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Abstract

Regular triangulations form a meaningful wide subclass of triangulations of
points in general dimensions. They can be defined as a natural extension of the
Delaunay triangulation and also of lexicographic triangulations, a subclass of trian-
gulations well-known in the theory of oriented matroids. Moreover, regular trian-
gulations have interesting algebraic aspects in connection with a fammous paradigm
of compurer algebra, Grobuer bases [St 96].

This paper proposes an output-size sensitive and work-space efficient algorithm
to ewnerate all regular triangulations by reverse scarch. The algorithm makes
full use of the existing results on the secondary polytope [BFS 90, GKZ 94] whose
vertices correspond to regular triangulations. These known results are summarized
with only nsing the so-called volume vector, and the algorithm is described in a*
Siple way, Some regular friangnlations mav not use a point inside the convex
hull. which mayv not be preferable for three-dimensional applications in computer
erapliics and finite element merhod. Triangulations using all the points are called
spanning. and an algorithm is given to enumerate all spanning regular triangula-
tions. The diameter of the secondary polvtope is investigated. Preliminary comn-
prtational vesults are also shown, Frow the viewpoint of computational geometry.
these generalizes the results for planar triangulations to higher-dimensional cases
by restricting triangulations to be regular.

1 Introduction

Triangulations ave heen one of main topics in computational geometry and other fields
norecent vears. Especiallve some tvpes of triangulations are found ro bridge geometric
tsaies and algebraic ones. Regnlar rriangulations arve of such a tvpe [BES 90. GKZ 94].
For example. rhis subclass of triangulations has a close connection with a well-known
A preliminary version was presented at the 12th Annual ACM Svinposin on Computational Geom-
etry [MIT 96].




paradigin of computer algebra. Grobuer bases, and also with theorv of discriminants.
Ivpergeomerrie functions. ete. (see [BES 90. DST 95. GKZ 94. Lee 91, St 91. St 96]).

From the viewpoint of computational geometry, regular triangulations provide a good
tramework where many known results for triangulations of a planar point set can be
seneralized ro higher dimensional case. For instance. in the planar case. any pair of
rriangulation can be transformed to cach other by a sequence of so-called Delaunay ips.
but. even e three dimensional case. Delaunav triangulation cannot alwavs be obtained
ronta non-regular triangulation by Delannay flips [Joe 91]. However. restricting ourselves
o the class of regular triangulations in any dimensions. such a result is already shown (see
BES 90, GRZ 94]). Also. there are several works in computational geometry on regular
friangulations sucl as [ES 920 Fac 95].

Enwmeration of all regular triangulations is interesting from the viewpoint of computer-
aided mathematical research. As mentioned above, regular triangulations have connection
with many mathematical concepts, and by enumerating them mathematical problems can
be investigated through computational experiments (e.g., see [DeL 94, DST 95, St 96)).
Alxo. for the three-dimensional case, through the enumeration algorithm, exhaustive and
local search can be performed for triangulations of three-dimensional objects in computer
graphics, finite element method, etc.

Our Contributions: By extending the original work by Masada [Mas 94, Mas 95), this
paper proposes an output-size sensitive and work-space efficient algorithm for enumerating
regular triangulations of n points in the (d — 1)-dimensional space. Its time complexity is
O(dsLP(r.ds)T). where where s is the upper bound of the number of simplices contained
m one regular triangulation, i.e., O(nl2) LP(r, ds) denotes the time required for solving
a limear programming problem with ds strict inequality constraints in r = n —d variables,
and T is the number of regular triangulations, which is bounded by O(nldD=D)  ts
work-space complexity is O(ds), which is best possible to retain one triangulation. Our
time complexity is proportional to the output size T, and working space is quite small.

Next. we consider regular triangulations using all points. Some regular triangula-
tlons mayv not nse a point inside the convex hull. which mayv not be preferable for three-
dinensional applications mentioned above. Triangulations using all the points are called
spanning. and an algovithm with similar complexities is given to cuwmerate all span-
ning regular triangulations. Also, the diameter of the secondary polvtope whose vertices
correspond to regular triangnlations is shown to be O(n*1). Finallv. preliminary compu-
fational results are also showr.

There have been proposed three algorithims for ennmerating regular triangulations
BES 90, DeL 940 Mas 94, Mas 93],

Lo The algorithm by Billera, Filliman and Sturmfels [BES 90] reduces the problem
to constructing the arrangement of O(n*!) homogeneous hyvperplanes in the r-
dimensional space in O(p“D=D) time and space. This algorithm is worst-case
optimal for the so-called Lawrence polvtopes which form a verv restricted class.
However: rhie vednetion has vedundant part for othier cases. and the number of
regular triangulations mayv be mnch smaller than the complexity of the arrangement.
Thus. evenif a good algorithm for arrangements is available. au output-size sensitive
and work-space efficient algorithi is hard to obtain along this line.



2.\ ontpit-size seusitive algorithim is given by De Loera [Dell 94]. Tt is based on the
breadth-first scarch enumeration. and is implemented nsing Maple and MACAULAY.
Since it is based on the breadth-first search. its work-space complexity is (7).
which becomes prohibitively large even for small-size problems.

5. An ontput-size sensitive and work-space efficient algorithm is originally developed
by Masada [Mas 94, Mas 95]. It is based on the reverse search technique developed
i [AF 92). and is implemented in C.

The algorithm presented in this paper is a refined version of the last one, together with
some new results for spanuing triangulations. and have theoretical merits as described
above, Practical merits of this algorithm will be seen from section 5.

Structure of This Paper: To simplifv the discussion, in of this paper, we assume that
oiven points are in general position. We discuss modifications necessary to degenerate
cases roughly after presenting the algorithm with this assumption. In fact, in degenerate
cases. it is often the case that the given point configuration has some symmetry, and
then utilizing the symmetry becomes another important issue in reducing the number
of essentially distinct triangulations. This is discussed in [TI 97], and will be discussed
in detail in a subsequent paper [TII 97 of this paper, together with an algorithm of
cuumerating all triangulations.

Our algorithm fully utilizes the secondary polytope in [BEFS 90, GKZ 94]. Regular
triangnlations have several equivalent definitions by duality such as Gale transforms, etc.
This surely adds richness to regular triangulations, and describing all of them would be
hest to understand them deeply. However, we here only explain the secondary polytope
with using the so-called volume vector, which would be best to understand this structure
intuitively, especiallv in nondegenerate cases as considered in this paper.

In section 2, these existing results are summarized. The arguments used in these
descriptions are fullv used in the later sections in many wayvs. In section 3, our main
algorithm is given. The last subsection here describes how to handle degenerate cases.
i section . spanning regular triangulations are considered. and the diameter of the
secondary polvtope is investigated. Some computational results are give at the end. In
the appendix. properties of regular triangulations in connection with other geometric and
mathematical concepts are summarized, and also small examples of regular triangulations
are givel.

2 Regular Triangulations and Secondary Polytope

Suppose that n poiuts Vo= {e... .. ¢, ) in general position arve given in an affine space
R''. The convea hull of a point set U is referred by conv U, First of all. let us review

rhe definition of triangulations.

Definition 1 (Triangulations) A tiangulation X of V' is a collection of sets of d points
from V" satisfying the followmg conditions:

o conv V' =U, - conv Vo where o = (... .. o) and Vo = {es . ... oyt



o for all o.7 € A cuther conv V. conv V. have no intersection or intersect an thewr
conmon face.

For this point set. regular triangulations are obtained in the following wav.

Definition 2 (Regular triangulations) For the set V7 of points. we obtain a point set
W= {lep ) (tpouwn)} C R by assigning weights wy. . ... w, to vy e, €V,
respectively. Suppose the weaghts are assigned so that coery lower facet (i.e.. a facet whose
outward normal vector has a negatioe d-th entry) be a sumplex. Then, after projecting
the lower facets onto couv Voan R we obtain a triangulation of V. Triangulations
constructed o ths manner are called regular triangulations of Voinduced by an assignment
of wewghts w = (wy...L . w, ). See Fig. 1.

(b)

Fignre 1o (a) A regular triangulation obtained by the projection, and (b) a non-regular
triangulation

The members of T8 are called lifted points. Definition 2 states that, when an n-
dimensional vector w is given, a regular triangulation of V7 can be constructed if the
werghts are assigned so that the lifted points be sufficiently generic. Notice that Defini-
tion 2 admits regnlar triangulations which do not use some of given points. while vertices
of conv 17 are necessarily used. The regular triangulations using all points are treated in
-ection L. The next lemma is an implication of the well-known upper bound theorem of
COIVEeN polvtopes.

Lemwma L The nwmber of (any dimensional) simplices inoa regular triangulation of Vs
: el /2!
hownded from aborve by O{nld25),

For the vest. s denotes the maximum uumber of simplices in regular triangulations of 17
.
and hence s = O(pl2,

With cach triangulation. not necessarily regular. a vector is associated as follows.

Definition 3 (Volume vector) For a triangulation N, the volume vector p of N is
detined as an n-dimensional vector by:



s=oy volle). o= ta )

TN,
where volta) s the volume of the simples conv({v, ... .. Coit)

Notice that /-th entry of the volume vector equals the s of the volume of all simplices
having v, as its vertex. We adopt lericographic ordering for comparing volume vectors.
veo for oot e R o> 20 ifand only if there is 7€ {1... ., n} such that p, = ,:J’. for
Loy rand o> 2

The secondury polytope is defined with the volume vectors of all triangulations.

Definition 4 By constructing a convex hull with the volume vectors of all triangulations
of Vowe obtawn a convexr polytope S(V7), called the secondary polytope of V7.

Theorem 1 ([BFS 90, GKZ 94]) Vertices of the secondary polytope (V') correspond

to reqular triangulations one-to-one.

Proof:  Since the idea of proof of this theorem is used in Lemma 5 for spanning tri-
angulations, we here give a proof outline. To prove the theorem, it is sufficient to show
the existence of a supporting hyperplane for the secondary polvtope supported only at
the vole vector of a regular triangulation. We claim that a hyperplane whose normal
vector 1s the weight vector realizing the regular triangulation is the one.

To see this. we consider a piecewise linear function g, () on D = conv V in R! for a
triangulation A and a weight vector w such that g, (v,) = w; and, on each simplex of the
triangulation A, gy is linear. Let A, be the regular triangulation for the weight vector
w. Then, tt is easv to see that

| & 1.'</ Lyde
'/I).(]_X“.(I)(I 'D_(/A(I)(I

holds for any triangulation N except \,,. Noting that this integral is for a piecewise linear
function. the following holds

lwopy )y =d | gy (r)de < d / gyl = (o).
ST I

wheve Lo 2y is the inner product of w and 2. and hence the elaim follows. O

Note that the volume vectors of non-regular triangulations fall into the interior of
LV or the relative interior of some face of S(17),

Next.we consider edges of the secondary polvtope. Two vertices are counected by an
edue on the polvtope if and onlyv if there is a supporting hyperplane whose support are
exactly the edge. As in the proof of Theorem 1. suppose that the normal vector of such
A =upporting hvperplane s made to he a weight vector. For this weight vector and two
ceeular trianguidations correspouding to the two vertices. the lower boundary of the convex
il of lifted points become flat for the region consisting of the svmmetric difference of
fainihies of stmplices of these two triangulations. Therefore, affine dependence among lifted
points has connection with edges of the secondary polvtope. and a careful analysis about
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Figure 2: Generalized flips (two- and three-dimensional cases)

the minimality of this supporting hyperplane for this edge shows that the corresponding
affinelv dependent lifted points should be minimally dependent.

Minimal affinely dependent subsets are known as a circuit in linear algebra and oriented
matroid theory, that is, a subset Z of V' is a circuit if it is affinely dependent and any
proper subset is independent (i.e., the proper subset is the set of vertices of a simplex
of some dimension). It is known (e.g., sece [GKZ 94]) that, for any circuit Z, conv Z
ras precisely two triaugulations A (Z) and A_(Z) with vertices in Z as follows. For
cirenit Z.a vector u = (u,) such that ¥ ., u, - v = 0 and Y u, = 0 is determined
uniquely up to a constant multiplication. Define Z, and Z_ as a partition of Z so
that the sign of the corresponding u, is the same. Z, and Z_. are well defined up to
mterchanging them. Then, the triangulation A, (Z) consists of all of the faces of the
simplices conv (Z = {v}) (v € Z.). Similar for A_(Z). Every simplex with vertices in Z
laving maximum dimension is included in exactly one triangulation of Z.

Theorem 2 ([BFS 90, GKZ 94]) For a point set V' in general position. two distinct
nertices 1n the secondary polytope are connected by an edge iof and only if, for the corre-
sponding two distinet reqular triangulations Xy and Ny, there exists o circuit Z satisfying
ihe following conditions:
There are no vertices of Voinside cono Z except for the elements of Z itself.
() cone Z is a unmon of the faces of the simplices of N (and Ny) and Ny and N,

coincide outside conv 7.

Heveo conv Z can be triangulated in two wavs, which correspond to \; and \».
[liese operations are depicted for the two- and three-dimensional cases in Fig.2. These
are called generalized Hips. and are an extension of the original Delaunay flip in the two-
dimensional case. Since the graph formed by vertices and edges of a polvtope is connected.
by o sequence of generalized Hips. any two regular triangulations can be trausformed to
cach othier. It should be noted that a new triangulation Ay obtained from a regular
triangnlation A and a circuit satisfving the conditions is not necessarily regular, and
hence the regularity of A, should be checked separately.



3 Our Algorithm

[ this scction. we present an algorithm for the enumeration of regular triangulations
usine reverse search technique developed in [AF 92]. We first describe the data structure
for representing a regular triangulation for efficient manipnlation. Next, we show that it
can be checked by linear programming whether a given triangulation is regular. Then.
how to obtain an initial regilar triangulation is touched upon. Finally. our reverse search
aleorithin is presented. together with its complexity analvsis,

3.1 Data structure for a triangulation

Fist of all, we represent each simplex in the triangulation as a set of d points in V. For
the set 17 of points in general position, a graph formed by simplices and facets of the
miangulation suffices to represent the incidence relation of simplices of the triangulation.
Each facet is a simplex of d — 1 points, and we represent it by two points which are
the complement of d + 1 points of adjacent two simplices to the d — 1 points. This
data structure for representing the incidence relation requires O(ds) space, where s is the
maximum number of simplices of a regular triangulation of V. Note that the number of
facers is O(dxs).

Besides this graph, we maintain all circuits satisfving the condition (i), (ii) of Theo-
rem 2 for the triangulation. Each circuit is conceptually represented by a (d 4+ 1)-tuple
ol poiuts in the circuit sorted in the increasing order of indices of points. Then, all the
circnits are maintained by a list in the lexicographic order of the (d + 1)-tuples. conv Z
consists of at most d simplices, and in practice we represent the (d + 1)-tuple of points
mplicitly by recording such simplices. The number of circuits is bounded by O(ds) and,
it cach circuit is represented by ©(d) elements, it may take O(d*s) space. However, a
slight careful analysis shows that this implicit representation reduces the total space for
this list to O(ds).

For cach regular triangulation, we also maintain its volume vector.

Bv updating triangulations by a generalized flip, we have to nmaintain these data
Sirnctures. For example, the volume vector can be updated in O(d') time by simply
computing necessary changes by the flip. Also, to maintain the list of candidate circuits
in the sorted order. at most 2 circuits are deleted and inserted to the list. Two circuits
cant be compared with respect to the lexicographic ordering in O(d) time by the implicit
representation above. The condition of Theorem 2 for cach civeuit can be checked in O(d?)
e by siply checking neighbors. Hence. the list for a flip can be updated in O(d*s)
e,

When a new triangulation is computed, we have to check its regularity by solving the
Luear programming problem in O(LP(r. ds)) time. as described in Lemma 2 below. In
the sequel. we assume that the time complexity to update the data structure by a flip is
dominated by O(LP(r.ds)). since d*. d*s = O(LP(r.ds)) in general.

3.2 Checking the regularity of a triangulation

[ the existing literature, the regularity check is done in the dual space. We here give
a simple primal approach. For each facet. not on the boundary of conv V7. of a given



The mumber of children is O(ds). and from the discussion in section 3.1, we see the tine
complexity s O(dsLP(r ds)). d

Sunnuarizing the above discussion we now have the following.

Theorem 4 Regulur trianqulations of n points i RV in yeneral position can be enu-
merated i OUdsLP(rods)T) tirne and O(ds) working space.

3.5 How to cope with degenerate cases

fn degenerate cases. even in the two-dimensional case. we need another tvpe of flips
as shown in Fig.do With degencracies, there are lower-dimensional circuits to consider.
Concerning the characterization given in Theorem 2, the following condition should be

added (see [GKZ 94]):

B ey

Figure 3: Degenerate flip

(i1} Let conv [ and conv I' be two maximal (dim(Z)-dimensional) simplices of one of
the two possible triangulations of conv Z. Then for every subset £ C V7 — Z the simplex
conv [ U [ appears in the triangulation A if and only if conv I’ U F appears.

When the number of the elements in Z is d + 1. (iii) follows from the condition (ii)
i Theorem 20 Fig.3 illustrates an example of a triangulation supported on a circuit of
~maller cardinality. Thus. in degenerate configuration. more complicated check becomes
necessary as i (1), but still the flippability is characterized well. We have to modify
the data structure for representing a regular triangulation so that it represents the whole
tace lattice. Subsequently. the parameter s should be regarded as the size of this lattice.
With these modifications. we can modifyv the algorithm for nondegenerate case to that for
degenerate case without sacrificing any major points.

As mentioned in the introduction. regular triangulations have connection with many
mathematical concepts such as Grobner hases. and in such cases a given point configura-
fon s mostlv degenerate. and furthermore has symmetric structures. Then. enumerating
oulyv a representative triangulation from each equivalence class induced by the svimmetry
becomes crucial. since the number of triangulations equivalent under the svmmetry mav
become large. A detailed analvsis of the above algorithm for degenerate cases as well
a~ how o tilize the svimmetry in reverse search approach will be discussed in [TIT 97].
Fheres an algortthm to eunmerate all triangulations. including non-regular ones. is give,
See also [T 96, TT97].



4 Spanning Regular Triangulations

We call a reenlar triangulation nsing all poiuts spanning. The first question concerning
~panniny regilar triangulations is whether their corresponding vertices arve connected by
cdges o the secondary polvtope.  To investigate this. consider the weight vector wy
with e, = o) = Z’l’;ll((',d)"’. The corresponding regular triangulation is the Delaunayv
rriangilation. Consider transforming a spanning regular triangulation into the Delaunay
onc. Then. the following holds.

Lemma 5 From a spanning reqular triangulation, we can generate a sequence of reqular
friangulations to the Delaunay triangulation by generalized flips sueh that

(L) all the veqular triangulations appearing in this process are spanning, and the inner
product of wyy and the volurne vector of a reqular triangulation is strictly decreasing, and
Hfurthermore

(2) a cucwt used wn a generalized flip in the sequence is never used again in this

PTOCess.

Proof: As in the proof outline of Theorem 1, we consider a piecewise linear function
gy for the weight vector wyy for each triangulation N in the sequence. Since for the wp
all the lifted points are on the boundary of lower hull of them, a generalized flip which
makes a point unused in any simplex necessarily increases the inner product of wp and
the volume vector. By considering a linear programming problem of minimizing a linear
function with wy as its cost vector, for a vertex corresponding to a non-Delaunay regular
triangulation there exists a adjacent vertex connected by an edge whose inner product
with wyy strictly decreases. Hence, performing the corresponding generalized flip, a new
triangulation with smaller inner product value is obtained and this flip does not destroy
the spanning property. Thus, (1) is shown.

For the sequence of triangulations Ag. ..., Ay where Ay is the Delaunay triangulation,
W see

gy, () > ‘(]AJ(.’IT) (i < Jj; @0 €conv V7).

Ul is becanse for lifted points corresponding to the cirenit Z their convex hull is a
full-dimensional simplex in the lifted space and have the upper and lower boundaries.
[Lach of upper and lower boundaries corresponds to a triangulation of Z in the original
space. Stcee any cirenit has two triangulations. these two are such ones. and hence strict
above-below relation hiolds. It a cireuit Z is used twice for generalized tips for /7 and §
with r <oy () = (/A/(J') for . in the nterior of conv Z. while by the argument above
gy L) > ;’/AM(’;.I') > _(j_\l(.l'). a coutradiction. U

Theorem 5 All the spanning regular triangulations can be enumerated i O(dsLP(r, ds)T")
e and Odsy working space, where T' is the number of spanning reqular triangulations.

Proof:  As in rthe case with emunerating all regular triangulations. we consider a rooted
sree with the root corresponding to the Delaunav triangulation and from each vertex
corresponding 1o a non-Delaunay spanning regular triangulation choose an edge towards
A lextcographicallv maxinnun vertex among adjacent vertices whose inner produce with
i s simaller than that at this vertex. By Lemma 5. this forms a rooted tree. Then, by

11



applving the reverse search technigue as in the previous section. with noticing that in this
case we negleet accireuit formed by a pair of a simplex and a point inside it we obrain
the vesult. |

The arenments in Lemma 5 can be further utilized as tfollows.
Theorem 6 The diameter of the secondary polytope is O(n'+1).

Proof:  Since the number of cirenits is bounded by O(n*h) . and the piccewise lincar

finction monotoutcally chianges downwards also for nou-spanning regular triangulations.

(o [BES 90} thes copstnct the arrangement of O(n™") hyperplanes whose cells cor-
reSpoud to the vertices of the secondary polytope. and two cells in the arrangement are
adjacent each other if and only if the corresponding vertices of the secondary polytope
are connected by an edge. From these fact, Theorem 6 can be obtained because anyv two
cells in the arrangement are connected by a sequence of at most O(n?*!) adjacent cells.
However. the sequence from any regular triangulation to the Delaunay triangulation can
be found by the arguments in Lemma 5 and Theorem 6.

e

5 Preliminary Computational Results

We hiere describe computational results for randomly generated points. Concerning the
resilts for regularly structured point sets which are interesting from mathematical view-
points. sce Masada [Mas 94. Mas 95]. These are still preliminary results and we just show
them here.

Our algorithm is implemented in C language. The experiments are done on Sun
SPARCstation 10 with 64MB memory. Exact arithmetics are realized by GNU MP li-
bravy for arbitrary precision integer and rational number arithmetic. Linear programming
problems are solved by a simplex method with Bland’s rule. The space complexity is a
Httle more than O(ds) for speeding up the computation in this implementation. Our
tnplementation also works for degenerate inputs.

We here show the muuber of simplices of regular triangulations when the points are
vandoly generated in the (d — 1)-cube with the edges of length 1000. Everv coordinate

,;3 s oan mreger less than or equal to 500 and more than —300.

s

/.

i

e = 3 this 1s. 50 to speak. the first non-trivial case. since in the case of = 2 all
friangulations are regular.

o= 5.d =2 Each of 20 configurations has 8 regular triangulations.

no=0.d = 3: 2 ol 20 configurations have 16 regular triangulations. 6 of them
have 15 ones. and 12 of them have 14 ones.

no=T.d =42 of 20 configurations have 27 regnlar triangulations. and 13 of
them have 235 ones.

no=3.d =5 3 of 20 configurations have 40 regular triangulations. 3 of them
bave 41 oues. 7 of themn have 42 ones. 3 of thew 43 ones. and the other four
have 44 ones.



no=God =20 Each of 20 configurations has 16 regular triangulations.

- = 7.d =3 The munber of regular triangulations is ¢uite various. 4 of 20
configurations have 42 ones. 9 of them have 46 ones. 2 of them have 50 ones.
oue of them has 51 ones. and 2 have 35 one. and two other configurations have
Htoregular triangulations. respectively.
o= Nod = 40 I this case the number regidar trianeulations varies from 128 to
[O6X with some small peak aronnd 133,

Our svstem can solve much larger cases as follows. For example. the svstem can
partially enimerate a set of 24 degenerate points in 20 dimensions. arising from some
srapl sueh that their regular triangulations consist of at most 306 triangles (in this case
the total mmber of triangulations is huge and we could only enumerate part of them, and
ver some usetul information could be obtained from partial computational results).

Enumerating triangulations of the product Ay x 2\; of two simplices Ag and 2\, with
tholy = (331 (3.4), and (4,4) (each triangulation consists of 20, 35, and 70 triangles,
respectivelv). can be partiallv enumerated by our system, but these cases are highlv
degenerate and at least have svmmetrv up to Sgy X Si4y. Such cases should be handled,
raking care of the symmetry, which will be discuss in [TII 97].
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