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Abstract

Regular triangulations form a meaningful wide subclass
of triangulations of points in general dimensions. They
can be defined as a natural extension of the Delaunay
triangulation and also of lexicographic triangulations,
a subclass of triangulations well-known in the theory
of oriented matroids. Moreover, regular triangulations
have interesting algebraic aspects in connection with a
famous paradigm of computer algebra, Grobner bases.

This paper proposes an output-size sensitive and
work-space efficient algorithm to enumerate all regular
triangulations by reverse search. The algorithm makes
full use of the existing results on the secondary polytope
[BFS 90, GKZ 94] whose vertices correspond to regular
triangulations. These known results are summarized
with only using the so-called volume vector, and the
algorithm is described in a simple way. Some regular
triangulations may not use a point inside the convex
hull, which may not be preferable for three-dimensional
applications in computer graphics and finite element
method. Triangulations using all the points are called
spanning, and an algorithm is given to enumerate all
spanning regular triangulations. The diameter of the
secondary polyvtope 1s investigated. Preliminary com-
putational results are also shown. From the viewpoint
of computational geometry, these generalizes the results
for planar triangulations to higher-dimensional cases by
restricting triangulations to be regular.

1 Introduction

Regular Triangulations: Triangulations have been
oue of main topics in computational geometry and other

fields in recent years. Especially, some types of tri-
angulations are found to bridge geometric issues and
algebraic ones. Regular triangulations are of such a
type [BFS 90, GKZ 94]. For example, this subclass
of triangulations has a close connection with a well-
known paradigm of computer algebra, Grobner bases,
and also with theory of discriminants, hypergeometric
functions, etc. (see [BFS 90, DST 95, GKZ 94, Lee 91,
St 91, St 95)).

From the viewpoint of computational geometry, reg-
ular triangulations provide a good framework where
many known results for triangulations of a planar point
set can be generalized to higher dimensional case. For
instance, in the planar case, any pair of triangulation
can be transformed to each other by a sequence of so-
called Delaunay flips, but, even in the three dimensional
case, Delaunay triangulation cannot necessarily be ob-
tained from a non-regular triangulation by Delaunay
flips [Joe 89]. However, restricting ourselves to the class
of regular triangulations in any dimensions, such a re-
sult is already shown (see [BFS 90, GKZ 94]). Also,
there are several works in computational geometry on
regular triangulations such as [ES 92, Fac 95].

Enumeration of all regular triangulations is interest-
ing from the viewpoint of computer-aided mathemati-
cal research. As mentioned above, regular triangula-
tions have connection with many mathematical con-
cepts, and by enumerating them mathematical prob-
lems can be investigated through computational exper-
iments (e.g., see [DeL 94, DST 95, St 95}). Also, for the
three-dimensional case, through the enumeration algo-
rithm, exhaustive and local search can be performed for
triangulations of three-dimensional objects in computer
graphics, finite element method, etc.

Our Contributions: By extending the original work
by Masada [Mas 94, Mas 95|, this paper proposes an
output-size sensitive and work-space efficient algorithm
for enumerating regular triangulations of n points in
the (d — 1)-dimensional space. Its time complexity is
O(dsLP(r,ds)T'), where where s is the upper bound of



the mnmber of simplices contained in one regular trian-
gulation, r.e., O(n!4/2) LP(r,ds) denotes the time re-
quired for solving a linear programming problem with
ds strict inequality constraints in 7 = n — d variables,
and 7' is the number of regular triangulations, which is
bounded by O(n!4+V=1)) Tts work-space complexity
18 O(ds), which is best possible to retain one triangula-
tion. Our time complexity is proportional to the output
size T. and working space is quite small.

Next, we consider regular triangulations using all
points. Some regular triangulations may not use a point
inside the convex hull, which may not be preferable for
three-dimensional applications mentioned above. Tri-
angulations using all the points are called spanning,
and an algorithm with similar complexities is given to
enumerate all spanning regular triangulations. Also,
the diameter of the secondary polytope whose vertices
correspond to regular triangulations is shown to be
O(n*1). Finally, preliminary computational results are
also shown.

Comparisons with Existing Methods: There
have been proposed three algorithms for enumerat-
ing regular triangulations [BFS 90, Del. 94, Mas 94,
Mas 95].

i The algorithm by Billera et al. [BFS 90] re-
duces the problem to constructing the arrange-
ment of O(n®*!) homogeneous hyperplanes in the -
dimensional space in O(n{¢+D{"=1) time and space.
This algorithm is worst-case optimal for the so-
called Lawrence polytopes which form a very re-
stricted class. However, the reduction has redun-
dant part for other cases, and the number of regular
triangulations may be much smaller than the com-
plexity of the arrangement. Thus, even if a good
algorithm for arrangements is available, an output-
size sensitive and work-space efficient algorithm is
hard to obtain along this line.

o

An output-size sensitive algorithm is given by De
Loera [DeL 94]. It is based on the breadth-
first search enumeration, and is implemented us-
ing Maple and MACAULAY. Since it is based on the
breadth-first search, its work-space complexity is
QT). which becomes prohibitively large even for
small-size problems.

3. An output-size sensitive and work-space efficient al-
gorithm is originally developed by Masada [Mas 94,
Mas 95]. Tt 1s based on the reverse search technique
developed in [AF 92]; and is implemented in C. This
paper presents a more refined version of this algo-
rithm, together with some other interesting results.

The other results in this paper are new as far as the
authors know.

Structure of This Paper: To simplify the discus-
sion, in the body of this paper, we assume that given
points are in general position. We discuss modifications
necessary to degenerate cases after presenting the al-
gorithm with this assumption. Our algorithm fully uti-
lizes the secondary polytope in [BFS 90, GKZ 94]. Reg-
ular triangulations have several equivalent definitions
by duality such as Gale transforms, etc. This surely
adds richness to regular triangulations, and describing
all of them would be best to understand them deeply.
However, we cannot describe all the definitions due to
the space limitations, and only explain the secondary
polytope with using the so-called volume vector, which
would be best to understand this structure intuitively.
In section 2, these existing results are summarized. The
arguments used in these descriptions are fully used in
the later sections in many ways. In section 3, our main
algorithm is given. The last subsection here describes
how to handle degenerate cases. In section 4, spanning
regular triangulations are considered, and the diameter
of the secondary polytope is investigated. Some com-
putational results are give at the end. In the appendix,
properties of regular triangulations in connection with
other geometric and mathematical concepts are sum-
marized.

2 Regular Triangulations and Second-
ary Polytope

Suppose that n points V = {vy,...,v,} in general posi-
tion are given in an affine space R%~!. The convez hull
of a point set U is referred by conv U. First of all, let
us review the definition of triangulations.

Definition 1 (Triangulations) A triangulation A of
V is a collection of sets of d points from V satisfying
the following conditions:

e conv V = Useaconv V,, where 0 = (0q,...,04)
and V, = {vg,,. .., V0, };

o for all o,7 € A, either conv V,, conv V. have no
intersection or intersect in their common face.

For this point set, regular triangulations are ob-
tained in the following way.

Definition 2 (Regular triangulations) For the set
V' of points, we obtain a point set W = {(vi,w1),
oy (Unywe)} € R? by assigning weights wy, ..., w, to
V1,...,Un € V, respectively. Suppose the weights are
assigned so that every lower facet (i.e., a facet whose
outward normal vector has a negative d-th entry) be a
simplex. Then, after projecting the lower facets onto
conv V in R™! we obtain a triangulation of V. Trian-
gulations constructed in this manner are called regular
triangulations of V induced by an assignment of weights
w=(wy,...,w,). See Fig.1.
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Figure 1: {a) A regular triangulation obtained by the
projection, and (b) a nonregular triangulation

The members of W are called lifted points. Defini-
tion 2 states that, when an n-dimensional vector w is
given, a regular triangulation of V can be constructed if
the weights are assigned so that the lifted points be suffi-
ciently generie. Notice that Definition 2 admits regular
triangulations which do not use some of given points,
while vertices of conv V' are necessarily used. The reg-
ular triangulations using all points are treated in sec-
tion 4. The next lemma is an implication of the well-
known upper bound theorem of convex polytopes.

Lemma 1 The number of (any dimensional) simplices

m a regular triangulation of V is bounded from above
by O{nid/2)y.

For the rest. s denotes the maximum number of sim-
plices 1n regular triangulations of V', and hence s =
Otnld/zly,

With each triangulation, not necessarily regular, a
vector is associated as follows.

Definition 3 (Volume vector) For a triangulation
A the volume vector ¢ of A is defined as an n-
drmensional vector by:

£ = Z

gEA, v, EF

vol(o), e =(o - e,)

where vollo) s the volume of the simpler conv({v,,,

.4,’1),,4/}).

Notice that i-th entry of the volume vector equals
the sum of the volume of all simplices having v; as its
vertex. We adopt lexicographic ordering for comparing
volume vectors, i.e., for p,¢" € R", p > ¢’ if and only
if there is 7 € {1,...,n} such that ¢, = cpj’. for1 <j <
and ¢, > ,01’.

The secondary polytope is defined with the volume
vectors of all triangulations.

Definition 4 By constructing a convezr hull with the
volume vectors of all triangulations of V', we obtain a
convez polytope L(V'), called the secondary polytope of
V.

Theorem 1 ([BFS 90, GKZ 94]) Vertices
of the secondary polytope (V') correspond to regular
triangulations one-to-one.

Proof: We just give a proof outline. To prove the the-
orem, it is sufficient to show the existence of a support-
ing hyperplane for the secondary polytope supported
only at the volume vector of a regular triangulation.
We claim that a hyperplane whose normal vector is the
weight vector realizing the regular triangulation is the
one.

To see this, we consider a piecewise linear function
ga(z) on D = conv V in R} for a triangulation A
and a weight vector w such that g, (v;) = w; and, on
each simplex of the triangulation A, g, is linear. Let
A, be the regular triangulation for the weight vector
w. Then, it is easy to see that

/D ga. (@)da < /D gu(z)de

holds for any triangulation A except A,. Noting that
this integral is for a piecewise linear function, the fol-
lowing holds

(w, 05 ) =d /D oa. (2)de < d /D ga(2)dz = (w,0,),

w

where (w, o) is the inner product of w and , and hence
the claim follows. a

Note that the volume vectors of non-regular trian-
gulations fall into the interior of (V') or the relative
interior of some face of (V).

Next, we consider edges of the secondary polytope.
Two vertices are connected by an edge on the polytope if
and only if there is a supporting hyperplane whose sup-
port are exactly the edge. As in the proof of Theorem 1,
suppose that the normal vector of such a supporting hy-
perplane is made to be a weight vector. For this weight
vector and two regular triangulations corresponding to
the two vertices, the lower boundary of the convex hull
of lifted points become flat for the region consisting of
the symmetric difference of families of simplices of these
two triangulations. Therefore, affine dependence among
lifted points has connection with edges of the secondary
polytope, and a careful analysis about the minimality of
this supporting hyperplane for this edge shows that the
corresponding affinely dependent lifted points should be
minimally dependent.

Minimal affinely dependent subsets are known as a
circuit in linear algebra and oriented matroid theory,
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Figure 2: Generalized flips (two- and three-dimensional
cases)

that is, a subset Z of V' is a circuit if it is affinely de-
pendent and any proper subset is independent (i.e., the
proper subset is the set of vertices of a simplex of some
dimension). It is known (e.g., see [GKZ 94]) that, for
any circuit Z, conv Z has precisely two triangulations
AL {Z) and A_{Z) with vertices in Z as follows. For
circuit Z, a vector w = (u,) such that 37 - u, -v =0
and Y u, = 0 is determined uniquely up to a constant
multiplication. Define Z, and Z_ as a partition of Z
so that the sign of the corresponding w, is the same.
Z, and Z_ are well defined up to interchanging them.
Then, the triangulation A, (Z) consists of all of the
faces of the simplices conv (Z — {v}) (v € Z;). Similar
for A_(Z). Every simplex with vertices in Z having
maximum dimension is included in exactly one triangu-
lation of 7.

Theorem 2 ([BFS 90, GKZ 94]) For a point set V
i general position, two distinct vertices in the second-
ary polytope are connected by an edge if and only if, for
the corresponding two distinct regular triangulations Aq
and A, there exists a circuit Z satisfying the following
conditions:

(1) There are no wertices of V inside conv Z except
for the elements of Z tself.

(i1} conv Z is a union of the faces of the simplices of
Ay (and Ay ) and Ay and Ay coincide outside conv Z.

Here, conv Z can be triangulated in two ways, which
correspond to A; and A;. These operations are de-
picted for the two- and three-dimensional cases in Fig.2.
These are called generalized flips, and are an exten-
sion of the original Delaunay flip in the two-dimensional
case. Since the graph formed by vertices and edges of
a polytope is connected, by a sequence of generalized
flips, any two regular triangulations can be transformed
to each other. It should be noted that a new triangula-
tion A, obtained from a regular triangulation A; and
a circuit satisfying the conditions is not necessarily reg-
ular, and hence the regularity of Ay should be checked
separately.

Examples of the secondary polytope: A simple
example of the secondary polytope of five points in the
plane is given. Consider a set of five points in Fig.3(a)
where p; = (0,0), p2 = (1,0), p3 = (2,1), pa = (1,2),
ps = (0,1). There are five triangulations shown in
Fig.3(b) for this point set. Regarding the volume of
a triangle with the base and weight of length 1 to be 1,
then in a triangulation 1, the volumes of Ap;psp; and
Ap1paps are 1, and that of Apypspy is 3. p1 is a vertex
of these three triangles, and hence vol(p;) = 5. The
volume vector for each triangulation are then described
as follows.

1:(5,1,4,4,1), 2:(3,1,5,2,4), 3:(3,4,2,5,1),
4:(1,5,2,4,3), 5:(1,3,4,2,5)

5 ®)

(©)

Figure 3: Triangulations of a convex 5-gon and its sec-
ondary polytope

The convex hull of these points are two-dimensional,
and taking an appropriate coordinate system, it can be
depicted as in Fig.3(c). Observe that edges of the sec-
ondary polytope correspond to the conventional flip in
this case. This polytope is known as an associahedron.
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Figure 4: Regular triangulations of 3 points on a line

Fig.4 gives a simpler example for 3 points on a line
and its two regular triangulations. This example would
give intuitive explanation why edges of the secondary
polytope correspond to flips.

Tvpical secondary polytopes such as permutohedron
and associahedron are described in [GKZ 94].

3 Our Algorithm

In this section, we present an algorithm for the enu-
meration of regular triangulations using reverse search
technique developed in [AF 92]. We first describe the
data structure for representing a regular triangulation
for efficient manipulation. Next, we show that it can
be: checked by linear programming whether a given tri-
angulation is regular. Then, how to obtain an initial
regular triangulation is touched upon. Finally, our re-
verse search algorithm is presented, together with its
complexity analysis.

3.1 Data structure for a triangulation

First of all, we represent each simplex in the triangula-
tion as a set of d points in V. For the set V of points in
general position, a graph formed by simplices and facets
of the triangulation suffices to represent the incidence
relation of simplices of the triangulation. Each facet is a
simplex of d—1 points, and we represent it by two points
which are the complement of d + 1 points of adjacent
two simplices to the d — 1 points. This data structure
for representing the incidence relation requires O(ds)
space, where s 1s the maximum number of simplices of

a regular triangulation of V. Note that the number of
facets is O(ds).

Besides this graph, we maintain all circuits satisfy-
ing the condition (i), (ii) of Theorem 2 for the trian-
gulation. Each circuit is conceptually represented by
a (d + 1)-tuple of points in the circuit sorted in the in-
creasing order of indices of points. Then, all the circuits
are maintained by a list in the lexicographic order of the
(d + 1)-tuples. conv Z consists of at most d simplices,
and in practice we represent the (d + 1)-tuple of points
implicitly by recording such simplices. The number of
circuits is bounded by O(ds) and, if each circuit is rep-
resented by O(d) elements, it may take O(d*s) space.
However, a slight careful analysis shows that this im-
plicit representation reduces the total space for this list
to O(ds).

For each regular triangulation, we also maintain its
volume vector.

By updating triangulations by a generalized flip, we
have to maintain these data structures. For example,
the volume vector can be updated in O(d*) time by
simply computing necessary changes by the flip. Also,
to maintain the list of candidate circuits in the sorted
order, at most d? circuits are deleted and inserted to
the list. Two circuits can be compared with respect to
the lexicographic ordering in O(d) time by the implicit
representation above. The condition of Theorem 2 for
each circuit can be checked in O(d?) time by simply
checking neighbors. Hence, the list for a flip can be
updated in O(d?s) time.

When a new triangulation is computed, we have to
check its regularity by solving the linear programming
problem in O(LP(r,ds)) time, as described in Lemma 2
below. In the sequel, we assume that the time complex-
ity to update the data structure by a flip is dominated
by O(LP(r,ds)), since d*, d*s = O(LP(r,ds)) in gen-

eral.

3.2 Checking the regularity of a triangulation

In the existing literature, the regularity check is done in
the dual space. We here give a simple primal approach.
For each facet, not on the boundary of conv V, of a
given triangulation of the set V of points, there are two
simplices sharing the facet. Suppose two simplices have
points {vsy,.--,V0,_,} and {vsy,...,v,,}. Then, for
variables w; for v; as its weight, consider the following
determinant for each facet where (v,; 1, , v, 4—1) are
the coordinate values of v,,:

1 Va1 Voy,d—1 W,

1 Voy,1 Vo,,d-1 Wey
D=

1 ey 41 v Yoy id=1 Wou_;

1 vey Voyd—1  Woy,

Note that for two simplices having points {vs,,...,
Vo,_,} and {vs,,...,vs,} in a triangulation, the sign
of the coeflicient of w,, is the same as w,,’s in the de-
terminant D.



Lemma 2 A given triangulation is reqular if and only
of there 1s a solution w satisfying the following strict
binear inequalities defined for each facet:

1 Vg 1 UUUvd_l
. 1 Vel Vo,,d~1
sign , . . -D > 0.
| 1 Vag_1.1 v(r,lil,d.—l

Proof: The “only if” part is seen just by setting w
to the weight vector realizing the regular triangulation.
The “if” part can then be shown by standard convex
analysis. ]

Thus, in a primal way, the regularity can be checked
by linear programming. It is easy to see that for a fixed
simplex we can set w,, = 0 for each point of the simplex
without changing the existence of the solution. Hence,
this system of strict linear inequalities is to check the
existence of a solution to r = n — d variables and at
most ds constraints. In general, a linear programming
problem is formulated with non-strict inequalities, and
a method of solving this type of problem is developed.
It 1s easy to see that our problem with strict inequalities
can also be solved by the general method.

Denote by LP(r,ds) the time required to solve this
linear programming problem.

Theorem 3 Whether a given triangulation is regular
can be judged in LP(r,ds) time.

3.3 Constructing an initial regular triangula-
tion

Our algonthm requires a regular triangulation to start.
This can be an arbitrary regular one. For conceptual
simplicity and some technical merits, we may consider
two candidates for the initial one. One is a regular
triangulation whose volume vector is lexicographically
maximum among all volume vectors. The other is the
Delaunay triangulation. In the latter case, we can use
an algorithm for convex hulls in [AF 92, Cha 91, Sei 86].
[ES 92] devises an algorithm which directly constructs
a regular triangulation from an assignment of weight,
while its time complexity is analyzed by means of ran-
domized analysis since the algorithm uses flipping op-
eration as a primitive. If one regular triangulation is
necessary. this may also be used.

The lexicographically maximum one can be com-
puted with starting any regular triangulation and trans-
forming it by flips towards lexicographic maximization
along a path on the secondary polytope. When the
input points in V' are in general position, the optimal
regular triangulation can be obtained simply consider-
ing a triangulation formed by points on the convex hull

boundary and v, such that all simplices have v; as a
vertex. Such a triangulation is uniquely determined.

In any case, the time necessary for obtaining the
initial regular triangulation is negligible in comparison
with the time necessary for the rest of the enumeration
algorithm.

3.4 Reverse search

Suppose we have a lexicographically maximum regular
triangulation. The reverse search technique considers
a rooted tree R of the graph of vertices and edges of
the secondary polytope, with the root corresponding to
this triangulation. The rooted tree can be defined as
follows.

Definition 5 (Reverse search tree)

The reverse search tree R of the secondary polytope with
respect to the lexzicographic mazimization of volume vec-
tors is a subgraph of the graph, formed by vertices and
edges of the polytope, such that from each vertex except
the lexicographically mazimum one a directed edge em-
anates to a vertex adjacent to it whose volume wvector
is lexicographically mazimum among those of adjacent
vertices.

Lemma 3 R is a directed tree with a unique root with
lezicographically mazimum volume vector.

The proof is immediate from linear programming
theory (the same fact is used in Rote [Rot 92]).

The reverse search technique traverses this tree R in
a depth-first manner. To perform it, we need to arrange
children in some order for each vertex in the tree. Each
child of a vertex is obtained by flipping with respect to
some circuit. For the regular triangulation correspond-
ing to the parent vertex, as described in section 3.1,
we maintain all the circuits in the sorted order, and
this ordering is adopted in the search. Of course, in
performing the depth-first search, we go down to the
youngest unvisited child from a vertex.

Now that we have a rooted tree with ordered brother
relations, the depth-first search can be performed effi-
clently with the data structure in section 3.1. Then we
obtain the following.

Lemma 4 (1) For a vertez in the reverse search tree,
its parent can be computed in O(dsLP(r,ds)) time and
O(ds) space.

(2) During the whole traverse by the depth-first
search, the time to spend for listing children of a vertex
in the order is O(dsLP(r,ds}) time O(ds) space.



Proof: (1) To find the parent, we enumerate all adja-
cent triangulations, with checking their regularity, and
find the lexicographically maximum one. Since there
are at most ds adjacent triangulations and each of them
can be computed separately, the complexities follow.
{2) Here, a key point is that, when search is returned
to a vertex by backtrack in the depth-first search, it
returns from the last visited child among its children.
From this, we obtain a circuit used to go down to that
child. Starting from the circuit we traverse the sorted
list of circuits to find a next child. Thus, each circuit
1s checked only once for flips. The number of children
is O(ds!, and from the discussion in section 3.1, we see
the tlime complexity 1s O(dsLP(r,ds)). m]

Summarizing the above discussion we now have the
following

Theorem 4 Regular triangulations of n points in R3~!
in general position can be enumerated in O(dsLP(r,ds)
T tuime and O(ds) working space.

3.5 How to cope with degenerate cases

[n degenerate cases, even in the two-dimensional case,
we need another type of flips as shown in Fig.5. With
degeneracies, there are lower-dimensional circuits to
cousider. Concerning the characterization given in The-
orem 2. the following condition should be added (see
[GKZ 94]):

Figure 5: Degenerate flip

{1i1) Let conv I and conv I’ be two maximal (dim(Z)-
dimensional) simplices of one of the two possible trian-
gulations of conv Z. Then for every subset F CV — Z
the simplex conv I U F appears in the triangulation A
if and onlv 1f conv I' U F appears.

When the number of the elements in Z is d+ 1, (iii)
follows from the condition (ii) in Theorem 2. Fig.5 il-
lusirates an example of a triangulation supported on a
circuit of simaller cardinality. Thus, in degenerate con-
figuration, more complicated check becomes necessary
We have to modify the data structure for representing
a regular triangulation so that it represents the whole
face lattice. Subsequently, the parameter s should be

regarded as the size of this lattice. With these modifi-
cations, we can modify the algorithm for nondegenerate
case to that for degenerate case without sacrificing any
major points.

4 Spanning Regular Triangulations

We call a regular triangulation using all points span-
ning. The first question concerning spanning regular
triangulations is whether their corresponding vertices
are connected by edges in the secondary polytope. To
investigate this, consider the weight vector wp with
w; = ||vil| = Zj;i(”i,j)2- The corresponding regular
triangulation is the Delaunay triangulation. Consider
transforming a spanning regular triangulation into the
Delaunay one. Then, the following holds.

Lemma 5 From a spanning regular triangulation, we
can generate a sequence of reqular triangulations to the
Delaunay triangulation by generalized flips such that

(1) all the regular triangulations appearing in this
process are spanning, and the inner product of wp and
the volume vector of a regular triangulation is strictly
decreasing, and furthermore

(2) a circuit used in a generalized flip in the sequence
is never used again in this process.

Proof: As in the proof outline of Theorem 1, we con-
sider a piecewise linear function g, for the weight vec-
tor wp for each triangulation A in the sequence. Since
for the wp all the lifted points are on the boundary
of lower hull of them, a generalized flip which makes a
point unused in any simplex necessarily increases the
inner product of wp and the volume vector. By con-
sidering a linear programming problem of minimizing
a linear function with wp as its cost vector, for a ver-
tex corresponding to a non-Delaunay regular triangu-
lation there exists a adjacent vertex connected by an
edge whose inner product with wp strictly decreases.
Hence, performing the corresponding generalized flip,
a new triangulation with smaller inner product value
is obtained and this flip does not destroy the spanning
property. Thus, (1) is shown.

For the sequence of triangulations Ao, ..., A; where
Ay is the Delaunay triangulation, we see

gAi(w) > gAj(x) (i < j; = € conv V).

This is because for lifted points corresponding to the
circuit Z their convex hull is a full-dimensional simplex
in the lifted space and have the upper and lower bound-
aries. Each of upper and lower boundaries corresponds
to a triangulation of Z in the original space. Since any
circuit has two triangulations, these two are such ones,
and hence strict above-below relation holds. If a circuit
Z is used twice for generalized flips for < and j with z <
N (z) = 9a, {z) for z in the interior of conv Z, while
by the argument above g, (z) > gAiH(w) 2 Ga, (r), a
contradiction. m]



Theorem 5 All the spanning regular triangulations
can be enumerated in O(dsLP(r,ds)T”) time and O(ds)
working space, where T' is the number of spanning reg-
ular triangulations.

Proof: As in the case with enumerating all regular
triangulations, we consider a rooted tree with the root
corresponding to the Delaunay triangulation and from
each vertex corresponding to a non-Delaunay spanning
regular triangulation choose an edge towards a lexico-
graphically maximum vertex among adjacent vertices
whose inner produce with wp is smaller than that at
this vertex. By Lemma 5, this forms a rooted tree.
Then, by applying the reverse search technique as in
the previous section, with noticing that in this case we
neglect a circuit formed by a pair of a simplex and a
point side it, we obtain the result. O

The arguments in Lemma 5 can be further utilized
as follows.

Theorem 6 The diameter of the secondary polytope is
O(n+t),

Proof: Since the number of circuits is bounded by
O(n?*!), and the piecewise linear function monotoni-
cally changes downwards also for non-spanning regular
triangulations. O

In {BFS 90], they constructed the arrangement of
O(n**1) hyperplanes which is a refinement of a fan dual
to the secondary polytope, called secondary fan, whose
cells correspond to the vertices of the secondary poly-
tope. From these facts, Theorem 6 can also be obtained
because any two cells in the arrangement are connected
by a sequence of at most O(n%*+!) adjacent cells. How-
ever. 1t should be noted that the sequence from any
regular triangulation to the Delaunay triangulation can
be found by the arguments in Lemma 5 and Theorem 6.

5 Preliminary Computational Results

We here describe computational results for randomly
generated points. Concerning the results for regularly
structured point sets which are interesting from math-
ematical viewpoints, see Masada [Mas 94, Mas 95].
These are still preliminary results and we just show
them here.

Our algorithm is implemented in C language. The
experiments are done on Sun SPARCstation 10 with
64MB memory. Exact arithmetics are realized by GNU
MP library for arbitrary precision integer and rational
number arithmetic. Linear programming problems are
solved by a simplex method with Bland’s rule. The
space complexity is a little more than O(ds) for speed-
ing up the computation in this implementation. Our
implementation also works for degenerate inputs.

We here show the number of simplices of regular
triangulations when the points are randomly generated
in the (d—1)-cube with the edges of length 1000. Every
coordinate is an integer less than or equal to 500 and
more than —500.

e 7 = 3; this is, so to speak, the first non-trivial case,
since in the case of r = 2 all triangulations are
regular.

— n =5,d = 2: Each of 20 configurations has 8
regular triangulations.

—n =6,d = 3: 2 of 20 configurations have 16
regular triangulations, 6 of them have 15 ones,
and 12 of them have 14 ones.

—n = 7,d = 4: 2 of 20 configurations have 27
regular triangulations, and 18 of them have 25
ones.

—n = 8d = 5: 3 of 20 configurations have 40
regular triangulations, 3 of them have 41 ones,
7 of them have 42 ones, 3 of them 43 ones, and
the other four have 44 ones.

o 7 =4;

— n = 6,d = 2: Each of 20 configurations has 16
regular triangulations.

— n =7,d = 3: The number of regular triangu-
lations is quite various. 4 of 20 configurations
have 42 ones, 9 of them have 46 ones, 2 of them
have 50 ones, one of them has 51 ones, and 2
have 55 one, and two other configurations have
56 regular triangulations, respectively.

— n = 8,d = 4: In this case the number regu-
lar triangulations varies from 128 to 168 with
some small peak around 133.
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Appendix

A Properties of regular triangulations
A.1 Delaunay triangulation

[ES 92] defines regular triangulations as a natural exten-
sion of the Delaunay triangulation. Given a point set
V CR%!, the Delaunay triangulation can be defined as
a subdivision of convV (convV means the convex hull of
V) dual to the Voronoi diagram of V. 1f we replace some
points by the balls with possibly negative radii, another
diagram is obtained by taking into consideration these
radii in determining the distances. More precisely, the
distance of a point z = (zy,...,24-1) € R*! from
v; = (Vi1,-..,0;54-1) € V is determined by the formula
\/(21 —v;1)2 + ...+ (24-1 — viq—1)% — i, where r; de-
notes the radius of the ball replacing v;. This diagram
is called a power diagram. Then regular triangulations
can be defined as subdivisions of convV dual to power

diagrams. Since the power diagram with balls of ra-
dius O turns out to be a Voronoi diagram, the Delaunay
triangulation is obviously regular.

Lemma 6 Let V be a set of n points in R, The
Delaunay triangulation of V is regular.

A.2 Algebraic aspects of regular triangulations

[St 91] reveals the algebraic aspects of regular triangu-
lations. An ideal Zy in the n-variate polynomial ring
Clz1,...,%,], where each z; corresponds to v; € V,
called a toric ideal, can be obtained from affine de-
pendencies among the points in V. That is, for non-
negative integers ai,...,an,01,...,0,, the binomial
it Lzl — x?l ...2% is contained in Zy if and only
if vy + ... + apvn, = v + ... + Buv, such that
ay+...+a, = By +...+ B, gives an affine dependency
among vi,...,V,. Another ideal In in Clzi,...,z,],
called a Stanley-Reisner ideal, can be obtained from a
triangulation A. This ideal is generated by all monomi-
als of the form z,, ...z, where the simplex spanned by
Uryy- .-,V 18 nOt a face of A. Suppose A is a regular
triangulation determined by giving a weight w, to each
v; € V. If we regard the assignment w = (wq,...,wy)
of weights as a weight vector determining a term or-
der among monomials in Clz,...,z,] and calculate
the Grobner basis of 7y with respect to this term or-
der, then the radical of the initial ideal of this Grobner
basis equals In. The concept of Grobner basis is re-
quired here only as a tool for computing the initial ideal.
Hence, the result can be stated without this concept.



Lemma 7 Letw € R" be a weight vector which defines
a term order for the toric ideal Ty . Then the regular
triangulation of V induced by the assignment of weights
w has o Stanley-Reisner ideal In which equals the radi-
cal of the initial ideal of Ty . (We assumed that w gives
a sufficiently generic set of lifted points.)

It 1s also remarked that the enumeration of regular
triangulations of the products of simplices is an impor-
tant problem. The product of the (r — 1)-dimensional
simplex and the (s — 1)-dimensional one is a point con-
figuration

V={e, el €:1<i<r1<5 <5},

where ¢1, ..., e, denote the standard basis of R"~* and
ey,... € that of R°L.

A.3 Lexicographic triangulations

[Lee 91] gives intenstve considerations about regular tri-
angulations. It is shown that lexicographic triangula-
tions can be understood as a special case of regular
triangulations, that is, they are obtained by assigning
weights to given points in a special manner.

Lemma 8 Suppose that an assignment of weights w =
(wy,...,w,) € R" is determined as follows: w; = €;|w;|
{1 << n), where ¢; € {1,-1} and |wy,| > ... >
jwe, | for some permutation ® of {1,...,n}. Then the
regular triangulation induced by w 1s lexicographic.

This observation proceeds from the definition of
lexicographic triangulations by pulling or placing ver-
tices in some order. Details are referred to the orig-
inal paper. It is a prevalent fact that lexicographic
triangulations form one of the subclasses of triangula-
tions admitting a definition in terms of oriented ma-
troids. This subclass also has its own algebraic as-
pects as 1s shown in [St 91]. For other applications,
sce [Del 94, DST 95, GKZ 94, St 95].



