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1. INTRODUCTION

In this note we consider the problem of determining a minimal triangula-
tion of I», the n-dimensional cube. While the problem seems intrinsically
interesting, our purpose in presenting it is motivated by the interest
evinced in connection with the simplicial approximation of fixed points of
continuous mappings [5, 7). Several algorithms for locating simplices
which approximate fixed points have recently been given [1, 2, 3, 6]. Ttis
expected that by minimizing the number of simplices which fill a cube,
the number of pivoting steps in the implementation of a fixed-point
algorithm will generally be nearly minimal and that the resulting algorithm
will generally perform with optimal efficiency. We consider here only
triangulations with vertices of simplices coincident with vertices of the cube.

We indicate techniques yielding triangulations of I3, I%, I3, consisting
of 5, 16, 68 simplices of the respective dimensions. We show that 5 is the
minimum number of simplices for a triangulation of I® and that 16 is the
minimum number for /4 subject to an additional hypothesis. We also give
motivation for the conjecturc {hat [ has a triangulation having
(n! 1 20D)2 simplices of dimension .

2. NOTATION

To facilitate our treatment we will hereafter use the following notation.
Each vertex of /7 will be associated with the number for which it is the

binary representation. Thus in I?,
(0,0) 0,
(0. 1) > 1,
(1,0) > 2,
(1, 1y «» 3
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We associate with each simplex in a triangulation of I*, the (n + Dx@m
matrix whose rows are the coordinates of the vertices. We will call such
a matrix the coordinate matrix of a simplex. We denote the convex hull of
the points py 5..., Pn BY [P1 505 Dal

Clearly, there is a minimum triangulation of I? containing the triangles
[0, 1, 3] and [0, 2, 3] with coordinate matrices (see Fig. 1)
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Fic. 1. Minimum triangulation of I

Notice that these two triangles are {(xi, x): x; < X} and {(xy, Xa):
x, < x,}intersected with I%. In general we can always constructa triangula-
tion of I* containing n! simplices by intersecting it with each set of the
form {(x; , Xg seeer Xn): Xn) < 77 < X, ()}, Where 77 runs over all permuta-
tions in the full symmetric group on n elements. We will call this tnangula-
tion the standard triangulation.

It can be shown that a set of simplices triangulates /7 if and only af

(1) the (n — 1)-faces lying on the interior of I" belong to exactly
two simplices, and

(2) the (n — 1)-faces lying on the exterior of I triangulate cach of
the (n — 1)-dimensional faces of I™.

With the use of coordinate matrices we can restate properties (b and
(2) as

(i) If a row of a coordinate matrix is deleted and the resulting
n % n matrix has no column of all zeros or all ones, then this n Xn
submatrix is shared with exactly one other coordinate matrix.

(i) Foreachi=1,2..,n and e = 0, 1, the sct of all 2 - »n sub-
matrices obtained from the set of coordinate matrices by deleting a row
that yields a submatrix with all €’s in the ith column forms a triangulation
of the (n — 1)-dimensional cube

o ,ﬁA\/\H s X geens ./\:v” X; = QW.
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The standard triangulation of I3 yields the following six 3-simplices

(see Fig. 2).
[0,4,5,7),

[0,2,6,7
[0, 4,6, 7] ]

[0,1,3,7),
[0,2,3,7}
[0,1,5,7}
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Fic. 2. Standard triangulation of I

ining only five simplices,
d then observing that what
thus formed (see Fig. 3).

We may construct 2 triangulation conta
however, by first “‘slicing off” four corners an
is left is a simplex. The following simplices are

01,24, 11,237
2,467, [L24% 7.
ﬁHu bu Mu quv

Fi. 3. Minimal triangulation of 1%

3. DIMENSION 3
nimality of five simplices in a triangulation of P

We now prove the mi . :
s result to dimension 4.

and attempt to extend thi
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LemMa 1. For n > 2, a simplex in a triangulation of I" has at most n
exterior (n — 1)-faces.

LemMa 2. Forn > 3, if a simplex in a triangulation of I™ has n exterior
(n — 1)-faces, then any simplex sharing its interior (n — 1)-face has fewer
than n exterior (n — 1)-faces.

Proof. For a simplex to have n exterior (n — 1)-faces, each column
in the coordinate matrix must have exactly one element different from
the rest. The elements that are different in each column all appear in
different rows, for if two appeared in the same row, deleting this row
would yield an (n — 1)-face of the simplex lying in two different (n — 1)-
dimensional hyperplanes, which is impossible. Without loss of generality
we can assume that matrix is of the form

00
0
1

e O
O et OO O

O e 1

We obtain the interior (n — 1)-face by deleting the first row. let us
now build a simplex on this interior (n — 1)-face by adding a row. For the
row added to be different from the row deleted, it must have a 1 in some
column. The simplex thus obtained cannot have » exterior (n — 1)-faces,

for at least one column contains two 1’s |l

o

Tueorem 1. If P, denotes the number of simplices in the minimum
triangulation of I", E, denotes the total number of exterior (n — 1)-faces,
and F, denotes the number of interior (n — 1)-faces, then

(@) P,(n+1)=E,+2F,,
QUV Nw: W N\Nw:lu b
AOV w: WNw:IH.

Proof. (a) Every simplex has n+1 (n— 1)-faces. Every interior
(n — 1)-face belongs to exactly two simplices, while every exterior (n — 1)-
face belongs to only one; hence, P,(n + 1) = E, + 2F, .

(b) Since the set of exterior (n — 1)-faces must triangulate each of
the 2n (n — 1)-dimensional faces of I™ and it takes at least P, (n—1)-
simplices to triangulate each of these, £, > 2nP,_; .

(©) Since there are at least 2nP,_; exterior (n — 1)-faces and by

Lemma 1 a given simplex can contain at most n of these, P, ==
(2nP,_4/n) = 2P, _, .
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THEOREM 2. The minimum number of simplices in a triangulation of

I8 is five.

Proof. By Theorem 1(c), P; = 4. Since by Theorem 1(b) the number
of exterior faces is at least 12, and by Lemma 1, a simplex can contain at
most three of these, if a triangulation has exactly four simplices, then each
would have exactly three exterior faces. However, by Lemma 2 these four
simplices cannot share their interior faces. Hence, there must be at least

one other simplex to share these interior faces.

4. DIMENSION 4

Theorem 1(c) says the minimal triangulation of I* has at least 10
his is a rough lower bound, however, that can be improved

simplices. T
e of the following lemmas and an additional assumption.

through the us

LeEmMmA 3. Every simplex withn exterior (n — 1)-faces ina triangulation

of I contains n edges of I".
This is easily seen by observing the coordinate matrix of a simplex
with » exterior (n — 1)-faces and remembering that two vertices in [™ are

connected if and only if they differ in only one coordinate.

LEMMA 4. [In a given triangulation of I", no two simplices having 1
exterior (n — 1)-faces contain the same edge of I".

This is obvious for n = 2. Now assume that
and without loss of generality assume that
exterior (k — 1)-faces but shared the edge
., 0). Their coordinate matrices would be

Proof by induction on 1.
lemma true for 17 = k— L.
two k-simplices each had &
connecting (0, 0,..., 0) to (1, 0...

o 0 0 0 1 0 O 0
1 0 O or 0o 0 O 0
.oHo o# and 1 1 0O 0
MooH o‘ 1 0 1 0
6 6 0 o 1l e

in both matrices. The (k — 1)-simplices
he triangulation of one of the (k — 1»

dimensional exterior cubes of I*. Each contains k — 1 exterior (k — 2)
faces and they share an edge of the cube, which under the induction

hypothesis is the needed contradiction. |

Now delete the last row
remaining are two simplices in t
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rmz&\r 5. In a given triangulation of I", at most 2n-1 simplices contain
n exterior (n — 1)-faces.

Proof. This is a direct consequence of Lemmas 3 and 4.
LEMMA 6. If a triangulation of I" contains 2n=1 simplices with n cxterior

(n — 1)-faces, then any other simplex contains at most n -3 exterior
(n — D-faces.

_u\.%\. Assume that a triangulation contains 27—t gimplices with n
exterior (n — 1)-faces and that simplex s, contains at least n ~ 2 exterior
(n !.C-mmoom. Without loss of generality we can assume the coordinate
matrix of s, to be

Xo 10 0 aina ayn
Xy O H . 0 ayna as.,
Xp3 |0 0 - 1 ap3n-1 9n-3.n
Xn-2 | 0 0 - 0 dugna G-
Xpg |00 0 dpgna Gn-in
Xn o 0 - 0 Apn,n—1 Ann

Since <Q:om.m Xp_2s Xn_1, and x, differ in only two coordinates,
two Om.:ﬁsx_ differ from the third in only one. Again without loss of
generality, assume that s; takes on the following form:

Xo I 0 - 0 ana ay,n
k.p o 1 - 0 ayng Aa,n
Xp3 |00 | anon-1 9n-2.n
Xpe | O O 0 1 0
Xpa |0 O 0 0 1
x, [0 0 -0 0] 0

Now since our triangulation contains a maximal set of simplices with
i nexterior (n — 1)-faces, the simplex s, exists with the incidence matrix

v |1 0 = 0 0 0

Y1 01 - 000
Vn-3 O O * ﬂ O O .
Xn—2 00 - 010
Xn—1 00 - 0 0 1

Xn O O * O O O
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Since §; 7 So s there exists an integer k such that 1 <k <n -3

and x; ¥ Vi -
In s, delete all rows except for Xy, Xn-2> Xn-13 and x, and in s, delete

the corresponding rows. What remains is two distinct 3-simplices in the
triangulation of one of the 3-dimensional exterior cubes of I® that share

the exterior 2-face with coordinate matrix
1 O
0 1
0 0

Xn—2
Xn-1
Xn

o oo

This contradicts the definition of a triangulation, so our proof is

complete. 1

We now use the above lemmas to obtain a lower bound for Fy, the
number of interior (n — 1)-faces in a minimum triangulation of I, Recall
that any triangulation of I™ has at least 2nP, exterior (n — 1)-faces.
By Lemma 1, at most n of these are contained in any simplex and by
Lemma 5, at most 2% simplices can contain this maximum number.
So as soon as 2nP, 1 > n2n-1, which it is for n = 4, then there exist some
simplices with fewer than n exterior (n — 1)-faces.

Now let us assume we get the smallest number of interior (n — 1)-faces
by first constructing the maximum number (27~1) of simplices containing
the maximum number (1) of exterior (n — 1)-faces. By Lemma 6 we get

oo L2 =Y o]

2 n—3

Note. The & comes from the fact that we may have counted each

interior (m — C-&om twice, and the 4 comes from the fact that an n-simplex
Bw:mwoﬁwaoaoﬂﬁzl C-mmoa.

with 7 — 3 exterior (n — 1)-faces con
Now from Theorem la, Theorem 1b, and the above lower bound on
F, , we have
2P,y + [42nPry — m2r=YH/(n — 3)] + 271
n—+1 )

P, =

Hence, forn = 4, Py 2 16. )
Notice that the additional assumption which was made is equivalent

to saying that the most efficient way to start a triangulation of I" is to
“slice off” 271 corners as we did in I°. So, in order to construct a new

triangulation of I*, we first “slice off”” the sequences of vertices (0, 3, 5,6,
9, 10, 12, 15) and form the eight simplices
[0.1,2,4,8],[4,8,12, 13, 14], [2, 8, 10, 11, 14], [2, 4,6,7,14],
[,8,9, 11,13, (1,4, 5.7, 13,11, 2,3, 7, 111, [7. 11, 13, 14, 15].
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.e<n then ﬁ.ambmﬁmﬁ. what is left by passing three cutting planes through
it. These eight simplices are thus constructed: )

[1,2,4,8, 14, [1,4,8, 13, 14], [1, 2,8, 11, 14], [1,2, 4,7, 14],
(1,8,11,13,14],[1,4,7,13,14}, [1, 2,7, 11, 14], [1, 7, 11, 13, 14].

5. CONJECTURE

The author has constructed a triangulation of I3 in a fashion completel
Sm_.omoc.m to the constructions in 72 and I* [4]. This triangulation ooammzm
68 simplices. Now what is the connection between the numbers 2, 5, 16
and 68 for dimensions 2, 3, 4, and 5?7 The answer is found smmm im
compute the volumes of the simplices. Each of the 27~! corners that we
first sliced off has volume 1/(n!), while the remaining simplices have
:.V_:Bo m\.? 1). Hence, there is a total of (n! 4 2*-1)/2 simplices in each
w_hnwc_maos. The conjecture is that a triangulation containing this many
n_.mmm Mmmawﬂw be constructed for any » and that this is the minimal
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