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A SURVEY AND COMPARISON OF METHODS FOR
LFINDING ALL VERTICES OF CONVEX POLYHEDRAL
b SETS*

T. H. MATHEISSt anp DAVID S. RUBINY

This paper surveys the literature on methods for finding all vertices of convex polytopes,
Bontrasting the main features of each method and providing computational results for
enresentative methods.

poduction. Convex polytopes and other three-dimensional solids were studied

B ancients. However it was not until Euler’s classic theorem (1752) relating the

ber of vertices, edges and faces of three-dimensional polytopes that a significant

. dealing with the combinatorial properties of convex polyhedral sets was

Rered. Since that time theoretical interest has waxed and waned several times.

programming and other problems in the decision sciences have rekindled

Bt in the combinatorial properties of polyhedra. Dantzig’s simplex method
concern on the extremal properties of polyhedra. Results relating the number

s to the number of faces, the establishment of a least upper bound on the
- of vertices, and a formula for the expected number of vertices for a given
of faces were and are being sought because of their practical importance for
ational purposes.

a pervade the modeling process. They exist wherever a linear program is a
hle model of reality, and in many other contexts such as mathematical
ming, game theory, statistical decision theory, mathematical biology, and
pgraphy as well. .

Applied Mathematics, Operations Research, Computer Science and Manage-
nce literature contains several algorithms for obtaining all vertices of convex
al sets, and in particular, for convex polytopes (which are bounded convex

: W). This study surveys that literature, presenting the intuition which motivates

fous approaches, discussing some computational aspects of each and present-

R results of computational experience with the most promising vertex finding

Mires. There are also algorithms for finding all the facets of convex polytopes

[56]. However, enumerating the facets of a polytope is equivalent to
1g the vertices of its polar (see Griinbaum (28, pp. 46-48].)

blem we are addressing is to find all vertices of a given convex polyhedron,

as the intersection of a finite number of hyperplanes and closed half-spaces.

od of solving the problem must provide for (1) finding each vertex and (2)
* ng when all vertices have been found. It is desirable to accomplish this in an
IVAY.
jand Witzgall [S7] give a pivoting algorithm for finding all the vertices of a
75 ytope. However, their algorithm assumes that the polytope is given as the
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168 T. H. MATTHEISS AND DAVID S. RUBIN

convex hull of a finite set of points, and it determines which of those POints i,
vertices (and hence necessary for the description of the convex hull) and Which g8
not vertices (and hence redundant). This problem is equivalent to eliminaung
redundant constraints in our problem, and this latter problem has also been addregeed™
by several authors [16], [27], [32], [35), [46], [49], [52]. As Mattheiss has shown[
algorithms for finding all vertices can also be used to eliminate redundant const
but we will not discuss that problem in this paper. A
Since the simplex algorithm moves from one vertex to an adjacent Vertex, aal
apparently attractive approach to the problem is to use that algorithm in an itery e
fashion to find a path which contains all vertices and passes through each one of (8
only once. Such a path is called a Hamiltonian path. If a 1-polytope is considered,

MK
Taints
s

ystem defining ¢
s of 2-polytopes are naturally ordered

one cycle. These views of the problem are deceptively simple. It was shown by Brow
[4] (also see the example of Tutte [54)), that there are 3-polytopes for which Hamilig '3
nian paths do not exist and therefore such paths do not exist for n-polyhedra e
general. Therefore any method of solving the problem by this approach mug™
construct a path that either visits a subset of the vertices more than once or vig
points in R” (or higher dimensions) which are not on the
However, it must be pointed out that B
nondegenerate) 4-polytopes do have Hamiltonian paths,

m for vertex enumeration via Hamiltonian paths may be found,
Barnette’s conjecture has been proved for some prisms [45]. T

More ponderous than the practical questions raised by the nonexistence o

Hamiltonian path is the sheer volume of computati
vertices. Several of the methods examined involve the
least one simplex tableau for each vertex of the polyhed
bound on the number of vertices of a polytope P. The Upper Bound Conjecture gives
V(P) in terms of m (the number of (n — 1)-faces) and n (the dimension of the space)
as:

vey=(m “Lene b2y (=L +2)/2])

m-—n

in [30], where he also proves the conjecture for all polytopes with m > n?/4 — 1. The
bound was shown to be sharp for all m and n by McMullen [39]. Even for relatively
small problems, V(P) can be enormous, as shown in Appendix E.

Let V(P) be a greatest lower bound on the number of vertices. Griinbaum (28, p. )
188] states the conjecture that for simple polytopes

V(P)=(n—~1)ym—~(n—2)(n+1)

- il

which is proved by Barnette [3], so there are polytopes with relatively few vertices.
Liebling [34a] asserts that there are many linear programming problems having large
m and n and relatively small numbers of vertices. He calls such polytopes benevolent
and credits the computational success of the simplex algorithm to their high frequency
of occurrence in nature.

fractical considerations focus on the expected value of the number of vertices
E(V). Schmidt and Mattheiss [37a], [47] give several results for E(V) based on 9,867
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iich of those poing “
vex hull) and which 4, %

;‘fllzgtal[s()o ilénunating 4 "rithms for enumerating all vertices of a polyhedron can be divided into two
attheiss hasenhaddresseq"_. es: pivoting methods and nonpivot.ing methods: Some of the methods to be
. redundamz own [3 2 ed assume that the polyhedron in question is a polytope. So long as the
Onstrain dron is bounded below, i.c., there exists an r in R” such that x > r for all
Bp: (which will be true in the common case where the variables are restricted to be
jegative), all unbounded edges can be truncated by the usual “regularization”
{9, p. 182] of adding a bounding constraint on the sum of the variables.
gh we will not pursue the details, most of the methods are easily modified to
gie unboundedness without regularization.
Bisrder for a convex polyhedron to have any vertices, its lineality space (the largest
subspace it contains) must have dimension 0. All the algorithms discussed
Bime this to be the case. This condition always holds when the defining constraints
polyhedron include nonnegativity of the variables.
Bost of the pivoting algorithms assume that the polyhedron is nondegenerate.
wever, all of them can be modified to handle degeneracy by using standard
B bation or lexicographic schemes [29, Chapter 6]. The nonpivoting schemes are
) fected by the presence of degeneracy.
’of this survey discusses pivoting methods, while §2 is devoted to nonpivoting
fhods. In §3, we present the results of a computational study of the methods of
inski [1], Chernikova [12], Manas-Nedoma [36], and Mattheiss [37]. We assume
the reader is familiar with the simplex algorithm and the theory of convex
dral cones. A good survey of the latter is given by Gerstenhaber [25].

," y generated 4-, 7-, and 10-polytopes. Related work has also been done by
’gm et al. [15a).

an adjacent vertey, n :
Jgorithm in an iterau‘vg’
rough each one of thep "9
ytope is considered, the
sidered, the solution jg p:
ng the perimeter of the ‘
T system defining the 3
naturally ordered ingy %8
't was shown by Browp 8
oes for which Hami]to-d‘
Jast for n-polyhedra ig b
/ this approach must ™
re than once or visitg
lary of the polyhedron,
‘ed that all simple (ie,
re is yet the possibility 3
paths may be found, ™
il

he nonexistence of a %
lved in obtaining the
on and analysis of at _§
V(P) be a least upper
und Conjecture gives
nension of the space)

z])

the familiar binomial
studied by Gale [23]
d of cyclic polytopes
‘1m>n2/4—1.The
1. Even for relatively

s. Griinbaum (28, p.

Pivoting methods. To facilitate the exposition, the Tucker [53] tableau and
onding geometry will be employed when convenient, although it is clear that
IR mentation might be facilitated by, for example, the revised simplex procedure.
61953, Charnes [8] presented the Spiral Method for Effecting a Grand Traversal.
technique applies the simplex of Dantzig to the Tarry procedure given in Konig
or resolving the labyrinth problem of the theory of graphs. This procedure
ars to be computationally infeasible for computer processing due to enormous
Rrage requirements imposed by the necessity of knowing, for every vertex, how often
id in what direction the edges emanating from that vertex have been traversed. Also,
B procedure requires that each edge is traversed twice and each vertex visited at
5t 1 times.
£ Balinski (1] alludes to a number of cutting plane methods suggested by the work of
jomory [26]. He concludes that these methods are not computationally feasibly in
Wat the addition of more half-space requirements to eliminate the vertices already
pund creates additional “vertices” which are not vertices of the original polytope.
her, the additional constraints enlarge the set of inequalities which define the
itope and must be manipulated. Balinski also refers to a pseudolinear objective
iction technique which orders the vertices of the polytope in some way. He
,cludes that termination criteria and the fact that the pseudo-objective function
oes not order the vertices of the polytope in a path which could be followed by

ativel i essi i i ' i .
y few vertices. cessive steps of the simplex method renders this approach computationally infeasi-

oblems having large
olytopes benevolent

. 'i'he vertices of 2- ' . !
heir high froquency es of 2-polytopes are particularly easy to find by the simplex method

ause they are naturally ordered into one cycle. In 1961, Balinski [1] published the
st algorithm which was coded for a computer exploiting this idea. This algorithm
inds all vertices of the polytope first by choosing a defining hyperplane say H,. All
ertices of the polytope which lie on H, are found by fixing a face of a face of

number of vertices
{V') based on 9.867
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node which enables the construction of a
ming tree for all of the interior points. The tree s0 constructed has the vertices of
o polytope as termini ad quem. Each interior node is represented by a simplex

eau, all of which must be produced and analyzed. The actual simplex tableaux
olytope need not be produced per se since they

cates a number with each interior

(i) The distance between two verti i i

i ces v; and v; is def =

A,;.w z-row is not deleted in rule (i).) . ’ ined by dlo ) = ¢l

W %&r ?.:a. Go is Bo.wﬁoa so that the next index set to be selected from the _mw:,u_ i
ich minimizes d(v*, v;); where v* represents the current vertex and j ranges o

cs‘wmmmmna Fme sets on the list. h ; in o . by
e fact that each vertex has a val P . . g gresponding to the vertices of the p!
allows list searching to be handled MAWM MMMMMM”WAWMMM mwcﬂm:ww mmmon_wwo.r wi i be obtained from the tableau representing the appropriate interior node. Appen-
algorithm. Contrarily, the rankin - | the Manas an - presents the Mattheiss Algorithm.
function values may require an omoMmMMMah“m o M_ gereasing sequence of obje jie efficacy of the method rests on the condition that the number of interior nodes
polytope to another, relative to the Manas N“_ ﬂu m?<o:=m from one “side” of} e spanning tree is less than the number of vertices of the polytope. Of 5,237
results on this innovation are not as yet available .M oﬁ_w. Mnooo&:.o. Computat adomly generated (see Schmidt and Mattheiss [47]) 4-polytopes, 12 were found
in published form. $ ¥+ violated the condition. In addition, 3,373 7-polytopes and 453 10-polytopes
lated Mattheiss’ condition. Klee [31] has given an

; generated; none of which vio

The method of Burdet [5] determines the vertices of a polytope P as the O-faces i
rded discussion of this condition.

mMm_n_m__ m»_.vo_.nmogno: of the vo_xgov@ The root of the tree is P itself, with each
::ow,“o ] (n » k » 0) corresponding to a k-face of P. At each node, a large numbet.
_uoEaM omhw_mm must be solved (one for o.mo: nonredundant constraint defining § Nonpivoting methods
boy %nnwo:nm owm”&ﬂn :oﬂov to determine the boundary of the current face ol nts ow the wuo:c—o UMMQE
and the corre wmw ond g branches to the next lower level. The index sets correspondig brall (41]. As Duffin [16] and
repatiion may Onoc__..o:.mﬂaﬁﬁom in ._nx_oomnmﬁrmnw:w increasing order so that 4§ wethods E“a dual to the Fourier-Motzkin
e etod m Jeast e wa aoo:m:.:ozo: of the tree mvgo level 1. All vertices of P d hear inequality systems {21}, (40}
B asisis of e ”wvmuwﬂwcwﬂ %M:Bmaw as n :Eo.m..mSEmn requirements & 1t should be pointed out :“2 many O
method was not considered further due Sonﬂ_ e e oo 1 .mnco_dmogan. e aon P o (x| dx < o e o i (5, Dy 3  aene
e imear mrorams and the pivors e n:OHBocm.noBm:,S:onm_ requirem polyhedron P = {x | Ax < b} if and only if ((%, 1)) is an extreme ray of the cone
B pool :% vots -MMMMM_.W MM”””M_M_E,W M_M_a Mo <Mn:nom.. {x,§]| —Ax + bi> 0,£ > 0). Here we have used ((%, 1) to denote {(A%, NIA
vertices of a convex polyhedron. The algori e & spanning ree of &
. gorithm constructs a s i
edge-vertex graph of the polyh i i o e oot
yhedron, starting with an arbit d
each arc of the graph has len o e eneichoors i o
gth 1, we say that two nod i i
shortest path joining them in the o e s i
. graph has length k. Two nodes are adj if i
waaﬂ T:Qmwc.oa. A node has height k if it is a k-neighbor of the root :omwoﬁ: g )
he algorithm may be described briefly as follows: .
1. k<0 .
2. kek+1.
3. Find all nodes with height £. If th ,
. ere are i
found, so stop. Otherwise go to step 2. none. all feasible bases have 5 T
The algorithm is finite because the is fini
. graph is finite and connected, and it
?nﬁ“ that every node adjacent to a node with height k has height & — 1 \M o_hmmmhﬂo,“
an conversely, every node with height k + 1 is adjacent to at least e ith]
e one node with!
Given this description, it is clear that thi i
N t this algorithm does not present an
MMNMMN—M: :.“ the b_,oEoB. for it is a standard way to find spanning trees W:Mmu.%m..“s
. For its use in vertex enumeration, see Remez and Shtei i
however, is the way in which the algori hm is i . B e s oea ot o]
; , gorithm is implemented, in particular i :
revised simplex method and its data organizati e et e s
; ganization for performing a breadth-fi 4
of the spanning tree. Dyer and Proll imi el o
. 4 tree. report only limited computational i
with their algorithm, but, as we hav 1. it appear o
o o e reported elsewhere [38], it appears to be
All of the methods referred to above a
. ! . erred ttempt to deal with the polytope in the samef
Mwﬂwzm_ﬂsw_ meno _M_sr_or it is described. In 1973 Mattheiss [37] mmwn mm_ MME.M%M«!..
oach to the problem. Geometrically stated, his method emb i .
. . 4 : : , ds the given pol :
in a one-higher dimensional Euclidean s footions i ’ et
gh pace. The projections into th igi
of the additional vertices and ed i
of th ges formed by the embedding process lie i §
interior of the polytope and form a connected graph. The macmaﬂw:m mwzw_cnnw_mnwﬁ :

All of the nonpivoting methods can be viewed as
tion Method of Motzkin, Thompson, Raiffa, and
Dantzig and Eaves [14] have pointed out, these
elimination technique for the solution of

f these methods are originally stated in terms
X is a vertex of

»

0.
£ These methods are geometrically motivated, but their algebraic foundations are
ed by Biirger [6] (for cones) and more recently by Galperin {24] (for polyhe-

). Because the geometric foundation is so intuitively appealing, our presentation

Here will be geometric. Suppose we have a polytope P, whose vertices are already

wn. Suppose that P’ is obtained from P by adding another constraint (that is P’ is

intersection of P and a hyperplane H or a closed half space H*.) Then the

Eyertices of P’ are some of the vertices of P (those on H orin H*) and certain convex

abinations of vertices of P in H* with other vertices of P in H ~. The weights in

convex combinations are chosen so that the new vertices all lie on H.

.. Uzawa [55] has given an algorithm based on this observation. His algorithm finds
® all the vertices of a polyhedron, but it also produces points which are not vertices. Let
Ex), -0 X be all the vertices of P, and now consider the additional constraint
fx€ H*. Suppose that {x,..., %} & H*\H, {X4p5 - %} & H, and {x 1
LX) CH™ \ H. Then for the vertices of P’ Uzawa lists x, . . . » X, plus a point of
the form £ = Ax; + (1 — A)z for eachi€(l,...,pyand jE{g+ 1,...,k}. How-
ever, such an X is a vertex of P’ if and only if x; and x; are adjacent vertices of P (ie.,
E they determine an edge of P.) Because of this, Uzawa’s method will be faster than
® methods which check for adjacency, but will require more storage. Furthermore, some
i way must be found to purge the final list of the nonvertex points it contains. (Ina
E gimilar fashion, Fourier-Motzkin elimination leads to redundant constraints in the
course of eliminating variables. Kohler {32] and Duffin [16] have discussed techniques
40 avoid the creation of such redundant constraints.)

i Rather than eliminate nonextreme points at the end of the process, the Double
E Description Method and its variants [6], [10-12}, [24), {27}, (32}, (34] avoid generating
$ them in the first place. To do this, it is necessary to determine when two vertices X;
f and x; are adjacent. Now an edge is a 1-dimensional face of a polyhedron, and in
- general a d-dimensional face of a polyhedron in n space is the intersection of n—d
tinearly independent hyperplanes from the constraints defining the polyhedron. Thus

s
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A : iscuss here the case of variables not restricte
x; and x; are adjacent if and only if they both satisfy at least n — 1 of the defig X plane. For this reason we do not discus
constraints (inequalities and/or equalities) as equalities, and exactly n — 1 of they ‘T
constraints are linearly independent. This condition is tedious to verify computatiol
ally, but fortunately a simpler condition can be used to characterize edges: x, and
are adjacent if and only if no other vertex lies on the face of P which they deterny
. As we shall see below, this. condition is easy to verify. (For polytopes definéd]
f/w = {x| Ax = b,x > 0}, Murty [42a] has characterized the adjacency of two verl
in terms of the rank of the set of columns of 4 corresponding to variables which
positive at the two vertices. Although this condition is simple to verify in the contd
of pivoting algorithms, in the current context it would require considerable effort{
reduce the corresponding submatrix of 4 to echelon form to determine its rank.)
The Double Description Method considers the cone C = {x|Ax <0) and ¢ .
scribes C as the direct sum C + L, where C is a pointed cone and L is the lines
space of C (i.e., the largest subspace contained in C.) For ¢ the method finds all th
extreme rays, and for L it finds a basis. In the case where the constraints Ax
subsume the constraints x » 0, then L has dimension 0 and the Double Descriptiof
Method is identical to the procedure given by Chernikova [12]. That algorithm
given in Appendix D.
Step 3 of the algoriihm is the determination of whether two edges of C (or vertice
of P) are adjacent. I,(s, 7) identifies the constraints which define the minimal dimen TABLE 1 he Generator
sion face of C that contains the two edges in question ((/) and (/). If I,(s, () = B:8 ; Sample Design and Yield of Random Polytopes from 1he 222 20
then C itself is that face, so the edges are not adjacent (unless C has only those twg 2 5 8 1 4 o

* Computational results. From a computational point of view, .:8 BOM MHH:M

scriteria for comparing algorithmic performance are wnw:_mn%—,n.:u_ﬁ MM“ Z,nao :mw

i i iteria. the methods of Balinski, Manas-
irements. According to these criteria, hods e rovts

’ i ive of the pivoting methods an

fMattheiss appeared to be aoﬁ_.nwgs:,.\o [ e

_ i i hods. These algorithms p

fh esentative of the nonpivoting met

g oaoa_.omﬂ‘ FORTRAN and applied to the same set of sample ?.ov._o:mm. M_Mo.

_.ﬁ“_r_:m of Balinski, Manas-Nedoma and Mattheiss were v_‘wwmwaaoa “s oc::aoa

; ati i 1BM 370/168 operating

ision. All computations were carried out on an operat

%__._ %:o S:m.& machine comprising S12K was the storage limitation for all

Y . ‘ .
E, ?”ammav_o was obtained from a random polytope _moanqwmm“. MMMWMM._:M”_ M:o .
) ien is given in Table | along wi
: iss 147)). The sample design 1s given in ¢ -

ﬂwﬂwm “now the generator. 1f an n-polytope having ﬂs Mwmﬁw%iwmmnuw%wmwoﬂ moomm :wM
0 . . v ,

_polytope having k < m facets was supphed DY i€ use
Sm.w_‘mﬁ:‘“ Mommz.w._:a were redundant. Redundant oonm:.&:.a were :oﬁ_ M_:Em
..oMM&oR the algorithms were run. In addition, two transportation type polytope

edges). Step 3b sees if any other edge of C is on this minimal face. If so, the face has 3 o — — — - - _
dimension > 2, and (/) and (/) are not adjacent; if not, the face has dimension 2 and 3 M _w 9 — - - - _ —
(%) and (/) are adjacent. When the algorithm is programmed, Step 3 can be efficiently 6 10 - - — _ - -
implemented through the use of binary coded data (indicating which constraints are 7 3 a9 — _ — - -
tight on each edge) and fullword logical operations. The program used in our 8 2 > _ — - - B
computational experiments employs these devices. It also uses a device not contained 9 3 w 1 (0 — - - B
in Chernikova’s description of the algorithm. In n-space it takes n — 2 independent "._v _ (10) 2 2 - ~ — _
equations to determine a face of dimension 2. Thus if /,(s, #) does not contain at least } 12 — 4 4 T 10) _ — -
n— 1 elements (because C is a cone in (n+ l)-space), then (/) and (/) are not 13 — ! w :_u ¢ — — -
adjacent. Our program implements this test before the test of step 3b, again making § 14 - w a0 1 — - - B
efficient use of the binary coded data. This test has been used previously by Kohler § 15 — — 3 2 o a9 — =
[32]. It also appears in [27], where Greenberg incorrectly asserts that it is a necessary #§ “w _ — 3 (10) ! 1 - _
and sufficient test for adjacency. This error was pointed out by Sherman [50). 18 — (10) 2 2 ! IN _\o oy —
We now show how to handle equality constraints, which the Double Description 4 19 - ! - B M (10) 2 - -
Method does not explicitly consider. Equality constraints of the form 2.4;x; = b; can ¢ by - ! 10 “ — | 1 T
be incorporated into the algorithm by splitting them into two inequality constraints TS 2 B _ o 3 - - N 0o
2.a;% < b, and —Xa;x; < —b,. However, if these two rows were processed sequen- ww _ — — - ™09 “ 0
tially, it is easy to see that the effect of this is identical to including only one row for % 24 — - 1 a9 ! \_ — —
the constraint, and modifying step 2 by redefining R to be {(jly,;=0). This is 25 - 1y - Nm, w — 7 (10) 2
precisely the result given by Chernikova in an earlier paper [11). F g 26 - B 1 V() — - -
The situation when the constraints x > 0 are not present is somewhat more 2 - I, - — 1 - MR 4
complex, and we refer the interested reader to the Double Description Method {41, K Ww _ — - - 2 ~ — A
pp. 67-69] and the work of Kuznetsov [34] and Chernikov [10]. Since we are K. 30 F\ o - ! ® -
interested in vertex enumeration, we assume that our polyhedron has at least one N Numbers in parentheses indicate that m constraints were n,nnco,ﬁom ?o_,“, 5-“%”””.3
vertex, and hence that its lineality space has dimension 0. Then by translation and the § z:%mwm not in parentheses are the number of polytopes obtained having k relevant co .
standard “regularization” technique we can bound our polyhedron and translate it to & B indicates the largest problem completed by Balinski's w_.wE__ ﬁ__.,__,ﬁ.r m
the nonnegative orthant. The vertices of the original polyhedron will correspond to ¥ C indicates the largest problem noav_maaacw M”Mm””m,mm_mﬁvmzsa. g
those vertices of the resulting polytope not on the “regularizing” hyperplane, while its : M indicates the largest problem completed by

s of the ?O_ vi pe On t * b s the largest pri €t s-Nedoma’s algorithm
i i e 4 indi Jargest problem complet d by Mana
Y yio he —.OMC_NEN:—W E N indicates g P
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of sizes 24 x 14 and 20 X 11 were i i
ere included in t
_E%nw _:.wsmvo:w:os problem were =o=aomo=owﬁwo sample. Al problems excep :
able 1 also shows the largest size . .
: problem from the sample which !
“NMM_MM& by »_wn respective methods. In each case, several %umcnnnmmr”ﬂm%%%ho””&_
mace |« “MWM %M Mnow_aam of larger size. The largest problem handled by w_“.
. Larger problems consumed time somewhere i :
e
wMoM:Mm“ﬂm,rn largest E.n_u_oa successfully completed by Orosm_,_wo“,ma vﬂwﬂﬂoﬁu R
_E.momﬁ. Eoﬂ _MN_.MWM: E_aﬂ_waﬂozw for larger problems exceeded the 512K allotted
2 pleted by the Manas-Nedoma algorithm w: ;
) as 23 X
M_HNMEEOEQ,:@ m:.:mmo _.n@:.:.nn-o:»m exeeded 512K. Mattheiss’ algorithm _nA. mo__.
: ¢ problems in the design, the largest of which was 29 X 20 ompleted
Z»Mﬂmw\nmqmv:m .aon the :.650.% of Balinski, Chernikova, ?::wwm and Nedo W,
iss are displayed in Figure 1 through Figure 4, respectively rnwﬁn.“, i
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42 —w—ocwm 4, Scattergram for Mattheiss Method In(time in seconds) = —5.386 + 1.146 In(number of verti-
’ ! oes).
23 . log log regression results are given in Table 2 and shown in Figure 1 through Figure 4.
08 E (On some of the test problems, Balinski's algorithm gave incorrect results. These
i problems were excluded from the regression. The difficulty arises from the way the
-09 - algorithm handles tableaux which are “not acceptable” (see [1, pp.78-79)). Dyer and
F' Proll [18] have constructed a simple example showing the error in the algorithm and
b have shown how to correct it. This result was not available to us when our computa-
. e sketch in Appendix A uses their correction at

ment was run; however, th
e 2 provides a COMPpATriso
ure 5 for convenience.
ernikova algorithm slight!
owever, this initial advanta;
me for all four methods,
b, term. Ranked accordin

o results which are
at for very small
ested against the
¢ intercept term
orithms can be
he four algo-

tional expert
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Let P = {x]Ax < b} be a convex

> n, x and b are conformable real

t the system can be written
(A1)

TABLE 2 :
Regression Results on a Set of Randomly Generated Polytopes. : Appendix A. A sketch of Balinski’s algorithm.
In(time in seconds) = by + b,In(number of vertices). : lytope in R”, where 4 is a real m X n matrix, m
Algorith Error of Sample wtors. Introduce nonnegative slack variables so tha
gorithm by R? Estimate i ) \AA| kv +b=y> 0.
Balinski —5.345 3 . . . . .
- 0.605 2.160 periNiTioNs.  The index of a variable y, is the number of times which y, was

Viamas & Nedom by : 0.633 1853 basic at a vertex of X
a - . 0.891 1.005 , : . . . . .
b w\_ j=0,...,n are sets for indexing the variables. B, contains all of the x-

Mattheiss —5.386 . 0.947 0.672

hariables. B; contains the slack variables corresponding to (j — 1)-faces of P all of
fwhose vertices have been found, j = 2,...,n B contains the slack variables not
Fontained in By, By, - - - » By
, The convex polyhedral set P, is formed by deleting the y; > 0,i=

: 1 ¥ HA-1) whose vertices have already been found.
. ] " A tableau is acceptable if all elements in the constant column and in rows labeled

42 ¥/ IS ) € B,U B, are nonnegative. An acceptable tableau corresponds to a point which is a
s /. , Fvertex of the set H, N Py, where H, is the hyperplane being traversed. If all y; > O then

25 g ' the tableau corresponds to a vertex of P.
Beginning with (A-1) and making all x-variables
J 1 eting a general step of the algorithm.

In(time in
seconds)
7.6

1,....k, from

59

basic leads to the tableau repre-

08
allowing no pivots

-09 - 1
: 4 fixes a 2-face of P
-26 —_
\ T e - S /o W .
—a43 X, € By
-604{ . . 5 ¥ € By (A-2)
1 3 5 9 11 3 y,€EB No Pivots In k-th Stage
In(number of vertices) o
FIGURE 5. Comparison of times for all four methods. : E € wu
rithms are, from most desirable to least desirabl i : : No Pivots
R ’ 8 $ e; Matth 3 : -
Chernikova and Balinski. attheiss, Manas and Nedoma, § . € B,y
B __s m.an_ﬁoa E:&: Dyer and Proll [19] have also looked at the algorithms of ] i € B,
alinski, 0:2:.%3? Oanwacnqm [27]. and Manas-Nedoma, as well as their own
procedure. Their paper discusses in detail some of the decisions they made in 3 §  Assume that all vertices belonging to the (n — 1)-faces of P whose corresponding
.y, € B, have been found. Further, assume that all vertices belonging to the (1 — 2)-
c., until some ﬁm_.:oc_ﬁ

them. Their mowmwmm_mm:_a“: B e it o o, Tooking & for cach of SR faces of P wh di B,_, have been found
- al study was more limited than ours, looking at only 20 test  faces of P whose corresponding J; € B,_, have been found, et
mwﬂcﬁmﬂwﬂﬁw_ﬁmmﬂ of aﬁ:n: were 16 X 10 w.sa 17 x 5. None of their test NBEQE 4  Lace of P has Jog fixed. At ommz Jevel of this process the nonbasic variable with
rough order %m &:nﬁhﬂnnmw 1_.%5 Em: :E:a.& work, they rank the algorithms in: the high est __zaonxm_m mo_wﬂoa.po be fixed.
Nedoma. Greenber %\ﬁ w\ e .:Bn. criterion): .Uv&n.?o:, a modified Manas- ; >.E=.:o= ar 2-face o w». is :.s.<9.moa by a mo.ncgno of acceptable ta
be c::oma_ . M, and fina ly Balinski and Chernikova. (The last two could be not P obtained from mo_oﬁna.vo&:ﬁ pivot elements In only two columns of
Balincki an ﬁw mﬂwnm.wi:r ﬂ.m.wmﬁ to g,nr other.) Except for the relative positions of 3 Iabeled -y, Amna — 1N TOWS labeled y; € B;. )
[20] report they ha <_o chmmmw._w amq—fnmu is consistent with our results. (Dyer and Proll 4 _.n a stage Is Gomcsai:r an acceptable tableau Eo_s nmra:
odi ’ i . ircui - ;
in §2 above, but it is not _oo_am RM: _,”:m s algorithm to correct :.w error mentioned 4 3 : oﬂ_‘ncwﬁ mno_mn :_MN o M.n wm M.m: o o%. Bﬂ%ﬁ - he initial point d
reported in {19 e o onge o e i 1o o v G 00 b complee i e e aiort
:_M.uwﬁ and Proll o.:%:mmnm [19. p. 24]. that they carefully refined the program 3_.. ) £ (iii) no pivots are possible in either direction and there is but one acceptable point
ir own Bﬁroa. in the course of the study, but did not similarly refine the other fin the stage. . . .
Mmcm_,w—ﬂ.m, :w a similar m.mm?os, we have recoded the Chernikova algorithm since, 2 Bookkeeping requirements include moving
Ziv € :Mm the n.oB.U:S:o:m_ work reported here. and it nows appears to run about 3 umon.:a wmoovﬁmzo tableau of the stage ?wa B,
o ice as fast as :. did 7&0.5 It may be possible to improve our other codes as well. E similarly in subsequent tableaux. Appropriate label
BMMHHM omh M_M_wna_mﬂm:n% in attention to coding details, and because of differences in 4 initial point wm the stage.
rather as _omﬁr,mnmmz mzwmwﬁﬂﬂwﬂ_whww%,c; should ot be seen 2 conclusive E:” : M<w_ Mwmonww_ﬁwwﬂwmﬂwvmﬂmdwwﬂoWM&“_M,MNKWWM:”O_ %Wﬁz&o:m_ tableau) which
s s search. ! R T 0 /0-
3 - are manifestly infeasible, while pivoting to keep nonnegative all currently nonnegative

bleaux (points)
A-2), say those

the nonbasic pivot variable of the
into B, in the third tableau and
ing is required to recognize the
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_dimensional identity matrix; with b, s and x

is a real m X n matrix; I an m
bl _ the real vector ¢ has elements

nformable real vectors, and y a real variable;

She form of the optimal tableau for this LP is as follows.

i — (nonbasic slacks)

basic variables. The pivot column is chosen so that it contains at least one negating bk
element in a row with a negative right hand side, and it is permitted to pivot on
negative element in such a row (provided this does not change the sign of any posith
basic).

(v) If no element exists as in (iv), this stage is complete. .

The end of the kth stage occurs when all acceptable points of H, have been fous
Then a pivot is chosen whose column is labeled — y, and whose row is not labeled B
or By, ..., B,. The row of the pivot is chosen such that the least number of elements!
of the column of constants corresponding to variables of B, and B, are negative. IF
such a pivot is possible, perform the pivot, move y, to B, and make B, null by moving
all of its variables into B,. If all elements of the column labeled — y; which are i
rows of B, and B, are zero then no such pivot exists and all of the vertices of the fixed §
3-face of P have been found.

In general, a pivot is performed whose column label is — y, and whose row is not
labeled B, or B,, ..., B,. The variable y, is moved into B, and the sets 8,, ..., B,_{
are made null by moving their elements into B,.

The process terminates if either all elements in the column labeled — y, and not
rows labeled B, or B, are zero or if r =m — n.

no pivots allowed (C-2)

i i follows.
¢ The vertex enumeration algorithm proceeds as . . . .
{i) For each column of (C-2) having a nonnegative dual variable, find :.6 pivot
element in that column. A pivot element must occur in either the y-row or in some
glack row. , o
9 (ii) If the pivot element in the column under consideration is 1n .:5 y-row, a vertex
E P is obtained by performing a partial pivot operation on (C-2) with this pivot. Only

i formed.
he x-portion of the 1-column need be trans A . A
.Amcvz the pivot element in the column under consideration results in an exchange

bof slack labels: .

v (a) Compute the new value of y and Gﬁz Ew i o o

: entifies the new tableau based on the pivot being considered. o

A\“ m:wv - va, (B-1); &AS Construct an ordered list of the sets of nonbasic slack _E_.Smm defining the

inimi : tableaux yet to be examined. The list is maintained in accordance with the Bmms_fa.o

o 1 of y ranked from high to low. If a candidate slack index set is already on the list, it is
 simply discarded. . 4

Aonv%m_wm all slack variables which are members of any slack index set of the _._mr At

re, the flagged slacks identify the set of boundary constraints of

Appendix B. Manas and Nedoma’s algorithm. Let P = {x|Ax < b} be a convex

polytope in R”. To initialize the algorithm solve the following linear program. ndex set of nonbasic slacks which

where 4 is a real m X n matrix, m > n: I is an m-dimensional identity matrix; with:
b, s, x and z conformable real vectors, and ¢ a conformable vector of ones.
The form of the optimal tableau for (B-1) is as follows:

E the end of the procedu
B p. Those not flagged are irrelevant for P.
, (iv) When all columns of the current tableau have ans‘wsm_vﬁma, .
(a) Execute a pivot (if possible) on a slack label exchanging element of (C-2) having
a nonnegative dual variable. Otherwise, . . .
(b) mam_nﬁ the slack index set from the top of the list and obtain :ﬁ oo:omvo:.a_sm
tableau. These tableaux have the same form as (C-2) except that certain dual <w:wc._n
values may be negative. Delete the current slack index set from the list. Return to (i).
¥ (v) Perform (i) through (iv) until the list is empty.
: Consider the polyhedron P = {x | Ax < b,
C={(x8|—Ax+b§>0, x> 0,
unbounded edges) of P, we find all
to vertices of P, those with £¢=0

—

— (nonbasic slacks)

>0
no pivots allowed

Z Zz
X X

(basic slacks) [s* >0

The vertex enumeration algorithm proceeds as follows.

(i) The initial vertex is x* and the z-row is deleted from (B-2).

(i) Form a list of nonbasic slack variable index sets. The initial set is that found in
(B-2) together with those constructed by finding the pivot element in each column of
(B-2) which exchanges slack variable indexes.

Appendix D. Chernikova’s algorithm.
£, > 0) (where A is m X n) and the related cone
The general step of the algorithm is as follows. E {5 0). To find all the vertices and extreme rays (
(iii) Select an unflagged index set from the list having minimum distance from the 4 the extreme rays of C. Those with ¢ > 0 correspond
current nonbasic index set. Two different index sets have the distance d < n if exactly JEES correspond to extreme rays of P.
d components of one of them are different from the other. Flag the new index set. . i Consider the matrix (77 ?), where [ is an (n +
Produce the corresponding tableau and output the vertex x. S i of transformations of this matrix SEnﬁ generates t
(iv) For each column in the new tableau, find the pivot element and place the § € the process we denote the old matrix by y = (¥), and the n elv:
corresponding slack variable index set on the list if it is not already on the list. E denoted Y. The matrices U and L will always have m and n + 1 rows, respectively,

(v) Perform (i) and (iv) until all index sets are flagged " however, they will in general not have n + 1 columns. They s_r_:m(,m more than ﬂ +t
* columns in most cases, but if C ligs in some subspace of R™*! they may have fewer

than n + 1 columns. For (x.)) e A+ we use the symbol ((x.§) to denote the ray
(A AD A > 0).
The algorithm is as follows:
0.0) If any row of U has a
solution.

1) X (n + 1) identity matrix. We give
he solution. At any stage of
ew matrix being generated

Appendix C. Mattheiss’ algorithm. Let P = {A4x < b} be a convex polytope in
R". To initialize the algorithm embed P in R"*' and solve the following linear
program.

is the only

‘ Ax+ o+ Is=b, 1l components negative, then (v. H=0

| maxinuze s

(c1)




NDING ALL VERTICES OF CONVEX POLYHEDRAL SETS 183

182 T. H. MATTHEISS AND DAVID S. RUBIN :
: 5 METHODS FOR FI
ported in part by the office of
Dr. Rubin’s research was
n of North Carolina. The
t several references and to
s. The final version of this
an earlier draft by Dr.

Dr. Mattheiss’s research was sup
outhern 1llinois University.
om the Business Foundatio
K. Schmidt for pointing ou
uable programming effort
ptive comments made on

0.1) If .
omAﬁ Wa M_o"ww nMwBMEm of U are nonnegative, then the columns of L are the odf , cknowled
oo_E.:a Mm - y () ={(x, §) = {M,|X > 0} is an edge of C; here /; denotes the ' : A Sﬁi wzmmﬁw“_.pw.na at S
(1) Chogse the fi : 4 - i
ANW Let Wu Ul ».:mnvn%% MM ﬁQ , say row r, with at least one negative element. - 3 3 ,n“.:aa " ?ﬁw Wé m—wwsw fr
fist o columns of the new o =|R|, i.c. the number of elements of R. Then ¢ J ﬂmaowwmm " fon his inval
w matrix, Y, are all the y; for j € R, where y. den ] jr. Wayne Wi _ sen for his inva
oo_mww:ro@ﬂ ! y; denotes th ! + has benefitted from the perce
as only two columns and <0, adjoi G. Murty and an anonymous referee
- i o , ad 3 Al y y .
8%5 Y matrix. Go to step 4. yntn oin the column {3y, + |l Rel
) Lets = ((5, )| pp <0, 8 < . 7 4 eferences
4 reVrt s t}, i.e., the set of : : k.
of Y whose elements in row r have opposite mmmnww—“.\m”_:\ou.wo_.ohv v.m_Mm of col 1] Balinski, M. L. (1961). An Algorithm for Finding all Vertices of Convex Polyhedral Sets. SJAM 1X
nonnegative rows of Y. For e ; g o be the index set of al§ . T72-78.
this set 1,(s, 1), We now use ach (s, 7) € S, find all i € I, such that y, = y, = 0. Csl 0 Bametic, D. W. (1966). Trees in Polyhedral Graphs. Canad, J. Math. XVII1 731-736.
for T- some of the elements of S to create additional colu; ) — (197 The Minimum Number of Vertices of a Simple Polytope. Israel J. Math. X 121-125.
. ) ) Brown, T. A. (1960). Hamiltonian Paths on Convex Polyhedra. Report
4 tion, Santa Monica, California.

P-2069, The Rand Corpora-

All the Faces of a Polyhedron. SIAM J. Appl. Math. XXV1 479-489.

(a) If I,(s,?) =@ (the em
to the new matrix. ( pty set), then y, and y, do not contribute another cotum &5} Burdet, C-A. (1974). Generating
, AWvo_MON_._Q_,~~v.M~&, check to see if there is a u not equal to either s or , such 1 E 161 wwu_.mwo“,u%. (1956). Uber homogene lineare Ungleichungssysteme, Z. Angew. Math. Mech. XXXVI
i all i S, 1). i ’ - el . . -
oﬁ_ﬁad to the =n¢“\A MMW.S.—.». wﬂwr a u exists, :-.mz y, and y, do not contribute anothet; AUl Carrillo, M. acwniga._ojv mwr:mE.m Enumeration Algorithm Revisited. Paper presented at
et ayy, = 0. (O ix. If no .m:o: u exists, then choose a;,a, >0 to sati ] L' ORSA/TIMS Joint National Meeting.
1) rs 2V =V A ne such choice is « H_ _ o, = I 18] Charnes, A., Cooper, W. W. and Henderson, A. (1953). An Introduction to Linear Programming.
= 7. @ = | y,;|) Adjoin the column a, y, P Wiley, New York
and . (1961). Management Models and Industrial Applications of Linear Programming,

a, p, to the new matrix.
(4) When all pairs i . : )
have been mmaom Wo_mw.w ”_MMM been examined, w:a the additional columns (if any)3 vol. 1. Wiley, New York.
matrix vl\?,oacnma Y y that row r has been “processed.” Now let Y denote : 10} Chernikov, S. N.(1968). Linear Inequalities
in processing row r, and return to step (0.0). {U] Chernikova, N. V. (1964). Algorithm for Finding a General
S a System of Linear Equations. U.S.S.R. Computational Mathemati
: 151-156.
>_u_uo-==% E. 12 . (1965). Algorithm for Finding a General Formula for the Nonnegative Solutions of a System
b of Linear Inequalities. US.S.R. Computational Mathematics and Mathematical Physics ¥ 228-233.
R E (13] Dahl, G. and Storgy. S. (October 1973). Enumeration of Vertices in the Linear Programming
3 Problem. Report No. 45, University of Bergen.
E. (14] Danuig, G. B. and Eaves, B. C. (1973)- Fourier
: Theory Ser. A XIV 228-297.

(in Russian). Nauka, Moscow.
Formula for the Nonnegative Solutions of

s and Mathematical Physics 1\%

Selected values of th
of the least upper bound on the number of vertices.
Motzkin Elimination and its Dual. J. Combinatorial

25

Sets and the Economic Analysis of Production. Unpublished

cs, University of North Carolina at Chapel Hill.
Experimental Results

1
{1 Duesing, E. C. (1977)- Polyhedral Convex

Ph.D. dissertation, Department of Economi

i19]
er presented at CP77 Conference on Combinatorial Programming.

. (July 1978). Personal Communication.
In Oeuvres H

Pap
iere du Caleul des Inégalities

5

0 4

0 [15a) Dunham, J. R, Kelly, D. G. and Tolle, J. W. (December 1977). Some

0 : Concerning the Expected Number of Pivots for Solving Randomly Generated Linear Programs.

0 Technical Report 77-16, Curriculum in Operations Research, University of North Carolina at

0 Chapel Hill.

0 (18] Duffin, R. J. (1974). On Fourier's Analysis of Linear Inequality Systems. Mathematical Programming
E Study 1. American Elsevier Publishing Company, New York.

0 ¥ (17 Dyer, M. E. and Proll, L. G. (1977). An Algorithm for Determining All Extreme Points of a Convex

0 1 Polytope. Math. Programming X1 81-96.

0 F (1) ——and —— (16 February 1977). Letter to M. L. Balinski.

0 and .. Vertex Enumeration in Convex Polyhedra—a Comparative Computational Study.

0

3 120 - and
L (21) Fourier, J. B.J. (1890). Solution d’
4 317-328. Gauthier-Villars, Paris.
{22 Gal, T. and Nedoma, J. (1972). Mul
E 23] Gale. D (1963). Neighborly and Cyclic Polytopes. in
3 viI V. L. Klee, ed. American Zm:_oaﬁ.nw_ Society,
A. M. (1976). The General Solution of a Finite System of Line

16 une Question Particul

1584
0.3890E + 05
0.6365E + 05
0.5396E + 08 03705+ 10 S 14 Galperin,

g Management Sci. 18 406-422.

Itiparametric Linear Programmin,
hematics

Proceedings of Symposia in Pure Mat
Providence, Rhode Istand.
ar Inequalities. Math. Oper.

FOCOOOO00ODOODDOD

[

0.2676E + 09 0.1045E + 12 3 Res 1 185-196.
0.9836E + 09 0.1415E + 13 - (25] Gerstenhaber. M. (1951). Theory of Convex Polyhedral Cones. In dctvity Analysis of Production and
0.2946E + 10 0.1199E + 14 ;3 Allocation, T. C. Koopmans, ed. Wiley, New York.
{26] Gomory, R. E. (1963). An Algorithm for Integer Solutions to Linear Programs. [n Recent Advances in
4 P, Wolfe. eds. McGraw-Hill, New York.

0.7604E + 10 0.7 .
0.1752E + 11 C.uwmom +14 D Mathematical Programming. R. L. Graves an
.3547E + 15 - Greenberg, H. (1975). An Algorithm for Determining Redundant Inequalities and All S0l
3 Numer. Math. XX1V 19 26

Convex Polyhedra.




184

(28]
(29]
[30]
B31)
[32)

(33}
{34

(34a]

[35]
[36]
137
[37a)

[38]

[391
(40}

[41])

[42]

[42a]
[43]

[44]

[45)
[46]
(47}
[48]

{49]

{50
[51]

(52]

153)

(541
{53

T. H. MATTHEISS AND DAVID S. RUBIN

Grinbaum, B. (1967). Convex Polytopes. Wiley, New York.

Hadley, G. (1962). Linear Programming. Addison-Wesley, Reading, Massachusetts. 3

Klee, V. (1964). On the Number of Vertices of a Convex Polytope. Canad. J. Math. XV1 701-728

——— (1974). Polytope Pairs and Their Relationship to Linear Programming. Acta Math. CXXXI
1-25. A

Kohler, D. A. (August 1967). Projections of Convex Polyhedral Sets. Report ORC 67-29, Op
Research Center, University of California at Berkeley.

Konig, D. (1950). Theorie der Endlichen und Unendlichen Graphen. Chelsea, New York.

Kuznetsov, V. G. (1966). Algorithms for Finding the General Solution of a System of
Inequalitics. USSR Computational Math and Math I Physics V1 197-205.

Liebling, T. M. (1973). On the Number of Tterations of the Simplex Method. In Funfte Oberwo
Tagung wber Operations Research, Teil 2. R. Henn, H. P. Kiinzi, and H. Schubert eds. Verlag
Hain, Meisenheim am Glan.

Luenberger, D. G. (1973). Introduction to Linear and Nonlinear Programming. Addison-We:
Reading, Massachusetts.

Manas, M. and Nedoma, J. (1968). Finding All Vertices of a Convex Polyhedron. Numer. Math.
226-229.

Mattheiss, T. H. (1973). An Algorithm for Determining Irrelevant Constraints and All Vertices i
Systems of Linear Inequalities. Operations Res. 21 247-260. 4

and Schmidt, B. K. (1977). The Probability that a Random Polytope is Bounded. Math. Opr. §
Res. 2 292-296.

and Rubin, D. S. (September 1977). Comments on Dyer and Proll’s Vertex Generating
Algorithm. Technical Report 77-11, Curriculum in Operations Research, University of Northd
Carolina at Chapel Hill. 3

McMullen. P. (1970). The Maximum Number of Faces of a Convex Polytope. Mathematika XVl
179-184. b

Motzkin, T. S. (1936). Beitrage zur Theorie der Linearen Ungleichungen. Doctoral thesis, University §
of Zurich. 3

, Raiffa, H., Thompson, G. L. and Thrall, R. M. (1953). The Double Description Method. I}
Contributions to the Theory of Games, 1L H. W. Kuhn and A. W. Tucker, eds. Annals ofg
Mathmematics Study, No. 28, Princeton University Press, Princeton, New Jersey. H

Murty, K. G. (1968). Solving the Fixed Charge Problem by Ranking the Extreme Points. Operatia
Res. XVI 268-279.

. (1971). Adjacency on Convex Polyhedra. SITAM Rev. XIII 377-386.

Pollatschek M. and Avi-ltzhak, B. (1969). Sorting Extremem Point Solutions of a Linear Program. J
Paper presented at Third Annual Israel Conference on Operations Research. .
Remez, E. Ya. and Shteinberg, A. 8. (1967). A Theorem of Convex Polyhedra in Connection with the 3
Problem of Finding the Set of Solutions to a System of Linear Inequalities. Ukrainian Math. J. XX
191-202,

Rosenfeld, M. and Barnette, D. Hamiltonian Circuits in Certain Prisms. Undated mimeo, Mathemat-
ics Department, University of California at Davis.

Rubin, D. S. (1972). Redundant Constraints and Extraneous Variables in Integer Programs. Manage-
ment Sci. 18 423-427.

Schmidt, B. K. and Mattheiss, T. H. (October 1975). On the Expected Value of the Number of 2
Vertices of a Convex Polytope. Paper presented at ORSA /TIMS Joint National Meeting.

Shachtman, R. H. (1974). Generation of the Admissible Boundary of a Convex Polytope. Operations §
Res. 22 151-159.

Shefi, A. (1969). Reduction of Linear Inequality Constraints and Determination of All Feasible Extreme 3
Points. Unpublished Ph.D. dissertation, Department of Engineering—Economic Systems, Stanford 4
University. (See discussion in [31, Chapter 5])

Sherman, B. F. (1977). A Counterexample to Greenberg’s Algorithm for Solving Linear Inequalities.
Numer. Math. XXVII 491-492. -

Silverman, G. J. (June 1971). Computational Considerations in Extreme Point Enumeration. Report §
G 320-2649, IBM Los Angeles Scientific Center. 4

Thompson, G. L., Tonge, F. M. and Zionts, S. (1966). Techniques for Removing Nonbinding %
Constraints and Extraneous Variables from Linear Programming Problems. Management Sci. 12 §
588-608.

Tucker, A. W. (January 1958). Condensed Schemata for Dantzig's Simplex Method. Mimeographed
notes, Princeton University.

Tutte, W. T. (1946). On Hamiltonian Circuits. J. London Math. Soc. XXI 98-102.

Uzawa, H. (1958). A Theorem on Convex Polyhedral Cones. In Studies in Linear and Non-Linear
Programming, K. J. Arrow, L. Hurwicz, and H. Uzawa, eds. Stanford University Press, Stanford,
California.

e ,E>Z? TUSCALOOSA, ALABAMA

METHODS FOR FINDING ALL VERTICES OF CONVEX POLYHEDRAL SETS 185

Walker, M. R. (1973). Determination of the Convex Hull of a Finite mﬁ of Points. C:v_,-czu:oa MS.
thesis, Curriculum in Operations Research, University of North 05.0_:5, at Chapel Hill.

Wets, W J.-B. and Witzgall, C. (1966). Algorithms for Frames and Lineality Spaces of Cones. J. Res.
Nat. Bur. Standards Sect. BT11-7.

TTHEISS: COLLEGE OF COMMERCE AND BUSINESS ADMINISTRATION, UNIVERSITY

ND SCHOOL OF BUSINESS ADMIN-
UBIN: CURRICULUM IN OPERATIONS RESEARCH A
TION, UNIVERSITY OF NORTH CAROLINA, CHAPEL HILL, NORTH CAROLINA 27514



170 T. H. MATTHEISS AND DAVID S. RUBIN
e tableaux stored on a high speed direct access
fevice such as drum or disk. If enough high speed direct access storage is available,
method of Murty may be most efficient for a nondegenerate problem because
er of extreme points. The amount of

ficient implementation would have th

.. .ete, E... in a nested .?mEou until some 2-face of the polytope is indexed, certs
whose vertices are ov:::oa by successive iterations of the simplex method. When
Mn“”.n M-*mowm c%_osm_nm to mﬁ. rw,\mo been processed the algorithm drops that half-spil Lot . Il be limited by th b
irement, chooses another defining hyperplane, say H;, and pro e ot operations will be limted by e num
vertices of the polytope lying in H, which are not in #, .v\,;\a EoSMEMoMMMm“:w«u& pput and output of tableaux is at least one tableau output per extreme point and one
there are n Half-space HBERB.oEm remaining, and the cone they define deters ) ;au input each time v is not adjacent 0 ;. Thus computational nnmn.mo:o%
the _wﬂ. vertex. :. the last vertex in an (n — 1)-face to be listed is not adjacent to ] nds on the problem size, the path of the algorithm and the computer configura-
En :::&oa vertices, a gmx:.mn_anm procedure comprising an unspecified sequend
pivots is necessary to arrive at an unlisted vertex. It is important to note that ¥
w%:.mﬂmwm Mg::.maoma are dropped, the algorithm is allowed to visit vertex poif , . . . .
oma:mw waom MM“ mﬁ_aw::mmﬂﬂw 54 reduced set of inequalities which may not be vé 44 worithm vmw W rvﬁo_‘_v_»:o w:o_..:“n_ ncm”u_nw_oov_wm w«m.n.i E.a M m_BmewSc:_wn
S orase Rm al poly O.M_o_. e primary wa<w:§mo of ww.:_zm_a.m algorithm is its mio Qw Em:o.n. :oo_ﬂm QM maw. MBQ... 0 \ e wWo: 2_.5,6 given in Appen _w ._. .
sorage requirement All hat eeds be incore storage i the current abjeay and » . mpuationaly (15 agoriim T b il row o cquals the
. alinski's algorithm is given in Appendix A. Carrill j uereasing S1ZC. umbe eleme ! !
pp rrillo (7] mber of vertices of the polytope. At least one simplex tableau must be analyzed for

_.wng:% discussed an implementation of Balinski’s algorithm based on th : . .Z
simplex method. ery vertex of the polytope. A simplex tabular representation and the possibility of
tion appear to make this algorithm feasible for

Silverman [S1] gives the following summary of Murty’s algorithm which ¥ gernal st maintenance and manipula
F ger problems, although processing time may become unreasonably long due to

published in 1968. The method of Murty [42] is designed to solve the fixed ch

vqoc_w:_ by ranking the extreme points in nondecreasing order of a linear objed g vy list searching requirements. This algorithm has been employed by Gal and

function. The method is based on the intuitively appealing result that if we have’ doma [22] at the core of their Multiparametric Lincar Programming procedures,
. ough any other technique described here would also be viable in that context.

LCuriously enough, what might be considered the most direct approach was not
ished until 1968 when Manas and Nedoma [36] gave their algorithm. The

of vertices, v,,v,, . . . t;_,, ranked in nondecreasin jecti il
s 02y v Uy g order by some objective ve . . 4
¢, then the next element in the sequence, t,, must be adjacent to one m_& the verl 4 The ranking method of Pollatschek and Avi-Itzhak [43] begins with the vertex v,,
already enumerated. The general step of the method beings with v,, v mined as the optimal solution to the linear program of minimizing ¢x on the
already recorded along with pivot elements and objective value for m»._ur woﬂ .=.. . dyhedron. The extreme point adjacent to b, which has the lowest value of ex is
Bected as v,, and the constraint to cx < cv, is added to the system. This introduces n

creasing extreme point adjacent to ¢; forj = L,2, ..., k — 1. By the above result g
these “artificial basic solutions”

adjacent to o . . .. .
mLm:oﬁ <m_:m:o ON Emrv_dSo:m @.w:aw noinwjmos 20Eoo:<o<w_=amnea
. greater t an or equal to v, _, will yield ¢,. Then all of its adj
vertices must be recorded in order to determine ¢, ,,. If a listed extreme point v
Momo:omﬁ then all extreme points adjacent to v, may not be reached from the tablel
or v, by one pivot. In this case all feasible bases that re
: ! present v, must be sl ips . :
&oam with all extreme points adjacent to each one. This causes m<m”w adjace E‘.‘. g . ranked. In general, the number of “artificial basic solutions” on the hyperplane
feasible solution to be recorded. e = <y, is equal to the number of pairs (v,, v) where v, is an already ranked extreme
Murty [42, p. 277-278] discusses how his method might be implemented o i int with cv, < cv;, and o is an adjacent extreme point of v, on the original
computer. It is clear that the number of pivots will be equal to the number of b olyhedron with cv > cv;. (See Murty [42a).) This can be a very large number, even in
feasible solutions less one, which is the optimal extreme point of the linear progn ,..H ¢ nondegenerate case. Any one .“.Vm Somw (, cw vw:m mvvoma _‘nv_n»ﬁ&z m wo<oau.“
ficial basic solution” on the hyperplane cx = cv; unti

Thus the only computational considerations involve the storage organization. M % ¢ of the algorithm as an arh
w:mmnma:_anm:mzm“ . s vertex v joins the ranked sequence. Thus, while the Pollatschek / Avi-Itzhak

Array 1. All the objective values of the basic feasible solutions adjacent to ._omw<oam:_o053oonoﬁonwmnaonc:oaga o:_goZEQE«EO&L.”RS:.
extreme points. scts the information stored in Murty’s Array | repeatedly after each ranking step.
Array 2. All basic solutions that have already been ranked. i fact, in addition to complicated bookkeeping requirements renders this approach

Array 3. The basic feasible solutions corresponding to the objective <m_=nm,a - fficult to program and computationally inferior to the Murty algorithm.
gilverman [51] defines a modification of the Hamiltonian path, called a G-path. A

in Array 1.
. 4 . .
Murty suggests locating Arrays | and 2 in core and Array 3 on tape. The ol * path corresponds to a sequence of-pivots such that each vertex of the polytope 1s on
adjacent to a vertex on the path. There is no assurance of the existence of a G-path,

roblem is that i i ; :
M:nnmmm?_ at not wzo:mr information may be available in these arrays to guaragy o . tab . | this algorithm. The actual h
enumeration of all extreme points. If we have just determined v, } e necessity of a backtracking procedure in this algorithm. 1ne actual pat
7 eem to be often a G-path.

manmcimd_% have the tableau for v, _, in core, then the information in Arrays | 2 ploved by the Manas and Nedoma algorithm would s
_m2552:5&2255257.&??waimmo_czczﬁmsa:mog.mn:é(&_so;n. e computer time for record keeping operations is required by Silverman’s method

not adjacent to r,_, then pivot operations on the tableau of v, are necessary n for the other pivoting methods, as he so states.
! Ehe method of Dahl and Storey {13] ranks all vertices 0,, Ua, . -

ificial basic solutions” in the nondegenerate case;
pot extreme points of the original polyhedron. The method proceeds to pivot
pound the new constraint (similarly to Balinski’s method) noting the objective values
the adjacent extreme points. The one with the smallest objective value becomes v;;
he constraint cx 2 ¢y is added; and the process is repeated. Suppose v}, - . -, ¥ have

5, (corresponding

QQQEEW all its adjacent cost nondecreasing extreme points for storage in Arrays ;
and 3. Since 1, may be adjacent to any one of vy .ty ... 1, all these tables px) xy, - X the solutions of a linear program, having objective vector ¢) ina
. nce such that cx; > ¢x; 2 -~ - €X,. This algorithm can be stated as the following

must be available. If these tableaux are stored on tape and selected by the algori
in a random fashion. a great deal of time will be spent in tape access. A far ol

ication of the Manas and Nedoma algorithm

e

oz 1L




