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Abstract

We propose three algorithms to enumerate triangulations for arbitrary configurations of points and for
products of two sirnplices. Since this product is highly symmetric, counting all triangulations naively is
inefficient. We may be counting the “same” triangulation meny times. The classes of triangulations with
respect to ymmetry should be counted. Our first algorithm enumerates these classes of regular triangulations, ,)
a subset of triangulation. Nonrcgular triangulations are still unexplored, and there has been known W
algorithms to enumerate all triangulations including non-regular ones. The remsining two algonthms we
propose enumerate all triangulations for an arbitrary configuration of points. Our second algorithm regards
triangulations as maximal indcpendent sets of the intersection graph, and applies a general algorithm for such
enumeration. An intersection graph is a graph with all maximal dimensional simplices the verticas and edges
between those intersecting improperly. Our third algorithm regards triangulations as independent sets with
connected intermals. We enumcrate such sets incrementally: recursively adding an adjacent simplex. This
can be applicd for the classes of {all) triangulations for the product. All of these three algorithms work in
time proportional to the output. Furthermore they all require small memory: only for the size of several
triangulations.

1 Introduction

Gel'fand, Kapranov and Zelevinsky introduced the secondary polytope for point configurations. In this polytope,
the vertices correspond to regular triangulations of the point configuration, and those triangulations which can
be modified by flips are connected by cdges (7], [8]. Billera, Filliman and Sturmfecls analyzed the complexity of
computing this secondary polytope (3].

Regular triangulations of the product of two simplices A; X A, where k and ! are their dimensions, have
relations with other branches of mathematics, such as Grobner bases [17]. This polytope is highly symmetric: it
has the symmetry of the direct product of two symmetric groups Si41 X Si41- So, it is not smart to count all of
them naively, because we may have counted the “same” thing (& +1)!(I+ 1)! times. De Loera devised a program
to enumerate regular triangulations for given sets of points. The program can take this symmetry into account,
and he enumcrated the triangulations, all of which are regular, for the case of 8z X Az and 82 X A (4], [5)-
When the dimensions become larger, even the number of classes divided by symmetry becomes huge. De Loera
is using Lreadth first search in his program, so all visited triangulations should be kept in the memory, and the
mermnory constraint becomes serious in larger cases.

Masada, Imai and Imai proposed an algorithm to enumerate regular triangulations with output-size sensitive
time complexity, which is same as de Loera’s, using thc memory only of the size for two triangulations {13), [14).
It uses a general technique for enumeration which is called reverse search, by Avis and Fukuda {1}, [2)-

Our first algorithm in this paper enumeratcs the classes of regular triangulations for the product of two
simplices with respect to symmetry. This polytope is highly symmetric, as mentioned above, so it 1s important to
enumerate the classes. The algorithm runs in output-sensitive time, i.e. in proportional to the number of classes,
and requires memory only for the size linear to a triangulation.

The second and third algorithm in this paper enumerates all triangulation, regular or not, of an arbitrary
configuration of points. Though there are some results, the enumeration of all triangulations in dimensjon higher
than two still remains to be unexplored [6]. In the second algorithm we regard triangulations as a subclass of
maximal independent sets of the intersection graph of the maximal dimensional simplices, and apply an algorithm
for enumerating maximal independent scts. This also runs in output-sensitive time, with the memory of the size

for one triangulation. &— Weol 7
The thHird-aigorithm enumerates the independent sets whose internal’is connected, in which all triangulations
internai

are included. In this algorithm we construct such independent sets incrementally by adding adjacent simplices to
an existing set. This algorithm also uses reverse search, so the time complexity is output-sensitive and required
memory is only of the size for two triangulations. A version for enumerating the classes of triangulations is also
shown.

We begin by brief explanations of the concepts we use: regular triangulations and secondary polytopes (Section
2) and reverse search (Section 3). Next we derive some properties of products of two simplices (Section 4). Then
we present our first result: enumeration of regular triangulations (Section §). We prepare some notations for
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enumerating all triangulations (Section 6). Finally we study this case by maximal independent sets (Section 7),
and by connected independent sets (Section 8).

2 Regular triangulations and the secondary polytope

Regular triangulations are a certain kind of triangulations. They correspond to the vertices of a polvtope,
secondary polytope, which is determined uniquely by a configuration of points. Thanks to this property we can
cnumerate all regular triangulations applying a vertex enumeration method to the secondary poivtope. Please
refer to {3], (7], [8], [12] and [19] for discussions in detail.

Let A = {ay,...,an} C IR*"! be a configuration of points, their convex hull Q = conv(A), with dim(Q) =
k—1. A subset ¢ C A is a d dimensional simplez, or a d-simplez in short, if the points in o are affinely
independent and #o =d + 1.

Definition 2.1 (triangulation)
A simplicial complex T is a triangulation of (Q, A) if its skelton |T'| = UT equals Q and its points are among A.

In other words, triangulation T of (Q, A) is a collection of {(k = 1)-simplices and their faces, with the maximal
dimensional simplices having their vertices in A and intersecting at their possibly empty faces.

Definition 2.2 (regular triangulation)
A triangulation T of (@, A) is reguler if there exists 2 vector ¥ : A — IR having the following property. For
P = conv{(a;,¥1),.-.,{(@n,¥n)}, and 7 the projection

7 RF - R*! (z)'-‘za
T

T = {#n(F): F is 2 lower face of P}.
Here F being a lower face means,

F={zeP:cx=c¢), cx<cvalidfor P, cq441 <O.

For any triangulation, tegular or not, a vector called volume vector corresponds. In this vector, each entry
corresponds to a volume sum of the simplices having a point in the configuration A as an vertex.

Definition 2.3 (volume vector)
Let 7 be a triangulation of (@, A). The volume vector for T is a vector ¢ : A — IR with

er@)= 3.  vol(o)

eeTiwevert(s)
where vol is the volume function, and vert(o) the set of vertices of o

We map all triangulations T in a (#.4)-dimensional space by regarding their volume vectors ¢ as coordinates.

Definition 2.4 (secondary polytope)

The secondary polytope L{A) of a point configuration A is the convex hull of @7 in IRA, for all triangulations T
of (Q,.A).

Now we state that regular triangulations correspond to the vertices of the secondary polytope L(A). The

nonregular ones are mapped to the points other than the vertices, and their injectivity is not necessarily guaran-
teed.

Theorem 2.5 ([7, Chapter 7. Theorem 1.7.})

The secondary polytope £(A) has dimension n = k, and its vertices correspond one-to-one to the points w7 of
regular triangulations of (@, A).

The vertices connected by an edge in the secondary polytope are “similar”. Indeed, they can be modified
each other by “flips”. In introducing flips, we use the idea of circuits.

A collection Z of points in IR*"? is called a circuit if they are affinely dependent, and anyv of their proper
subsets are independent. For a circuit Z, there exists a vector ¢ € IR? unique up to affine multiplication, such

that
Z:c_.w-——o, ZCL,. =0
w&Z

We can decompose the set Z into Z. and Z. according to the sign of c.., up to the whole exchange. The
dimension of conv(Z) can be smaller than k& — 1.

.83
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Proposition 2.6 ({7, Chapter 7. Proposition 1.2.})

For any circuit Z C R*™?, only two triangulations T and I_ exists for (conv(Z),Z). Here the maximal
dimensional simplices for T, are conv(Z \ {w}) for w € Z, and T_ are conv(Z \ {w}) for w € Z__.

The two triangulations of a circuit suggest the flip modification. This modification can be applied to a triangu-
lation only when this circuit “appears”.

Definition 2.7
Let T be a triangulation of (@,.A) and Z C A a circuit. T is supported on Z if the following holds.

(1) There are no points of T in conv(Z) other than Z itself.
(2) conv(Z) is a union of simplices in 7.

(3) For two maximal dimensional simplices conv(I) and conv(I’) in the same triangulation of Z, and F C A\ Z,
a simplex conv(Z U F) appears in T if and only if conv(I' U F) appcars.

For a triangulation T supported on a circuit Z, the flip or modification along Z is a triangulation sz(T) formed
by simplices conv(I’ U F) in replace of conv(I U F) € T, where I and I’ are in different triangulations of Z and
F C A\ Z, and the rcmaining simplices of T" not of the form conv(J U F). Clearly s2(sz(T)) =T. Evenif T is
a regular triangulation, sz(7T') is not necessarily regular. The subsequent theorem describes the relation between
adjacency on £({A) and this flip modification.

Theorem 2.8 ({7, Chapter 7. Theorem 2.10.])

Let T, T" be regular triangulations of (@, 4). Their corresponding vertices @7, w7+ are joined by an edge in
(A) if and only if there exists a circuit Z C A supporting T and T”, and they are obtained from each other by
modification along Z.

3 Reverse search

Reverse search is a general technique for enumeration. It performs at the same output-size sensitive time as
breadth first search (BFS) or depth first search (DFS), but requircs memory only for twice the size of an object
among the whole we want to enumerate. BFS and DFS needs output-size sensitive memory size, because we have
to memorize all reached vertices. In addition to the adjacency relation, which is necessary for BFS and DFS,
parent-children relation is needful to execute reverse search. By this parent-children relation, we construct in
implicit a spanning tree in the adjacency graph of the objects of enumeration, and perform a DFS on the trec.
The word “implicit” means that we do not really compute the whole tree at once in the algorithm, but we do
traverse it using local information [1], [2].

First we state the adjacency and parent-children relation for reverse search. This structure for reverse search
is named “local search structure given by an A-oracle.” We call it a structure for reverse search in this paper.

Definition 3.1
(5,6,Ad], f) is o local search given by an A-oracle if it suffices the followings.

® S is a finite set.

e $ €N
e Adj:Sx{l,...,6} = SU{®}. Foranyae € S and 7,5 € {1,...,6},
— Adj(a,i) #a

— if Adj(a,1} = Adj(a,j) # 0 then z = ;.
e f:8 — S is the parent function:
f(a) = a or Adj(a,1) for some i.

Furthermore, there exists a unique root vertex r € S such that f(r} = r. For any other vertex a 5 r, there
exists n € IN such that f(")(a) = r.

S is the set to be enumerated. We set the maximum degree of the adjacency graph to §. For each vertexa € §
the adjacency function Adj returns its indexed adjacent vertex, or sometimes @ if it has degree less than 6. This
index is for usc in the cnumcration algorithm. An example of this structure is shown in Figure 1. The information
of 8, Adj, f and 7 is given to the reverse search algorithm, and it returns S as its output. Actually we do not
need 7, because we can find it by applying f several times to a vertex. The algorithm is presented in Figure 2.

Theorem 3.2 ({2, Corollary 2.3.])

The algorithm in Figure 2 works for the structure in Definition 3.1. The time complexity is O(6 (time(Adj) +

time(f)} #5), where time(Adj) and time(f) are the time necessary to compute functions Adj and f. The memory
required is the size of two objects in S.

w
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4 A, x D and its symmetry

: : d+1 ) . ; <
The standard d-simplex Og 18 the convex hull conv{ey,.-- Jeqq1} in RO We use e; of f; for uzn '\Sfcctors
whose i-th or j-th element is one and zeros in the rest. The product of two standard simplices Ok X St 1

D x A= conv{(;'> ceRH+M2:ie [,...,k+ 11T € {1,..-.1+ 1}}
2
In Figure 3 we show Oy X Ay and Ay X Ay for example. ]
Following the notation in section 2, our objects are the triangulations of (Ar x Ay, vert(Ax X A)), where
vert(Ox x Ap) are the vertices. Examples of triangulations arc shown in Figure 4. . i
First we state three lemmas later nse. The volume of the (k -+ [)-simplices in a triangulation of Ok X Ar1s
constant, which leads the following.

Lemma 4.1

The number of {k + I)-simplices included in a triangulation of Ax X Ay is (k + )Y/KL.

The (k + [)-simplices in (B X Ay, vert(De X A)) correspond to spanning trees in the complete bipartite graph
Kiea1.4 1T, 7.3.D.). This derives the next lemma.

Lemma 4.2 i
The number of {k + I)-simplices in (Ar x Ay, vert(Ag X A))is (B + 1P+ 1)

The problem in the lemma below can be reduced to judging the existence of a cycle in a subgraph of a directed
Ky 41 (cf. [5, Lemma 2.3.]), so the time complexity follows.

Lemma 4.3
Given two maximal dimensional simplices in Az % Ay,

judging whether their intersection is a face of each of them
ot not can be done in O(k + ) time.

The product Ay x A; has 2 symmetric structure: even if we commute the axes of each simplices, the shape
of the product does not change. We state this symmetry formally.

Definition 4.4 (equivalence on simplices and triangulations)
Let Siyy X Sty1 be the direct product of symmetric groups, and (P, q) € Sk+1 % St41-

e Siy1 X Siy1 acts on the vertices of Ap X Ap:

“”(£)=(23>'

e The action of Sk41 X Stx1 on the simplices of (Bx % Ay, vert(Dx X Ay)) is induced:

e, €iygyy = €p(iy) eens €plige1) i
(p,q){(fjx) ,“-‘(fjd+x)} {(.fq(j,)) (fq(jd"'l))}

e The action of Scq1 X Sis1 on the triangulations of (Ae % A, vert(Ax x A)) is induced:
(7. )T = {(p.9)e 1o €T}

e The action of Sy41 X Si+1 on the vertices, the simplices or the triangulations defines an equivalence relation
on each of them: two elements are equivalent if they can move to each other by an element of Sks1 X Sita.
We classify these sets by orbits: the equivalence classes.

For example, the triangulations Ty and T» in Figure 4 moves to each other by ((1,2),e) € Sz X S,. So does T3
and Ty for {(1,2),€) € 53 % Sa. The volume vectors can be regarded as a matrices

(e €; )i; € R+ x RIFE,
f— 7
i

Thase corresponding to the triangulations in Figure 4 ave

1 2 2 1
‘Pn=(2 1) ﬁpTg:(l 2)'

Sie: X 5141 acts on a volume vector wr as rearrangements of rows and columns of a matrix. Two regular
triangulations T and T’ are in the same orbit if and only if their volume vectors T and @7 are in the same

orbit, since the correspondence was one-to-one (cf. Theorem 2.5). We introduce an order on volume vectors, and
define the representative on the orbits.
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Definition 4.5 (lexicographic order on matrices)
We define lexicographic order on matrices R x R, A matrix (a;;) is smaller than () if for some (70, Jo),
Qigjo < biojo, and for any 4, j such that i <ip or such that 7 = i and j < jo, @;; = b;j-

Definition 4.6 (order on regular triangulations) )
We introduce a total order on regular triangulations by comparing their volume vectors as matnces." /

Definition 4.7 (representative of orbits of regular triangulations) =0,
We take the maximum triangulation as the representative of the orbits of regular triangulations. }/
In Figure 4, T2 becomes the representative for the orbit {1, Tz} ( /

4

Lemma 4.8 ) 22n o
Given a regular triangulation T, the representative element of its orbit can be computed in O(I! ¥?1?) time.

Proof. In order to choose a representative triangulation from the orbit of 2 given regular triangulation, we
have to find an clement of Sk41 X Siy1 whose corresponding rearrangement maximizes the matrix of the volume
vector pr. We check all (I + 1)! cases of arrangement of columns. For each of them we sort the rows. There
are k + | rows of length [ + 1, so this takes O((k + 1)?(I + 1)) time. Hence the whole time complexity is
oI+ Dk +1)2(I+1) =0k @

5 Enumerating regular triangulations of A; X Ay

5.1 Enumerating all regular triangulations

We state the possibility of reverse search for all regular triangulations of arbitrary configurations of points, and
apply this to the case of A x A;. This can be done in time linear to the number of the whole and with memory
linear to the size of one.

We define two triangulations to be adjacent if they can be modified along a circuit. Take the triangulations T3
and T in Figure 4 for example. They become adjacent, becausc they can be modified along the circuit consisting
of the vertices of the upper two tetrahedra.

Definition 5.1
The structure of reverse search for regular triangulations of (Ax X Ay, vert(Ay x 44)) is

e S = {regular triangulations}
e Adj(T,7) = (the i-th regular triangulation which can be modified from 7" along 2 circuit)

. £(T) = Adj(T,7) if the largest regular triangulation Adj(T,{) among those adjacent to T is laxger than T
7T otherwise

The index 7 in the definition of Adj(T,?) is not of importance. Because regular triangulations correspond to the
vertices of the secondary polytope L(vert(A, X 4A;)), and lcxicographic order is same as ordering by the inner
product with a vector (K4++2 g*+i+1 | K) for sufficiently large K, reverse search is possible. In fact, this
is a geometric version of linear programming (cf. [19, Theorem 3.7.]). This algorithm for enuinerating all regular
_triangulations for arbitrary configurations of points is from (14]). We apply this to the case of Ay X 4.

Theorem 5.2 ([14))

The structure of Definition 5.1 enables reverse search. For the case of A X A; the time complexity is O((";"')zka B

LP(kl, (*)(k + 1+ 1))#R), where LP(n,m) is the time required to solve a linear programming problem with m
strict inequalities constraints in n variables, and R is the set of regular triangulations of Ay x A;. The memory
required is linear to the size of a triangulation.

5.2 Using symmetry

By modifying the structure of reverse search in the previous subsection, we can enumerate all orbits of regular
triangulations in time proportional to their cardinality.

We define two different orbits of triangulations to be adjacent if there exist adjacent triangulations chosen
from each of them. We denote the orbit, or class, which contains a triangulation T by [T]. Clearly, if [T} and
[T} are adjaceut, there exists a triangulation T € [T”] which is adjacent to T. The representative of an orbit
was its maximum element in the lexicographic order of volume vectors.

Definition 5.3

The structure of reverse search for the orbits of regular triangulations of (&r x Ay, vert(di x A;)) is as follows.
We denote the representative triangulation of an orbit {T] by Tax.
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e S = {[T]:T is a regular triangulation}
» Adj([T], 1) = [Ad}(Tmax, )]
4 f([T]) = [f(Tmax)]
Theorem 5.4
The structure of Definition 5.3 enables reverse search. The time complexity is O( (L'”) I'K515 LP{k, (Hl) (k +

1+ 1))#(R/~)), where R/~ is the orbits of regular triangulations. The mcmory required is linear to the size of
a triangulation.

Proof. For an orbit {T] which does not include the root iriangulation in Definition 5.1, its representative is
smaller than the representative of f({T]). So the orbit containing the root triangulation is the unique root orbit.
From any orbit, we can reach the root orbit by applying f several times. Hence, reverse search works. For time
and space complexity, compare this version with the algorithm in Theorem 5.2. The extra time required for Adj
and f is the time to compute the representative element, which is O(l! k?{?) by Lemma 4.8. The time required to
compute one orbit is bounded by O(!! £%i2) times the time for a regular triangulation in the algorithm without
considering symmetry. On the whole, the coefficient of time complexity becomes O(! k%1?) times larger. In the
scarch, we are just “jumping” to the representative, so the required memory is same. O

How mivy

6 Preparations for enumerating all triangulations

6.1 Arbitrary configuration of points

We fix some notations for use in the following sections.

Definition 6.1

Let (conv(A), A) be an arbitrary configuration of points.

= {¢ € 2 : maximal dimensional simplex of (conv(A),.4)} e
. Two simplices in S intersect if their intersection is not a face for at least one of them. L e
e The intersection graph of S is a graph with S the vertices and edges between two intersecting simplices.
e T ={I € 2% : independent set of the inlersection graph of S} / T T

. = {I € 25 : maximal independent set of the intersection graph of S}

. Tuo simplices in & are adjacent if they share a facet. For any independent set I € T its adjacency graph is ]
a graph with simplices in I the vertices and edges between two adjacent simplices. ————————
e

® Zeon = {I € Z : the adjacency graph of I is connected}

o Mocon = {I € Zon : maximal in set inclusion in Zeon} W _

e 7 ={{cy,....0.} € 2° ; a set of maximal dimensional 51mpllces in a tna.ngulatxon of (conv(A) A} [ .
Zcon is formed by the independent sets which can be made incrementally: starting by an empty set and addmg‘
recursively a simplex which is adjacent, where we promise that any simplex can be added to the empty set. We )
call the elements of Z;,, the connected independent sets. o

Clearly, TCMand T C Mco,, CTon In subsequcnt sectlons we show a,lgonthms to enumerate M and

do not know if this occurs for the case of Ay X Ay, . j

S
6.2 More on Ay x A T~ ¢ (JV/f (‘\r/q, S

Simplices in S can be regarded as matrices in R*t! x R™*!;

o= {(;iz ) PR (Giu-xu )} ES e Z (éii,éjj,)ij € IREH x lRl‘H,
N

fjk-bl 1 .
‘ G

where § is Kronecker’s delta. Remember that we defined lexicographic order on matrices in Definition 4.5.

Definition 6.2 (equivalence on S and 2%)
e We define the action of Sis; X Si4; on S by restricting to S its action on all simplices, which we defined
in Definition 4.4. It defines an equivalence relation on S. Wc notify this relation by ~.
s The action of Sy4y x Sty on 2% is induced. Its action on T, M. Zoon, Mcon 2nd 7 is defined by restriction.
The actions define equivalence relations on each of the sets. We also use ~ for these relations.

Clearly, 7/~ C M/~ C L/~ C 25/~ and T/~ C Mcon/~ C Zeon/~ C Ljme C 25 fm.
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7 Enumerating all triangulations—as a subset of maximal indepen-
dent sets

7.1 Triangulations for arbitrary configurations of points

The intersection graph of maximal dimensional simplices of a point configuration was the graph with these
simplices the vertices and edges between two improperly intersecting simplices. Triangulations can be regarded
as a subclass of the maximal independent sets of this graph [9]. Efficient algorithms to enumerate maximal
independent sets are kuown [11], {18]. In this section, we state the relation between triangilatiofis and maximal ~
“independent sets, and pioposc a triangulation enumerating algorithm using this property. This algorithm handles

arbitrary configurations of points.

First, we cite from [11] the algorithm we use for enumerating maximal independent sets. The algorithm is
called the generalized Paull-Unger procedure with improvements by Tsukiyama, Ide, Ariyoshi and Shirakawa
1§].
[ ]Let the set of vertices be £ = {1,...,n} and ¢ the independence testing time. We define AM; the family of
independent sets that are maximal within {1,...,5}. We construct M; from M;_,, starting frota Mo = {8},
to obtain M, = M. For each I in Mj_;, we test the independency of T U {j}. I{ it is independent, we add it
to M;. I not independent, we add I and other maximal independcnt scts of M; included in JU {j}. i I' is
such set, it should be maximal in I U {j}. We use this fact rcversely: first list up the maximal independent sets
in J U {7}, and check if they are in M; The algorithm elaborates to produce I' from a single 7. We show it in
Figure 5.

This computation performs a search on a tree. Nodes at level j correspond to members of M; with the tree
rooted by 9. For each I in M.y, the corresponding I’ (possibly several) in M are its children. We start with
the root §. Several searching methods are possible, but we take depth first search here.

Theorem 7.1 ([11])
The algorithm in Figure 5 enumerates 21l maximal independent sets in O(nc’K + n?cK K’) time and O(nK"’)

memory. Here K = # M and we suppose that in Step 1, for each I € M;_;, at most K’ sets I' are found in ¢
tiine.

Now we apply the algorithm above to our case.

Theorem 7.2

If we have E = S with an arbitrary fixed order with an oracle that answers the previous or next simplex for a
given one in unit time, and apply the algorithm in Figure 5 to enumerate all maximal independent sets of the
intersection graph of S, it works in O(m time(intersect)(#S)?# M) timc with the memory for the size of one
triangulation. Here m = max;eaq #7 is the maximum cardinality of maximal dimensional simplices in M and
time(intersect) is the time to judge if two simplices intersect properly.

Proof. For the independence test, or the test in Step I, in actual we only have to check the intersection of
a newly added simplex with the less than m current ones in I, so ¢ and ¢’ in Theorem 7.1 is computed in
m - timc(intersect) time. In Step 1, for each I in Mj;_,, if TU {j} € My, ' = T U {j}, and if not we take I and
the set of simplices in T U {j} except those intersecting with j as applicants, so #XK’ < 2. Since we have the
oracle mentioned above, we can traverse the search tree only with the information of our current independent sct
I and depth 7, which is practically same as the size of a triangulation. Furthermore, since backtracking is easy,
the order of time complexity docs not change. O

7.2 Triangulations for A, x 4,
We apply Theorem 7.2 to the case of A X Ay

Theorem 7.3
For the point configuration (Ag x Ay, vert{Ag x A¢)) the algorithm in Figure 5 enumerates all maximal independent
sets of the intersection graph of S in O((“F) (k+1)k?1%* 4 M) time with the memory for the size of a triangulation.

Proof. The simplices in A; X A; correspond to spanning trees of the bipartite graph K41 .¢+1. We can generate
such trees in unit time ({10}, [16]), so the oracle mentioned in the Theorem 7.2 exists. Because #5 = (k+1)/(I+1)F
from Lemma 4.2, and checking the linearity of vertices from vert(A; x A} can be done in O(k+1) time analogously
to Lemma 4.3, we can list all mnaximal dimensional simplices S in O((k + 1)(k + 1)t (I 4+ 1)*+1) time. By Lemma
4.1, m = (*}'), and by Lemuna 4.3 time(intersect) = O(k +1). O
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8 Enumerating all triangulations—as a subset of connected inde-
pendent sets

8.1 Triangulations for arbitrary configurations of points

We propose an algorithm to enumcrate all independent sets with a connected adjacency graph, i.e. with a
connected internal, for arbitrary configurations of points. All triangulations are included in this class. Reverse »
search is used, so the time complexity is proportional to the number of those independent sets, and memory for }l )
only twicc the size of a triangulation is required. v 4!
Our 2im here is to enumerate 7., which leads to the enumeration of the triangulations 7 of {cony(4}A}—"
Imagine the Hasse diagram of 25. The induccd subgraph for the vertices Z.., C 2° is connected. A¥e construct
a spanning tree in this induced subgraph 2nd endirerate the vertices of Z,,. We assume a total order on S, and
the induced lezicographic order on 25. Any order on S is possible. For cach I € 7 the incrementable facets are
the facets of a simplex in [ included in 8({J, ¢; conv(e)) \ 8(conv(A)}), where 8P is the union of facets of P. Let
Mgaces be the maximum cardinality of incrementable facets for all I € Z,.. Fix a total order on the incrementable ,
facets of each I € Z ., and on vertices 4.

: <
Theorem 8.1 1 t ‘ ‘( _/f
For the following structure, reverse search enumerates all sets in Zgon, in which all triangulations are included. SKeted 7

o b =tpcaFA+1 F
J{I) “‘maxorderanS{I\{a}:aeI}

ITu {conv(r; U {v;})} for the i-th incrementable facet 7; of I and j-th point
v; € A, if ;U{v;} is 2 maximal dimensional simplex,
Adi(T, (G + 1)#A + §) = a_nd 4035 not intersect with or is not equal to the
simplices in 1.
£ HE+1)HEA+ =6
2

otherwise

[ ]

Adj(@,:) = {the i~th simplex in S}
er=0¢ Zeon

The time complexity is O((MmepcatF#A + 1)m time(intersect)#Tcon ), Where n = maxreaq #7 is the maximum
cardinality of maximal dimensional simplices in M and time(intersect) is the time to judge if two simplices
intersect properly. The memory required is the size of two triangulations.

Proof. Slight modifications are required for the case of the empty set. We define all simplices tn S to be
adjacent to 0. The degree of @ can be larger than &, but we can check that this does not change the whole time
complexity. Clearly, reverse search for this structure works. We can keep the elements of I sorted. so time(f)
is constant. To compute an adjacent vertex, we have to check if 7; U {v;} is a simplex, and if so, if it intersects
properly with the existing simplices in J. The sccond test takes m time(intersect), and generally the first one can

be done in time(intersect) time. Thus time(Ad]) is O{m time(interscct)). O
e
We do not know a non-trivial bound for the gap between #Mco, and #Zgon- This gap becomes a loss for the time
« complexity, compared to the cardinality of triangulations, so the evaluation of this gap is important to decide
the efficiency of this algoritm.

S e

8.2 Triangulations for 4, x 4A;
We apply the algorithm above to the case of Ax x A,

Theorem 8.2

The algorithin in Theorem 8.1 enumerates all connected independent sets, in which all triangulations are included,
. ety 2

in O( (";H) (k+ D?kI#T,_.,.) time with the memory for the size of two triangulations.

Proof. Recall Lemuma 4.1, Less than ("',"H) simplices appear in an independent set, and each (& + I)-simplex
has k + 1 + 1 facets, 50 mpncee < (7')(k + [+ 1). The cardinality of points A is (k + 1)(I + 1). Judging whether
two simplices intersect or not can be done in O(k 4 1) time (Leinma 4.3). O

The figure ('“z") here seems to be large, but this was the cardinality of maximal simplices appearing in a trian-
gulation.
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8.3 Using symmetry

We can modify the algorithm in Theorem 8.1 to enumerate all classes of triangulations of (Ax x &1, vert(Agx X 2¢))
with respect to the symmetry of Sieqy X Sigg-

As stated above Theorem 8.1, we can introduce any order on S, and this is truc also for the rest of this paper.
But, from now on, we take the lexicographic order of its corresponding matrix representation (cf. Definition 4.5,
subsection 6.2). It iz easy to reformulate the follwoing to an arbitrary order.

We define a label for cach clements in 7.,,. By the lexicographic order on the labels, we introduce a total
order on Z..,. The maximal clement in this order will be taken as the representative for each class in Zcon/~.

Definition 8.3 (labeling on T_,,)

The labeling | : Teon — (]R"*'1 x lR."“)', where £* is the set of words on an alphabet I, is an alignment of
simplices in a connected independent set I € Z.,,. We align thc simplices by the order we visit in performing a
breadth first scarch on the adjacency graph of . We start from the maximum simplex in I, and when several
simplices are adjacent to our current simplex, we visit from the larger ones.

For the connected independent set I in Figure 6 which is an example from Az X A3z, the labeling is

1 1 1 1 01 1 01 1 0 0 1 00
(I)= 010 g 1 0 0 11 1 10 111
01 © 01 1 0 01 6 1 1 0 01

Clearly, ! is injective.
From the order on the matrices R**? x IR'™*!, a lexicographic order on (IRF*! x IR'*?)" is induced. The order
between words having different length does not matter in our case.

Definition 8.4 (order on Zcon)
We define a total order on Zeon by the order of their labels in (IR**! x IR'*1)".

Definition 8.5 (representative of Z o /~)
For each class in Z_,,,/~, we take the maximum element in this order as the representative.

Now we define the parent function f for reverse search.

Definition 8.6

The parent function f on the connected independent sets I, is, for I € T, with label i(I) = o --- o4,
f(I) = {o1,-..,0k_1}. We promise f(0) = 0.

By executing breadth first search in parallel, we can prove the following lemma.

Lemma 8.7

If a connected independent set I € I, is a representative for its class {I] € Z/~, f(I) is the representative for
its class [f({)] € Zeon/~-

Using this property, we can enumerate all classes in Mg, /~ by tracking their representatives.
Here is the version for classes of connected independent scts.

Theorem 8.8 '

If we take 6 and r same as the case of Ay x A; for Theorem 8.1, f as in Definition 8.6 and Adj to return the

adjacent vertex only when it is a representative, reverse search enumerates all representative elements of Zeon /~,
. . - . . . - . 2

which includes all representatives for triangulations 7 /~, of Ar x &;. The time complexity is O((k:') (k +

DEBEVU #(Teon/~)), and required memory is for the size of two triangulations.

Proof. Because of Lemma 8.7, reverse search works. We only have to check the time complexity of Adj. For
each adjacent vertex in Theorem 8.1, we have to check if it is an representative. There are (k + 1)1 (I + 1)! cases
corresponding to Si4; X Si41, and for cach case, we have to sort the vertices and exccutc breadth first search to
calculate its label. This takes O((k';l)z(k+ 1)(1 + 1)) time, where (k:l) was the maximuin cardinality of maximal
dimensional simplices i.e. the maximum number of vertices in the adjacency graph. Thus time(Adj) changes from
O(m time(intersect)) = O((“F) (k + 1)) to O((4H) 2 (k+ 1)1+ Yk + 1){{ +1)). ©
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Appendices

b 4
$ = {r,a,b,¢,d}
6§=3
Adj(r,1)=a
Adj(r,2)=c¢
Adj(r,3) =10
Adj(a,1l) =1~
Adj(a,2) = b
Adj(a,3) =d
Adj(b,1) = ¢
Adj(b,2) =d
Adi(6,3) = a

FROM COURANT ADMIN

¥
Adj(c,1)=7r
Adi(e,2) = b
Adj(c,3) = d
Adj(d,1) =¢
Adj(d,2) =a
Adj(d,3) =&
f@)=r
fla) =+
flb)=a
fle)=r
fd)=a

Figure 1: An example of a set and its adjacency (top
left), parent-children relation (top center), the reverse
search tree (top right) and the structure in formulas

(above)

ReverseSearch(é, Adj, f,7)
vi=r j:=0
repeat

while j<é deo

7 =341 nezt= Adj(v,J)

if next# @ then

if f(nezt)=v then
ji=0}

{v := next
if v#+r then
u:=r v:= f(v)
7:=0
repeat j:=j7+1
until Adj(v,j) =12
until v=r and ;=6

Figure 2: The algorithm of reversc search
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Figure 3: Product of simplices: A; x A; and Az x A,
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Figure 4: Triangulations for A; x A; and Aj x A,
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Step 1. For each I € M1, find all independent sets I
that are maximal within 7 U {7}.

Step 2. For each such I’, test I’ for maximality within
{1,...,7}. Each set I’ that is maximal within {1,...,7} is
a member of M, and each member of M; can be found in
this way. However a given I’ € M; may be obtained from
more than one I € M;_;. In order to eliminate duplica-
tions we need one further step.

Step 8. For each I’ obtained from I € M;.; that is max-
imal within {1,...,7}, test for each i < j, i € I, the set
(I'\{GHu{n{i,...,i—1})u{i} for independence. Reject
I’ if any of these tests yields an affirmative answer. (This
step retains I' only if it is obtained from the lexicographi-
cally smallest I € M;_;.)

Figure 5: The algorithm for enumerating maximal in-
dependent sets
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Figure 6: An adjacency graph of a connected indepen-
dent set from the case for A, x A,
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