that we can take advantage of when performing rank computations with
A′. From Corollary 8.1.3, two distinct extreme rays r1 and r2 of C(A′) are adjacent
if rank(A′

ρ̄) = n − 2 where ρ = suppA′(r1 + r2). Furthermore,

A′
ρ̄ =

[

Iτ̄

A

]

where τ = suppI(r
1 + r2) because ρ = suppA′(r1 + r2) = suppI(r

1 + r2) = τ . It
then follows from linear algebra that rank(A′

ρ̄) = rank(A∗τ) + |τ̄ |, and therefore,
rank(A′

ρ̄) = n − 2 when rank(A∗τ) = n − 2 − |τ̄ | = |τ | − 2. Thus, we must compute
the rank of a m by |τ | matrix. Note that the size of the matrix only depends on
| suppA′(r1 + r2)| and not on |suppA′(r1 + r2)|. Recall that if the pair r1 and r2 of
extreme rays passes the test for non-adjacency from Lemma 8.2.1, then we have
|suppA′(r1 + r2)| ≥ n − 2 implying that |τ̄ | = |suppI(r

1 + r2)| ≥ n − m − 2 and
|τ | = | suppI(r

1 + r2)| ≤ m + 2 since |suppA′(r1 + r2)| = |suppI(r
1 + r2)| + m and

| suppI(r
1 + r2)| = n− |suppI(r

1 + r2)|. So, if m is small and n is large or C is quite
degenerate, then the matrix A∗τ is small in comparison with the matrix A.

Now, we show how to transform any pointed cone into the very convenient form
C = {x ∈ Rn : Ax = 0, x ≥ 0} and what effect this has on the rank computation.
Consider the pointed cone C(A) := {x ∈ Rn : Ax ≥ 0}. We assume that any
equality constraints have been removed using the transformation mentioned above,
which only reduces the number of variables and constraints. We will show that we
can transform C(A) into a cone C = {x ∈ Rn : A′x = 0, x ≥ 0} where A′ is an
(m−n) by m matrix. We perform the transformation by introducing slack variables
to change inequality constraints into equality constraints, and then, we eliminate the
x variables. Now, since C(A) is pointed, rank(A) = n, and then, by linear algebra,
there exists a matrix T ∈ Rm×m such that (TA)T = (I, 0)T; that is, the first n rows
of TA are the n by n identity matrix and the last m−n rows of TA are zero. Then,

C(A) :={x ∈ Rn : Ax ≥ 0}

={x ∈ Rn : Ax − Is = 0, s ≥ 0}

={x ∈ Rn : TAx − Ts = 0, s ≥ 0}

={x ∈ Rn : x = Tρs, Tρ̄s = 0, s ≥ 0}

where ρ = {1, ..., n}, so Tρ is the first n rows of T and Tρ̄ is the last m − n rows of
T . It follows that if we wish to compute the extreme rays of C(A), then it suffices
to compute the extreme rays of C = {s ∈ Rm : A′s = 0, s ≥ 0} where A′ = Tρ̄,

8.2. OPTIMISATIONS 167

which is an (m − n) by m matrix. We can reconstruct the generators of C(A) from
the generators of C using the equation x = Tρs. Moreover, note that if x ∈ C(A)
and s ∈ C where s = Ax (or equivalently x = Tρs), then Aix > 0 if and only if
si > 0, which means that we have not changed the support of extreme rays during
the transformation: suppA(x) = suppI(s). Let r1, r2 ∈ C(A) and let s1, s2 ∈ C such
that Ar1 = s1 and Ar2 = s2. Performing the adjacency rank check in C(A) means
computing rank(Aτ̄) where τ = suppA(r1 + r2). The matrix Aτ̄ is a |τ̄ | by n matrix.
On the other hand, performing the adjacency rank check in C means computing
rank(A′

∗τ) as we saw above. Here, the matrix A′
∗τ is a (m−n) by |τ | matrix. Hence,

if n is large and m is not much larger than n or C(A) is quite degenerate, then |τ | is
small compared to |τ̄ | and the matrix A′

∗τ is probably much smaller than the matrix
Aτ̄ , in which case, we prefer the C formulation. However, if n is small and m is large,
then |τ̄ | is small compared to |τ | and A′

∗τ is probably much larger than the matrix
Aτ̄ , in which case, we prefer the C(A) formulation.

There is another benefit of the formulation C = {x ∈ Rn : Ax = 0, x ≥ 0}: it is easy
to find all extreme rays r ∈ C such that | suppA(r)| = 1. Note that if | suppA(r)| = 1
for r ∈ C, then r must be an extreme ray since it is definitely support-minimal.
Firstly, if the ith column of A is zero (i.e. Ai = 0), then r = ei is an extreme ray
of C since r ∈ C and | suppA(r)| = 1. Secondly, if r is an extreme of C such that
| suppA(r)| = 1, then r = ei for some i ∈ {1, ..., n} and the ith column of A must be
zero.

Fortunately, there is a formulation of a cone that has the best of both of the previous
formulations. We will argue that the form C := {x ∈ Rn : Ax ≥ 0, x ≥ 0} for
some A ∈ Rm×n is the best formulation for cones for performing the algebraic
check. Importantly, we will show below that any pointed cone can be written in
this form without increasing the size of the constraint matrix. Note that we have
C = C(A′) := {x ∈ Rn : A′x ≥ 0} where

A′ =

[

I

A

]

.

Then, from Corollary 8.1.3, two distinct extreme rays r1 and r2 of C(A′) are adjacent
if rank(A′

ρ̄) = n − 2 where ρ = suppA′(r1 + r2). Furthermore,

A′
ρ̄ =

[

Iτ̄

Aσ̄

]

where σ = suppA(r1 + r2) and τ = suppI(r
1 + r2). It then follows from linear

algebra that rank(A′
ρ̄) = rank(Aσ̄τ) + |τ̄ |, and therefore, rank(A′

ρ̄) = n − 2 when
rank(Aσ̄τ) = n − 2 − |τ̄ | = |τ | − 2. So, two distinct extreme rays r1 and r2 of
C are adjacent if and only if rank(Aσ̄τ) = |τ | − 2 Thus, we must compute the
rank of a |σ̄| by |τ | matrix. The matrix Aσ̄τ is potentially much smaller than A′

ρ̄

and it is certainly never larger. Moreover, note that |ρ| = | suppA′(r1 + r2)| =
| suppA(r1+r2)|+ | suppI(r

1+r2)| = |σ|+ |τ |, and similarly, |ρ̄| = |σ̄|+ |τ̄ |; therefore,
|τ | ≤ | suppA′(r1 + r2)| and |σ̄| ≤ |suppA′(r1 + r2)|. Hence, if either | suppA′(r1 + r2)|
is small or |suppA′(r1 +r2)| is small then the size of the matrix Aσ̄τ is also small. We
next show how to transform cones into the form of C = {x ∈ Rn : Ax ≥ 0, x ≥ 0}

168 CHAPTER 8. COMPUTING EXTREME RAYS

without increasing the size of the constraint matrix, and subsequently, we show rank
computations for C are potentially much smaller than for the original formulation;
it is certainly not a larger computation.

Consider the pointed cone C(A) := {x ∈ Rn : Ax ≥ 0}. We assume that any equality
constraints have been removed using the transformation mentioned above. We will
show that we can transform C(A) into a cone C = {x ∈ Rn : A′x ≥ 0, x ≥ 0} where
A′ is an m − n by n matrix. Note that the number of variables and the number
of constraints does not change. Since C(A) is pointed, rank(A) = n. We assume
without loss of generality that the first n rows of A are linearly independent. Let
T ∈ Rn×n be the matrix inverse of the square matrix consisting of the first n rows
of A. Then,

AT =

[

I

A′

]

.

Now, substitute Ty for x, and then,

C(A) := {Ty ∈ Rn : ATy ≥ 0} = {Ty ∈ Rn : A′y ≥ 0, y ≥ 0}.

We thus can compute the extreme rays of the cone C = {y ∈ Rn : A′y ≥ 0, y ≥ 0},
and then, if y is an extreme ray of C, then Ty is an extreme ray of C(A) since
the support of y in C is exactly the same as the support of Ty = x in C(A) (i.e.
suppAT (y) = suppA(Ty)). Now, let r1 and r2 be two distinct extreme rays of C(A),
and let r̃1 and r̃2 be the corresponding distinct extreme rays of C. To determine the
adjacency of r1 and r2 in C(A), we need to compute the rank of a |suppA(r1 +r2)| by
n matrix. However, to determine the adjacency of r̃1 and r̃2 in C, we need to compute
the rank of a |σ̄| by |τ | matrix where σ = suppA′(r̃1 + r̃2) and τ = suppI(r̃

1 + r̃2).
Crucially, |σ| + |τ | = | suppA(r1 + r2)| and |σ̄| + |τ̄ | = |suppA(r1 + r2)|, so a |σ̄| by
|τ | matrix is never larger than a |suppA(r1 + r2)| by n matrix.

As per the previous formulation, there is another benefit of formulating cones in the
form C(A) = {x ∈ Rn : A′x ≥ 0, x ≥ 0}: it is easy to find all extreme rays r ∈ C(A)
such that | suppA(r)| = 1. Note that if | suppA(r)| = 1 for r ∈ C(A), then r must
be an extreme ray since it is definitely support-minimal. Firstly, if the ith column
of A′ is zero (i.e. A′

i = 0), then r = ei is an extreme ray of C(A) since r ∈ C(A)
and | suppA(r)| = 1. Secondly, if r is an extreme of C(A) such that | suppA(r)| = 1,
then we show below that r = ei for some i ∈ {1, ..., n} and the ith column of
A′ is zero. Note that | suppA(r)| = 1 implies | suppI(r)| = 1 and | suppA′(r)| = 0,
since | suppI(r)| = 0 means that r = 0 implying | supp′

A(r)| = 0 as well. Finally,
if | suppA(r)| = 1 and | suppA′(r)| = 0, then r = λei for some i ∈ {1, ..., n} and
λ ∈ R+ and A′r = 0 implying that the ith column of A′ must be zero. Thus, we can
easily check for zero columns of A′ to find all the extreme rays r of C(A) such that
| suppA(r)| = 1.

During the double description method, even after applying all of the optimisations
from Section 8.2.1 to avoid performing the algebraic adjacency check, we observed
that we must determine whether one given extreme ray r of Cσ(A) is adjacent to
potentially many other extreme rays r1, ..., rk of Cσ(A). Hence, we must check for
adjacency of many extreme rays pairs where one extreme ray of the pair is the same.
We next show how we exploit this fact.

8.2. OPTIMISATIONS 169

Consider the cone C = {x ∈ Rn : Ax = 0, x ≥ 0} where A ∈ Rm×n. Let r and
r1, ..., rk be extreme rays of C. Recall from previously that r is adjacent to ri if and
only if rank(A∗τ i) = |τ i| − 2 where τ i = suppI(r + ri). Here, A∗τ i is an m by |τ i|
matrix. The important point here is that suppI(r) ⊆ τ i for all i = 1, ..., k, so each
matrix A∗τ i has a common submatrix A∗τ where τ = suppI(r). We can use this fact
to speed up the rank check. By linear algebra, there exists a non-singular matrix
T ∈ Rm×m such that TA is in row echelon form; that is,

TA∗τ =

[

Ã

0

]

where Ã is a rank(A∗τ) by |τ | matrix. Note that since r is an extreme ray of C, we
have rank(A∗τ) = |τ | − 1 from Corollary 2.2.12. So, Ã is a (|τ | − 1) by |τ | matrix.
Now, let

TA =

[

C

D

]

where C is a (|τ | − 1) by n matrix and D is a (m − |τ | + 1) by n matrix. Note
that C∗τ = Ã and D∗τ = 0 by construction of T . Then, since T is non-singular,
rank(A∗τ i) = rank(TA∗τ i). Moreover, by construction, rank(TA∗τ i) = |τ | − 1 +
rank(D∗ρi) where ρi = suppI(r

i) \ suppI(r), and thus, rank(TA∗τ i) = |τ i| − 2 if and
only if rank(D∗ρi) = |τ i| − 2 − |τ | + 1 = |ρi| − 1. Note that D∗ρi is a (m − |τ | + 1)
by |ρi| = |τ i| − |τ | matrix. Thus, for all i = 1, ..., k, the extreme rays r and ri are
adjacent if and only if rank(D∗ρi) = |ρi|−1. Thus, after some initial work computing
D, we have reduced the size of the rank computation for checking the adjacency of r

and ri for every i = 1, ..., k from an m by |τ i| matrix to an (m−|τ |+1) by (|τ i|−|τ |)
matrix.

There is another added benefit of computing D that makes performing this com-
putation even more appealing. The benefit is that we can easily determine the set
I ⊆ {1, ..., n} where i ∈ I if suppI(r

′) \ suppI(r) = {i} for some extreme ray r′

of C. Recall from the end of Section 8.2.3 that it is desirable to find the set I for
proving non-adjacency of extreme rays. The set I is precisely the index set of the
zero columns of the matrix D∗τ̄ from above where τ = suppI(r). From our dis-
cussion above, a ray r′ is adjacent to r if and only if rank(D∗ρ′) = |ρ′| − 1 where
ρ′ = suppI(r

′) \ suppI(r). Recall from Lemma 8.2.2 that if ρ′ = {i}, then r′ is adja-
cent to r, and consequently, rank(D∗ρ′) = |ρ′|−1 = 0 implying that D∗ρ′ = D∗i = 0.
Conversely, assume that the ith column of D is zero: D∗i = 0. This implies that
rank(TA∗τ ′) = |τ ′| − 2 where τ ′ = τ ∪ i because rank(TA∗τ) = |τ | − 1 since r is an
extreme ray of C. Let F = C ∩ {x ∈ Rn : A∗τ̄ ′x = 0}, which is a face of C. Then, by
construction, r ∈ F and F is a 2-dimensional face of C, and therefore, there is an-
other extreme ray r′ of C in F , which is adjacent to r. The rays r and r′ generate F ;
thus, supp(r)∪ supp(r′) = τ ′. Moreover, since τ ′ = τ ∪ i, suppI(r

′) \ suppI(r) = {i}
as required.

Example 8.2.5. We will show how the above procedure for reducing the size of
a rank computation works when applied to the cone of 4 × 4 magic squares as an
example. Recall that we can write the cone of 4 × 4 magic squares in the form

170 CHAPTER 8. COMPUTING EXTREME RAYS

C = {x ∈ R16 : Ax = 0, x ≥ 0} where

A =





























1 1 1 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 -1 -1 -1 -1 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 -1 -1 -1 -1
0 1 1 1 -1 0 0 0 -1 0 0 0 -1 0 0 0
1 0 1 1 0 -1 0 0 0 -1 0 0 0 -1 0 0
1 1 0 1 0 0 -1 0 0 0 -1 0 0 0 -1 0
1 1 1 0 0 0 0 -1 0 0 0 -1 0 0 0 -1
0 1 1 1 0 -1 0 0 0 0 -1 0 0 0 0 -1
1 1 1 0 0 0 -1 0 0 -1 0 0 -1 0 0 0





























.

The vector r1 = (0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0) is an extreme ray of C and
so is r2 = (0, 0, 1, 1, 0, 1, 1, 0, 2, 0, 0, 0, 0, 1, 0, 1). In this case, these extreme rays are
adjacent. Recall that for cones in the form C = {x ∈ R16 : Ax = 0, x ≥ 0}, the
extreme rays r1 and r2 are adjacent if and only if rank(A∗τ) = |τ | − 2 = 7 where
τ = suppI(r

1 + r2) = {3, 4, 6, 7, 9, 11, 13, 14, 16}. Recall that A∗τ is the submatrix of
A consisting of the columns of A indexed by τ . Thus, we could check whether r1 was
adjacent to r2 by computing the rank of the matrix

A∗τ =





























1 1 -1 -1 0 0 0 0 0
1 1 0 0 -1 -1 0 0 0
1 1 0 0 0 0 -1 -1 -1
1 1 0 0 -1 0 -1 0 0
1 1 -1 0 0 0 0 -1 0
0 1 0 -1 0 -1 0 0 0
1 0 0 0 0 0 0 0 -1
1 1 -1 0 0 -1 0 0 -1
1 0 0 -1 0 0 -1 0 0





























.

This matrix has rank |τ | − 2 = 7, proving that r1 and r2 are adjacent.

We next show that using the method described above, the size of the rank compu-
tation significantly decreases. Let τ 1 = suppI(r

1) = {3, 4, 6, 8, 9, 11, 13, 14}. First,
we compute the matrix TA such that the matrix TA∗τ1 is in row echelon form and
T ∈ R9×9 is a transformation matrix. We have highlighted the columns of TA below
that correspond to the columns of TA∗τ1. Note that TA∗τ1 is indeed in row echelon
form and that rank(TA∗τ1) = |τ 1| − 1 = 7 since r1 is an extreme ray of C.

TA =





























1 0 1 0 1 0 1 0 0 -1 0 -1 0 -1 0 -1
2 0 0 1 0 0 -1 0 0 -1 0 0 0 -1 -1 1
2 0 0 0 1 1 0 0 0 -1 0 -1 0 -1 -1 0
0 -1 0 0 1 0 1 1 0 -1 0 0 0 -1 0 0
1 0 0 0 1 0 0 0 1 0 0 0 0 -1 -1 -1
1 -1 0 0 0 0 0 0 0 -1 1 0 0 -1 0 1
2 -1 0 0 1 0 0 0 0 -2 0 -1 1 -1 0 1
-2 0 0 0 0 0 2 0 0 2 0 0 0 0 0 -2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0





























.

8.2. OPTIMISATIONS 171

Note that last row is all zeros since there was a linearly dependent row in the matrix
A. We can thus remove this row from the matrix TA.

Let τ 2 = suppI(r
2) = {3, 4, 6, 7, 9, 14, 16}. Then, the matrix D from above is the last

m − |τ 1| + 1 = 2 rows of TA, and after omitting the all zero last row, we have

D =
[

-2 0 0 0 0 0 2 0 0 2 0 0 0 0 0 -2
]

.

Now, to check that r2 is adjacent to r1, we need to check whether rank(D∗ρ′) =
|ρ′| − 1 = 1 where ρ′ = suppI(r

2) \ suppI(r
1) = {7, 16}, which indeed is the case as

D∗ρ′ = [2 -2]. This matrix is certainly much smaller than A∗τ , and indeed, checking
the adjacency of r1 and several other extreme rays would also be very easy in this
case since we only need to compute ranks of submatrices of D.

Furthermore, we have I := {2, 5, 12, 15} where I is the index set of zero columns
of D∗τ̄1. From our discussion above, for every i ∈ I, there exists an extreme ray
r′ of C such that suppI(r

′) \ suppI(r
1) = {i}. Indeed, for the extreme ray of C,

r′ = (0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0), we have suppI(r
′) \ suppI(r

1) = {2} ∈ I.

In practice, we found this transformation very useful indeed.

There is a very nice geometric interpretation of the above procedure for reducing the
size of rank computations, which we now present at length. The new fundamental
idea behind the geometric interpretation is that, given an extreme ray r ∈ Cσ(A),
we can construct a pointed smaller cone C such that there is a one-to-one corre-
spondence between the extreme rays of C and the extreme rays of Cσ(A) that are
adjacent to r. So, instead of checking whether an extreme ray r′ ∈ Cσ(A) is adjacent
to r, we check whether there exists an extreme ray r̃′ of C that corresponds to r′.
The expectation is that checking for extreme rays of C is faster than checking for
adjacent extreme rays of Cσ(A). We will see that the above procedure for reducing
the size of rank computations equates to constructing the cone C and checking for
extreme rays of C.

Additionally, we will show that the cone C that we are interested in is actually the
projection of the cone Cσ(A) onto the hyperplane {x ∈ Rn : rx = 0}. First, let us
say exactly what we mean by projection onto a hyperplane. Given a point x ∈ Rn

and a linear space S ⊆ Rn, the projection of x onto S, written as projS(x), is the
point y ∈ S such that x − y ∈ S∗. So, the projection of Cσ(A) onto the linear space
S = {x ∈ Rn : rx = 0}, written as projS(Cσ(A)), is the set of vectors y ∈ S such
that x − y ∈ S∗ = {λr : λ ∈ Rn} for some x ∈ Cσ(A).

We now demonstrate that there is a one-to-one correspondence between the extreme
rays of projS(Cσ(A)) where S = {x ∈ Rn : rx = 0} and the extreme rays of Cσ(A)
that are adjacent to r. Consider the 3-dimensional cone in Figure 8.4 with extreme
rays r, a, b, c, and d. Note that there are two adjacent extreme rays of r: ray a and
d. We have also drawn in Figure 8.4 the projection of this cone onto the hyperplane
S = {x ∈ Rn : rx = 0}, labelled as C, and the projection of the extreme rays a, b,
c, and d onto the hyperplane S, labelled as a′, b′, c′, and d′ respectively. Observe
that the two extreme rays of the projected cone C are a′ and d′, which correspond to

172 CHAPTER 8. COMPUTING EXTREME RAYS

precisely the two adjacent extreme rays of r. The other extreme rays b and c project
into the interior of C, and the extreme ray r projects to the origin. Next, we show
why this is true.

a

b

c
d

b’

c’

d’

r

a’

S
C

Figure 8.4: The projection of a cone onto {x ∈ Rn : rx = 0}.

Recall from Lemma 8.1.4 that an extreme ray r ∈ Cσ(A) is adjacent to another
distinct extreme ray r′ ∈ Cσ(A) if and only if there does not exist another distinct
extreme ray r′′ ∈ Cσ(A) such that suppA(r′′) ⊆ suppA(r + r′). Or equivalently, an
extreme ray r ∈ Cσ(A) is adjacent to another distinct extreme ray r′ ∈ Cσ(A) if
and only if there does not exist another distinct extreme ray r′′ ∈ Cσ(A) such that
suppA(r′′)\suppA(r) ⊆ suppA(r′)\suppA(r). In other words, r′ is adjacent to r if and
only if suppA(r′)\suppA(r) is inclusion-minimal amongst all sets suppA(r′′)\suppA(r)
for all extreme rays r′′ of Cσ(A) except r. This is very similar to the result that the
extreme rays of a cone are the support-minimal rays of the cone as in Lemma 2.2.13.
We will use this observation as a motivation to find the cone C that we want.

Now, consider the cone Cτ
σ(A) where τ = suppA(r). So, we have relaxed all the

constraints which are not satisfied at equality by r. Observe that for every r′ ∈ Cσ(A),
we have r′ ∈ Cτ

σ(A) and the support of r′ in Cτ
σ(A) is suppA(r′) \ τ . Hence, from the

previous paragraph, for every extreme ray r′ ∈ Cσ(A), r′ is adjacent to r if r′ has
minimal support in Cτ

σ(A). The cone Cτ
σ(A) is not pointed because it has a non-

trivial lineality space lin(Cτ
σ(A)) = {x ∈ Rn : Aτ̄x = 0}. The ray r is in the lineality

space, and moreover, the ray r actually generates the lineality space: lin(Cτ
σ(A)) =

{λr : λ ∈ R}. This follows since the inclusion-minimal face of Cσ(A) containing the
extreme ray r is F = Cτ (A) = {x ∈ Rn : Aτ̄x = 0, Aτx ≥ 0} = {λr : λ ∈ R+}. We
can make Cτ

σ(A) pointed by intersecting it with the dual of its lineality space, which
is simply {λr : λ ∈ R}∗ = {x ∈ Rn : rx = 0}. We will show next that the cone
Cτ

σ(A) ∩ {x ∈ Rn : rx = 0} is precisely the projection of Cτ
σ(A) onto the hyperplane

{x ∈ Rn : rx = 0}, and that there is a one-to-one correspondence between extreme

8.2. OPTIMISATIONS 173

rays of Cτ
σ(A)∩{x ∈ Rn : rx = 0} and extreme rays of Cσ(A) that are adjacent to r.

Note that Cτ
σ(Ã) = Cτ

σ(A) ∩ {x ∈ Rn : rx = 0} where Ã is the matrix A with the
vector r added as an extra row after all the other rows, and the support of a ray r̃

in Cτ
σ(Ã) is suppÃ(r̃) \ τ = suppA(r̃) \ τ since the extra equality constraint rx = 0

does not change the support.

We now show that Cτ
σ(Ã) = Cτ

σ(A) ∩ {x ∈ Rn : rx = 0} is the projection of Cτ
σ(A)

onto the hyperplane {x ∈ Rn : rx = 0}; that is, Cτ
σ(Ã) = projS(Cσ(A)). First, recall

that projS(Cσ(A)) is the set of vectors y ∈ S such that x − y ∈ S∗ = {λr : λ ∈ Rn}
for some x ∈ Cσ(A). Then,

projS(Cσ(A)) :={y ∈ Rn : x ∈ Cσ(A), x − y ∈ S∗, y ∈ S}

={y ∈ Rn : Aσ̄x = 0, Aσx ≥ 0, x − y = λr, λ ∈ R, ry = 0}

={y ∈ Rn : Aσ̄(y + λr) = 0, Aσ(y + λr) ≥ 0, λ ∈ R, ry = 0}

={y ∈ Rn : Aσ̄y = 0, Aσ\τy ≥ 0, ry = 0}

= Cτ
σ(A) ∩ {x ∈ Rn : rx = 0}

where τ = suppA(r). Note that Air = 0 for every i ∈ τ̄ , so Aσ\τ (y + λr) ≥ 0

is equivalent to Aσ\τy ≥ 0. Also, note that Air > 0 for every i ∈ τ and thus
the inequalities Aτ (y + λr) ≥ 0 are always satisfied for every y after choosing an
appropriate value for λ.

Next, in Lemma 8.2.6, we will show that there is a one-to-one correspondence be-
tween extreme rays of Cτ

σ(Ã) = Cτ
σ(A)∩{x ∈ Rn : rx = 0} and extreme rays of Cσ(A)

that are adjacent to r. But first, we describe how to map rays of Cσ(A) to rays of
Cτ

σ(Ã). We show in Lemma 8.2.6 that this map from rays of Cσ(A) to rays of Cτ
σ(Ã)

maps extreme rays of Cσ(A) that are adjacent to r to extreme rays of Cτ
σ(Ã). Firstly,

we can map any ray r′ ∈ Cσ(A) to a ray r̃′ in the cone Cτ
σ(Ã) by projecting r′ onto

the linear space {x ∈ Rn : rx = 0}. Let r̃′ = r′ − λr where λ = r′r
rr

. Then, r̃′r = 0

and r̃′ ∈ Cτ
σ(Ã), and moreover, suppA(r̃′) \ τ = suppA(r′) \ τ . Secondly, we can map

any ray r̃′ ∈ Cτ
σ(Ã) to a ray r′ in the cone Cσ(A) as follows. Let r′ = r̃′ + λr where

λ ∈ R+ such that Aτr
′ ≥ 0. This is always possible since Aτr > 0. Furthermore, we

also choose the smallest possible λ; that is, we choose λ ∈ R+ such that Aτr
′ ≥ 0

and Air
′ = 0 for some i ∈ τ . Geometrically speaking, we lift r̃′ to r′ by computing

the first point of intersection of the line r̃′ + λr where λ ∈ R+ with the cone Cσ(A).
Choosing the smallest λ makes the mapping from Cτ

σ(Ã) to Cσ(A) unique. Then,
r′ ∈ Cσ(A) and suppA(r̃′) \ τ = suppA(r′) \ τ . Importantly, τ (suppA(r′) since
Air

′ = 0 for some i ∈ τ . This is important for the proof of Lemma 8.2.6 because
otherwise r′ cannot be an extreme ray of Cσ(A).

We show in the proof of Lemma 8.2.6 below that the map between Cτ
σ(Ã) and Cσ(A)

above is a bijection between the extreme rays of Cσ(A) that are adjacent to r and
the extreme rays of Cτ

σ(Ã).

Lemma 8.2.6. Let r be an extreme ray of Cσ(A). There exists an extreme ray of
Cσ(A) with support ρ that is adjacent to r if and only if there exists an extreme ray
of Cτ

σ(A) ∩ {x ∈ Rn : rx = 0} where τ = suppA(r) with support ρ \ τ .

Proof. Let Cτ
σ(Ã) = Cτ

σ(A) ∩ {x ∈ Rn : rx = 0} where Ã is the matrix A with the
vector r added as an extra row after all the other rows.

174 CHAPTER 8. COMPUTING EXTREME RAYS

Let r̃′ be an extreme ray of Cτ
σ(Ã), and let r′ ∈ Cσ(A) such that r̃′ maps onto r′ as

described above. Then, suppA(r′) \ τ = suppA(r̃′) \ τ . We first show that r′ is an
extreme ray of Cσ(A). Let r′′ be an extreme ray of Cσ(A) such that suppA(r′′) (
suppA(r′) (implying that r′ is not an extreme ray). Note that r′ 6= r and r′′ 6= r by
construction of the map. Let r̃′′ ∈ Cτ

σ(Ã) such that r′′ maps onto r̃′′ as described
above. Then, suppA(r′′) (suppA(r′) implies that suppA(r̃′′) \ τ (suppA(r̃′) \ τ

contradicting that r̃′ is an extreme ray of Cτ
σ(Ã). Next, we show that r′ is adjacent

to r. Now, let r′′′ ∈ Cσ(A) be an extreme ray of Cσ(A) such that suppA(r′′′) \ τ (
suppA(r′) \ τ or equivalently suppA(r′′′) (suppA(r′ + r) (implying that r′ and r are
not adjacent by Lemma 8.1.4), and let r̃′′′ ∈ Cτ

σ(Ã) such that r′′′ maps onto r̃′′′ as
described above. Now, suppA(r′′′) \ τ (suppA(r′) \ τ implies that suppA(r̃′′′) \ τ (
suppA(r̃′) \ τ , which contradicts that r̃′ is an extreme ray of Cτ

σ(Ã).

Conversely, let r′ be an extreme ray of Cσ(A) that is adjacent to r, and let r̃′ ∈ Cτ
σ(Ã)

such that r′ maps onto r̃′ as described above. Then, suppA(r′) \ τ = suppA(r̃′) \ τ .
We must show that r̃′ is an extreme ray of Cτ

σ(Ã). Let r̃′′ be an extreme ray of
Cτ

σ(Ã) such that suppA(r̃′′) \ τ (suppA(r̃′) \ τ (implying that r̃′ is not an extreme
ray), and let r′′ ∈ Cσ(A) such that r̃′′ maps onto r′′ as described above. From above,
r′′ is an extreme ray of Cσ(A). Now, suppA(r̃′′) \ τ (suppA(r̃′) \ τ implies that
suppA(r′′) \ τ (suppA(r′) \ τ or equivalently suppA(r′′) (suppA(r′ + r), which
contradicts that r′ and r are adjacent by Lemma 8.1.4.

So, combining Lemma 8.2.6 with the observation that the cone Cτ
σ(Ã) is the cone

Cσ(A) projected onto the plane S = {x ∈ Rn : rx = 0}, we arrive at the nice and
new result that an extreme ray r′ is adjacent to r if and only if the projection of r′

onto S is an extreme ray of the projection of Cσ(A) onto S.

We now show that the previous procedure for reducing the size of rank computations
for determining adjacency for the cone C = {x ∈ Rn : Ax = 0, x ≥ 0} is actually
equivalent to projecting the cone C onto a hyperplane and performing rank compu-
tations in the projected cone. Let r be an extreme ray of C, and let τ = suppI(r).
Then, from our discussion above, the projection of C onto S = {x ∈ Rn : rx = 0}
is the cone C′ = {x ∈ Rn : Ax = 0, rx = 0, xτ̄ ≥ 0}. Note that we have relaxed
the constraints xτ ≥ 0. Next, we reformulate the cone C′ by eliminating the xτ

variables. Let Ã ∈ R(m+1)×n be the matrix A with r added as the last row, so
C′ = {x ∈ Rn : Ãx = 0, xτ̄ ≥ 0}. Now, note that rank(Ã∗τ) = |τ | since C′ is a
pointed cone (a projection of a pointed cone is pointed). Let T be a transformation
matrix such that TÃ∗τ is in row echelon form; that is,

TÃ∗τ =

[

I

0

]

and TÃ =

[

C

D

]

where C is a |τ | by n matrix and D is a (m−|τ |+1) by n matrix such that C∗τ = I

and D∗τ = 0. Then,

C′ = {x ∈ Rn : Ãx = 0, xτ̄ ≥ 0}

= {x ∈ Rn : TÃx = 0, xτ̄ ≥ 0}

= {x ∈ Rn : xτ = −C∗τ̄xτ̄ , D∗τ̄xτ̄ = 0, xτ̄ ≥ 0}

8.2. OPTIMISATIONS 175

It follows that if we wish to check for extreme rays of C′ it suffices to just consider
the cone C′′ = {x ∈ R|τ̄ | : D∗τ̄x = 0, x ≥ 0} since the variables xτ can effectively
be ignored. Observe that D∗τ̄ is a (m − |τ | + 1) by |τ̄ | matrix. Now, let r and r′ be
extreme rays of C. It follows from Lemma 8.2.6 that r′ is adjacent to r if and only if
there exists an extreme ray of C′ with support ρ = suppI(r

′)\τ or equivalently there
exists an extreme ray of C′′ with support ρ. Moreover, there is an extreme ray of C′′

with support ρ if and only if rank(D∗ρ) = |ρ| − 1 from Corollary 2.2.12. This rank
check for adjacency is the same rank check as for the previous procedure; indeed,
the matrix D defined here is basically the same matrix as the matrix D defined in
the previous procedure.

Furthermore, from our discussion earlier in this section (before Example 8.2.5), an
extreme ray r′′ of the cone C′′ = {x ∈ R|τ̄ | : D∗τ̄x = 0, x ≥ 0} has suppI(r

′′) = {i}
if and only if D∗i = 0 (i.e. the ith column of D is zero). This means that the set of
rays r′ of C′′ where suppI(r

′) \ τ = {i} for some i ∈ τ̄ corresponds precisely to set of
zero columns of the matrix D∗τ̄ . This is exactly the result we found earlier for the
previous procedure.

It is also possible to perform a similar procedure as above that reduces the size of
rank computations for cones in the form C = {x ∈ Rn : Ax ≥ 0, x ≥ 0}; we leave
the details to the reader.

Using the different formulations presented in this section is not necessarily a good
idea since the transformations involved may mean losing specific structure of the
matrix A that could have otherwise been used to speed up rank computations and
the transformations may cause numerical problems.

8.2.4 Adjacency inference

In this section, we examine what we can infer about the adjacencies of the extreme
rays of Cσ(A) from our knowledge of the adjacencies of the extreme rays of Ci

σ(A).
We investigate whether this information would be useful for the double description
method. Fukuda and Prodon in [37] claim that it is useful, but this is not what we
found in our experience. Moreover, they only show how to use this information when
applying a fixed order for inserting constraints (independent of the input). We show
that it might be used even when the order is not fixed.

Consider again the polytope P, half-space H, affine hyperplane H as defined above
from Figure 8.1, which is repeated as Figure 8.5(i). In the context of polytopes,
the concept of the adjacency of two extreme rays translates into the adjacency of
extreme points where two extreme points are adjacent if there is an edge between
them. Firstly, (i) observe that the vertices a and d are adjacent in P and that they
are also adjacent in P ∩H. Secondly, (ii) observe that the vertices a and c both lie
in H and they are not adjacent in P, but they are adjacent in P ∩H. Thirdly, (iii)
observe that the new vertex i of P ∩H, which is created from the intersection of H

with the edge between e and f, is adjacent to e in P ∩H, and also, observe that the
new vertex j of P ∩ H, which is created from the intersection of H with the edge
between f and g, is adjacent to g in P ∩H. Lastly, (iv) observe that the new vertex

176 CHAPTER 8. COMPUTING EXTREME RAYS

i is not adjacent to d, g, or h which all do not lie on H , and that the new vertex j
is not adjacent to d, e, or h which, again, all do not lie on H .

a

b

c

d

e

f

g

h

i

j

a

b

c

d

e

f

g

h

a

b

c

d

e

j

k

(i) (ii) (iii)

i

Figure 8.5: Adjacency Inference.

Generalising these observations, we induce the following for any polytope P and any
half-space H with affine hyperplane H : (i) if two vertices of P are adjacent in P and
lie in H, they are also adjacent in P ∩ H; (ii) if two vertices of P that lie in H are
not adjacent in P but are adjacent in P ∩H, then they must lie on the hyperplane
H ; (iii) a new vertex of P ∩ H, which is always created from the intersection of H

with an edge of P, is adjacent to the vertex of the edge lying in H; (iv) and lastly,
a new vertex of P ∩H cannot be adjacent to any vertex of P that lies in H but not
on H except where the previous rule (iii) applies.

There are a couple of things that are true for Figure 8.5(i), but that are not true
in general. Firstly, it is not true that two non-adjacent vertices of P that lie on H

are always adjacent in P ∩ H. This is demonstrated in Figure 8.5(ii). The vertices
a and g are not adjacent in P and they lie on the hyperplane H defined by a, c,
e, and g, but they are not adjacent in P ∩ H where H is the halfspace defined by
H extending into the page. Secondly, in Figure 8.5(i), the new vertices i and j are
adjacent in P ∩ H, but it is not true that vertices created from edges that have a
common vertex are always adjacent. This is demonstrated in Figure 8.5(iii). Here,
P is the pyramid with vertices a, b, c, and d. The hyperplane H intersects P at b,
i, j, and k, and H is defined by H and does not include the vertex a. Vertices i and
k are created from edges with the vertex a in common, but they are not adjacent.

Without any additional information other than adjacencies of P, we really cannot
deduce anything about the adjacencies of P ∩ H other than the four points listed
above. More concisely, if we wish to know all the adjacencies of P ∩ H, we must
check all pairs of extreme rays of P∩H that lie on H that where either non-adjacent
in P or at least one extreme ray in the pair is new. All the other adjacencies are
determined by the adjacencies of P.

We can transpose the three observations above to apply to cones.

Lemma 8.2.7. Let r1 and r2 be two distinct extreme rays of the cone Ci
σ(A).

(i). If r1 and r2 are adjacent in Ci
σ(A), Air

1 ≥ 0, and Air
2 ≥ 0, then r1 and r2

are adjacent in Cσ(A).

8.2. OPTIMISATIONS 177

(ii). If r1 and r2 are not adjacent in Ci
σ(A) but are adjacent in Cσ(A), then Air

1 = 0
and Air

2 = 0.

(iii). If r1 and r2 are adjacent in Ci
σ(A), Air

1 > 0, and Air
2 < 0, then r =

(−Air
2)r1 + (Air

1)r2 is adjacent to r1 in Cσ(A).

(iv). If r is an extreme ray of Cσ(A) but not an extreme ray of Ci
σ(A) and Air

1 > 0,
then r is not adjacent to r1 in Cσ(A) unless the previous rule (iii) applies.

Proof. (i) If F is a face of Ci
σ(A), then F ∩ {x ∈ Rn : Aix ≥ 0} is also a face of

Cσ(A). So, if r1 and r2 generate a face of Ci
σ(A), Air

1 ≥ 0, and Air
2 ≥ 0, then r1

and r2 must also generate a face of Cσ(A), so by definition, r1 and r2 are adjacent
in Cσ(A).

(ii) Assume r1 and r2 are adjacent in Cσ(A) and that Air
1 > 0 and/or Air

2 > 0.
By Corollary 8.1.3, rank(Aτ̄) = n − 2 where τ = suppA(r1 + r2) since r1 and r2 are
adjacent in Cσ(A). Crucially, i 6∈ suppA(r1 + r2), and thus, τ̄ = suppA(r1 + r2) =
suppA(r1 + r2) \ i implying that r1 and r2 are adjacent in Ci

σ(A) by Corollary 8.1.3
since rank(Aτ̄) = n − 2 and i 6∈ τ̄ .

(iii) Suppose r1 and r2 are adjacent in Ci
σ(A). The rays r1 and r2 generate a

2-dimensional face F of Ci
σ(A) since they are adjacent in Ci

σ(A). The ray r =
(−Air

2)r1 + (Air
1)r2 is an extreme ray of Cσ(A) by Lemma 8.1.5. The set F ′ =

F ∩ {x ∈ Rn : Aix ≥ 0} is a 2-dimensional face of Cσ(A). Moreover, r1, r ∈ F ′,
and r1 and r are extreme rays of F ′; thus, r1 and r generate F ′ and are, therefore,
adjacent in Cσ(A).

(iv) Assume r is an extreme ray of Cσ(A) but not an extreme ray of Ci
σ(A). Let

r3 and r4 be extreme rays of Ci
σ(A) such that Air

3 > 0, Air
4 < 0, and r =

(−Air
4)r3 + (Air

3)r4. Also, assume that Air
1 > 0 but r1 6= r3. Observe that

suppA(r3) ⊆ suppA(r + r1) since suppA(r3) \ i ⊆ suppA(r) \ i and i ∈ suppA(r1),
but suppA(r3) 6⊆ suppA(r) and suppA(r3) 6⊆ suppA(r1). Therefore, by Lemma 8.1.4,
r and r1 are not adjacent in Cσ(A).

All of the four points of Lemma 8.2.7 put together imply that if we know all the
adjacencies for the cone Ci

σ(A) and if we wish to know all the adjacencies for the
cone Cσ(A), we only need to check between extreme rays r1 and r2 of Cσ(A) in the
following situation: Air

1 = 0, Air
2 = 0, r1 and r2 are not adjacent extreme rays in

Ci
σ(A), and r1 was not created from r2 and neither was r2 created from r1.

It might seem at this point then that it would be a good idea to store all the adja-
cencies from iteration to iteration during the double description method; however,
we argue that this is not the case (Fukuda and Prodon agree with this view in
[37]). There are several problems with this approach. Firstly, many pairs of adjacent
extreme rays are never used to create a new extreme ray, and hence, we perform
additional unnecessary work computing all adjacencies. If r1 and r2 are adjacent
extreme rays of Ci

σ(A), then only if Air
1 > 0 and Air

2 < 0 (or vice-versa) is this pair
useful. We should really only concern ourselves with the adjacency of extreme pairs
that are used at some point in the algorithm to create a new extreme ray. Secondly,
for a given pair of non-adjacent extreme rays, we might recompute that they are

178 CHAPTER 8. COMPUTING EXTREME RAYS

non-adjacent many times, because of Lemma 8.2.7 part (ii), when we only really
need to compute this once or perhaps never. We now elaborate on why this is. Let
τ ⊆ σ such that Cτ

σ(A) is pointed, and let r1 and r2 be non-adjacent extreme rays
of Cτ

σ(A) that are also non-adjacent extreme rays of Cσ(A). At every iteration of the
double description method to compute the extreme rays of Cσ(A) from the extreme
rays of Cτ

σ(A), we would need to re-check if r1 and r2 were adjacent for every i ∈ τ

where Air
1 = 0 and Air

2 = 0, but we only really need to check whether r1 and r2

are adjacent at most once.

The solution around these problems is to perform the double description method as
described in previous sections, which only computes an adjacency when necessary,
and additionally use Lemma 8.2.7 to infer adjacency or non-adjacency if possible.

We now show how we can use Lemma 8.2.7 parts (i) and (iii) to imply that two
extreme rays are adjacent during an iteration of the double description method.
Assume that we are at some iteration of the double description method with some
τ ⊆ σ and we have selected some i ∈ τ . So, we are trying to compute the extreme
rays of Cτ -i

σ (A) from the extreme rays of Cτ
σ(A). Let r1 and r2 be adjacent extreme

rays of Cτ
σ(A) such that Air

1 > 0 and Air
2 < 0, and let r = (−Air

2)r1 +(Air
1)r2. In

this situation, we say that r1 is the father of r, and we write f(r) := r1. By Lemma
8.2.7(iii), r and r1 are adjacent extreme rays of Cτ -i

σ (A) (i.e. r and r1 are adjacent
in the next iteration). Moreover, in any subsequent iteration, if r and r1 are still
feasible, they are still adjacent extreme rays by Lemma 8.2.7(i). The ray r2 is also a
parent of r, but it is not an extreme ray of Cτ -i

σ (A), so we do not need to keep track
of r2 as a parent of r. Some extreme rays r exist from the start of the algorithm and
so have no father, in which case, we set f(r) := 0. Then, in general, at an iteration
of the double description method with some τ ⊆ σ, two extreme rays r1 and r2 of
Cτ

σ(A) are adjacent in Cτ
σ(A) if either f(r1) = r2 or f(r2) = r1. If we apply this check

without any of the other optimisations mentioned above to our running example,
we find that out of the 150,332 adjacent extreme ray pairs, only 2,712 if these pairs
were shown to be adjacent by applying this father check. Moreover, if we apply this
check after applying the quick checks for adjacency mentioned in Section 8.2.1, we
find that out of the 68,934 adjacent extreme ray pairs, only 28 times did this check
apply where the other checks did not. Thus, in our experience, this check does not
apply often enough for it to be useful. It is quick to check though, and perhaps, for
some cones that we have yet to try, it might be very useful, but we doubt this since
it applies in very special cases.

We now show how we can use Lemma 8.2.7 parts (ii) and (iv) to imply that two
extreme rays are not adjacent during the double description method. Let τ j be the
value of τ in the jth iteration of Algorithm 11, and let ij ∈ τ j be the i selected in
the jth iteration, so τ j+1 = τ j \ ij . Assume that we are currently in the kth iteration
of Algorithm 11. Let r1 be an extreme ray of Cτk

σ (A), and let j1 be the iteration
in which r1 was created. This means that r1 is not an extreme ray of Cτ j1

σ (A), but
r1 is an extreme ray for the next iteration and every subsequent iteration until the
current kth iteration; that is, r1 is an extreme ray of Cτ j

σ (A) for all j = j1 + 1, ..., k.
And, similarly, let r2 be an extreme ray of Cτk

σ (A), and let j2 be the iteration in
which r2 was created.

Consider the set (suppA(r1)\ τk)∩ τ j1 . This is the set of indices i ∈ {ij1, ij1+1, ..., ik}

8.3. ALTERNATIVE APPROACH 179

such that Air
1 = 0. Thus, the set ((suppA(r1) \ τk) ∩ τ j1) ∩ ((suppA(r2) \ τk) ∩ τ j2)

is the set of indices i ∈ {max{ij1, ij2}, ..., ik} where Air
1 = 0 and Air

2 = 0. Thus,
if ((suppA(r1) \ τk) ∩ τ j1) ∩ ((suppA(r2) \ τk) ∩ τ j2) = ∅, then if r1 and r2 were
initially non-adjacent (when r1 and r2 were first both extreme rays), then they
are still non-adjacent in the current iteration by Lemma 8.2.7(ii). Finally, r1 and
r2 are initially non-adjacent if f(r1) 6= r2 and f(r2) 6= r1, and either Aj2r1 > 0
and j2 > j1 (i.e. r2 was created after r1), or Aj1r2 > 0 and j1 > j2 (i.e. r1 was
created after r2) by Lemma 8.2.7(iv). We now arrive at the following result. The
extreme rays r1 and r2 are not adjacent in Cτk

σ (A) if f(r1) 6= r2, f(r2) 6= r1, and
((suppA(r1)\τk)∩τ j1)∩((suppA(r2)\τk)∩τ j2) = ∅. Note that if j2 > j1 and Aj2r1 > 0
or j1 > j2 and Aj1r2 > 0, then ((suppA(r1)\ τk)∩ τ j1)∩ ((suppA(r2)\ τk)∩ τ j2) 6= ∅.

To implement this check, at each iteration k = 1, ..., n, for every extreme ray r, we
store the set (suppA(r) \ τk) ∩ τ j where the extreme ray r was created in the jth
iteration. These sets are easy to compute initially and update each iteration for each
extreme ray.

If we apply this check without any of the other optimisations mentioned above in
Section 8.2.1 to our running example, we find that out of the 1,277,014,866 adja-
cency checks, the above check determines that two extreme rays are not adjacent
578,003,758 many times. So, 45.3% of the time, this quick check was useful. The
quick check is thus effective but not nearly as effective as the other quick checks for
non-adjacency in Section 8.2.1 on this example. We then tried this check after ap-
plying the other optimisation mentioned in Section 8.2.1, and we found that out of
the 87,476 extreme ray pairs that were not shown to be adjacent, this check showed
that 6,769 many extreme rays pairs were not adjacent. This is not bad, but it did
not result in an overall speed-up of the algorithm due to the time spent performing
the check.

In conclusion, we have shown that it is possible to perform checks based upon
adjacency inference without a fixed insertion ordering, which is a slight extension of
the results of Fukuda and Prodon in [37]. In practice, we did not find either of the
checks in this section useful; however, Fukuda and Prodon in [37] did, and we think
that it is certainly plausible that this check could be useful for some classes of cones
particularly non-degenerate cones. Also, as we mentioned before, the performance
of the algorithm greatly depends upon its implementation, so perhaps, if we had
implemented our algorithm in a different manner we might have also found these
checks useful.

8.3 Alternative approach

Before presenting some computational results, we wish to describe briefly a variant
of the double description method that is very similar to the previous approach
of Algorithm 11. We have implemented this variant, and we did not find that it
was competitive with the double description method as described above. However,
perhaps if we had a better implementation of the variant or if we tested it on a
different set of cones, this variant would have been competitive. For this reason, we
feel it necessary to describe this variant in order to give a more complete picture

180 CHAPTER 8. COMPUTING EXTREME RAYS

of the possible variants of the double description algorithms for computing extreme
rays of cones.

The variant is fundamentally the same in that it computes the set of extreme rays
of the cone Cσ(A) from the set of extreme rays of Ci

σ(A), but it differs slightly in how
it determines new extreme rays of Cσ(A) that were not extreme rays of Ci

σ(A). Let
r1 and r2 be extreme rays of a pointed cone Ci

σ(A) such that Air
1 > 0 and Air

2 < 0,
and let r = (−Air

2)r1 + (Air
1)r2. The previous approach for determining whether

r is an extreme ray of Cσ(A) was to check whether r1 and r2 are adjacent extreme
rays of Ci

σ(A). For this variant of the double description method, we check directly
whether r is an extreme ray of Cσ(A).

As for Algorithm 11 above, there are two possible approaches for checking whether r

is an extreme ray of Cσ(A): the algebraic approach and the combinatorial approach.

The algebraic approach is to check whether rank(Aτ̄) = n − 1 where τ = suppA(r)
because, from Corollary 2.2.12, r is an extreme ray of Cσ(A) if and only if rank(Aτ̄) =
n − 1. This is essentially identical to the algebraic check whether r1 and r2 are
adjacent because, in that case, we check whether rank(Aτ̄ ′) = n − 2 where τ ′ =
suppA(r1 + r2) = τ ∪ {i}, so Aτ̄ ′ is the matrix Aτ̄ without the ith row. Hence, for
the algebraic check there is real no difference between this variant and the above
method, but there is a difference for the combinatorial approach, which we describe
next.

The combinatorial approach is to check whether there exists another extreme ray
r′ ∈ Cσ(A) such that suppA(r′) (suppA(r) because, from Lemma 2.2.13, r is an
extreme ray of Cσ(A) if and only if there does not exist another extreme ray r′ ∈
Cσ(A) such that suppA(r′) (suppA(r). The problem here is that we do not yet know
all of the extreme rays of Cσ(A), but we do know a superset of all the extreme rays
of Cσ(A). Let R be the set of extreme rays of Ci

σ(A). Let R+ := {r ∈ R : Air > 0},
R= := {r ∈ R : Air = 0}, R− := {r ∈ R : Air < 0}, and R′ := {(−Air

2)r1 +
(Air

1)r2 : r1 ∈ R+, r2 ∈ R−}. Then, we know from Lemma 8.1.5 that the set of all
extreme rays of Cσ(A) is contained within the set (R′∪R+∪R=). Thus, r is an extreme
ray of Cσ(A) if and only if there does not exist a vector r′ ∈ (R′ ∪ R+ ∪ R=) such
that suppA(r′) (suppA(r). Thus, the combinatorial approach is to first compute
R′ and then to check for all r ∈ R′ whether there exists a ray r′ ∈ (R′ ∪ R+ ∪ R=)
such that suppA(r′) (suppA(r). Note that we can use all of the optimisations for
eliminating extreme rays pairs to reduce the size of R′ from Section 8.2.1, and we can
also use the tree structure from Section 8.2.2 to speed up the combinatorial check.
Furthermore, note that Air

′ = 0 for all r′ ∈ R′, but Air
′′ 6= 0 for all r′′ ∈ R+, so for

all r′ ∈ R′, we can never have suppA(r′′) ⊆ suppA(r′) for any r′′ ∈ R+; therefore, for
all r ∈ R′ we only need to check whether there exists a ray r′ ∈ R′ ∪ R= such that
suppA(r′) (suppA(r). We can now present the variant of the double description
method using the combinatorial check in Algorithm 13.

The difference between this alternate approach and the previous is that, in this
alternate approach, we perform the support check over the set (R′ ∪R=) but in the
previous approach we perform the support over the set R. The problem with this
approach that we noticed was that the size of the set (R′∪R=) may be much larger
than R even after eliminating critical pairs, although it also may be much smaller

8.4. COMPUTATIONAL RESULTS 181

Algorithm 13 Alternate Ray Algorithm

Input: a pointed cone Cσ(A)
Output: the set R of extreme rays of Cσ(A).

Find a set τ ⊆ σ such that Cτ
σ(A) is pointed.

Compute the minimal set R of extreme rays of Cτ
σ(A).

while τ 6= ∅ do

Select i ∈ τ .
R+ := {r ∈ R : Air > 0}.
R= := {r ∈ R : Air = 0}.
R− := {r ∈ R : Air < 0}.
R′ := {(−Air

2)r1 + (Air
1)r2 : r1 ∈ R+, r2 ∈ R−}

R := R+ ∪ R=.
for all r′ ∈ R′ do

if r′ is support-minimal in (R′ ∪ R=) then

R := R ∪ {r′}.
end if

end for

τ := τ \ i.
end while

return R

than R as well, which is why we cannot definitively say that this alternative method
is inferior to the previous approach.

8.4 Computational results

In this section, we give some computational results of computing extreme rays of
cones. All results in this section are listed in seconds and were computed on an Intel
XEON 3.2 GHz machine with 4Gb of RAM running Linux Redhat. The table entries
with a “∗” indicate after several hours of computation time the computation was
still nowhere near completion.

In Table 8.2, we list times in seconds for computing the extreme rays of various
different cones. The first column gives the name of the cone. The example 55 is the
cone of 5×5 magic squares and 66 is the cones of 6×6 magic squares. The cone 66pan

is the cone of 6×6 panmagic squares; a panmagic square is similar to a normal magic
square except that there are additional constraints on the diagonals. The other cones
were taken from the paper of Fukuda and Prodon [37]. The examples cube14 is a
hypercube of dimension 14 and cube16 is a hypercube of dimension 16. The cones
cross8, cross10, and cross12 are the dual cones of a hypercube of dimension 8, 10,
and 12 respectively. The cones ccc6 and ccc7 are complete cut cones, and ccp6 and
ccp7 are cut polytopes. The cone prodmT5 is another cone from [37], which is based
upon a graph. The second column is the number of extreme rays that were computed
for the cone. The third column is the dimension of the cone, and the fourth column
is the number of inequality constraints. The next four columns list the times taken
to compute the extreme rays using different insertion orders (the order in which

182 CHAPTER 8. COMPUTING EXTREME RAYS

we select constraints); these are the min-cut-off, max-cut-off, max-intersection, and
lexicographic insertion orders.

The variant of the double description method that we used here is as described
in Algorithm 12 with all the optimisations for checking for adjacency. This algo-
rithm is implemented in the Software package 4ti2 version 1.3 (with some minor
changes) ([1]). We use the algebraic rank check for adjacency here, and we compare
the algebraic adjacency check with the combinatorial adjacency check later in this
section. We use 64 bit integers with arithmetic overflow checking to perform the
rank computations.3

Problem Size dim m mincut maxcut maxinter lex

55 1940 15 25 0.60 0.60 0.04 0.05
66 97548 25 36 13.67 14.27 10.10 12.61
66pan 265536 17 36 201.06 184.28 167.73 172.29
ccc6 210 15 31 0.10 0.12 0.12 0.07
ccc7 38780 21 63 6234.10 * * 587.04
ccp6 368 15 32 0.21 0.28 0.32 0.15
ccp7 116764 21 64 18743.86 * * 2152.13
cube14 16384 14 28 0.43 0.42 0.43 0.42
cube16 65536 16 32 2.12 2.05 2.11 2.11
cube18 262144 18 36 10.01 17.44 10.09 10.08
prodmT5 76 19 711 570.03 1.30 1.49 5.09
cross8 16 8 256 1.77 33.42 8.89 1.80
cross10 20 10 1024 276.28 * 7123.98 120.14
cross12 24 12 4096 * * * 11259.65

Table 8.2: Running times for computing extreme rays.

The first point that we wish to make from Table 8.2 is the effect that the insertion
order can have on the time taken for the computation. It can make the difference
between being able to compute the extreme rays and running out of time or memory.
The time to compute the extreme rays of some cones did not vary much for different
insertions orders, but for other cones, the computation time varied considerably.
This is only because the size of the set of extreme rays at intermediate stages of the
extreme ray algorithm can differ greatly. For example, for the cone ccc7, using the
lexicographic order, the maximum number of extreme rays at an intermediate stage
of the algorithm was 68930, but for the min-cut-off order, the maximum number was
128994, almost twice as large. Also, for the cone ccp7, using the lexicographic order,
the maximum number was 123685, but using the min-cut-off order, the maximum
number was 291218. Somewhat surprisingly, the lexicographic ordering seems on
average better than the other insertion orders. This was also noted by Fukuda and
Prodon in [37], but they do not offer an explanation for this, and we cannot offer a
solid explanation either.

3The computations are certainly much faster if we use only 32 bit integers without arithmetic
overflow checking.

8.4. COMPUTATIONAL RESULTS 183

The second point that we wish to make from Table 8.2 is that our implementation of
the double description method is effective on problems where m is small in compar-
ison to the dimension of the problem. Indeed, although the number of extreme rays
for the last four problems is quite small, our implementation struggles to compute the
extreme rays for these examples. The probable reason is that we formulate the cones
in the form C = {x ∈ Rn : Ax = 0, x ≥ 0} by introducing slack variables for each
constraint, so if m is large in comparison with the dimension then the size of the ma-
trix A can be very large making the rank computations slow. We need to implement
and test reformulation of the cones into the form C′ = {x ∈ Rn : A′x ≥ 0, x ≥ 0}
instead because we think that this form is not as sensitive to large numbers of con-
straints (see Section 8.2.3). It would be very interesting to see how this approach
fares in comparison to the above two formulations.

In Table 8.3, we compare the combinatorial check for adjacency with the algebraic
check for adjacency, and we also compare our implementation with cdd version
0.61 ([35]) and lrs version 4.1 with extended precision arithmetic ([5]). The column
titled “algeb.” lists the times for the algebraic check, and the column title “comb.”
lists the times for the combinatorial check. We use the same insertion order, the
lexicographic order, to compare the different checks for adjacency and to compare our
implementation with cdd. The algorithm used by lrs is a reverse search algorithm;
thus, there is no insertion order required. The first four columns are the same as per
Table 8.2 above.

Problem Size dim m algeb. comb. cdd lrs

55 1940 15 25 0.05 0.05 0.20 0.60
66 97548 25 36 12.61 10.97 2277.73 102.41
66pan 265536 17 36 172.29 145.90 9719.00 171.08
ccc6 210 15 31 0.07 0.04 0.64 5.89
ccc7 38780 21 63 587.04 648.48 7078.25 *
ccp6 368 15 32 0.15 0.06 0.13 0.75
ccp7 116764 21 64 2152.13 2593.26 26923.74 *
cube14 16384 14 28 0.42 0.47 3.81 1.78
cube16 65536 16 32 2.11 2.33 76.64 8.33
cube18 262144 18 36 10.08 15.50 1903.27 43.68
prodmT5 76 19 711 5.09 0.58 0.36 *
cross8 16 8 256 1.80 0.23 0.02 62.76
cross10 20 10 1024 120.14 9.82 0.13 *
cross12 24 12 4096 11259.65 508.76 2.34 *

Table 8.3: Running times for computing extreme rays.

We first discuss the differences in the timings for the combinatorial check versus
the algebraic adjacency check. For these example problems, neither check clearly
dominates the other although the algebraic check seems more robust. Note that
the algebraic check is certainly competitive, which is contrary to what Fukuda and
Prodon found in [37]. Also, note that the combinatorial check works better for
problems with many constraints since it does not involve rank computations of

184 CHAPTER 8. COMPUTING EXTREME RAYS

large matrices.

Our implementation compares favourably with cdd and lrs on problems where there
are not too many constraints. However, when there are many constraints, cdd is
much better. We attribute this to the fact that cdd computes with cones in the
form C(A) = {x ∈ Rn : Ax ≥ 0}, but we compute with cones in the form C′ =
{x ∈ Rn : A′x = 0, x ≥ 0} as we discussed above. So, we are computing with
large constraint matrices and long vectors, but cdd computes with much smaller
constraint matrices and shorter vectors. Again, as we mentioned above, we need to
investigate computing with cones in the form C′′ = {x ∈ Rn : A′′x ≥ 0, x ≥ 0}
as suggested in Section 8.2.3. We listed the times for lrs only to highlight that
the double description method is faster than the reverse search method for some
degenerate cones. Our implementation of the algebraic check is faster than lrs for
these example problems, but we certainly would not expect this to be true in general.

Chapter 9

Computing circuits of matrices

In this chapter, we present an algorithm for computing circuits of a matrix. This
algorithm is based upon the algorithm of the previous section for computing extreme
rays of cones. The algorithm presented here is fundamentally the same algorithm
as presented by Hemmecke in [48] and later by others in [93, 39, 91]. There is no
new theory presented in this chapter. We only wish to describe how we can modify
the algorithm for computing extreme rays of cones to construct an algorithm for
computing circuits of matrices, and in doing so, we can reuse our optimisations to
the extreme ray algorithm that we presented in the previous chapter to the algorithm
for computing circuits of matrices.

Definition 9.0.1. Given a matrix A ∈ Rm×n, a non-zero vector v ∈ Rn is a circuit
of A if Av = 0 and there does not exist another vector v′ ∈ Rn such that Av′ = 0

and suppI(v
′) (suppI(v).

Recall that for any vector v ∈ Rn, suppI(v) = {i ∈ {1, ..., n} : vi 6= 0}. So, a circuit
of a matrix A is a support-minimal vector in the linear space {x ∈ Rn : Ax = 0}.
As we shall see, circuits of matrices can be considered as a natural extension of the
concept of extreme rays of cones.

Circuits of matrices are used in computational biology for metabolic pathway analy-
sis (see [38]). Very roughly speaking, for this application, each column of the matrix
A represents a chemical reaction and each row of the matrix represents a metabo-
lite (a substance involved in the chemical reactions). For a given reaction j and a
given metabolite i, the matrix entry Aij of the matrix is positive if the metabolite
i is produced in reaction j, negative if it is consumed, and zero if the metabolite
plays no role in reaction j. The proportions of the entries in the column A∗j for a
particular reaction j give the exact proportions of the metabolites involved in re-
action j. A solution v ∈ Rn to the equation Av = 0 represents a steady state of
the system where the net metabolite production and consumption is zero. We are
interested in solutions of Av = 0 involving a minimal number of reactions (which
are exactly the circuits of A). These solutions are called elementary modes. Some
reactions are reversible meaning that they are feasible in either direction. Hence, an
elementary mode v can have negative and positive entries for a reversible reaction
representing different directions of the reaction. Also, some reactions are irreversible

185

186 CHAPTER 9. COMPUTING CIRCUITS OF MATRICES

and are feasible in only one direction. In this case, an elementary mode is restricted
in sign (non-negative by convention). Hence, to analyse the system, we are interested
in all solutions of Av = 0 involving a minimal number of reactions and vj ≥ 0 for
all irreversible reactions j. So, we are actually not interested in all circuits v of the
matrix A, but only those circuits for which vj ≥ 0 for all irreversible reactions j. We
address this point later.

Another application of circuits of matrices is in studying gene interactions. We refer
the reader to [11] for a description of this application.

The following lemma is a fundamental property of circuits. It says that a circuit is
uniquely determined by its support (unique up to multiplication by a constant), and
therefore, the set of circuits of a matrix A is finite since there are only finitely many
possible supports a vector can have. Furthermore the Lemma says that circuits are
unique up to multiplication by a constant, and we shall treat to circuits that are
scalar multiples of each other as the same circuit.

Lemma 9.0.2. Let v, v′ ∈ Rn be circuits of the matrix A ∈ Rm×n. If suppI(v
′) =

suppI(v), then v′ = λv for some λ ∈ Rn.

Proof. Assume that suppI(v
′) = suppI(v) and v′ 6= λv for some λ ∈ Rn. Let λ = vi

v′i

for any i ∈ suppI(v
′), and let v′′ = v − λv′. By assumption, v′′ 6= 0. Moreover, by

construction, suppI(v
′′) (suppI(v) since v′′

i = 0 but v′
i 6= 0 contradicting that v is

support-minimal.

9.1 Circuit algorithm

In this section, we present the algorithm for computing circuits of matrices. We
translate the concepts that we have discussed so far into a more general form so
that we can use the results of Chapter 8 more readily.

Definition 9.1.1. Given a matrix A ∈ Rm×n and a set σ ⊆ {1, ..., m}, a non-zero
vector v ∈ Rn is a σ-circuit of A if v ∈ {x ∈ Rn : Aσ̄x = 0} and there does not exist
another vector v′ ∈ {x ∈ Rn : Aσ̄x = 0} such that suppA(v′) (suppA(v).

So, a σ-circuit of A is a suppA-minimal vector in {x ∈ Rn : Aσ̄x = 0}. By definition, a
circuit of a matrix A ∈ Rm×n is equivalent to a σ-circuit of a matrix A′ ∈ R(m+n)×n

where σ = {1, ..., m}, A′
σ̄ = A, and A′

σ = I. We will see later that σ-circuits of
matrices are essentially equivalent to circuits of matrices.

Analogously to circuits of matrices, σ-circuits of matrices are also uniquely deter-
mined (unique up to multiplication by a constant) by their support, so we shall treat
circuits that are scalar multiples of each other as the same circuit, and therefore,
the set of σ-circuits of a matrix A is finite since there are only finitely many possible
supports a vector may have,

Lemma 9.1.2. Let v ∈ Rn be a σ-circuit of the matrix A ∈ Rm×n and let v′ ∈ Rn

such that Aσ̄v′ = 0. If suppA(v′) ⊆ suppA(v), then v′ = λv for some λ ∈ Rn.

9.1. CIRCUIT ALGORITHM 187

Proof. Assume that suppA(v′) ⊆ suppA(v) and v′ 6= λv for any λ ∈ Rn. Let λ = Aiv
Aiv′

for some i ∈ suppA(v′), and let v′′ = v − λv′. By assumption, v′′ 6= 0. Moreover, by
construction, suppA(v′′) (suppA(v) since Aiv

′′ = 0 but Aiv
′ 6= 0 contradicting that

v is support-minimal.

Crucially, we show in Lemma 9.1.3 below that a vector v ∈ Rn where Aσ̄v = 0

and Aσv ≥ 0 is a σ-circuit of A if and only if v is an extreme ray of the cone
Cσ(A) = {x ∈ Rn : Aσ̄x = 0, Aσx ≥ 0}. Moreover, more generally, we show that
a vector v ∈ Rn is a σ-circuit of A if and only if v is an extreme ray of the cone
C = {x ∈ Rn : Aσ̄x = 0, Aσ\ρx ≥ 0, Aρx ≤ 0} for any ρ ⊆ σ such that Aσ\ρv ≥ 0

and Aρv ≤ 0. Here, the rows of A indexed by σ are inequality constraints, the rows
of A indexed by σ̄ are equality constraints, and the rows of A indexed by ρ ⊆ σ are
less-than-or-equal-to-zero inequality constraints (≤ 0), and the rows of A indexed
by σ \ ρ are greater-than-or-equal-to-zero inequality constraints (≥ 0). We may
reformulate C in the form Cσ(Aρ) where A

ρ
ρ̄ = Aρ̄ and Aρ

ρ = −Aρ, in other words, Aρ

is the matrix A after multiplying the rows of A indexed by ρ by -1 thus turning ≥ 0

constraints into ≤ 0 constraints. Note that the set Oρ := {x ∈ Rn : xρ̄ ≥ 0, xρ ≤ 0}
defines an orthant of Rn where v ∈ Oρ. So, Cσ(Aρ) = {x ∈ Rn : Aσ̄x = 0, Aσx ∈ Oρ}.
Also, there are possibly many such orthants Oρ in which v lies because if Aiv = 0,
then we can choose either i ∈ ρ or i 6∈ ρ, and in either case, Aσv ∈ Oρ.

Lemma 9.1.3. A vector v ∈ Rn is a σ-circuit of A if and only if v is an extreme
ray of the cone Cσ(Aρ) = {x ∈ Rn : Aσ̄x = 0, Aσ\ρx ≥ 0, Aρx ≤ 0} for any ρ ⊆ σ

such that v ∈ Cσ(Aρ).

Proof. Let v be a σ-circuit of A. Let ρ ⊆ σ such that v ∈ Cσ(Aρ). Then, by definition,
v is a support-minimal vector in Cσ(Aρ), and thus from Lemma 2.2.13, it is an
extreme ray of Cσ(Aρ).

Conversely, let v be an extreme ray of Cσ(Aρ). We assume without loss of generality
that ρ = ∅ (i.e. Cσ(Aρ) = Cσ(A)). Let v′ ∈ {x ∈ Rn : Aσ̄x = 0} such that suppA(v′) (
suppA(v). We must have Aiv

′ < 0 for some i ∈ σ, otherwise v′ ∈ Cσ(A), which
contradicts that v is an extreme ray of Cσ(A) and thus support minimal in Cσ(A)
by Lemma 2.2.13. Let λ = min{− Aiv

Aiv′
: Aiv

′ < 0, i ∈ σ}, and let v′′ = v + λv′. By
construction, v′′ 6= 0, v′′ ∈ Cσ(A), and suppA(v′′) (suppA(v) since v′′

i = 0 but v′
i 6= 0

where i = argmin{− Aiv
Aiv′

: Aiv
′ < 0, i ∈ σ}. The statement suppA(v′′) (suppA(v)

contradicts that v is an extreme ray of Cσ(A). Therefore, no such vector v′ exists, so
v is suppA-minimal in {x ∈ Rn : Aσ̄x = 0}, so v is a circuit of A.

We discussed earlier that a circuit of a matrix A ∈ Rm×n is equivalent to a σ-
circuit of a matrix A′ ∈ R(m+n)×n where σ = {1, ..., m}, A′

σ̄ = A, and A′
σ = I.

Lemma 9.1.3 above says that the circuits of A are the extreme rays of the cones
Cσ(A′ρ) = {x ∈ Rn : Ax = 0, xσ\ρ ≥ 0, xρ ≤ 0} for every ρ ⊆ σ. Conversely, from
Lemma 9.1.3, the σ-circuits of matrix A are the extreme rays of the cones Cσ(Aρ) for
every ρ ⊆ σ, and as we saw in Section 8.2.3, every cone Cσ(A) can be reformulated
as C = {x ∈ Rn : A′x = 0, x ≥ 0} for some matrix A′, so Lemma 9.1.3 says that
the circuits of A′ are the σ-circuits of A. So, the set of circuits of a matrix A is
essentially equivalent to the set of σ-circuits of another matrix A′.

188 CHAPTER 9. COMPUTING CIRCUITS OF MATRICES

It follows immediately from Lemma 9.1.3 above that the union of all the sets of
extreme rays of each cone Cσ(Aρ) = {x ∈ Rn : Aσ̄x = 0, Aσ\ρx ≥ 0, Aρx ≤ 0}
for every ρ ⊆ {1, ..., n} gives the set of σ-circuits of A. Actually, if R is the set
all extreme rays of all cones Cσ(Aρ) for every ρ ⊆ {1, ..., n} and C is the set of
σ-circuits of A, then R = C ∪ -C; in other words, for every circuit v ∈ C, there are
two distinct extreme rays v ∈ R and −v ∈ R. The reason for this is that extreme
rays are unique up to multiplication by a positive constant and circuits are unique
up to multiplication by a constant (positive or negative). Indeed, if v is a σ-circuit
of A, then −v is a σ-circuit of A, and we treat them as the same circuit, but they
are different extreme rays.

Then, to compute the circuits of A, we could compute the extreme rays of each cone
Cσ(Aρ) for every ρ ⊆ σ individually using any algorithm for computing extreme
rays, and then, we take the union of the sets of extreme rays for all the different
cones. The obvious problem with this approach is that there are 2|σ| many different
cones and that we would compute the same circuit v many different times because
v can lie in many different cones and from Lemma 9.1.3 a circuit is an extreme
ray of every cone Cσ(Aρ) where v ∈ Cσ(Aρ). Moreover, during any iteration of a
extreme ray computation, we discard extreme rays that are not feasible for the next
iteration, but these extreme rays are actually circuits, so we are wasting compu-
tation by discarding them. The solution is to compute the extreme rays for all the
orthants simultaneously. Importantly, unlike for the extreme ray case, this algorithm
is polynomial in input and output size.

The fundamental idea behind the Circuit Algorithm 14 is that the combined set of
extreme rays of Cσ(Aρ) for every ρ ⊆ σ consists of all the extreme rays of Ci

σ(Aρ) for
every ρ ⊆ σ and the set of all new extreme rays r′ = (−Air

2)r1 + (Air
1)r2 where

r1 and r2 are adjacent extreme rays of Ci
σ(Aρ) for some ρ ⊆ σ such that Air

1 > 0
and Air

2 < 0. This follows because any extreme ray of some cone Ci
σ(Aρ) is feasible

for at least one cone Cσ(Aρ′) for some ρ′ ⊆ σ and thus an extreme ray of Cσ
A(ρ′), so

we never throw away any vectors. Extending this idea, the combined set of extreme
rays of Cτ -i

σ (Aρ) for ρ ⊆ σ and some i ∈ τ can be computed from the extreme rays
of all cones Cτ

σ(Aρ) for ρ ⊆ σ.

The algorithm for computing all the extreme rays of Cσ(Aρ) for every ρ ⊆ σ, Al-
gorithm 14, thus proceeds in much the same way as the extreme ray algorithm.
Initially, we choose some relaxation of Cσ(A) given by relaxing some of the inequal-
ity constraints such that the relaxation is still a pointed cone and we can easily find
the extreme rays of the relaxation Cσ(Aρ) for every ρ ⊆ σ. Then, we iteratively apply
the above fundamental idea: we compute the extreme rays of all cones Cτ -i

σ (Aρ) for
ρ ⊆ σ from the extreme rays of all cones Cτ

σ(Aρ) for ρ ⊆ σ, and we set τ = τ \ i, and
repeat until τ = ∅.

Algorithm 14 is incomplete. Firstly, it does not specify how to find an initial τ ⊆ σ

such that Cτ
σ(A) is pointed and such that we can compute the extreme rays of

Cτ
σ(Aρ) for all ρ ⊆ σ. This is done in essentially the same way as in Algorithm 11 for

computing extreme rays. Secondly, it does not specify how to select i ∈ τ . Thirdly, it
does not specify how to check that r1 and r2 are adjacent extreme rays of Cτ

σ(Aρ) for
some ρ ⊆ σ. We can use essentially the same approaches as for computing extreme
rays for all these issues; we address these issues next.

9.1. CIRCUIT ALGORITHM 189

Algorithm 14 Circuit Algorithm

Input: a pointed cone Cσ(A)
Output: a set R containing all the extreme rays for every Cσ(Aρ) for all ρ ∈ σ.

Find a set τ ⊆ σ such that Cτ
σ(A) is pointed.

Compute the minimal set R of extreme rays of Cτ
σ(Aρ) for all ρ ⊆ σ.

while τ 6= ∅ do

Select i ∈ τ .
R+ := {r ∈ R : Air > 0}.
R− := {r ∈ R : Air < 0}.
for all r1 ∈ R+ and r2 ∈ R− do

if r1 and r2 are adjacent extreme rays of Cτ
σ(Aρ) for some ρ ⊆ σ then

R := R ∪ {(−Air
2)r1 + (Air

1)r2}.
end if

end for

τ := τ -i.
end while

return R

Next, we show how to find a set τ ⊆ σ such that Cτ
σ(A) is pointed and such that

we can find all the extreme rays of Cτ (σ
A)ρ for every ρ ⊆ σ easily. This is done in

essentially the same way as for computing extreme rays.

Firstly, consider the cone C(A) := {x ∈ Rn : Ax ≥ 0} where A ∈ Rn×n and
rank(A) = n. We can easily find all extreme rays of C(Aρ) for all ρ ⊆ {1, ..., m} for
cones of this type. Recall from Section 8.1 that we can easily find the extreme rays
of C(A) as follows. Let R be the inverse matrix of A; i.e. AR = I. Let ri = R∗i,
the ith column of the matrix R. Thus, we have Ari = ei, so ri ∈ C(A), and ri is
an extreme ray of C(A). The columns of R are thus the extreme rays of C(A). We
now show that the set of extreme rays of C(Aρ) = {x ∈ Rn : Aρ̄x ≥ 0, Aρx ≤ 0}
for every ρ ⊆ {1, ..., m} consists of exactly the columns of R and the columns of
-R. First, consider the cone C(-A) := {x ∈ Rn : Ax ≤ 0}, which is the case where
ρ = {1, ..., m}. Note that the inverse matrix of -A is -R. Then, analogously to C(A),
the columns of -R are the extreme rays of C(-A). Extending this, it follows that the
extreme rays of C(Aρ) for some ρ ⊆ {1, ..., m} are the vectors R∗i where i ∈ ρ̄ and
the vectors −R∗i where i ∈ ρ. Therefore, the set of extreme rays of C(Aρ) for every
ρ ⊆ {1, ..., m} consists of exactly the columns of R and the columns of -R.

Next, consider the cone Cσ(A) := {x ∈ Rn : Aσ̄x = 0, Aσx ≥ 0} for some σ ⊆
{1, ..., m} where again A ∈ Rn×n and rank(A) = n. We can also easily find all
extreme rays of Cσ(Aρ) for cones of this type. Recall from Section 8.1 that we can
easily find the extreme rays of Cσ(A) as follows. Again let R be the inverse matrix of
A, and let ri = R∗i. Then, the extreme rays of Cσ(A) are the vectors ri where i ∈ σ.
Similarly to above, it follows that the extreme rays of Cσ(Aρ) for some ρ ⊆ σ are the
vectors R∗i where i ∈ ρ̄ = σ \ ρ and the vectors -R∗i where i ∈ ρ. Therefore, the set
of extreme rays of Cσ(Aρ) for every ρ ⊆ {1, ..., m} consists of exactly the columns of
R∗σ and the columns of -R∗σ.

Lastly, recall from Section 8.1 that we can find a set τ ⊆ σ such that Cτ
σ(A) is

190 CHAPTER 9. COMPUTING CIRCUITS OF MATRICES

pointed and Aτ̄ is an |τ̄ | by |τ̄ | matrix. Then, we can find the extremes of Cτ
σ(Aρ)

for all ρ ⊆ σ by computing the inverse matrix of Aτ̄ as we discussed above.

We now examine approaches for selecting i ∈ τ in Algorithm 14. Although the order
in which we select i ∈ τ was crucial for Algorithm 11, it is not so important for
Algorithm 14 because we never throw away any vectors in Algorithm 14, and thus,
at intermediate phases of Algorithm 14, the number of vectors in R never exceeds
the number of vectors at completion of the algorithm. However, the Algorithm 14
performs better when we try to keep the number of vectors at intermediate phases
low leaving as much work as possible for the last few iterations. Most approaches for
selecting i ∈ τ do not make sense for computing circuits since, for each cone Cτ

σ(Aρ)
for different ρ ⊆ σ, they would potentially select different i ∈ τ . For example, the
lexicographic approach is completely different for Cτ

σ(A) = Cτ
σ(Aρ) for ρ = ∅ and

Cτ
σ(-A) = Cτ

σ(Aρ) for ρ = σ. So, since we are computing extreme rays of Cτ
σ(Aρ) for

every ρ ⊆ σ simultaneously, there is no clear choice. The only approach for selecting
i ∈ τ that we used for computing extreme rays that makes sense for computing
circuits is the max-intersection approach; in practice, we found that this approach
works better than just choosing i ∈ τ in increasing order.

We now examine how to check whether two rays r1 and r2 in R are adjacent extreme
rays of Cσ(Aρ) for some ρ ⊆ σ in Algorithm 14. We show that r1 and r2 are adjacent
extreme rays of Cσ(Aρ) for some ρ ⊆ σ if and only if r1 and r2 are adjacent extreme
rays of Cσ(Aρ) for any ρ ⊆ σ such that r1, r2 ∈ Cσ(Aρ). Thus, we only need to
perform one adjacency check per pair of extreme rays r1 and r2 in R; that is, we
only need to check whether r1 and r2 are adjacent extreme rays of Cσ(Aρ) for only
one and any one ρ ⊆ σ such that r1, r2 ∈ Cσ(Aρ). We do not need to check for
adjacency for every possible ρ ⊆ σ where r1, r2 ∈ Cσ(Aρ). Essentially, we show that
adjacency is independent of ρ.

Before checking adjacency, we must first check that r1 and r2 are extreme rays of
Cσ(Aρ) for some ρ ⊆ σ. Fortunately, this is straight-forward to do. Firstly, r1 and
r2 are both rays of Cσ(Aρ) for some ρ ⊆ σ if and only if (Air

1)(Air
2) ≥ 0 for all

i ∈ {1, ..., m} meaning that either Air
1 ≥ 0 and Air

2 ≥ 0 or Air
1 ≤ 0 and Air

2 ≤ 0
for all i ∈ σ. Secondly, by construction, all vectors in R are extreme rays for at least
one cone Cσ(Aρ) for some ρ ⊆ σ, so r1 and r2 are extreme rays of at least one cone,
and also, as shown in Lemma 9.1.4 below, if a ray r is an extreme ray of Cσ(Aρ) for
some ρ ⊆ σ, then r is an extreme ray of Cσ(Aρ′) for any ρ′ ⊆ σ where r ∈ Cσ(Aρ′).

Lemma 9.1.4. If a ray r is an extreme ray of Cσ(Aρ) for some ρ ⊆ σ, then r is an
extreme ray of Cσ(Aρ′) for every ρ′ ⊆ σ where r ∈ Cσ(Aρ′).

Proof. From Corollary 2.2.12, a ray r is an extreme ray of Cσ(Aρ) if and only if r ∈
Cσ(Aρ) and n− rank(Aρ

τ̄) = 1 where τ = suppAρ(r). Now, τ = suppAρ(r) = suppA(r)
and rank(Aρ

τ̄) = rank(Aτ̄) since multiplying rows of A by -1 does not affect the
support of a vector nor the rank of a matrix. Thus, a ray r is an extreme ray of
Cσ(Aρ) if and only if r ∈ Cσ(Aρ) and n − rank(Aτ̄) = 1 where τ = suppA(r). Since
the condition n − rank(Aτ̄) = 1 is independent of ρ, the result follows.

Lastly, as shown in Lemma 9.1.5 below, if two rays r1 and r2 are adjacent extreme
rays of Cσ(Aρ) for some ρ ⊆ σ, then they are also adjacent extreme rays of Cσ(Aρ′)

9.1. CIRCUIT ALGORITHM 191

for every ρ′ ⊆ σ where r1, r2 ∈ Cσ(Aρ′). This is important because it means that we
only need to check whether r1 and r2 are adjacent extreme rays in only one and any
one cone Cσ(Aρ) for some ρ such that r1, r2 ∈ Cσ(Aρ).

Lemma 9.1.5. If the ray r1 and r2 are adjacent extreme rays of Cσ(Aρ) for some
ρ ⊆ σ, then r1 and r2 are adjacent extreme rays of Cσ(Aρ′) for every ρ′ ⊆ σ where
r1, r2 ∈ Cσ(Aρ′).

Proof. From Lemma 9.1.4 above, if r1 and r2 are extreme rays of Cσ(Aρ) for some
ρ ⊆ σ, then r1 and r2 are extreme rays of Cσ(Aρ′) for every ρ′ ⊆ σ where r1, r2 ∈
Cσ(Aρ′). Now, τ = suppAρ(r1 + r2) = suppA(r1 + r2) and rank(Aρ

τ̄) = rank(Aτ̄). So,
two distinct extreme rays r1 and r2 of the pointed cone Cρ

σ(A) are adjacent if and
only if rank(Aτ̄) = n − 2 by Corollary 8.1.3. Since the condition rank(Aτ̄) = n − 2
is independent of ρ, the result follows.

In summary, two rays r1 and r2 in R are adjacent extreme rays of Cσ(Aρ) for some
ρ ⊆ σ if and only if (Air

1)(Air
2) ≥ 0 for all i ∈ {1, ..., m} and r1 and r2 are adjacent

extreme rays of Cσ(Aρ) for any ρ ⊆ σ such that r1, r2 ∈ Cσ(Aρ).

Next, we consider the algebraic check for adjacency, which is essentially the same
check as per computing extreme rays because the effect on the constraint matrix of ρ

is that of multiplying the rows of A by -1, which has no effect on rank computations.
The following corollary was proven in the proof of Lemma 9.1.5 above.

Corollary 9.1.6. Two distinct extreme rays r1 and r2 of the pointed cone Cσ(Aρ)
are adjacent if and only if rank(Aτ̄) = n − 2 where τ = suppA(r1 + r2).

So, two rays r1 and r2 in R are adjacent extreme rays of Cσ(Aρ) for some ρ ⊆ σ

if and only if (Air
1)(Air

2) ≥ 0 for all i ∈ {1, ..., m} and rank(Aτ̄) = n − 2 where
τ = suppA(r1 + r2). The algebraic check for adjacency is thus easy to adapt and all
the improvements we suggested in Section 8.2.3 may be used here.

We now consider the combinatorial check for adjacency. Recall from Lemma 8.1.4,
that two distinct r1 and r2 of the pointed cone Cσ(Aρ) are adjacent if and only
if there does not exist another extreme ray r of Cρ

σ(A) distinct from r1 and r2

where suppAρ(r) ⊆ suppAρ(r1 + r2). Also, from before suppAρ(r) = suppA(r) and
suppAρ(r1 + r2) = suppA(r1 + r2), so we arrive at Corollary 9.1.7 below.

Corollary 9.1.7. Two distinct extreme rays r1 and r2 of the pointed cone Cσ(Aρ)
are adjacent if and only if there does not exist another extreme ray r of Cσ(Aρ)
distinct from r1 and r2 where suppA(r) ⊆ suppA(r1 + r2).

Recall from above that two rays r1 and r2 in R are adjacent extreme rays of Cσ(Aρ)
for some ρ ⊆ σ if and only if r1 and r2 in R are adjacent extreme rays of Cσ(Aρ′) for
any ρ′ ⊆ σ. So, two rays r1 and r2 in R are adjacent extreme rays of Cσ(Aρ) for some
ρ ⊆ σ if and only if there does not exist another distinct extreme ray r ∈ R such that
suppA(r) ⊆ suppA(r1 + r2) and r, r1, r2 ∈ Cσ(Aρ′) for some ρ′ ⊆ σ. Unfortunately, it
is insufficient just to check whether suppA(r) ⊆ suppA(r1 + r2) for some r ∈ R; it
may occur that r1 and r2 in R are adjacent extreme rays of Cσ(Aρ) for some ρ ⊆ σ,

192 CHAPTER 9. COMPUTING CIRCUITS OF MATRICES

but suppA(r) ⊆ suppA(r1 + r2) for some ray r ∈ R and there does not exist ρ′ ⊆ σ

such that r, r1, r2 ∈ Cσ(Aρ′).

We can check whether there exists ρ′ ⊆ σ such that r, r1, r2 ∈ Cσ(Aρ′) as follows.
Recall from above that r1, r2 ∈ Cσ(Aρ′) for some ρ′ ⊆ σ if and only if (Air

1)(Air
2) ≥

0 for all i ∈ {1, ..., m}. Extending this, r, r1, r2 ∈ Cσ(Aρ′) for some ρ′ ⊆ σ if and only
if (Air

1)(Air
2) ≥ 0, (Air)(Air

1) ≥ 0, and (Air)(Air
2) ≥ 0 for all i ∈ {1, ..., m}. Or

more succinctly, r, r1, r2 ∈ Cσ(Aρ′) for some ρ′ ⊆ σ if and only if (Air
1)(Air

2) ≥ 0
and (Air)(Ai(r

1 + r2)) ≥ 0 for all i ∈ {1, ..., m}. Thus, we can check whether
two rays r1 and r2 in R are adjacent extreme rays of Cσ(Aρ) for some ρ ⊆ σ by
first checking whether (Air

1)(Air
2) ≥ 0 for all i ∈ {1, ..., m} and then searching

through R for another extreme ray r such that suppA(r) ⊆ suppA(r1 + r2) and
(Air)(Ai(r

1 + r2)) ≥ 0 for all i ∈ {1, ..., m}. We can use a tree structure as in
Section 8.2.2 to search for a ray r ∈ R such that suppA(r) ⊆ suppA(r1 + r2).
However, we found this approach to be inefficient, and fortunately, there is a much
better approach.

Before presenting the better approach we need some new notation. For a ray r and
a matrix A, we define the positive support of r as

supp+
A(r) := {i ∈ {1, ..., m} : Air > 0}

and the negative support of r as

supp−
A(r) := {i ∈ {1, ..., m} : Air < 0}.

So, suppA(r) = supp+
A(r) ∪ supp−

A(r). Then, r1, r2 ∈ Cσ(Aρ′) for some ρ′ ⊆ σ if
and only if supp+

A(r1) ∩ supp−
A(r2) = ∅ and supp−

A(r1) ∩ supp+
A(r2) = ∅. Moreover,

r, r1, r2 ∈ Cσ(Aρ′) for some ρ′ ⊆ σ if and only if supp+
A(r1) ∩ supp−

A(r2) = ∅ and
supp−

A(r1) ∩ supp+
A(r2) = ∅, and additionally, supp+

A(r) ∩ supp−
A(r1 + r2) = ∅ and

supp−
A(r) ∩ supp+

A(r1 + r2) = ∅. Finally, observe that suppA(r) ⊆ suppA(r1 + r2)
as well as supp+

A(r) ∩ supp−
A(r1 + r2) = ∅ and supp−

A(r) ∩ supp+
A(r1 + r2) = ∅ if

and only if supp+
A(r) ⊆ supp+

A(r1 + r2) = ∅ and supp−
A(r) ⊆ supp−

A(r1 + r2) = ∅.
Therefore, we can check whether two rays r1 and r2 in R are adjacent extreme rays
of Cσ(Aρ) for some ρ ⊆ σ by first checking whether supp+

A(r1) ∩ supp−
A(r2) = ∅

and supp−
A(r1) ∩ supp+

A(r2) = ∅ and then searching through R for another extreme
ray r such that supp+

A(r) ⊆ supp+
A(r1 + r2) and supp−

A(r) ⊆ supp−
A(r1 + r2). The

problem now is then how do we efficiently search for an extreme ray r in R such
that supp+

A(r) ⊆ supp+
A(r1 + r2) and supp−

A(r) ⊆ supp−
A(r1 + r2). We can do this

efficiently using a tree structure as in Section 8.2.2 using an extended support set.

Given a ray r and a matrix A, we define the extended support as

xsuppA(r) := {i : Air > 0, i ∈ {1, ..., m}} ∪ {i + m : Air < 0, i ∈ {1, ..., m}}.

Note that xsuppA(r) ⊆ {1, ..., 2m}. Thus, supp+
A(r) ⊆ supp+

A(r1+r2) and supp−
A(r) ⊆

supp−
A(r1 + r2) if and only if xsuppA(r) ⊆ xsuppA(r1 + r2). Therefore, we can check

whether two rays r1 and r2 in R are adjacent extreme rays of Cσ(Aρ) for some ρ ⊆ σ

by first checking whether supp+
A(r1)∩ supp−

A(r2) = ∅ and supp−
A(r1)∩ supp+

A(r2) = ∅
and then searching through R for another extreme ray r such that xsuppA(r) ⊆

9.2. COMPUTATIONAL RESULTS 193

xsuppA(r1 + r2). We can use exactly the same tree structure as in 8.2.2 to perform
the search, and since | xsuppA(r)| = | suppA(r)|, the depth of a tree of extended
supports is not any larger than a tree of normal supports. This is the approach we
use in practice.

There is one last improvement to the circuit algorithm that we present. As we
discussed previously, Algorithm 14 computes twice as many vectors as necessary
(i.e. it computes the set C ∪ −C where C is the set of σ-circuits of A) because,
for every circuit r, both r and −r are extreme rays of cones since both r and −r

are circuits. We would prefer to avoid computing the duplicates – only computing
one representative of r and −r – and thus just compute the set C. This is certainly
possible for the following reasons. If r1 and r2 are adjacent extreme rays of Ci

σ(Aρ)
for some ρ ⊆ σ and some i ∈ σ, then −r1 and −r2 are adjacent extreme rays of
Ci

σ(Aρ̄) where ρ̄ = σ \ ρ. This follows from Corollary 9.1.7. Furthermore, if Air
1 > 0

and Air
2 < 0, then r = (−Air

2)r1 + (Air
1)r2 is an extreme ray of Cσ(Aρ), but also,

since Ai(−r2) > 0 and Ai(−r1) < 0, then −r = (−Ai(−r1))(−r2) + (Ai(−r2)(−r1)
is an extreme ray of Cσ(Aρ̄). Thus, if Air

1 > 0 and Air
2 < 0, we only need to

check whether r1 and r2 are adjacent extreme rays of Ci
σ(Aρ) for some ρ ⊆ σ –

we do not need to consider −r1 and −r2 – and if r1 and r2 are adjacent, we only
generate r = (−Air

2)r1 + (Air
1)r2, and thus, we avoid computing duplicates. So,

when computing the σ-circuits of A, we only store one representative of r and −r.

Also, we can extend the circuit algorithm for the more general case where, instead
of computing suppA-minimal vectors of {x ∈ Rn : Aσ̄x = 0}, we wish to compute
suppA-minimal vectors of {x ∈ Rn : Aσ̄x = 0, Aτx ≥ 0} for some τ ⊆ σ. Note that
computing the extreme rays of a cone is a special case of this where τ = σ and
computing the σ-circuits of A is also a special case where τ = ∅. Here, we wish to
compute the combined set of extreme rays of the cones Cσ(Aρ) for every ρ ⊆ σ \ τ ,
so we restrict the values that ρ can take. The algorithm to compute such a set
proceeds as per Algorithm 14 except that we may need to throw away some vectors
r at intermediate stages of the algorithm if there does not exist a set ρ ⊆ σ \ τ such
that r ∈ Cσ(Aρ), or in other words, Aτx 6≥ 0.

We could also modify the alternative approach to the double description method
described in Section 8.3 to compute circuits. This alternative approach for comput-
ing circuits is essentially the same as the approach given in [48, 93, 91] and the
above approach is essentially equivalent to the approach in [39]. As in the case for
computing extreme rays, our computational experience lead us to the conclusion
that the alternative approach was not as effective as the approach we give above.

9.2 Computational results

In this section, we give some computational results of computing circuits of matrices.
All results in this section are listed in seconds and were computed on an Intel XEON
3.2 GHz machine with 4Gb of RAM running Linux Redhat.

In Table 9.1, we list the times in seconds for computing the circuits of some matrices.
We compare our implementation in 4ti2 version 1.3 (with some minor modifications)

194 CHAPTER 9. COMPUTING CIRCUITS OF MATRICES

using the algebraic adjacency check and the combinatorial adjacency check, and we
also compare our implementation with Metatool 5.0 (see for example, [73, 38, 91]).1

We consider the computations times for four matrices. The first two matrices are
the constraint matrices for the cones of magic squares. The third matrix, “Epista-
sis”, corresponds to a problem in computational biology (see [11]).2 The last matrix,
“Glucose”, corresponds to a problem from metabolic pathway analysis (see for ex-
ample [63]).

The second column is the number of circuits of the matrix. The third and fourth
column give the dimensions of the matrix. The next two columns are the times
for computing the circuits of the matrix with our implementation in 4ti2 for the
algebraic adjacency check and the combinatorial adjacency check respectively. The
last column is the time for Metatool 5.0 to compute the circuits. We understand that
Metatool 5.0 uses an algorithm based upon the algorithm described in [91], which is
similar to the algorithm described in this chapter (without our optimisations) using
an algebraic check for adjacency.

Problem Size n m algeb. comb. Metatool

44 459 16 9 0.01 0.01 0.02
55 229563 25 11 46.04 48.13 75.26
Epistasis 772731 37 18 184.91 732.26 653.68
Glucoe 27100 42 25 29.42 6.32 3.50

Table 9.1: Running times for computing circuits of matrices.

In general, the algebraic check is faster than the combinatorial check particularly
when computing large numbers of circuits. The time spent performing the algebraic
check is not dependent on the number of circuits whereas the time spent performing
the combinatorial check does depend on the number of circuits. We believe that
it is for this reason that the algebraic check performs significantly better than the
combinatorial check when there are many of circuits. For the last example, the
combinatorial check is faster than the algebraic check. This can be attributed to
the fact that we needed to use arbitrary precision integer arithmetic to solve this
problem; thus, the matrix computations are much slower, but the combinatorial
check is left unaffected. For the other problems, we used 64 bit integer arithmetic
with overflow checking.

In comparison with Metatool 5.0 our implementation compares well. Metatool is
faster for the last problem; this may be because, as far as we know, Metatool uses
floating point arithmetic instead of arbitrary precision integer arithmetic, so the
algebraic adjacency check is much faster. But, this means that Metatool 5.0 cannot
guarantee that its output is correct.

1The software package Metatool 5.0 is available for download from the following website:
http://pinguin.biologie.uni-jena.de/bioinformatik/networks/.

2We thank N. Beerenwinkel for providing this example.

Chapter 10

Conclusion

In this chapter, we review the results of this thesis and discuss some possible direc-
tions of future research.

In Chapter 3 and Chapter 4, we presented the concepts of Markov bases and Gröbner
bases. Most of concepts and theory in these chapters are known in some form or
another in the literature, but we tried to present the concepts and theory in a
coherent and concise way in the context of integer programming. Here, we described
Markov bases and Gröbner basis of fibers and of lattices as well as truncated Markov
bases and Gröbner bases of lattices. There are no explicit references to Markov bases
of one fiber nor to Gröbner bases of one fiber in the literature, but we found these
concepts quite useful in the context of integer programming in order to gain a better
understanding of Markov bases and Gröbner bases. In the chapter on Gröbner bases,
we gave a pseudo-polynomial upper bound on the size of truncated Gröbner bases
for equality knapsack problems. Further investigation into the size of Gröbner bases
for different classes of integer programs would be interesting.

The next chapter on computing Gröbner bases of lattices and truncated Gröbner
bases of lattices contained a description of the well-known completion procedure.
Not much is known about the complexity of the completion procedure for com-
puting Gröbner bases of lattices. More research is required to better understand its
complexity even for simple cases. In section 4.3, we presented a different approach for
truncating Gröbner bases for which we have some promising initial computational
results. At the end of the chapter, we presented different approaches for comput-
ing Gröbner bases. These algorithms are not as yet implemented, and it would be
interesting to compare their performance with the performance of the completion
procedure.

In Chapter 6, we compared different algorithms for computing Markov bases. In
Section 6.1, we presented a new algorithm, the Project-and-Lift algorithm, for com-
puting Markov basis of lattices, which is the major contribution of this thesis. This
method computes a Markov basis incrementally for a hierarchy of relaxations. The
Project-and-Lift algorithm outperforms the other main algorithms for computing
Markov bases: the Saturation algorithm and the Lift-and-Project algorithm. The
reason for this is that the Project-and-Lift algorithm performs computations in sub-
lattices in contrast to the other algorithms that always work in the original lattice

195

196 CHAPTER 10. CONCLUSION

or in an extended lattice. We also showed that we could modify this algorithm to
compute a truncated Markov basis without needing to first compute a non-truncated
Markov basis of a lattice and then truncate. Instead, the truncated Project-and-Lift
algorithm truncates at intermediate stages of the algorithm thus usually avoiding
computing the entire non-truncated Markov basis.

We next presented the applications of the Project-and-Lift algorithm. Firstly, we
showed how Markov bases can be used in algebraic statistics. Using the Project-and-
Lift algorithm, we were able to solve a previously intractable problem in algebraic
statistics to compute the minimal Markov basis of a 4 × 4 × 4 contingency table.
The Markov basis of a 4 × 4 × 4 contingency table contains a lot of symmetry –
many different vectors in the Markov basis are just permutations of each other. This
symmetry of the Markov basis is due to the symmetry of contingency tables (e.g.
swapping rows and swapping columns gives another contingency table). Ideally, an
algorithm for computing Markov bases should be able to take advantage of this
symmetry; currently, none of the algorithms described in this thesis for computing
Markov bases with the exception of the Graver basis algorithm (see [51]) can handle
symmetry. It would be interesting future work to see whether the Project-and-Lift
algorithm could be modified to handle symmetry.

In the chapter on applications, we also presented a slightly extended form of the
Project-and-Lift algorithm for computing a feasible solution of an integer program;
thus, at the same time as computing a Markov basis, we can compute a feasible so-
lution (or perhaps a set of feasible solutions for a set of different integer programs),
which is important for Gröbner basis techniques since they require an initial fea-
sible solution. We showed that the feasibility algorithm performs well on equality
knapsack problems. A possible subject for future research is to understand why
this method works well for the particular equality knapsack problems we examined
and to search for other classes of problems for which this method also works well.
Another possibility is to look into using this feasibility approach during the trun-
cated completion procedure (Algorithm 3) since, during the truncated completion
procedure, we must determine the infeasibility of many different integer feasibility
problems in order to determine whether to truncate a vector or not; this feasibility
approach is well suited to this situation.

Another application that we presented concerns the solution of integer programs
using Gröbner basis methods. Previous Gröbner basis methods for solving an inte-
ger program involved first computing an entire truncated Gröbner basis of a lattice
(or even a non-truncated Gröbner basis of a lattice). These approaches do not use
much information about the structure of the problem, and thus, they can be very
inefficient. We demonstrated that it is possible to significantly improve upon the per-
formance of previous Gröbner basis approaches using structure specific to an integer
program. We did this by solving a hierarchy of relaxations so as to avoid computing
with unnecessary constraints and by adding upper bounds on the objective function
in order to strengthen truncation. Gröbner basis approaches have still not yet proven
to be competitive with traditional branch-and-bound based approaches to integer
programming for industrial applications. However, given the progress shown here,
it appears possible that combined with existing methods, Gröbner basis methods
will be useful for certain classes of problems. So, it would be interesting to apply

197

this method to different classes of problems to see how it performs, and it would
also be interesting to see whether it is possible to improve the method for particular
classes of problems by using problem structure specific to the class of problems.
Specifically, because a Gröbner basis approach is an exact local search method, one
could apply Gröbner basis approaches to classes of problems for which heuristic lo-
cal search methods are often used. Also, Gröbner basis approaches could perhaps be
used as part of a heuristic local search method. Here, one would not compute the
entire Gröbner basis but only some subset of the Gröbner basis – a partial Gröbner
basis – and use the vectors in the partial Gröbner basis as part of a heuristic search
method such as tabu search. To compute the partial Gröbner basis, one could just
terminate the completion procedure prematurely when an upper bound on time or
size had been reached. Perhaps using the set of vectors in a partial Gröbner bases to
determine the neighbourhood of a feasible solution will result in better performance
of heuristic local search methods.

Another possible avenue of future research is to investigate using a Gröbner ba-
sis type approach as a heuristic local search method where Gröbner basis methods
can be extended to mixed integer programming (see [55]). For mixed integer pro-
gramming, the number of vectors in a Gröbner basis can actually be infinite. Most
industrial applications are mixed integer programs, so for Gröbner basis methods
to have a significant impact on integer programming, they must be applied to the
mixed case. There is also a linear programming analogue of Gröbner bases for integer
programs (see [80]), and interestingly, solving linear programs with these Gröbner
bases is analogous to the simplex method. A Gröbner bases for a linear program can
be computed using the algorithm for computing circuits of matrices (see [80]).

In Chapter 8, we showed how we can improve the double description method for
computing extreme rays of cones and for computing circuits of matrices. The double
description method is a well-known and often used algorithm for computing extreme
rays of cones. We suggested optimisations to reduce the number of times during the
double description method that we need to check whether two extreme rays are
adjacent using the expensive algebraic or combinatorial checks. We also discussed
optimisations to the algebraic check for adjacency; we can reformulate the cone so
that the rank computation is smaller. There is one particular formulation involving
equality constraints together with non-negativity constraints of a cone that was
shown to work well in practice (see Section 8.4) for cones where the number of
constraints of a cone is not much larger than the dimension of the cone. However,
if there are many constraints compared to the dimension, then the formulation that
we implemented was not very effective. In Section 8.2.3, we suggested an alternative
formulation that should not suffer from the same inefficiencies. It has yet to be
implemented, but it would be an interesting direction of future research. Lastly, by
using a tree structure for storing the supports of extreme rays, we improved the
combinatorial check for adjacency. This approach still has room for improvement,
and, with further study, we believe it could be significantly improved.

Perhaps the most interesting topic of future research in the subject of computing
extreme rays is to find a polynomial time algorithm (in input and output size) for
computing extreme rays of cones or show that such an algorithm does not exist.
Recall from Chapter 8 that it is impossible that such a polynomial time algorithm

198 CHAPTER 10. CONCLUSION

exists for computing the extreme rays of cones in input polynomial time because
there are potentially exponentially many extreme rays, so we must take into consid-
eration the output size. Also, in the context of polyhedra, recall that it was shown by
Khachiyan et al. in [62] that there is no polynomial time (in input and output size)
algorithm to compute just the vertices of a polyhedron but excluding the extreme
rays, but here, the output size does not include the extreme rays, so this result does
not rule out a polynomial time algorithm in input and output size for computing
extreme rays and vertices.

Lastly, in Chapter 9, we presented a known modified version of the algorithm for
computing extreme rays of cones in order to compute the circuits of matrices. In this
way, all of our optimisations for the extreme ray algorithm also apply for computing
circuits of matrices. Circuits of matrices has an application in computational biology
for metabolic pathway analysis ([38]) and in studying gene interactions ([11]). We
found that our implementation of the double description method for computing
circuits of matrices compared favourably to Metatool 5.0 ([73, 38, 91]), which is
another implementation of a variant of the double description method designed for
metabolic pathway analysis. We do not feel that there is anything more to be done
with respect to the computation of circuits of matrices that would not also apply to
computing extreme rays of cones, but there may be more applications of circuits of
matrices yet to be discovered.

Appendix A

Computational Algebraic

Geometry

In this appendix, we give an extremely brief synopsis of the relationship between
Markov bases and Gröbner bases of integer programs and generating sets and
Gröbner bases of lattice ideals in polynomial rings respectively. We only present
the two main results. We refer the reader to [28] for a thorough and easy to read
introduction to computational algebraic geometry.

We first define the standards concepts in computational algebraic geometry of ideals,
monomial orderings, and Gröbner bases.

We define k[x1, ..., xn] where k is a field as the polynomial ring consisting of all
polynomials in x1, ..., xn with coefficients in k. In other words, k[x1, ..., xn] is the set
of all polynomials in the form

∑

α∈Nn aαxα where aα ∈ k and only a finite number
of aα are non-zero. Note that we write xα as shorthand for xα1

1 · xα2

2 · · ·xαn
n , and xα

is called a monomial, and aαxα is called a term.

An ideal I is a subset of k[x1, ..., xn] such that (i) 0 ∈ I, (ii) if f, g ∈ I, then
f + g ∈ I, and (iii) if f ∈ I and h ∈ k[x1, ..., xn], then hf ∈ I. Given a finite set of
polynomials {f1, f2, ..., fs} ⊂ k[x1, ..., xn], we define

〈f1, f2, ..., fs〉 := {
s

∑

i=1

hifi : h1, ..., hs ∈ k[x1, ..., xn]}.

The set 〈f1, f2, ..., fs〉 is an ideal of k[x1, ..., xn], and we call {f1, f2, ..., fs} a gen-

erating set of the ideal 〈f1, f2, ..., fs〉. A fundamental result in algebraic geometry
is the Hilbert Basis Theorem which says that every ideal in k[x1, ..., xn] has a finite
generating set. More formally, for every ideal I ⊆ k[x1, ..., xn], there exists {f1, ..., fs}
such that I = 〈f1, f2, ..., fs〉.

A term order is any relation ≻ on Nn or equivalently any relation on the set of
monomials xα, α ∈ Nn such that (i) ≻ is a total order on Nn, (ii) if α ≻ β and
γ ∈ Nn, then α + γ ≻ β + γ, and (iii) ≻ is a well-order on Nn meaning that every
non-emptyset subset of Nn has a smallest element under ≻. Given a polynomial
f =

∑

α∈Nn aαxα ∈ k[x1, ..., xn] and a term order ≻, the leading term of f , written
LT (f), is the term aαxα of f where α is the largest element under ≻ such that aα

199

200 APPENDIX A. COMPUTATIONAL ALGEBRAIC GEOMETRY

is non-zero: i.e. α = max≻{α ∈ Nn : aα 6= 0}. Note that term orders as defined here
correspond exactly to term orders as defined in Section 2.10.

A Gröbner basis of an ideal I with respect to ≻ is a finite set of polynomials G =
{g1, g2, .., gt} ⊆ I such that, for every polynomial f ∈ I, there exists a polynomial
g ∈ G such that LT (g) divides LT (f).

We can now introduce concepts and results that relate Gröbner bases and Markov
bases of integer programs to Gröbner bases and generating sets of ideals respectively.
The two results are known, but the proofs of them are our own.

Given a lattice L ⊆ Zn, a lattice ideal is I(L) := 〈xu+

− xu−

: u ∈ L〉 ⊆
k[x1, ..., xn]. More explicitly, I(L) is the set of all possible polynomials of the form
∑d

i=1 fi(x)(xui+

− xui−

) where ui ∈ L and fi(x) ∈ k[x1, ..., xn]. A toric ideal is a
lattice ideal where the lattice is saturated.

We show in Lemma A.0.1 below that, given a set M ⊆ L, M is a Markov basis of
L if and only if the set of polynomials {xu+

− xu−

: u ∈ M} is a generating set of
I(L) or equivalently I(M) = I(L) where I(M) := 〈xu+

− xu−

: u ∈ M〉.

Lemma A.0.1. A finite set M ⊆ L is a Markov basis of L if and only if I(M) =
I(L).

Proof. Assume that M is a Markov basis of L. We show that, for every u ∈ L,
xu+

− xu−

=
∑d

i=1 δixγi

(xvi+

− xvi−

) where vi ∈ M , δi ∈ {1,−1} ∈ k, and γi ∈ Nn,
and the result follows. Note that we allow vi = vj for i 6= j. Let u ∈ L. Then,
u+, u− ∈ FL(ν) where ν = u+. Since M is a Markov basis, there exists a path
from u+ to u− in the graph GL(ν, M), or more explicitly, there exists a sequence of
points (p1, p2, ..., pd+1) ⊆ FL(ν) where p1 = u+, pd+1 = u−, and pi − pi+1 ∈ M or
pi+1 − pi ∈ M for i = 1, ..., d. For every i = 1, ..., d, let vi = pi − pi+1, γi = pi − vi+,
and δi = 1 if pi−pi+1 ∈ M , and vi = pi+1−pi, γi = pi−vi−, and δi = −1 otherwise.
So, vi ∈ M , δivi = pi − pi+1, pi = (δivi)+ + γi, and pi+1 = (δivi)− + γi for every
i = 1, ..., d. Hence, xpi

− xpi+1

= δixγi

(xvi+

− xvi−

), and therefore, xu+

− xu−

=
xp1

− xpd+1

=
∑d

i=1 δixγi

(xvi+

− xvi−

) as required.

Conversely, assume that I(M) = I(L). Choose α, β ∈ FL(ν) for some ν ∈ Zn such
that α and β are not connected in GL(ν, M). We will derive a contradiction. The
binomial xα−xβ is in I(L) = I(M), so we may write xα−xβ =

∑d

i=1 cixγi

(xvi+

−xvi−

)
where vi ∈ M , ci ∈ k, and γi ∈ Nn. Note that we allow vi = vj for i 6= j. Now,
let I ⊆ {1, ..., d} be the set of i ∈ {1, ..., d} such that the point (γi + vi+) is in
FL(ν) and (γi + vi+) is connected to α in GL(ν, M). Note that if (γi + vi+) is
connected to α in GL(ν, M), then (γi + vi−) is also connected to α in GL(ν, M)
since (γi + vi+) − (γi + vi−) = v. Thus, the set of monomials consisting of xγi

xvi+

and xγi

xvi−

for all i ∈ I, which includes xα and not xβ , is disjoint from the set of
monomials consisting of xγi

xvi+

and xγi

xvi−

for all i 6∈ I, which includes xβ and
not xα. Let f(x) =

∑

i∈I cixγi

(xvi+

− xvi−

) and let g(x) = −
∑

i6∈I cixγi

(xvi+

− xvi−

).
Thus, the polynomials f(x) and g(x) have a disjoint set of monomials, and therefore,
f(x) = xα and g(x) = xβ since xα − xβ = f(x) − g(x). However, this is impossible
since f(1) = 0 and g(1) = 0 but 1α = 1 and 1β = 1.

Lemma A.0.2. Given a term order ≻, a set G ⊆ L≻ is a ≻-Gröbner basis of L if
and only if {xv+

− xv− : v ∈ G} is a ≻-Gröbner basis of I(L).

201

Proof. Assume that {xv+

− xv− : v ∈ G} is a ≻-Gröbner basis of I(L). Let u ∈ L≻.
Then, xu+

− xu−

∈ I(G) and the leading term of xu+

− xu−

is xu+

since u+ ≻ u−.
There must exist v ∈ G such that xv+

divides xu+

because G is a ≻-Gröbner basis of
I(L). This implies that v+ ≤ u+. Thus, G+ ≤ L+

≻, and therefore, G is a ≻-Gröbner
basis of L by Lemma 4.2.3.

Assume G ⊆ L≻ is a ≻-Gröbner basis of L. Let f(x) ∈ I(L) and let xα be the
leading term of f(x). Note that since k is a field, we can always assume that the
leading term is a monomial because we can always multiply f by the multiplicative
inverse of the leading coefficient. We must show that there exists a vector v ∈ G

such that xv+

divides xα or equivalently v+ ≤ α. Assume that there is no v ∈ G

such that v+ ≤ α, which implies that α is the optimal solution of IPL,≻(α) since G

is a Gröbner basis of L. Then, since xα is the leading monomial of f(x), there are
no monomials xβ in f(x) such that β ∈ FL(α). We now derive a contradiction. The
polynomial f(x) is in I(L), so we may write f(x) =

∑d
i=1 cixγi

(xui+

− xui−

) where
ui ∈ L, ci ∈ k, and γi ∈ Nn. Let I ⊆ {1, ..., d} be the set of i ∈ {1, ..., d} such that the
point (γi+ui+) is in FL(α). Note that if (γi+ui+) ∈ FL(α), then (γi+ui−) ∈ FL(α).
Let h(x) =

∑

i∈I cixγi

(xui+

− xui−

) and let g(x) =
∑

i6∈I cixγi

(xui+

− xui−

). Then,

f(x) = h(x)+g(x), and also, h(x) only contains monomials xβ such that β ∈ FL(α),
and g(x) only contains monomials xβ such that β 6∈ FL(α). Therefore, xα = h(x),
which is not possible since h(1) = 0 and 1α = 1.

202 APPENDIX A. COMPUTATIONAL ALGEBRAIC GEOMETRY

Appendix B

Notation

R the set of real numbers.

R+ the set of non-negative real numbers.

Q the set of rational numbers.

Z the set of integers, Z :={...,-2,-1,0,1,2,...}.

N the set of non-negative integers, N := {0, 1, 2, ...}.

0 the vector of all-zeros of appropriate dimension.

1 the vector of all-ones of appropriate dimension.

v+ the positive part of the vector v ∈ Zn, i.e. v+
i = max{vi, 0} for all i = 1, ..., n.

v− the negative part of v ∈ Zn, v−
i = max{-vi, 0} for all i = 1, ..., n.

πσ the map πσ : Zn → Z|σ̄| that maps vectors in Zn onto their σ̄ components.

vσ the projection of the vector v ∈ Zn onto its σ ⊆ {1, ..., n} components.

Vσ the projection of the set V ⊆ Zn onto its σ ⊆ {1, ..., n} components.

V + := {v+ : v ∈ V }.

V − := {v− : v ∈ V }.

ei the ith unit vector of appropriate dimension.

AT the transpose of the matrix A.

Ai the ith row of the matrix A.

Aτ the submatrix of A consisting of the rows of A indexed by the set τ .

A∗j the jth column of the matrix A.

A∗σ the submatrix of A consisting of the columns of A indexed by the set σ.

Aij the entry of the matrix A in the ith row and jth column.

Aτσ the submatrix of A consisting of the rows indexed by τ and the columns
indexed by σ.

I the identity matrix of appropriate dimension.

||v||1 the l1-norm of a vector v ∈ Zn, ||v||1 =
∑n

i=1 |vi|.

203

204 APPENDIX B. NOTATION

S a linear space.

S∗ the dual of the linear space S: S∗ := {x ∈ Rn : xs = 0 ∀s ∈ S}.

S(A) the linear space S(A) := {x ∈ Rn : Ax = 0}.

C a cone.

C∗ the dual of the cone C: C∗ := {x ∈ Rn : cx ≥ 0 ∀c ∈ C}.

C(A) := {x ∈ Rn : Ax ≥ 0}.

Cσ(A) := {x ∈ Rn : Aσ̄x = 0, Aσx ≥ 0}.

Cτ
σ(A) := {x ∈ Rn : Aσ̄x = 0, Aσ\τx ≥ 0}.

Cσ(Aρ) := {x ∈ Rn : Ax = 0, Aσ\ρx ≥ 0, Aρx ≤ 0}.

PA(b) := {x ∈ Rn : Ax ≥ b}.

Pσ
A(b) := {x ∈ Rn : Aσ̄x = bσ̄, Aσx ≥ bσ}.

LPA,c(b) := min{cx : x ∈ PA(b)}.

LP σ
A,c(b) := min{cx : x ∈ Pσ

A(b)}.

L a lattice.

Lσ the projection of a lattice L onto the σ̄ components: Lσ := πσ(L).

L≻ := {u ∈ L : u+ ≻ u−}.

L≻ := {u ∈ L : u+ ≻ u−, u+ ∈ BL(ν)}.

FL(ν) := {x ∈ Zn : x − ν ∈ L, x ≥ 0}.

Fσ
L(ν) := {x ∈ Zn : x − ν ∈ L, xσ̄ ≥ 0}.

IPL,c(ν) := min{cx : x ∈ FL(ν)}.

IP σ
L,c(ν) := min{cx : x ∈ Fσ

L(ν)}.

IPL,≻(ν) := min≻{x : x ∈ FL(ν)}.

IP σ
L,≻(ν) := min≻{x : x ∈ Fσ

L(ν)}.

GL(ν, S) the fiber graph with nodes in FL(ν) and edges in S.

Gσ
L(ν, S) the fiber graph with nodes in Fσ

L(ν) and edges in S.

BL(ν) := {ν ′ ∈ Zn : FL(ν ′) 6= ∅ and FL(ν − ν ′) 6= ∅}.

Bσ
L(ν) := {ν ′ ∈ Zn : Fσ

L(ν ′) 6= ∅ and Fσ
L(ν − ν ′) 6= ∅}.

supp(x) := {i ∈ {1, ..., n} : xi 6= 0}.

suppA(x) := {i ∈ {1, ..., m} : Aix 6= 0}.

x ∨ y component-wise maximum: (x ∧ y)i = max{xi, yi} ∀i = 1, . . . , n.

x ∧ y component-wise minimum: (x ∧ y)i = min{xi, yi} ∀i = 1, . . . , n.

HNF Hermite Normal Form.

UHNF Upper Hermite Normal Form.

Bibliography

[1] 4ti2 team. 4ti2 – a software package for algebraic, geometric and combinatorial
problems on linear spaces. Available at www.4ti2.de.

[2] K. Aardal and A. K. Lenstra. Hard equality constrained integer knapsacks.
Mathematics of operations research, 29(3):724–738, 2004.

[3] W.W. Adams and P. Loustaunau. An Introduction to Gröbner Bases, volume 3.
Oxford University Press, 1994.

[4] S. Aoki and A. Takemura. The list of indispensable moves of the unique min-
imal Markov basis for 3x4xk and 4x4x4 contingency tables with fixed two-
dimensional marginals. METR Technical Report, pages 03–38, 2003.

[5] D. Avis. lrs: a c implementation of the reverse search vertex enumeration
algorithm. Available at http://cgm.cs.mcgill.ca/˜avis/C/lrs.html.

[6] D. Avis and D. Bremner. How Good are Convex Hull Algorithms? In 11th
Annual ACM Symposium on Computational Geometry, pages 20–28, June 1995.

[7] D. Avis and K. Fukuda. A basis enumeration algorithm for linear systems with
geometric applications. Applied Mathematics Letters, 5:39–42, 1991.

[8] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enu-
meration of arrangements and polyhedra. Discrete Computational Geometry,
8:295–313, 1992.

[9] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied
Mathematics, 6:21–46, 1996.

[10] T. Becker and V. Weispfenning. Gröbner Bases: A Computational Approach to
Commutative Algebra. Springer, New York, 1993.

[11] N. Beerenwinkel, L. Pachter, and Bernd Sturmfels. Epistasis and shapes of
fitness landscapes. to appear in Statistica Sinica.

[12] A.M. Bigatti, R. LaScala, and L. Robbiano. Computing toric ideals. Journal
of Symbolic Computation, 27:351–365, 1999.

[13] B. Buchberger. A criterion for detecting unnecessary reductions in the con-
struction of Gröbner bases. In Proceedings EUROSAM 79, volume 72 of LNCS,
pages 3–21. Springer-Verlag, 1979.

205

206 BIBLIOGRAPHY

[14] B. Buchberger. Gröbner bases: An algorithmic method in polynomial ideal
theory. In N. K. Bose, editor, Multidimensional Systems Theory, chapter 6,
pages 184–232. D. Reidel Publishing Company, 1985.

[15] B. Buchberger. History and basic features of the critical-pair/completion pro-
cedure. Journal of Symbolic Computation, 2:3–38, 1987.

[16] M. Caboara, M. Kreuzer, and L. Robbiano. Efficiently computing minimal sets
of critical pairs. Journal of Symbolic Computation, 38(4):1169–1190, 2003.

[17] D.R. Chand and S.S. Kapur. An algorithm for convex polytopes. Journal of
the ACM, 17(1):78–86, 1970.

[18] B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete
& Computational Geometry, 10:377–409, 1993.

[19] N.V. Chernikova. An algorithm for finding a general formula for non-negative
solutions of system of linear inequalities. U.S.S.R. Computational Mathematical
Physics, 5:228–233, 1965.

[20] T. Christof and A. Lbel. Porta: Polyhedron representation transformation al-
gorithm. Available at http://www.zib.de/Optimization/Software/Porta/.

[21] K.L. Clarkson and P.W. Shor. Algorithms for diametral pairs and convex hulls
that are optimal, randomized, and incremental. In SCG ’88: Proceedings of the
fourth annual symposium on Computational geometry, pages 12–17, New York,
NY, USA, 1988. ACM Press.

[22] G.F. Clements. Multiset antichains having minimal downsets. Journal of Com-
binatorial Theory, 48:255–258, 1988.

[23] CoCoATeam. CoCoa: a system for doing Computations in Commutative Alge-
bra, 2005. Available at http://cocoa.dima.unige.it.

[24] S. Collart, M. Kalkbrener, and D. Mall. Converting Bases with the Gröbner
Walk. J. Symbolic Computation, 24:456–469, 1997.

[25] P. Conti and C. Traverso. Buchberger algorithm and integer programming. In
Proceedings AAECC-9 (New Orleans), volume 539 of LNCS, pages 130–139.
Springer Verlag, 1991.

[26] G. Cornuéjols and M. Dawande. A class of hard small 0-1 programs. In R.E.
Bixby, E.A. Boyd, and R.Z. Rios-Mercado, editors, 6th International IPCO
Conference on Integer Programming and Combinatorial Optimization, volume
1412 of LNCS, pages 284–293. Springer Verlag, 1998.

[27] G. Cornuéjols, R. Urbaniak, R. Weismantel, and L.A. Wolsey. Decomposition of
integer programs and of generating sets. In European Symposium on Algorithms
1997, volume 1284 of LNCS, pages 92–103. Springer-Verlag, 1997.

BIBLIOGRAPHY 207

[28] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms: An In-
troduction to Computational Algebraic Geometry and Commutative Algebra.
Springer-Verlag, 1992.

[29] G. Dantzig. Linear Programming and Extensions. Princeton University Press,
1963.

[30] P. Diaconis and B. Sturmfels. Algebraic algorithms for sampling from condi-
tional distributions. Annals of Statistics, 26:363–397, 1998.

[31] T. Dubé, B. Mishra, and C. K. Yap. Admissible orderings and bounds for
Gröbner bases normal form algorithm. Report 88, NYU-Courant Institute
Robotics Lab Report, 1986.

[32] H. Edelsbrunner. Algorithms in Ccomputational Geometry. Springer-Verlag,
1987.

[33] N. Eriksson. Toric ideals of homogeneous phylogenetic models. In Proceedings
of the 2004 International Symposium on Symbolic and Algebraic Computation,
pages 149–154. ACM Press, 2004.

[34] J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of
zero dimensional gröbner bases by change of ordering. Journal of Symbolic
Computation, 16:329–344, 1993.

[35] K. Fukuda. cdd – an implementation of the double description
method for computing all vertices and extremal rays of a convex
polydedron given by a system of linear inequalities. Available at
http://www.ifor.math.ethz.ch/˜fukuda/cdd home/index.html.

[36] K. Fukuda, A. N. Jensen, N. Lauritzen, and R.R. Thomas. The generic Gröbner
walk. e-print: arXiv:math.AC/0501345, 2005.

[37] K. Fukuda and A. Prodon. Double description method revisited. In Combina-
torics and Computer Science, pages 91–111, 1995.

[38] J. Gagneur and S. Klamt. Computation of elementary modes: a unifying frame-
work and the new binary approach. BMC Bioinformatics, 5(175), 2004.

[39] J. Gagneur, A. von Kamp, and S. Klamt. Algorithmic approaches for computing
elementary modes in large biochemical reaction networks. IEE Proc. Systems
Biology, 152(4), December 2005.

[40] D. Gamerman and H.F. Lopes. Markov Chain Monte Carlo: Stochastic Simu-
lation for Bayesian Inference. Chapman & Hall/CRC, second edition, 2006.

[41] R. Gebauer and H. M. Möller. On an installation of Buchberger’s algorithm.
Journal of Symbolic Computation, 6:275–286, 1988.

208 BIBLIOGRAPHY

[42] A. Giovini, T. Mora, G. Niesi, L. Robbiano, and C. Traverso. “one sugar cube,
please” or selection strategies in the buchberger algorithm. In ISSAC ’91:
Proceedings of the 1991 international symposium on Symbolic and algebraic
computation, pages 49–54, New York, NY, USA, 1991. ACM Press.

[43] R.E. Gomory. On the relation between integer and noninteger solutions to linear
programs. In Proceedings of the National Academy of Sciences, volume 53, pages
260–265, 1965.

[44] R.E. Gomory. Some polyhedra related to combinatorial problems. Linear Al-
gebra and its Applications, 2:451–558, 1969.

[45] J.E. Graver. On the foundation of linear and integer linear programming I.
Mathematical Programming, 9:207–226, 1975.

[46] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3.0. A Computer
Algebra System for Polynomial Computations, Centre for Computer Algebra,
University of Kaiserslautern, 2005. http://www.singular.uni-kl.de.

[47] B. Grünbaum. Convex Polytopes. John Wiley & Sons, 1967.

[48] R. Hemmecke. On the computation of Hilbert bases and extreme rays of cones.
e-print: arXiv:math.CO/0203105, 2002.

[49] R. Hemmecke. On the computation of Hilbert bases of cones. In A. M. Cohen,
X.-S. Gao, and N. Takayama, editors, International Congress on Mathematical
Software. World Scientific, 2002.

[50] R. Hemmecke. On the positive sum property and the computation of graver
test sets. Mathematical Programming, 96(2):247–269, 2003.

[51] R. Hemmecke. Exploiting symmetries in the computation of Graver bases.
e-print: arXiv:math.CO/0410334, 2004.

[52] R. Hemmecke and P.N. Malkin. Computing generating sets of lattice ideals.
e-print: arXiv:math.CO/0508359, 2006.

[53] R. Hemmecke, J. Morton, A. Shiu, B. Sturmfels, and O. Wienand. Three
counterexamples on semigraphoids. e-print arXiv:math.CO/0610451, 2006.

[54] R. Hemmecke, A. Takemura, and R. Yoshida. Computing holes in semi-groups.
e-print arXiv.org:math/0607599, 2006.

[55] M. Henk, M. Köppe, and R. Weismantel. Integral decomposition of polyhedra
and some applications in mixed integer programming. Mathenatical Program-
ming, Series B, 94(2-3):193–206, 2003.

[56] S. Hosten and J. Shapiro. Primary decomposition of lattice basis ideals. Journal
of Symbolic Computation, 29:625–639, 2000.

BIBLIOGRAPHY 209

[57] S. Hosten and B. Sturmfels. GRIN: An implementation of Gröbner bases for
integer programming. In E. Balas and J.Clausen, editors, Integer Programming
and Combinatorial Optimization, volume 920 of LNCS, pages 267–276. Springer
Verlag, 1995.

[58] S. Hosten and R.R. Thomas. Standard pairs and group relaxations in integer
programming. Journal of Pure and Applied Algebra, 139:133–157, 1999.

[59] S. Hosten and R.R. Thomas. Gomory Integer Programs. Mathematical Pro-
gramming Series B, 96:271–272, 2003.

[60] D.T. Huynh. A Superexponential Lower Bound for Gröbner Bases and Church-
Rosser Commutative Thue Systems. Information and Control, 86:196–206,
1986.

[61] N. Karmarkar. A new polynomial-time algorithm for linear programming. Com-
binatorica, 4:373–395, 1984.

[62] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, and V. Gurvich. Generating
all vertices of a polyhedron is hard. In SODA ’06: Proceedings of the seven-
teenth annual ACM-SIAM symposium on Discrete algorithm, pages 758–765,
New York, NY, USA, 2006. ACM Press.

[63] S. Klamt and J. Stelling. Combinatorial complexity of pathway analysis in
metabolic networks. Molecular Biology Reports, 29:233–236, 2002.

[64] V. Klee and G.J. Minty. How good is the simplex algorithm? In O. Shisha,
editor, Inequalities III, pages 159–175. Academic Press, 1972.

[65] E.W. Mayr. Some complexity results for polynomial ideals. Journal of Com-
plexity, 13(3):303–325, 1997.

[66] P. McMullen. The maximum number of faces of a convex polytope. Mathe-
matika, XVII:179–184, 1970.

[67] P. McMullen and G.C. Shephard. Convex polytopes and the upper bound con-
jecture. Cambridge University Press, 1971.

[68] D.S. Moore and G.W. Cobb. Statistics and mathematics: Tension and cooper-
ation. The American Mathematical Monthly, 107(7):615–630, 2000.

[69] T.S. Motzkin, H. Raiffa, G.L. Thompson, and R.M. Thrall. The double de-
scription method. In H.W. Kuhn A.W. Tucker, editor, Contributions to theory
of games, volume 2. Princeton University Press, Princeton, RI, 1952.

[70] K. Mulmuley. Computational Geometry: An Introduction Through Randomized
Algorithms. Prentice-Hall, 1994.

[71] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization.
John Wiley and Sons, New York, 1988.

210 BIBLIOGRAPHY

[72] H. Ohsugi and T. Hibi. Toric ideals arising from contingency tables. Proceedings
of the Ramanujan Mathematical Society’s Lecture Notes Series, 2005. to appear.

[73] T. Pfeiffer, I. Sánchez-Valdenebro, J. C. Nuño, F. Montero, and S. Schuster.
Metatool: For studying metabolic networks. Bioinformatics, 15:251–257, 1999.

[74] B.H. Roune. Solving thousand-digit frobenius problems using grobner bases,
2007.

[75] R. Seidel. Constructing higher-dimensional convex hulls at logarithmic cost
per face. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, pages 404–413, 1986.

[76] M. Sniedovich. Dynamic Programming. Marcel Dekker, Inc., New York, 1991.

[77] A. Storjohann and G. Labahn. Asymptotically Fast Computation of Hermite
Normal Forms of Integer Matrices. In Y. N. Lakshman, editor, Internat. Symp.
on Symbolic and Algebraic Computation: ISSAC ’96, pages 259–266, New York,
1996. ACM Press.

[78] B. Sturmfels. Gröbner bases of toric varieties. Tôhoku Math. Journal, 43:249–
261, 1991.

[79] B. Sturmfels. Gröbner bases and convex polytopes, volume 8 of University Lec-
ture Notes Series. American Mathematical Society, Providence, Rhode Island,
1996.

[80] B. Sturmfels and R.R. Thomas. Variation of cost functions in integer program-
ming. Mathematical Programming, 77:357–387, 1997.

[81] B. Sturmfels, R. Weismantel, and G.M. Ziegler. Gröbner bases of lattices, corner
polyhedra, and integer programming. Contributions to Algebra and Geometry,
36(2):281–298, 1995.

[82] A. Takemura and R. Yoshida. A generalization of the integer linear infeasibility
problem. e-print arXiv.org:math/0603108, 2006.

[83] S.R. Tayur, R.R. Thomas, and N.R.Natraj. An algebraic geometry algorithm
for scheduling in the presence of setups and correlated demands. Mathematical
Programming, 69:369–401, 1995.

[84] M. Terzer and J. Stelling. Accelerating the computation of elementary modes
using pattern trees. In Algorithms in Bioinformatics, WABI, page 333ff, Zurich,
2006.

[85] R. Thomas and R. Weismantel. Truncated Gröbner bases for integer pro-
gramming. Applicable Algebra in Engineering, Communication and Computing,
8:241–257, 1997.

[86] R.R. Thomas. A geometric Buchberger algorithm for integer programming.
Mathematics of Operations Research, 20:864–884, 1995.

BIBLIOGRAPHY 211

[87] R.R. Thomas. The structure of group relaxations. In Karen Aardal, George
Nemhauser, and Robert Weismantel, editors, Discrete Optimization, volume 12
of Handbooks in Operations Research and Management Science. Elsevier, 2005.

[88] R.R. Thomas and R. Weismantel. Test sets and inequalities for integer pro-
grams. In Proceedings of the 5th International IPCO conference, volume 1084
of LNCS, pages 16–30, Vancouver, 1996.

[89] C. Traverso. Hilbert functions and the Buchberger algorithm. Journal of Sym-
bolic Computation, 22:355–376, 1997.

[90] L.E. Trotter. Lecture notes on integer programming. Workshop sponsored by
the E.P.F.-Lausanne, Switzerland, 2004.

[91] R. Urbanczik and C. Wagner. An improved algorithm for stoichiometric network
analysis: theory and applications. Bioinformatics, 21:1203–1210, 2005.

[92] R. Urbaniak, R. Weismantel, and G.M. Ziegler. A variant of Buchberger’s
algorithm for integer programming. SIAM J. on Discrete Mathematics, 10:96–
108, 1997.

[93] C. Wagneur. Nullspace approach to determine elementary modes of chemical
reaction systems. Journal of Physical Chemistry B, 108(7):2425–2431, 2004.

[94] L.A. Wolsey. Extensions of the group theoretic approach in integer program-
ming. Management Science, 18(1):74–83, 1971.

[95] L.A. Wolsey. Integer Programming. John Wiley & Sons, Inc, 1998.

[96] S. Wright. Primal-Dual Interior-Point Methods. SIAM, 1996.

