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Abstract

This paper provoses an efficient alzorithr for the ennmeration of every regviar triangy aticn
obtained from a given point set V = {v1,...,v,} C R?"!. The regular triangulations form a subclass
of triangulations, and can be defined as a natural extension of Delaunay triangulations, which are
investigated frequently in computational geometry. Also, this subclass has an interesting algebraic
aspects in connection with the well-known paradigm of computational algebra, Grobner bases. It
must be mentioned that the enumeration of regular triangulations of specific configurations of points
Is an important topic in mathematics [St 91].

Our algorithm achieves a reduced space complexity O(ds?, where s is the maximum number
of simplices contained in one regular triangulation, i.e., O(nl?/2]). The space complexity of the
algorithm reported previously [BFS 90] was O(n("‘l)z), although their algorithm completes the
enumeration in ©(n("~1") time, which is worst-case optimal !. Therefore, the space complexity
of our algorithm can be taken as a drastic improvement. The time complexity of our algorithm is
O(r*s*l(s,7)T), where I(s,7) denotes the time required for solving a linear programming problem
consisting of s constraints with r variables, and T is the number of regular triangulations obtained

from the given point set V, which is bounded from above by O(n(r‘l)2 ). This complexity is obviousiy
sensitive to the output size T.

1 Introduction

Triangulations have been one of main topics in computational geometry and other fields in recent
years. Especially, some types of triangulations are found to bridge geometric issues and algebraic ones.
Regular triangulations are of such a type. It is shown in [St 91] that this subclass of triangulation
has a close connection with the well-known paradigm of computational algebra, Grobner bases. More-
over, [ES 92| defines regular triangulations as a natural extension of Delaunay triangulations, whose
remarkable features are often discussed in computational geometry. We proposes an efficient algorithm
for enumerating all regular triangulations obtained from a given point set V = {vy,...,v,}. The chief
contribution of this paper is that our algorithm drastically improves the results of [BFS 90] in its space
complexity. Throughout the paper, let the dimension of the space where every point is given equal
to d — 1. Then, the number of points spanning a simplex equals d. Regular triangulations form an
important subclass of all triangulations with the points in V. In this section, we provide the reason
why we concentrate on this subclass by making a list of its remarkable properties.

1.1 Properties of Regular Triangulations

Delaunay triangulations: [ES 92] defines the regular triangulations as a natural extension of the
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Delaunay triangulations, which are investigated frequently in computational geometry. Given a point
set V CRY!, the Delaunay triangulation can be defined as a subdivision of convV (note: convV mi ans
the convex hull spanned by points in V') dual to the Voronoi diagram constructed from V. If we replace
some points by balls with possibly negative radiuses, another diagram is constructed by taking into
consideration these radiuses in determining the distance between each pair of points in case any of the
two are replaced by balls. This diagram is called power diagram. Regular triangulations can be defined
as subdivisions of convV dual to power diagrams. Since the power diagram with balls of radius 0 turns
out to be a Voronoi diagram, the Delaunay triangulation is obviously a regular triangulation.

Algebraic aspects of regular triangulations: [St 91] reveals the algebraic aspects of regular tri-
angulations. An ideal Zy in C(zy,...,Z,], where z; corresponds to v; € V, called affine toric ideal
can be constructed from the affine dependencies among the given points in V. Another ideal Z5 in
Clzy,...,zqa], called Stanley-Reisner ideal, can be constructed from a triangulation A. Suppose A is
a regular triangulation determined by giving the height w; to each v; € V. If we regard the assign-
ment w = (wy,...,w,) of heights as a weight vector determining a term order among monomials in
Clzy,...,2,] and calculate the Grobner basis of Zy with respect to this tem order, then the radical of
the imitiai ideal of tais Grobner basis equals ZT,. He ulso remarks the enuineracion of ail reguiar trian-
gulations obtained from the product of simplices is an important problem. Details should be referred
to his paper.

Lexicographic triangulations: [Lee 91] gives many intensive considerations about regular triangu-
lations. He shows the lexicographic triangulations can be understood as a subclass of regular triangu-
lations. Lexicographic triangulations are one of subclasses of triangulations admitting a definition in
terms of oriented matroid. Later in this paper, we will see regular triangulations are defined by giving
heights to all points in V' and lifting them up by the assigned heights. Lexicographic triangulations are

obtained by assigning heights in a special manner. This subclass also has its own algebraic aspect as
shown in [St 91].

1.2 Previous Results

An algorithm for enumerating regular triangulations has already been reported in [BFS 90]. Their
algorithm explicitly constructs the face lattice of the secondary polytope, the vertices of which are
in one-to-one correspondence with regular triangulations of V. A slight consideration reveals that
the enumeration not only of regular triangulations, but also of regular subdivisions, where each d-
dimensional face is not necessarily a simplex, is possible on this face lattice with small amount of
computation per subdivision. This is because each face of the secondary polytope correeponds to a
regular subdivision. Their algorithun atbains the worst-case optimal tine complexity €47~ 1), since
their analysis shows the number of regular triangulations of a set of n points in R+ 1is bounded from
above by O(d{™1) ') when r <« n is assumed.

However, this algorithm keeps the entire face lattice of the secondary polytope on the storage, and
requires an enormous amount of working area. Their estimation of space complexity is regarded as
G(n(r‘l) }, when r < n is not assumed, since this value equals the complexity of an arrangement
of hyperplanes containing the origin, each of which is spanned by r — 1 linearly independent vectors
chosen from a vector configuration V = {%,...,9,} CR", called Gale transform, computed from the
coordinates of points in V. (The definition of Gale transforms will be given in §3.) Here arises a
problem of reducing the space complexity of their algorithm.

1.3 Owur results

The improvement of space complexity is achieved with the reverse search technique [AF 92] [Fuk 93],
which is explained in §2. Our algorithm does not construct the secondary polytope explicitly. Hence,
finding the incident vertex (i.e., finding the regular triangulation to be enumerated next) is never a



trivial task. The reverse search technique enables us to compute the incident vertex based only on
tle local information, which is, in our case, the regular triangulation corresponding to the current
vertex. Our algorithm runs in O(r2s%(s,7)T) time and in O(ds) space, when the number of regular
triangulations of a given point set V CR%! is T and the maximum number of simplices in one regular
triangulation is s. Since each simplex in R%~! is spanned by d vertices, this space complexity is
minimum for storing one regular triangulation. The space complexity equals the area for storing only
one regular triangulation, and drastically improves that of the previous result. The time complexity is
obviously sensitive to the output size T'.

1.4 Key Words and Notations

We will provide two definitions of regular triangulations in §3. Gale transforms, playing an important
role in one of the two definitions and also in our enumeration algorithm, is defined in §3. In the same
section, it is shown that a polyhedral complex in R", called secondary fan, can be defined based on a
Gale transform of V. §4 presents a result that the face lattice of the secondary fan is anti-iscmorphic to
that of the secondary polytope mentioned above. Therefore, the discussions about the secon.' ary far can
be tephresed in terms of secondary polytope. Ii will be showa that the cells, i.e., 7-dimensional iaces, of
the secondary fan correspond to regular triangulations in one-to-one fashion in §3. Our algorithm taking
advantage of this property of the secondary fan is proposed in §4. We concentrate on the enumeration
of regular triangulations, and do not treat regular subdivisions. Hence, this algorithm enumerates the
r-dimensional faces of the secondary fan. '

For convenience sake, we introduce some notations. Let A(n,k) = {(Fyepi) |1 €4 < -4 <
1 < n}, ie., the collection of every ordered subset of {1,...,n} that is of cardinality k. The symbol *
represents the operation of taking the complement with respect to {1,...,n}, e.g., for 7 € A(n,k), 7* is
equal to {1,...,n}\7, and is an element of A(n,n — k).

2 Reverse search

The enumeration algorithm proposed in this paper uses the technique called reverse search [AF 92
[Fuk 93]. This technique realizes an exhaustive search of all objects to be enumerated with small
amount of storage when successfully applied. In our case, the space complexity is only for storing
one regular triangulation, i.e., O(ds), where s denotes the maximum number of simplices contained in
one regular triangulation. The reverse search technique consists of two concepts: adjacency and local
search.

Adjacency defined for pairs of objects to be enumerated gives a graph connecting all objects. This
graph never be actually constructed, and adjacent objects are computed one by cne ir each case of
necessity. Next, local search determines the object to be visited next everywhere on the graph, and
provides a spanning tree of this graph. The root of this tree represents the globally optimal object. (If
there are more than one global optima, local search provides a spanning forest of this graph. However,
this case is ignored here, for our application gives only one global optimum.) This spanning tree is also
not constructed explicitly, and the optimum among the adjacent objects is computed every time it is
required. Reverse search technique regards this spanning tree as a search tree, and traverse it in the
depth-first manner. One of the features making reverse search efficient and useful is that local searches
can be executed based only on the local information available at each node of the tree. We show the
framework of this technique below. Adj(A, j) and Loc(A) mean functions for giving A’s adjacent object
specified by an index 7, and for computing the optimum among A’s adjacent objects, respectively.

By calling Loc repeatedly, reach the globally optimal object Ag:
/* Reach the root of the search tree */

A= Ag; 5 =0

repeat
while 57 < § do



Ji=3+1
AT = Adj(A, 5);
/* Detect the adjacency */
if A’ # NULL then
if Loc(A') = A then A :=A'; j :=0;
/* Descend the search tree */
endif
endwhile
if A # Ag then
A=A A= Loc(D); j =0
/* Ascend the search tree */
repeat j := j + 1; until Adj(A’, ) = A
/* Recover the original index of A at A’ */
endif
untd A=Apand =96

Here is a typical application: enumeration of basic feasible solutions of a linear programming problem
[AF 92]. The search tree conmsists of roots, i.e., the optimal solutions, nodes representing all basic
feasible solutions, and directed edges established from each node to the node whose corresponding
basic feasible solution is obtained by one pivoting subject to some prescribed rule, e.g. Bland’s rule.
Another noteworthy application is found in [Rot 92].

3 Definition of Regular Triangulations and Secondary Fan

A vector configuration in R" called Gale transform will be used to define regular triangulations. Here
we review its definition.

Definition 1 Let V a set {vi,...,v,} of n points in Rl A Gale transform of V is a set V =
{¥1,...,0n} of indezed r-dimensional vectors satisfying the following condition: let A a (d,n)-matriz
with columns (v;,1), and A an (r,n)-matriz with columns (v;). Then, AAT =0 holds.

Note that this definition suggests how to compute a Gale transform from the given coordinates of
points. Many important observations concerning Gale transforms are referred to [Gr 67]. A notation
18 introduced below for convenience sake.

Definition 2 Le: V o Gale transform of the point set V C R4~ For a subset Uy = {%r.,...,9r,} of V,
the set of vectors

{§€ R | §= P19r + - - + Bi¥r,,Pi > 0 for all 1}

is called a positive hull spanned by U,, and denoted by pos(T) with the corresponding index set T =
{r1,..., 7t} € A(n, k).

For example, if the subset {%,,, ..., 7, } of V forms a basis of R", pos(x) is a simplicial cone with the
apex at the origin. The subsets of V forming bases in R" induce a decomposition of R" called secondary
fan by simplicial cones they span. We will see all cells (i.e., r-dimensional faces) of the secondary fan
are in one-to-one correspondence with all regular triangulations obtained from the given point set V.
Before giving this noteworthy fact, we provide two definitions of regular triangulations.

Let convU mean the convex hull with a point set U. A triangulation of convV with a given point
set V CR% 1 is a collection {S1, .., Sm} of subsets of V such that (1) every member is of cardinality d,
(2) UL, convS; = convV, and (3) for 1 < < j < m, convS;NconvS; is empty or some cormmon proper
face of convS; and convS;. By identifying v; € V with its own index, we can regard a triangulation as
a subset A of A(n,d). This section provides two equivalent definitions of regular triangulations.



Definition 3 (Definition by assigning heights). Given a point set V = {vy,...,v,} in R¥"1. Assign
the height w; €R to each point v; and let V' the set of points in R® having coordinates (vi,w;).
Suppose the heights are assigned so that convV’ be a simplicial polytope. Then, by projecting the lower
facets of convV’ (i.e., d — 1-faces having the normal vectors with negative d-th coordinates) down on
a hyperplane orthogonal to z4-azis, a triangulation with the points in V is obtained. We call this a
regular triangulation of V' induced by the assignment w = (wy, ..., w,) of heights.

Since the upper bound of the number of faces of a convex polytope in R? with n vertices is O(nLd/ 2-I),
the next proposition immediately follows from this definition.

Proposition 1 The number of simplices contained in one regular triangulation of V.C R4~ is O(nLd/ 2J).

Let us use the parameter s in place of O(nl4/2l). The following is the second definition of regular
triangulations.

Definition 4 (Definition using Gale transforms). Given a point set V = {v1,..,v,} CRY1. Let
V = {01,....,9,} CR" a Gale transform of V. When an r-dimensional vector Z is given, let P(Z)
denote ¢ collection of cets of r linearly independent voctors in ? such that all positive hully spanned by
them contain Z in its interior. Let A = {u* € A(n,d) | for all p € A(n,r) such that {B,,, ..., By, } €
P(z)}. Then, A comes out a triangulation by identifying v; with its own index. We call A a regular
triangulation of V induced by Z.

The proofs of the equivalence of these two definitions are found in [BFS 90] [Lee 91]. The propositions
concluded from Definition 4 is presented below without proofs. (See [BFS 90].)

Proposition 2 Two r-dimensional vectors belong to the same cell of the secondary fan if and only if
they induce the identical regular triangulation.

Proposition 3 Each cell c CR"™ of the secondary fan corresponds to the regular triangulation A =
{p* € A(n,d) | c C pos(i)}, and this correspondence is one-to-one.

4 Algorithm

In this section, we present an algorithm for the enumeration of regular triangulations using reverse
search technique.

4.1 Detecting Adjacency

Since Proposition 3 says the cells of the secondary fan are in one-to-one correspondence with regular
triangulations, we can employ the incidence relations between two cells as the adjacency of the reverse

search. A function Adj detecting this adjacency is proposed here. The following is the key observation
whose elementary proof is presented in §5.

Theorem 1 Let V a Gale transform of given point set V CRA 1. Two cells c and ¢ of the secondary
fan share a common (r — 1)-face, which is the subset of a positive hull pos(v) spanned by r — 1 linearly
independent vectors {y,,...,,._,} CV, if and only if reqular triangulations A and A', corresponding
to ¢ and ¢ respectively, are different from each other by one flipping operation with respect to the point

set {vyr, ..., v,s } CV defined in [ES 92].

d+1

See the corollary below.

Corollary 1 A positive hull pos(v) spanned by v — 1 linearly independent vectors {%y,...,0p—1} C V
bounds a cell ¢ +f and only if the triangulation, given by the flipping operation ezecuted on the regular
triangulation corresponding to ¢ with respect to the point set {'ul,;, ...,v,,;ﬂ} C V, 1s regular.



This corollary says that, if the triangulation obtained by one flipping with respect to {v,, ..., v,, 1)
C V 1s not regular, one can conclude that pos(p*) does not bound the cell c. Hence, a function .4dj
detecting adjacency can be written down as follows.

Algorithm 1 (A function Adj).

Input: A regular triangulation A, and a positive integer j.

Output: If a flipping executed on A with respect to {vy,, ..., Vs, } C V', which is specified by j, gives
a regular triangulation A’, output it. Otherwise, return NULL value.

1. List up all sets of d+ 1 points in V, with respect to which flippings can be executed on A. Let T
be this collection of sets.

2. Let Uy = {up,, ..y Upy,, } CV be j-th element of T.
3. Ezecute a flipping with respect to U,, and let A a triangulation given by this flipping.

4. If A is regular, output A'. Otherwise, output NULL.

In terms of the secondary fan, Step 1 collects the (r — 1)-faces of the secondary fan which may bound
the cell c. As for the total number of such (r — 1)-faces, the next claim is concluded from Definition 3.

Claim 1 The number of the sets of d + 1 points in V', with respect to which flippings can be executed,
is bounded from above by s, i.e., the number of (d — 2)-faces of a convez polytope with n vertices in RY.

In Algorithm 1, Step 4 is the most time-consuming part, because a linear programming problem con-
sisting of s constraints with r variables must be solved to check the regularity of the triangulation
computed in Step 3. (See Definition 3.) We give three comments as regards Step 4.

e If we omit Step 1, an LP-problem consisting of rs constraints with r variables must be solved.

» Since all constraints in the LP-problem to solve in Step 4 are a central hyperplane spanned by
r — 1 vectors in V, the normal vectors representing these constraints are not explicitly given,
and must be computed every time they are needed. The computation of a normal vector can be
done in O(r3) time. If the only operation executed on a constraint is to determine whether a
given point satisfies the constraint (note: this requires ©(r) time), the whole computation time is
factored by O(r?), i.e., O(r®)/O(r). Notice that the exhaustive computation of all normals before
Step 4 increases space complexity to O((d + r)s).

e The time complexity of solving an LP-problem consisting of s constraints wita r variabies is linear
in s. However, because there are many theoretical and practical algorithms attaining this bound

and they show various dependencies on the parameter v, we leave the time complexity denoted
by a function I(s,r).

Verify that, throughout Algorithm 1, only O(ds) storage area is necessary. The following lemma
summarizes the discussions in this subsection.

Lemma 1 Algorithm 1 runs in O(r2l(s,r)) time and in O(ds) space.

4.2 Local search

Local search is an operation for selecting among the adjacent cells the optimal one under the criterion
exposed below. This paper’s criterion for the optimality is the volume vector.



Definition 5 When a regular triangulation A is given, the volume vector of A is an n-dimensional

vertor defined as follows:
n

Z(Z{vol(o) |o € Aand i € o}) - e,

i=1
where vol(c) means the volume of the simplezx conv({vs,,...,Vs,}), and €; is an n-dimensional vector
with 1-th coordinate equal to 1 and all other coordinates are 0.

We decide that the cell whose corresponding regular triangulation has the maximal volume vector
under lexicographic ordering is optimal among the adjacent cells. The theorem shown below directly
guarantees the correctness of our enumeration algorithm.

Theorem 2 [BFS 90] When a point set V CRI™! is gwen, a convez polytope, called secondary poly-
tope, us obtained by constructing a convez hull in R™ with volume vectors of all regular triangulations
of V.. Then, it holds that all volume vectors are extreme vertices of the secondary polytope, and that
the face lattice of the secondary polytope is anti-isomorphic to that of the secondary fan.

This theorem implies that the enumeration of cells of the secondary fan by our reverse search is equiv-
aleut to Lue enumeration of vertices of the secondary polytope by a reverse search using lexicographic
ordering of coordinates in its local search. (The enumeration of vertices of convex polytopes under
lexicographic ordering is found in [Rot 92].) Therefore, our algorithm can complete the exhaustive

enumeration of all regular triangulations correctly. A function Loc executing local search is described
below.

Algorithm 2 (A function Loc).
Input: A regular trangulation A.

Output: The regular triangulation A, mazimizing the volume vector among the regular triangula-
tions adjacent to A.

1. Let1:=0 and Apaz := A.
2. Call Adj and obtain the regular triangulation A’ which is specified by the indez 1.

3. If the volume vector of A’ is greater than that of Amez under lezicographic ordering, let Amqr 1=
A
4. Increment ¢ by one and go to Step 2.

As Claim 1 shows 1 < s, let the loop terminate as soon as 7 > s holds. Moreover, the space complexity
never exceeds O(ds). Thus, we are led to conclude the lemma below.

} . 9 . . N
Lemma 2 Algerithm 2 runs in O(r?sl(s,7)) time and in C(ds) spuce.

4.3 Total complexity of the enumeration algorithm
The following lemma reveals the complexity of algorithms using reverse search technique.

Lemma 3 [Fuk 93] Ift(Adj) time is necessary for detecting adjacency and t(Loc) time for local search,
the algorithm employing reverse search with these functions, Adj and Loc, completes the enumeration in
O(6(t(Adj) +t(Loc))T) time, where § means the mazimum degree of the graph induced by the adjacency
between pairs of objects to be enumerated, and T denotes the total number of objects.

Since § = O(s) in our case, the total complexity of our enumeration algorithm is concluded from
Lemmas 1 and 2.

Theorem 3 All regular triangulations of a set V of n pointsin R%™! can be enumerated in O(r2s2l(s,r)T)
time and in O(ds) space, where s equals the upper bound of the number of faces of a convezr polytope
with n wvertices in R%, I(s,7) denotes the time necessary for solving an LP-problem consisting of s
constrawnts with r variables, and T means the total number of reqular triangulations of V.
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Figure 1: Configuration of points (a) and secondary fan induced by positive hulls (b).

4.4 Example

An example is presented here. Figure 1(a) depicts a configuration of points in V. In this example,
n = 6 and d = 3. The innermost triangle with vertices vy, vs,vg is rotated clockwise a little relative
to the outermost one. Each point has the following coordinate: v; = (0,0), v2 = (73,0), v3 = (0,73),
vg = (20,21), vs = (26, 20), ve = (21,27). A Gale transform V of this set of points may be computed
as follows: 97 = (—-32,-27,-25), 9o = (—20,—-26,-21), 93 = (—21,—-20,-27), 94 = (73,0,0), 95 =
(0,73,0), 6 = (0,0, 73) while this is not a umque solution. Figure 1(b) depicts the secondary fan
induced by (§) = 20 positive hulls, each of which 3 vectors in V span. The outermost circle represents
a ball in R® (note: r = n — d = 3) centered at the origin. The indexed points are the intersection of
the corresponding vectors and the boundary of this ball. Every positive hull spanned by two vectors
intersects with the sphere in the depicted segment, which is actually an arc as a portion of a circle.
Broken segments lie on the invisible hemisphere. In the sequel, we identify the faces of the secondary
fan with their intersections with the sphere. Each cell bounded by some facets can be considered as
the intersection of several positive hulls.

For exawpie, Jie coll A is represemted as follaws: pes(£1,2,31N pesf£1,2,52)N nes/{1,3,41)N
pos({1,3,6})N pos({1,4,5})N pos({2,5,6})N pos({3,5,6}). Figure 1(b) shows that an (r — 1)-face
lying on pos({3,6}) bounds both cells A and B. Hence, two regular triangulations corresponding
to them are adjacent. It is observed in Figure 2, where the regular triangulations corresponding to
cells A, B are depicted, that a flipping happens in conv{v), v, v4,v5}, where the set {1,2,4,5} is the
complement of {3, 6}.

Now, see the regular triangulation C in Figure 2. The cell C corresponding to it is contained in
each positive hull whose interior is a subset of one open halfspace bounded by a hyperplane spanned
by 93 and Ts, and has pos({3,6}) in its boundary, i.e., pos({2,3,6}) and pos({3,4,6}). For {3,6}*
equals {1,2,4,5}, let us obtain a triangulation A’ by executing one flipping with respect to the point
set {vy, vy, v4,v5} as follows:

A ={{1,2,5}, {1,3,6}, {145}, {1,4,6}, {2,3,5}, {3,5,6}, {4,5,6}}
2|
A ={{1,2,4}, {1,3,6}, {2,4,5}, {1,4,6}, {2,3,5}, {3,5,6), {4,5,6}}

Underlines indicate the simplices exchanged by flipping. However, since the intersection of the positive
hulls corresponding to the members of A’ comes out empty, pos(v) =pos({3,6}) fails to bound the
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Figure 2: Regular triangulations of the point configurationin Figure 1(a).

cell C. Therefore, the triangulation A’ is not regular, which is a rightmost triangulation depicted in
Figure 2.

Each arrow in Figure 1(b) points at the cell which corresponds to the regular triangulation having
the maximal volume vector among the adjacent. These arrows can be considered as directed edges in
the search tree of enumeration traversed by our algorithm.

5 Proof of the theorem concerning flipping operation

We give an elementary proof of Theorem 1 here. First of all, let us introduce several notations.

Let V CR™ be a Gale transform of a given point set V. Fix an index set v = {v,...,vp_1} €
A(n,r — 1), and let U, = {%,,,...,7,_,} C V and U, = {vu;,...,'u,,;“} C V. Suppose v is chosen so
that the vectors in U, be linearly independent. The hyperplane spanned by these vectors determines
two subsets of V: Uf = {% € V | det(dy,, ..., By,_,, 5) > 0} and U = {# € V | det(dy,, ..., Vy,_,,7) < 0}.
Let I' and I} be the corresponding index sets, i.e., If ={k | e Uf}, I; ={k | % € U;}. Now,
we present lemmas used in the proof of Theorem 1.

Lemma 4 Choose v € A(n,r — 1) so that the vectors in U, be linearly independent. Then, convl,. =
Ukerr conv(U,«\{v}) and convU,- = UkeI.,‘ conv(Uy+\{vt}) hold.

Proof. A Gale transform of the set U,» C V of d + 1 points is a vector configuration in R. (Note that
(d+1) —d = 1.) Two regular triangulations are read off from there according to Definition 4. It can be
shown that they equal two sets of simplices descrited in the above lenima, nauely, {eonv(Uy\1vi}) |
for all k € I;'} and {conv(U,-\{vx}) | for all k € I;'}. Therefore, we obtain the conclusion. a

A set of d+ 1 points in R%~! have two regular triangulations from Definition 4. Moreover, [Lee 91]
shows the following result using Gale transforms.

Lemma 5 For a set of d + 1 points in R4, there ezist only two triangulations.
In other words, all triangulations are regular for a set of d + 1 points in R4~!. Notice the fact below.

Fact 1 The flipping operation discussed in [ES 92] is an exchange of these two triangulations of a

gen set of &t 1 pomts n BT ¢ N RONG

Now, it is possible to prove Theorem 1. Readers are encouraged to translate the discussions below in

terms of cells of the secondary fan and positive hulls into those in terms of regular triangulations and
simplices.

(3



Proof.

e Suppose two cells ¢ and ¢ share a common (r — 1)-face and this face lies on poe(u), whash is
spanned by r — 1 linearly independent vectors U, = {%y,,..s¥s,_,} C V. Let II{c) = {u €
A(n,7) | ¢ C pos(u)}. II(c) represents the set of all positive hulls containing ¢ by correspou\hng
index sets. Let II} = {v U {k} | forall 5 € U}} and I, = {v U {k} | for all v € U;}. Each
of Il and II; represents the set of all positive hulls lying in each of two halfspaces bounded by
the hyperplane vectors {o,,,...,,,_, } span. Then, it can be shown that either I} C II(c) and
II; C (), or IT} C T(c') and NI C II(c) hold. Without loss of generality, assume the former
holds. It can be shiown that II(c)\II} = II(¢')\II;. Hence, from Lemma 4 and Fact 1, A and A’
are different from each other only by one flipping with respect to U, C V.

e Conversely, suppose two regular triangulations A and A’ are different from each other by one
flipping operation with respect to U,» C V. Let ¢ and ¢’ be corresponding cells in the sec-
ondary fan respectively. Lemma 4 says either I}’ C II(c) and II; C II(¢’), or I C II(¢/) and
II; C II(c) hold. Without loss of generality, assume the former holds. This assumption implies

A,

H(e\I} = T\, . Nubice this equaiity maight oot load to the conclucion thet hoth and < ave
bounded by pos(v). However, if Nuemenn) pos(i) (note that II(c)\IIf = II(¢)\I;) has any
intersection with the complement of (N, + pos(p))U(M,,c - Pos(k)), Proposition 3 implies there
are more than two triangulations for d + 1 point set in R%"!, and this contradicts to Lemma 5.
Hence, (¢ (r(cp\n) Pos(x) must be contained in (N,¢p+ Pos(p)) U (N,enz pos(p)). This implies
(ﬂue(n(c)\nj) pos(x)) N pos(v) is not empty. Thus, both ¢ and ¢’ are bounded by pos(v).

O
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