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The classic Greedy Triangulation (GT) of a planar
point set S with cardinality n is a triangulation T in
which each of the n(n — 1)/2 undirected edges is con-
sidered in sequence from smallest to largest (the case
~of equal-length edges complicates but does not alter
the arguments presented here). Each edge is inserted
into the plane provided no edge already in the place
intersects it. Assuming no pair of edges has the same
length, the GT is clearly unique.

~ Let EL(T) denote the sum of edge lengths of some
triangulation T. Let OT denote the optimum triangu-
lation, defined as the triangulation which minimizes
EL(T) over all triangulations. The question addressed
~ ln this paper is whether the GT is an approximation

_ to the OT; that is, whether there exists some constant
¢ such that R(S) is less than ¢ for all S, where R(S)=
EL(GT(S))/EL(OT(S)). We show that the answer is
110, and exhibit a class of point sets S such that
R(Sp) = QY 3). ! This result raises the question of

_ Whether the dual of the Voronoi diagram [8], known
- [6] as the Delaunay Triangulation (DT) is approxi-
mately optimal. (It is known from [3] that neither

. the GT nor the DT are optimal.) It turns out to be

_ Quite easy to show that the DT is not approximately
 OPtimal; we defer to the end of the paper a demon-

RO SPITBOL —
ictice and Ex-

n compacting
(1978) 31-34.
paction procedure
“omput. J. 10 (2)

r an implementation
d Experience 7 (2)

ygramming, Vol. 1:
esley, Reading, MA,

ce-efficient garbage
21 (8) (1978)

age collector,

ying garbage col-
-208.

We uge Knuth’s O-notation [2]: ‘O’ means ‘of the same or
fer order’; ‘6’ means ‘exactly of order’, and ‘€2’ means
Of the same or greater order’.

INFORMATION PROCESSING LETTERS

Jet Propulsion Laboratory, Pasadena, CA 91103, U.S.A.

20 July 1979

NEITHER THE GREEDY NOR THE DELAUNAY TRIANGULATION OF A
PLANAR POINT SET APPROXIMATES THE OPTIMAL TRIANGULATION

Department of Information Engineering and Computer Center, University of Illinois, IL 60680, U.S.A.

Received 19 January 1979; revised version received 16 April 1979

Greedy triangulation, approximately optimal triangulation, Delauney triangulation, Voronoi triangulation

stration that EL(DT(S))/EL(OT(S;)) = £2(n/log n)
for a class of point sets S;. In [3], the distantly
related problem of whether a given set of edges con-
tains a triangulation subset is shown to be NP-com-
plete; this result unfortunately sheds no direct light
on these matters.

We now provide a construction for which we may
readily construct and characterize the GT for a set
So, and we show that there exists a better triangula- .
tion of Sy, BT(Sg), for which

EL(GT(S0))/EL(BT(So)) = 0(n*/3) . (1

We first define a set S to be chordal if it resides
entirely on an arc of a circle, such that the arc sub-
tends less than 180°. In fact we shall choose arcs that
are almost straight lines (Fig. 1). The real number d
is the diameter of the set.

We shall ignore the y position of chordal points in
specifying their position, since this is second order
for sufficiently thin chords.

Lemma 1. Let S; be a chordal point set. Then
EL(T(S;)) = O(dn), where T is any triangulation.
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Proof. Trivial. There are O(n) edges, all of which must
have length equal to or Jegs than d.

The set S is shown in Fig. 2. Tts convex hull is
TPRQ. It consists of three parts:

(1) an isolated point P at 0, 0);

(2) a chordal set A, which is slightly concave with
respect to the convex hull, consisting of about f_ma/ 2 J
points located hetween (1, €) and (2, €). The points
in A are denoted a1, 8z, ..., reading left to right,

Point P is located above the line defined by aja,.
Finally,

(3) there is a chordal subset B of m points, also
slightly concave, extending almost vertically as shown
InFig. 2. Allb €B are *visible’ from P in the sense
that the edge joining each b € B 1o P does not pass
through the arc on which the points in B reside, Point
by is also called T and Point by is also called Q. The
vertical position of each point b; is given by

{(by) = £i*/2 2)

where fis a constant smaller than 1.
Lemma 2. [bsy 1P| < bsa, ] for all i.?

Preof. Follows from the definition of set B and 2);

b Pl fi+ 1)1/2 apg

Ibiay| ~ £(i+ 1/§2)1/2 .
MNow consider any triangulation of So- There will

be five kinds of edges:

Class 1. Fdges joining two pointsin A,

Class 2. Bdges joining two pointsg in B.

Class 3. Edges joining P to some a EA.

21f8isa set, IS| denotes the cardinality of e sei; ifeisan
edge, le| denotes the length of the edge.

el
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Class 4. Edges joining P to some b & B.
Class 5. Edges joining some a € A to some bEB.
The edges in Class 1 are confined to the small
chordal region bounded by A, which is a convex s
A similar statement holds for Class 2.
Now consider an algorithm producing the GT;
this a ‘greedy algorithm’ (GA).

Fact 1. Since for any triple of points a’, a", b, wit]
a,a"€Aandb e B, it is the case that |a'a"| < |a']
and [a'a") < [a'b), it follows that a GA will comple
triangulate A.

Fact 2. Since for any triple b, b', b" € B and point
PE {P} U A, edge pb does not cross edge b'b”, it
follows that any triangulation must completely tri-
angulate B.

Fact 3. Edges TP, PR, RQ, and QT must be in any
triangulation, since they define the convex hull of §

Fact 4. Forany b € B, [ba;| < [ba;| for allj > 1.

Facts 1—4 are almost self-evident and require no
proof.

We use Fact 1-3 to expose the role of Classes 1
and 2; predictably a GA will fully triangulate A and

By Lemma 2, [Pb,| < [Tay[. Therefore when the
GA is considering Pb,, Ta; cannot yet be in the plar
Nor, by Fact 4, can Tay be in the plane fork > 1.
Therefore Pb, € GT(Sp). When Pbs is considered by
the GA, b,a cannot be in the plane for any ac A
because of Lemma 2 and Fact 4, and b,a cannot be
in the plane because its ‘view’ is blocked to alla € A
by Pb,. Applying this reasoning inductively, we find
that ‘

Lemma 3. At the time Pb; is considered by the GA,
Pb;_, will be in the plane, b;_;a; will not be in the
plane, and therefore Pb; will be placed in the plane.

Proof. Foregoing reasoning.

Theorem 1. The GT for S¢ consists of
(1) the GT of A;
(2) the GT of B;
(3) edges Pb;, forall 1 <i< |Bl;
(4) the edges of the convex hull PRQT (edges PR,
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< B. , QT and TP);
0 some b €B, (5) edges Qa;, for all 1 <i<|A[;
d to the small (5) edge Pa;.

h is a convex set.
2.

lucing the GT; call servation that these leave only the edges Qa; and

1, none of which cross one another, so that they

A st all be in the plane.
tsa',a", b, with '

hat |a'a"| < |a'P| Lemma 4. EL(GT(S,)) = 6(m?).
5A will completely :
' of. By Lemma 1, EL(GT(A)) = O(m®/?) and
EL(GT(B)) = O(m>/?). The sum of the lengths of
edges Pb; = 8(m¥?), and the length of the convex
hull is 8(m/2). Finally, the sum of the lengths of
 edges Qa; is 8(mY/2) times 6(m>/2) = o(m?).

"€ B and point
s edge b'd”, it
completely tri-

Lemma 5. There exists a better triangulation BT of
Sg such that

EL(BT(S,) = 6(m*?).

must be in any
convex hull of S..

forallj > 1. ;
Proof Let the triangulation BT contain

(D) the GT of A;
(2) the GT of B;
(3) Ta, for all 1 <i<<|Al;
~ (4) the edges of the convex hull PRQT;
(5)Rby, forall 1 <i<[Bl;
- (6) edge Pa,.
~ The new classes are 3 and 5; their edge-length sums

t and require no
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forany a€ A i39(m3/ 2). This proves the lemma.

d bya cannot be ‘ s

cked toallag€ A :n“emem 2.R(So) = Q(n'/3).
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Y, W - Proof. EL(GT(S,))/EL(BT(Sy)) = §(m"/?); since

M =§(n?3), and BT upper bounds the OT, the

red by the GA, meOICm follows.

ill not be in the

ed in the plane. ~ We now show that the DT is not approximately

 Optimal. The construction consists of a class of sets

‘ Sl consisting of n = 2% + 1 points with 2% forming a
Tegular polygon of diameter d and the remaining
;pomt ¢ slightly displaced from the center of the poly-
_gon 3. ‘The Voronoi diagram is shown (solid lines) in

The displacement of the center point is introduced in order
1o avoid the technical nuisance of three collinear nainte

RQT (edges PR,
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Fig. 3(a); it consists of 2 2%.gon about ¢ and 2* open
polygonal regions extending from it. Its dual is the
convex hull, together with edges extending from each
vertex of the convex hull to c. Hence for each such
S1, EL(DT(S;)) = 6(dn).

A better triangulation BT(S,) is easily constructible
(Fig. 3(b)). The convex hull is first constructed, then
a second ‘shell’ consisting of 21 edges linking next-
nearest neighbors of the convex hull, then a third
shell consisting of 252 edges linking fourth-nearest
neighbors, etc. Finally, three edges connecting ¢ to
the triangle in which it resides are constructed. Since
each shell contains edges whose length totals 9(d),
and there are log, n shells, we have at once
EL(BT(S,)) = 6(d log n). Consequently, we have

Theorem 3. If R'(S;) = EL(DT(3,))/EL(OT(S,)),
then

R'(Sy) = Q(n/log n) . (3

Proof. Follows from the above constructions.

As a concluding remark, we note that no efficient
approximate algorithm for the OT now exists, and
the existence of one is an open question. However,
we note also that if finding an approximation to the
OT is comparable to finding an approximation to the
Travelling Salesman Problem (TSP) [7], then there is
no reason to suppose that the GT would have been
optimal, since strictly speaking no greedy algorithm
is known for approximating the TSP. On the other
hand, there are simple algorithms [5,7] for efficiently
finding solutions to the planar TSP good to within a
factor of 2 One of the cimnlect ic thiacirallis an anmesya.
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tion technique involving ‘closest insertion’, in which
a solution is buyijt up from a subset of the points. The
solution is then augmented by annexing the point
external to it that [ieg closest to some point in it. The
Process terminates when the Jast point has been
annexed. The other known approximation techniques
[1,7] are based on the minimum spanning tree.

We conjecture that any efficient (i.e., polynomial
time) algorithm for finding an approximation to the
OT must be at Jeast as complicated as any of the
known approximation algorithms for the TSP.

Reference [4] contains a condensed version of
this paper.
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