JOURNAL OF ALGORITHMS 12, 1-22 (1991)

Algorithms Finding Tree-Decompositions of Graphs
JIRi MATOUSEK

Department of Computer Science, Charles University, Malostranské ndm. 25, 118 00
Prague 1, Czechoslotvakia

AND

RoBiNn THOMAS®

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
Received June 15, 1988; revised December 20, 1989

A graph G has wee-width at most w if it admits a tree-decomposition of width
< w. It is known that once we have a tree-decomposition of a graph G of bounded
width, many NP-hard problems can be solved for G in linear time. For w < 3 we
give a linear time algorithm for finding such a decomposition and for a general
fixed w we obtain a probabilistic algorithm with execution time O(n logn +
n log n|log p!), which for a graph G on n vertices and a real number p > Oeither
finds a tree-decomposition of width < 6w or answers that the tree-width of G is
> w; this second amswer may be wrong but with probability at most p. The second
result is based on .a separator technique which may be of independent interest.

© 1991 Academic Press, Inc.

1. INTRODUCTION

A graph is a pair G = (V, E), where V is a finite set and E is a subset
of the set of all two-element subsets of V. We write V(G) =V and
E(G) = E. Our graph-theoretic terminology is standard and is summa-
rized at the end of this section.

A tree-decomposition of a graph G is a pair (T, 7), where T is a tree and
r is a mapping fram V(T') to the set of all subsets of V(G) such that

(WD U ESEACV = V(G), and every edge of G has both endpoints
in some 7(¢), and

(W2) if ¢,t',4" € V(T), and ¢’ lies on the path from ¢ to " in T,
then 7(¢) N =(t") € 7(¢").

*This research was carried out at Department of Mathematical Analysis, Charles Univer-
sity, Sokolovska 83, 186 00 Praha 8, Czechoslovakia.

1
0196-6774/91 $3.00

Copyright € 1991 by Academic Press, loc
All rights of reproduction in any form resened

2 MATOUSEK AND THOMAS

The width of a tree-decomposition (T, 7) is
max{/r(¢)l — 1:t € V(T)},

and the tree-width of G, denoted by w(G), is the least integer w such that
G admits a tree-decomposition of width w. For instance, a graph has
tree-width < 1 if and only if it is a forest, it has tree-width <2 if and
only if it is series-parallel, and the complete graph K, has tree-width
n — 1. Graphs of tree-width < k are sometimes called k-decomposable or
partial k-trees. We refer the reader to [1-3, 6-9] for more information on
tree-width.

Tree-width seems to be a particularly suitable measure of the algorith-
mic complexity of a graph. Many NP-hard problems can be solved in
polynomial or even linear time, provided that we are given a tree-decom-
position of G of a width bounded by a constant (see [2, 5, 11]). Hence it is
desirable to obtain fast algorithms for finding tree-decompositions of
graphs of bounded width. The following is known:

(i) If w is a part of input, the decision problem *“is w(G) <w” is
NP-complete [1].

(ii) For fixed w, there is an O(| V(G)|**?) algorithm deciding whether
w(G) < w and giving a tree-decomposition of G of width w in the positive
case [1].

(iii) For every fixed w there exists an O(| (G)|?) algorithm deciding
whether w(G) < w [9]. However, the proof is purely existential (it does
not construct the algorithm) and the algorithm does not find a tree-decom-
position. ‘

(iv) When we do not insist on the exact determination of w(G), the
situation is better: there is a quadratic algorithm which either proves that
w(G) = w or gives a tree-decomposition of G of width at most 4w [11].
Such an “approximate” decomposition suffices for asymptotically fast
solution of many NP-hard problems. Let us remark that [11] is written in
terms of branch-width, which is a slight variation of tree-width, but this
makes only a technical difference.

(v) The problem of (ii) is easy when w < 1, a linear algorithm when
w = 2 is described in [4], and an O(n log n) algorithm when w = 3 was
found by Arnborg and Proskurowski in [3}.

We have a similar algorithm to that of (iv) which is faster, but proba-
bilistic:

1.1. THEOREM. Let w = 0 be a fived integer. There exists a probabilistic

algorithm which for a given graph G and a number p > 0 produces one of

FINDING TREE DECOMPOSITIONS 3

(i) or (iD) below in time O(n(log n)* + nlog nllog pl), where n = |V(G)|:

() a tree-decomposition of G of width at most 6w,
(i) a (possibly invalid) stitement that w(G) = w.

For each graph G with w(G) < w, the probability that (ii) is returned is at
most p and the result (i) is obtained in expected time O(n log n).

This result has the following corollaries.

1.2. CoroLLARY. Let w >0 be an integer and let p >0 be a real
number. There exists a (deterministic) algorithm which given an input graph
G on n vertices and with w(G) < w determines a tree decomposition of G of
width < 6w. The worst-case running time of this algorithm is o(n?), and
the probability that the running time is Ofnlog n) is at least 1 — p.

Proof. The algorithm is obtained by running the algorithm from Theo-
rem 1.1 for cnlogn time units, where ¢ is a suitable constant, and if it
does not yield the decomposition then switching to the quadratic algo-
rithm of [11}. O

A graph is a minor of another if the first can be obtained from a
subgraph of the second by contracting edges and deleting loops and
multiple edges thus produced. A lower ideal is a set & of graphs with the
property that if H € % and G is isomorphic to a minor of H then
G e F.

1.3. COROLLARY. Let p > 0 be a real number and let & be a lower
ideal with the property that some planar graph H & S Then there exists a
probabilistic algorithm which for a given graph G decides whether G € .
The worst-case running time of this algorithm is O(n (log n)?), the answer
“G € F is always correct and the answer “G & 5 may be wrong with
probability at most p.

Proof. By [9] there exists an integer w such that if w(G) = w then G
has a minor isomorphic to H, and hence G € . By [8] there exists an
integer k > 1 and graphs H,,..., H, such that G & % if and only if
there exists an i such that 1 < i < k and G has a minor isomorphic to ;.
Our algorithm proceeds as follows:

(1) We apply the algorithm of Theorem 1.1, and if it returns (ii) we
return “G & F,” otherwise we go to Step (2).

(2) From Step (1) we have a tree-decomposition (T, W) of G of width
< 6w. We apply the algorithm of [11] & times to test whether G has a

4 MATOUSEK AND THOMAS

minor isomorphic to H, for some i with 1 <i <k. If so we return
“G ¢ F,” otherwise we return “G € #.”

Step (1) takes time O(n(log n)?), Step (2) takes time O(n) (indeed, the
only step of the algorithm of [11] which takes more than linear time is to
find a tree-decomposition of G, but that has been replaced by (1)). The
answer returned in Step (1) may be wrong with probability <p by
Theorem 1.1; the answers produced in Step (2) are correct. O

Our second result is an improvement of the algorithm of Arnborg and
Proskurowski, as follows.

1.4. THEOREM. For w = 1,2,3 there exists an algorithm to decide
whether an input graph G on n vertices has tree-width < w, and if so then to
construct a tree-decomposition of G of width < w. The algorithm runs in
time and space O(n).

The paper is organized as follows. In Section 2 we develop a separator
technique needed for the proof of Theorem 1.1 in Section 3. Theorem 1.4
is proved in Section 4.

Let us introduce some terminology. Let G be a graph and let A, B C
1(G). We say that A, B are adjacent (in G) if there is an edge of G with
one endpoint in A and the other in B. By G \ 4 we denote the graph
obtained from G by deleting vertices of A, and all edges incident with
these vertices. Sometimes we will not distinguish between the subset
A € V(G) and the graph induced by this subset. This can cause no
confusion. If 4 € V(G) induces a connected subgraph then by contracting
A to a we mean contracting A to a single vertex which will be denoted by
a. Paths can have no “repeated” vertices, and if a, b are the endpoints of
a path we say that P is a path from a to b (or from b to a). A sepa-
ration of a graph G is a pair (G,,G,) of subgraphs of G such that
V(G U V(G,) = V(G), E(G) VE(G) = E(G) and V(G) - W(G,)
and V(G,) — V(G,) are not adjacent in G. For ¢ € V(G), the degree of
v, denoted by deg(¢') is the number of vertices of G adjacent to ¢.

We need the following proposition whose proof is left to the reader.

1.5. ProposiTION. Let G have tree-width < w. Then

(i) every minor of G has tree-width < w,
(i) there exists a chordal graph H with V(H) = V(G) and E(G) C
E(H) containing no subgraph isomorphic to K 5,
(i) [E(G)| < wlV(G)I.

(4

FINDING TREE DECOMPOSITIONS

2. WeLL-Seuirting CUTs

5.1, Dernimion. Let G be a graph and let a,b be two distinct
nonadjacent vertices of G. We define

R,(G,a,b) = (C € V(G): G \ C contains no path from a to b},
R(G,a,b) = {C € Ry(G,a,b):{a.b} N C = a1,
k(G,a,b) = min{|C|: C € R(G,a,b)},
M(G,a,b) = {C € R(G,a,b):|C = k(G,a,b)},

and
M(G,a,b) = M(G,a,b) U {{a},{b}}.

we call the elements of R(G, a, b) cuts between a and b or shortly cuts.
For C € Ry(G, a,b) we denote by a(C) (B(C), respectively) the set of
all vertices v € V(G) such that there exists a path from v to a (from ¢
to b, respectively) in G \ C (so that either «(C) = Jor a € a(C), and
aC) N BC) = D).

2.2. DerINITION. A system of Menger paths (between a and b in G) is
a system of paths Py, ..., P,, where each P, is a path from a4 to b and
V(P) N V(P) = {a, b} for i # j. A maximum system of Menger paths is a
system of Menger paths P,,..., P, where k = k(G, a, b). The vertices of
cach path in a system of Menger paths are linearly ordered by the relation
«yy precedes ¢ when passing from a to b.” Menger’s theorem says that a
maximum system of Menger paths exists. By applying the classical
Ford-Fulkerson algorithm for finding a maximal network flow one can
cither find a maximum system of Menger paths, or establish that
k(G,a,b) > m in time O(m|E(G)}).

If we interchange the role of a and b in some definition or statement,
we obtain a dual definition or statement. For example, B(C) is a dual
notion to «(C). A dual of a valid statement is obviously also valid.

2.3. Dernition. (i) Let C,,C, € R(G,a.b). We put C, VvV (,=
C,UC,\ (a{CP U alC,)) and dually C, A C;=C, U C,\ (BC) U
B(C,)).

(i) We define a relation < on My(G, a.b) by saying that C;, < C, if
a(C) < alC,).

The following lemma gives some properties of the above defined no-
tions.

6 MATOUSEK AND THOMAS

24, Lemma. () If C,,C, € R(G,a,b), then C, Vv C, € R(G,a,b)
and a(C, vV C,) = a(C)) U a(C,).
(i) If C,,C, € R(G, a, b), then B(C, v C;) < B(C|) N B(Cy).
(iii) The relation < is a partial ordering on My(G, a, b).
(iv) If C,,C, € My(G,a,b), then C, < C, if and only if B(C,) S
B(CP.
W) If C, € MG, a,b) and C, € R(G, a,b), then |C, Vv C,| < |C,l.
i) MG, a, b) is a lattice under the ordering <, with lattice opera-

tions vV and A, and M(G,a,b) is a sublattice of it. In particular.
M(G, a, b) has a unique minimal element and a unique maximal element.

Proof. (i) Clearly a(C,) U a(C,) is connected or empty. On the other
hand, every vertex adjacent to a(C,) belongs to «(C)) U C; and simi-
larly for a(C,); thus every vertex adjacent to a{C,) U a(C,) belongs to
(C, V Cy) U aC U alC,), so alC)) U alC,) is either empty or a com-
ponent of G \ (C, Vv C,) and this implies (i).

(ii) By symmetry, it suffices to show B(C, v C,) € B(C)). We have
C,c(C,uCyNalCPpNalC)ualC)ua (C)=(C,vVC(C)Uea
(C, VC(C, vV CINBIC, V) =D,aC, vV C)nBC, vV Cy) =
@, so0 C, N B(C, v C,) =D. Since B(C, V C,) is connected, does not
meet C,, and is empty or contains b, it must be contained in B(C).

(iii) Actually the relation < defines a partial ordering on the set of
all inclusion-minimal elements of R, (G, 4, b). Since the inclusion is a
partial ordering, it suffices to show that if C € Ry(G, a,b) is inclusion-
minimal, then «(C) uniquely determines C. If a(C) = @ then C = {a}
and if a(C) is adjacent to b then C = {b}, otherwise C must contain every
vertex of G \ a{C) adjacent to a(C) and the set of all such vertices forms
a cut between a and b, so (by inclusion-minimality of C) C is exactly
equal to this set (which is defined in terms of a(C)).

(iv) It suffices to show that a(C,) € a(C,) implies B(C,) < B(C))
(the converse implication follows by duality). The proof is rather similar to
(ii). The cases a(C,) = @ and C, = {b} are easily treated separately, so in
the sequel we assume that neither of them occurs. We know that
C, consists of all vertices of G \ a(C,) adjacent to «(C;) and so C, C
a(C,) U C,, therefore C; N B(C,) = @ and so B(C,) < B(C)).

(v) We may suppose that C, € M(G, a, b) (the cases C, = {a} and
C, = {b} are easy). Let D =C, VvV C, and let P,,..., P, be a maximal
system of Menger paths. Put D;=P.NnD, C,;,=P,NC}, and C,; =
P,N C,. We have |C ;| =1 and |C, | = 1 (since every cut must meet
each Menger path). We show that |D,| < |C, | (then |D| < D] + ID,]
+ o D+ IC N (P, U - UP) < IGD. TEC, ;N Gy, # @ then

FINDING TREE DECOMPOSITIONS 7

C.,.c C,,; and we are done, so let C, ;N C, ;= & and let u be the first
<mm2 of C i U Cy; (in the ordering of V(P). It suffices to show that
u & D, (then D] < IC, ;| +1C,) =1 <1C,,). We have u e C, N\ G,
or u € C, N\ C. In the first case the part of P, from a to u is not
intersected by Cp, 80 4 € a(C,) € o D), u & D and therefore u & D; the
second case is similar.

(vi) By (v), M(G,a,b) and M(G, a, b) are closed on the operations
v and A. C,V C, is the least upper bound for C, and C,, since
alC) VU alCy) = a(€, vV C,) is the least upper bound for a(C,) and
«(C.) in the ordering of subsets of V(G) by inclusion. By (iv) one may use
the duality for showing that C; A C, is the greatest lower bound of C,
and C,. O

The previous lemma allows us to treat MG.a, b) as a lattice (with the
above-defined ordering <) and thus speak about maximal (minimal)
clements of subsets of M(G, a, b).

In the following, let z: ¥(G) — [0, 1] be a real-valued function on V(G).
For a subgraph H of G we shall denote by z(H) the sum of z(¢) for all
i+ &€ V(H). Usually we shall have z(G) = 1. but we permit also 2(G) < 1
for technical reasons. In algorithms, we shall always assume that z is given
by a table and given ¢ € V(G), the value of z{(¢') can be found in constant
time.

25 DeriniTion. Let & € (0,1) be a real number. We call a set Cc
V(G) an e-splitting (relative to z) if for every component K of G \ C the
incquality z(K) < (1 — &) holds.

26. Lemma. Let A, B € M{(G,a,b), A <B, z(a(A4) <, z(B(B))
< ¢ and assume that there exists an (& + 8)-splitting C € R(G, a, b). Then
there exists a 8-splitting D € R(G, a,b) with |D < |Cl and D N a(A) =
DNB(B)=0.

Proof. We define D =(A Vv C) AB. Since A <B, it follows that
A #{b} and B # {a), and from this we see that D € R(G,a, b). By
Lemma 2.4(v) and its dual we have |D] < C|. By definition of the
operation A, B(B) g B(D) and so B(B) N D = &. Similarly, a(A4)N
(AV C)= and, since a(A) N B =@, it follows that D Nal(A) C
(AvCYUBYNalAd)=O.

Let K, = a(D), K, = (D), K;,...,K,, be all components of G ~\ D.
We have B(D) = B(B) U B(A v C) c B(B) L B(C) (by Lemma 2.4(ii)
and so z(B(D)) < 2(B(CH + z(B(B) <1 — b6 — ¢ + e =1 — &. Further,
D) ca(A v C)=a(A) U alC) (apply Lemma 2.4(i) and the dual of
Lemma 2.4(ii)) and so z(a(D)) <1 — 8. Finally, C Ca(A) U (4 Vv (),
AVCCBDYUD, alA) ca(D), and so C 2 (D) U D U B(D), and

8 MATOUSEK AND THOMAS

hence for i > 2,C NK; = @- Each K, is contained in some component of
G \ C. This gives zZ(K) <1~ 5—¢<1—28, and thus D is a &-split-
ting. O

27. Lemma. Let Py,.... P, be a system of Menger paths in G between
a and b. There is an algorithm which either finds out that kKG,a,b)>min
time OUE(G)) or finds the (unique) minimal element C of M(G,a,b) in
time O(/E(a(C) U C)D).

Proof. We use one step of the Ford-Fulkerson algorithm. When we
reformulate it in terms of undirected graphs and Menger paths instead of
networks and flows, we get the following: Let S & V(G) be defined
inductively:

i) aes, .
(i) ifu € S,andu =aoru € VIG) N (V(PYU - U V{P,)), then
also v € § for each {u,t} € E(G),
Gidifue S, uePp, and v precedes u on P, then also ' € S and
w e S for each {v,w} € E(G).

If b S, then k(G, a,b) > m (one can construct a system of m + 1
Menger paths); otherwise put C = {x,,..., X}, where x; is the maximal
vertex in S N V(P) (in the ordering of vertices of P). Then it is not
difficult to prove that C &€ M(G,a,b), a(C) =S\ C and-that there is no
C' e M(G,a,b) with C' < C. Hence C is as desired. The above descrip-
tion shows that S can be searched in time proportional to IE(HI. O

In the subsequent algorithms, we shall often reduce a graph G by
contracting some connected subgraph H of G (containing the vertex a)to
a (let us denote the resulting graph by G’ for a while). Suppose that
H ¢ «(C) for some C € R(G,a,b). Then also C € R(G’,a,b), alC) in
G’ arises from a(C) in G by the contraction of H, and if C e M(G,a,b).
then also C € M(G', a, p). Similarly, a system of Menger paths in G is
converted to a system of Menger paths in G'. If a function z: V(G) =
[0, 1] is given, we define a function z’ on V(G") by z'(a) =z(H).
27(v) = z(v) for v & V(H). If C is an e-splitting in G relative to z and
V(H) N C = &, then C is an g-splitting in G relative to z'.

28 LEmMMA. Let wbea fixed integer. There exists an algorithm with
running time OUE(G)) which given G, a,b, z as above, an integer k with
0 < k < w and a real number & > 0 with z(b) < z(G) — & produces either

(i) a (valid) statement that k(G,a,b) > k, or

(i) a set A € M(G.aqa, b) such that z(a(A)) < & and A is maximal
subject to this property, and a set B € My(G, a, b) such that B > A and B Is
minimal subject to this property.

FINDING TREE DECOMPOSITIONS 9

proof. We may assume that k(G,a,b) =k (this can be checked in
time OUEWG) and that we have a maximal system of Menger paths
P .., P, The cuts A, B as in (i) certainly exist, since z(al{a)) =
(D) =0<5c¢ and z(a({b)) = 2(G) - 2(b) > ¢. We proceed as follows:

{. By the previous lemma we find the minimal cut C € M(G,a,b)
and we check if 2(a(C)) < & if not then we return A={a), B=C
Otherwise We contract a{C)to a and we modify z and the Menger paths
accordingly (we make a work copy of G and = at the beginning, so the
original & and z are not destroyed). We mark the vertices of C adjacent
to b as «fixed” and the others as “free.”

2. We have a current quadruple G,a,b.z. current Menger paths
| L P, and a current C € M(G,a,b) which is just the neighborhood
of a. Each vertex of C is marked as either “free” or “fixed” in such a way
thatif r € Cis «“fixed,” there isno D € MS(G.a,b) with D>C,v €D
and z(a(D)) < €.

If there is no “free”’ vertex in C, we continue by Step 3. Otherwise we
take some “free” ¢ € C and modify the graph G and the Menger paths by
contracting {a, ¢} to a. We apply the procedure of Lemma 2.7 to G,a.b
with m =K, obtaining either the minimal element D of M(G, a, b) or the
answer (). If the latter case occurs or if -(a(D)) > &, we restore the
changes made on G and on the Menger paths by the contraction of {v, a}
to a, we mark the vertex v as «fixed” and repeat Step 2. If z(a(D)) < &,
we replace the current C by D (marking the vertices of D\ C: those
adjacent to b as «fixed” and the remaining ones as ~free’), we contract
(D) to a with the corresponding changes on the Menger paths and z and
we repeat Step 2.

3. We put A = C and we find B as any minimal element of the set
(B:reAd MG, a,b), where B, is the (unique) minimal element of
the set {D € M(G,a,b): D= A and v € D). Each B, canbe determined
in lincar time by searching for the minimal element of M(G,, a, b), where
G, arises from G by contracting a{A) U {t} to a (it may also happen that
i is adjacent to b or that k(G,, a, B) > k; then B, = {b}).

Steps 1 and 3 are executed in linear time. Step 2 is repeated at most
IV(G) times.

We observe that a vertex v € C which is “fixed” will never be removed
from the current C, and hence there are at most k repetitions of Step 2.
where a vertex becomes “fixed.” In other repetitions of Step 2 the time of
scarching for D is proportional to |E(a(D) U D)!, and the size of E(G)
.a.r.ﬁau%w by the contraction of a(D) at least by |E(a(D) VU D)} —w.
Therefore the total execution time is O(EWG))). If K(G,a,b) = k, the
algorithm terminates only with A having all elements “fixed,” and hence

10 MATOUSEK AND THOMAS

A is maximal with respect to z(a(A)) <& If D € My(G,a,b)and D > A,
then there is some ¢ € A \ D and then B, < D, thus B is minimal in
My(G, a, b) with the property B> A. O ;

When we shall choose random vertices of a graph G with a given
function z: V(G) = [0, 1](z(G) > 0), each vertex v of V(G) will have the
probability of choice equal to z(¢)/z(G) and the choices will be indepen-
dent. o

2.9, TueoreM. Letw > 3 bea fixed integer. Forevery 8 with 0 <8 <}
there exist ¢ = £(8) >0 and a probadbilistic algorithm, which for a given
graph G, a function z: V(G) — [0, 1) with 2(G) = 1 and a number p >
yields one of the following kinds of information in time O(E(G)| llog pl):

() An e-splitting C < V(G) with |C] <w.
(i) A (possibly invalid) statement that there is no 8-splitting C < G)
with |C| < w.

For each G, z such that there is some s-splitting C < V(G) of size at most
w, the probability that (ii) is (incorrectly) returned is at most p and the result
(i) is obtained in expected time OUEG)HD.

Proof. We fix & = &(8) = 5/(w? + 1). We shall describe a recursive
procedure P(G, z, t). Its parameters are:

—a graph G,
__a function z: V(G) = [0, I]with 1 —& < 2(G) < 1and z(C) <«
for every C ¢ V(G), |C| < w, and

—an integer ¢t with 0 <1 < w.

The procedure P(G, z,t) returns either an e-splitting of G of size at most
¢, or an answer “NO.” The description of P(G, z, t)is

1. Let K,,...,K,, be all components of G. If z(K;) <1 —¢ for
each i; then we return C = &. Otherwise for ¢ = 0 we return “NO”; for
t> 0let G, = K, for the (unique) K; with z(K))>1—¢ and let z, be
restricted to G.

2 We choose vertices a,b € V(G,) at random. If a =b orf{ab}€E
E(G,) then we return “NQ”"; otherwise we put k = 1 and go to Step 3.

3. If k> t, we return “NO.” If 2(b) = z2(G,) — ¢ we also return
“NO.” Otherwise we apply the procedure of Lemma 2.8 to k, G = G, a.
b, and . If the answer (i) is returned, we put Gy, = G, Zx+1 = Zpo WE
replace k by k + 1, and repeat Step 3. Otherwise A, B as in 2.8(ii) were
returned. For B # {b} we check if B is an e-splitting in G, and if yes, we
return the answer C = B; otherwise we go to Step 4.

FINDING TREE DECOMPOSITIONS 11

4. We do Step 5 for vertices ¢ € A N B \ {a. b} until an e-splitting is
found or all vertices U are exhausted. In the latter case we go to Step 6.

5. Let G'=G\{t} and let z’ be z restricted to V(G"). We call
PGzt 1). If some e-splitting C’ of G’ of size <t — 1is found, we
return € = €'V {¢}, which is an e-splitting of G of size < t. Otherwise if
“NO™ was returned, we continue with the next vertex .

6. If ANB =+ @, o0r if A and B are adjacent in G, then we return
~NQ.” Otherwise let G, arise from G, by contracting 4 U a(A) to a
and BUB(BY o b and let z,,, be the accordingly modified function z.
we replace & by k + 1 and we go to Step 3.

“This completes the description of P(G,z,1). In each call of P(G, z, 1),
Steps | and 2 are executed at most once, Steps 3 and 6 at most { < w
times, and the loop in Steps 4, 5 is executed at most ! - 2t < 2w? times
(since 141 1Bl < k <t in Step 4). Each execution of P(G, z,t) invokes
PG, ', ¢ — 1) atmost 2w? times and this recursion has depth at most w.
Each clementary step in the procedure P takes a linear time in |E(G)|
and the size of G never increases, so the procedure terminates in time
OUEG)HD (a more careful implementation might considerably reduce the
constant of oqono:mosmza\ as well as yield a larger ¢ for a given 6, but we
were not able to remove the exponential dependency of the constant of
proportionality on w).

It is casy to check that if the procedure P(G. z, t) returns some C, then
it is really an e-splitting of G of size at most t. Now we shall show by
induction on ¢ that the following statement holds for ¢ = 0,1,...,w:

If there is a (wi + De-splitting C of G of size ar most , then
MG, z,t) returns an g-splitting of G with probability at least (=)
p, = &'(1—=2¢e).

For if @ is an e-splitting, then this is found out in Step 1, and hence the
statement holds for ¢ = 0. In the following let ¢ > 0 and we shall assume
that @ is not an e-splitting (so we obtain a connected graph G, with
:(G;)) > | — ¢) and, further, that C € V(G,) is a (wt + De-splitting of G,
of size <t

let K,,..., K, be all the components of G, \ C numbered in such a
way that z(K,) = 2(K,) = -+~ = z(K,). Since C is a (wt + De-splitting,
we have 2(K,) < 1 — (wt + De. By the assumption about the parameters
of the procedure P(G, z,t), we have 2(C)<eandso z(G \NC) =1~
2¢ > 1 — (wt + De + ¢; therefore m > 2 and 2(K) + - +z(K,) z &
.._._Em the probability that a randomly chosen vertex a does not belong to C
is at least 1 — 2¢ and, if this happens, the probability that a next randomly

12 MATOUSEK AND THOMAS

chosen vertex b lies in another component of G, N C than a is at least ¢.
Therefore the probability that C € R(G,, a, p) is at least (1 — 2¢)e.

Now we shall prove the following statement by backward induction
on k:

Suppose that the execution of Step 3 starts for some k, Gy, a, b such
that k < t,k(G,,a,b) = k and there exists a (wt — k + 2e-splitting
C, € R(Gy, a,b) with |C,l <t. Then the probability that the
procedure P(G, z,) terminates by returning an g-splitting s at least
Pr-t

(<)

If the statement (* +) holds for some ¢ and k = 1, then this establishes
the validity of (=) for this ¢, since after execution of Step 2 the hypotheses
of (+ %) are satisfied with probability at least (1 - 2¢)e.

Suppose that (x) holds for ¢t < s (s = 1) and that (= %) holds for t =
and k=m+1,m+ 2 ..., s (the second hypothesis is void for m = s).
Further suppose that the hypotheses of (* «) are satisfied for t = and
k = m. We shall show that (% =) holds also for t = and k = m.

Among others, the hypotheses of (* «)fort=sand k=m imply that
2p)<1—(ws+De<1—2ex 2(G,) — €.Since C,, € R(G,,,a,b)and
|C,,| <5, we have k(G,.a,b) <s. If k(G,,a,b) > m, then Stép 3 is
immediately repeated with k + 1 instead of k, and hence (* %) for £ = 5.
k = m follows from the validity of (= *) for t =5, k=m+ L

Now suppose that k(G,.a,b)=m. Then the cuts A, B € M(G,,.a.b)
as in 2.8(ii) are found in Step 3. Since A is maximal with respect to the
property 2(a(A)) < &, it follows that 2{a(B)) > e. If also z(B(B)) > &.
then B would be an e-splitting of G, (and also of G) of size m < t and it
would be returned to Step 3. Assume that z(B(B)) < &. Then the assump-
tions of Lemma 2.6 are satisfied for A4,B,C = C, 6= (ws — m + De.
and so there exists a (ws —m + De-splitting C,,1 € R(G,,, a,b) with
1Coin! €5 A NCp =BBINCH = @. Let us distinguish two
cases:

(@) Cpey N(AUB) # @ letreC,. N(AV B). Then C,,, 11 N
(v} is a (ws —(m + 1) + 2e-splitting in G (v} of size <s—1 and
by (%) for t=s—1 (note that ws — (m + PD+2zws-D+Da
(w(s — 1) + De-splitting is found in Steps 4 and 5 with probability at least
Ps_y, SO IN this case (* %) holds for £ =5, k =m.

(i) C,p N(AUB)=D. First we show that this cannot happen for
m = s: if it did, then €, 1 would be an element of M(G,,, a, b) (since
k(G,,, a,b) = m = s) with A< C, . <B, which is impossible since B
was minimal with B > A.

FINDING TREE DECOMPOSITIONS 13

Now let nm > 5 We have C,, . N(A U B U a(A) U B(B) = &, thus
Cpat 18 also an element of R(G,, ., a,b) and 2 (ws — (m + D) + 3)e-
gplitting Of G, . of size =3 Further, k(G,, .. a,b) = m + 1, since if it
were k(G0 & p) = m, we would get a cut D € M(G,,,,a,b) of size m
and this would be also an element of M(G,,.a.b) with A < D < B, which
is impossible- Thus the assumptions of (* =) are satisfied for # =5 and
L=m+1 and this implies (=) also fort =5, k=m.

Now the algorithm for Theorem 2.9 will be the following: First we check
if there is €S V(G) with |Cl <w and z(C) 2 ¢ (this can be done in
lincar time by finding the vertices with w largest values of 2) and if yes, we
return C as an answer (it is certainly an ¢-splitting). In the opposite case
the tripte (G, z,w) satisfies the assumptions on parameters of the proce-
dure PG, 2, D). We shall repeatedly call the procedure P(G, z,w) until
an e-splitting 18 found (and in this case we immediately return it) or until
the number of calls reaches Q = [llog pl/Hog(l — p.)il (and in this case
we return the statement (ii)). Let 8 > 0 be a real number and let £ = £(8).
If a &-splitting of size < w exists in G, then in each call of P(G, z,w) the
probability that it does not find an e-splitting is (by (=)) at most 1 — p,,
and the results of different calls are independent, so the probability that
an e-splitting is mot found in Q calls is at most (1 -p)° <p The
expected number of calls needed for finding an g-splitting is estimated by
po + 2000~ p.) +3p(L— p,)? + -+, which is finite and depends only
on p,,: thus the expected running time for obtaining a positive solution is
ONEG)). O

3. FINDING A TrEe-DECOMPOSITION

In this section we prove Theorem 1.1. If Z C V(G) is a nonempty set,
we assign to it the characteristic function zz: 2,(t) = 1/1Z] for v € z
and z,) =0 otherwise. Let w =3 be a fixed integer. In view of
Theorem 1.4 it suffices to prove Theorem 1.1 for w = 3.

1.1. Lumma. Let G be a graph of tree-width <w and let Z < V(G),
7 # @. Then there exists a (1/3)-splitting C c V(G) of size at most w (with
respect to the characteristic function of Z).

Proof. This follows from (2.6) of [6). O

Let Z c V(G). A tree-decomposition (T,7) of G will be called a
Z-decomposition if it has width < 6w and there exists a vertex t € T,
called a Z-vertex, such that Z < 7(t).

fn shall describe two recursive procedures A(G.Z,q) and B(G, Z, q)
which will be used for the algorithm of Theorem 1.1. The parameters of

14 MATOUSEK AND THOMAS

the procedures are: a graph G, a set Z c V(G) with 1Z| < 6w (with
1z\ < Sw for B(G,Z,q) and a real number g > 0. Both procedures
either return a 7.-decomposition of G of width < 6w or an answer “NO,”
which should be interpreted as @ statement “‘the tree-width of G is =w.
This last statement may be false, but with probability bounded below 1 by
some function of g and 1V(GH. The description of the procedures
contains a constant Ny (depending on W only) which will be determined
later. The description of AG,Z,q) s

1. We check whether |E(G) < wlV(G)]; if not we return “NO.”
This answer is correct by 1.5ib).

2. 1f V(G| < Ny, we proceed by brute force (examining all possible
amnoanowio:mv. This takes only 2 constant time and the answer is
certainly correct. For WG > N, we go to the next step.

3. We find a (1/3)-splitting C c V(G) relative t0 Zz with |Cl €w
(for Z = & we choose C = @). This can be done in time OUE(G)) by
checking all partitions of Z into Zy, Zy and Z, with \Z)12, <
2/3NZ), |Z,) < w; for each such partition we compute if there is a cutsct
of size <w — |Z3] separating Z, from Z,in G\ Z; (for details see also
(1. 1f such a C\wv.mo:z.—:m does not exist, we return “NO” (this is a
correct answer by Lemma 3.1). Otherwise we can produce a separation
(G,,G)of G such that V(G N (G,)| <w and (G VG-»n
Z\ < 4w, V(G N VG NZ < 4w. Let Z;= V(G N V(G-) Y
W(GY)NZ), i= 1,2. Clearly |zl < 5w. We call B(G,Z.q) and
B(G,, Z2, 9)-

4. 1f one of the above calls yields answer “«NQ,” we return “NO. I
one these “«NQ” answers was correct, our «NQ™ answer is also correct DY
Proposition 1.5(1). If neither of the calls gives “NO,” we have a Z -decom-
position (T,,) of G, with Z-vertex f,. Let i, & V(TP Y V(T,) be a new
vertex. We define a pair (T, 7) by W) =WT)u V(T,) U {to) ET) =
E(T) VY E(T,) L {1,) e), T = r()fort € V(T) = (1)
for ¢ € V(T,), and #(t,) = Z. Then (T,7)isa 7-decomposition of G and
we return it-as an answer.

The description of B(G,Z.q) Steps 1. 2, and 4 are the same as for
A(G, Z,q). Step 3 is replaced by

3. We apply the Eoggzm:n algorithm of Theorem 2.9 for 8 = L 10
the graph G, function z = ZpGr and probability p = 4- If the answer (ii)
is obtained, we return «NQO” (which may be incorrect). Otherwise we arc
returned some e-splitting C c V(G)with |[Cl =w (where ¢ = e(1/3)is a5
in Theorem 2.9). We can produce 2a separation (G,G)of G such that
G = - VG U= 1,2) and G N V(G s w. We put
zZ,=WGHN WG, UiZn WG, i=12 Since we assume that
1Z] < 5w, we have |Z,| < bw. We call AG,,Z,,@) and A(G1:Zx.a):

B A

FINDING TREE DECOMPOSITIONS 15

To obtain ouf algorithm for Theorem 1.1, we call A(G.9,
P \:\AQ:J. To estimate the running time of this algorithm, let aln,q)
(bln.a) respectively) be the worst-case running time of AG,Z,q)
(B\G.Z.a» respectively) for IV(G)| < n.Steps 1-4 are executed in linear
time. Step 3 s executed in time O(E(G) - llog g\). This yields recurrent

formulac
a(n,q) < const for n < Ng»

aln.q) 0+ max{b(n, +w,q) +b(n2 ¥ woq)in +ma<nds

-
b(n,q) < const for n < Ny»

p(n.q) < O(nilos g!) + max{a(n + w.q) +alny +w.a);

n, +:um=“=..m31mvi.

If we choose N, > dw/e (another requirement on N, is made later),
then (1 —&n+ < (1 —&/2)n for n = N, and one can verify that
then atn, @) = O(n log nilog g)), and hence the total running time of our
algorithm is O(ntlog n)log n + \log pI). The expected time for success-
ful completion of the algorithm is derived similarly.

The algorithm can produce an incorrect answer only at Step 3" Obvi-
ously Step 3’ can be executed at most aln, q) umes, and the probability
that it gives an incorrect answer at least once is thus at most

q-a(g.n) = (p2/n*) - const - 1 log? nllog pl =P

for n = Ny if No is sufficiently large. The correctness of the algorithm
foltows from the description.

4. Tue Case w = 3

In this scction we prove Theorem 1.4.

4.1. DuriniTion. A reduction R is a pair (H, d), where H is a graph
and & VIHY 2w + 1 is a labeling of vertices of H by ordinals (finite
ones and w), such that there exists some ' € V(H) with d(r) = 0. We say
that ¢+ € V(H)is an inner certex of R if d(r) =0, otherwise ¢ is an outer
vertex. If d(v) = o then U is an unbounded vertex, otherwise U is @
:c:.:n& vertex. We say that R occurs in G and that ¢ is an occurrence of
R in G, if ¢ is an injective mapping from V(H) into V(G) preserving
edges (that is, if u, v are adjacent in H, then Pu), W) are adjacent in G)
==a.w:ns that for every t € V(H) the number of edges joining U)o
V(G) \ Im ¢ is at most d(v). In this case we define a new graph-the

16 MATOUSEK AND THOMAS

result of application of R on G—which arises from G by deleting all
J-images of inner vertices of R, by adding a complete subgraph on the set
of y-images of outer vertices of R and by deleting multiple edges pro-
duced by this. If ¢ is an occurrence of a reduction (H,d)and v € V(H)is
an inner (outer, bounded, unbounded) vertex of R, then we also call ()
an inner (outer, bounded, unbounded) vertex of the occurrence .

We shall represent reductions by pictures of their underlying graphs H
with vertices labeled by the values of d according to the following
conventions: the bounded vertices are represented by small black circles.
the unbounded vertices by small empty circles, and the labels 0 and w are
omitted.

42, DeriniTioN. We say that a set § of reductions is safe for a class
F of graphs, if an application of a reduction from S to a graph presernves
both its membership and nonmembership in . A set S of reductions is
complete for & if for every non-null graph G € & there is a reduction
R € § occurring in G.

Arnborg and Proskurowski [3] proved that the set of reductions
(a),...,(H of Fig. 1 is safe and complete for the class of graphs of

° o—e o—e—0
a b c
d e t
: 3
2]

Fic. 1

FINDING TREE DECOMPOSITIONS 17

ree-width = 3 and that the set (a), (b), (¢) is safe and complete for the
class of graphs of tree-width < 2. This implies that a graph G has
(ree-width = 3 if and only if it can be reduced to the null graph by
repeated application of these reductions. Moreover, it is easy to construct
a :co-annoavomio: of G of width < 3 from the recorded sequence of
these reductions. We need to strengthen the result of Arnborg and
proskurowski as follows.

1.3, LEMMA. The set of reductions @)....,() and (g of Fig. 1 is safe
and complete for the class of graphs of tree-width < 3.

Proof. The safeness follows from 1.5(1), because if H is the graph
ohtained from G by applying one of the reductions (a),.- .. ,{e) or (g), then
IS isomorphic to a minor of G.

T prove that the set is complete let us suppose for a contradiction that
¢ is a non-null graph of tree-width < 3 such that none of the reductions
(a). (). (g) occurs in G. Then each vertex of G has degree at least 3.
We may assume that G is connected.

By 1.1GD there exists a chordal graph H containing no Ks with
v(i) = V(G) and E(G) c E(H); we deduce that H is not a complete
graph. We say that a vertex t € V(H) is a 1-leaf if its neighbors form a
complete subgraph in H. We say that ¢ € V(H) is a 2-leaf if it is is a
{-{caf in the graph arising from H by deleting all 1-leaves. By a well-known
property of chordal graphs, each chordal graph contains at least one 1-leaf
and this implies that each connected chordal graph which is not a
complete graph contains at least one 2-leaf.

Let u be a2-leaf of H and let vy,.. ..Uy e all the 1-leaves adjacent to
it. Denote X = {u} U {e {u,0} € E(H) Aty -0 U By the definition
of a 2-lcaf, we get that the subgraph induced by X is complete and so
|X| < 4. The degree of each ¢, in G is 3 (if it were 4 we would get K5 in
i) we denote by N, the set of neighbors of ¢; in G. We have N, ¢ X by
the definition of 1-leaf. Necessarily m < 3, since otherwise the reduction
() would have to occur in G. This implies that the degree of u in G is at
most |X] =1 +m <6

We shall consider ¢, and its neighbors, let us call them u, u,, and u,.
Then if (w1} € E(G) or {u,u,} € E(G), we have the occurrence of (g)
(sce Fig. 2), and so we assume the contrary. But u has degree at least 3,
and thercfore m > 2. Consider v, and its neighbors. These cannot be
{1, 1, 1} (since we would have an occurrence of (d)); let it be u, i, 13
(then X = {u, uy, u,, us}). As before we assume {1, uy} & E(G) (otherwise
() occurs), so u having degree at least 3 forces m = 3. Now u, cannot be
a neighbor of vy (reduction (d) would occur) and so its neighbors are just
Uty uy NOW U, Ugy U U Uy, Uy U3 induce an occurrence of (e), a con-
tradiction. O

18 MATOUSEK AND THOMAS

Our algorithm for recognition of graphs of tree-width < 3 will proceed
by applying the reductions from Lemma 4.3 (in the sequel, by a reduction
we shall mean a reduction from this set) on a current graph, yielding a
(smaller) modified graph, until either the graph becomes null, or none of
the reductions is applicable.

The graph in our algorithm will be represented as follows: Vertices are
referred to by numbers 1,2,..., n, and for each vertex we shall maintain a
doubly linked list of edges incident to it (in which an edge may appcar
several times). The entry for each edge contains the number of the other
end of that edge and a pointer to the entry for the same edge in the other
end’s edge list.

We need two technical lemmas.

4.4. LEmma. Let G be a graph and let U C V(G) be a set of some
vertices of degree 3 in G. We call u,v € U equivalent if they have the sume
set of neighbors in G. The classes of this equivalence on U can be found in
time O(LU)) (provided that we have a list of members of U).)

Proof. We form the set V' of all neighbors of vertices from U ([} <
3|U]) and a graph H= W U U, {u.oy ue U eV, {urte E(G).
having at most 3|U!| edges. Now for each a € V we find U, = {1 € L
(u,a) € ECH)}Y and V, = {v € V\ {a)}; {u, 1} € E(H) for some u € U,}.
We form H,, which will be the restriction of H to U, U V,. Now similarly
for each b € V,. we make U,, (the set of neighbors of b in H,), V,, (the
set of neighbors of U,, in H, \ {b}), and the graph H,, (the restriction of
H to U, U V,,), and finally for each ¢ €V, we find U,,, (the set of all
neighbors of ¢ in H,;). Now the equivalence classes on U are just the sets
U,,. (and each is obtained exactly once if we take only a,b,¢ with
a < b < c in an arbitrary ordering of 1) and the whole procedure takes a
constant time per edge of H (since each edge of H occurs in at most two
graphs H,, each edge of H, occurs in at most one H,, and each edge of
H,, is incident to a vertex of at most one set Up,). O

Fic. 2

FINDING TREE DECOMPOSITIONS 19

' 45. Lemma. Giten a list of k integers in range [1, n), one can detect

(and delete) all multiple occurrences of items in this list in time O(k) and

spuce on).

Proof. We shall use a table indexed by 1,2,...,n, where the intended
meaning of entry i is whether the element i has already been encoun-
tered. In the first passage through the list we initialize the entries for the
members of the list to “false,” and in the second passage we can already

detect the multiple occurrences. O

1.6. Proof of Theorem 1.4. We prove the theorem for w = 3, for the
case w = 2 can be obtained by a straightforward modification, and the
cuse w = | is easy.

We wish to proceed by applying the reductions. Every edge of an
occurrence of a reduction in a graph G is incident to a vertex of degree
< 6 in G, and given a vertex U of G of degree < 6 one can find all
accurrences of reductions (a), (b), (c). (2),(g) having ¢ as a bounded vertex
in constant time. Occurrences of reduction (d) can be dealt with using
Lemma 4.4, Also, insertions of edges and deletions of edges incident to
inner vertices are easily handled in constant time, but what is not so
obvious is how to delete multiple edges. We proceed as follows. If a vertex
has degree at most 6, we delete multiple edges incident to it immediately;
otherwise we delay the deletion and process multiple edges in batches.

{.et us describe the algorithm now.

Step 1. We check if |EG)] > 31V(G)i and if so we answer that the tree-
width of G is > 3 and stop. Otherwise, we put p = 1, H=G, =
G,-0C(r) = 0,and DE() = deg (v) forevery v € V(G), and le
§, be the set of all vertices of G, of degree a
most 6.

Step 2. Let §' be the set of all vertices v € S, with degg (v) < 6. We
find all occurrences of reductions (a), (b), (c), (e), Aww in H=G,
with a bounded vertex in S'. and the classes of vertices of ' o
degree 3 having the same neighborhood in H. Thus we represen
all occurrences of reductions with a bounded vertex in S'. We g
to Step 3.

Step 3. We initialize S, to the empty set. For each reduction R founc
in Step 2 we check if it is a reduction in H and if so we do th
following.

Let uy,...,u,, be the inner vertices of R and let vy,...,t; be th
outer vertices of R. For every edge e = {u;, ¢} incident with som
u, (i=1,...,m) we delete e from H, and call Step 5 wit
w, = u,,w, = r. For every pair t.t; (i, = 1,...,1,i # j) of oute
vertices we add an edge joining ¢, t; to (the edge-list of) H an
call Step 5 with w = ¢, w, = 1.

After exhausting all reductions we go to Step 4.

20 MATOUSEK AND THOMAS

Step 4. For each equivalence class E found in Step 2 we do the following.
Let N = {u,.u,, u;} be the common neighborhood of vertices of
E in G, We first discard all vertices whose neighborhood in H is
not N. Let {r,...,t;} be the remaining vertices of E. If [< 1 we
go to the next equivalence class. Otherwise for every i = 1,... A
and every j = 1,2,3 we delete the edge {v;,u;} from H and call
Step 5 with w, = U Wy = Uj and for every i,J = 1,2,3with i #J
we add an edge joining u,, u; 10 (the edge-list of) H and call Step
5 with wy = u,w, = U
After exhausting all equivalence classes we go to Step 7.

Step 5. We place vertices w,,w, on a stack and repeat Step 6 until the
stack becomes empty. Then we return.

Step 6. Pop a vertex w from the stack. Add w to S, - Increment 0C(w)
by one. If DE(w) <12 or if OC(w) > DE(w)/2 remove the
multipte edges occurring in the edge-list of w in H, set OC(w) to
0, set DE(w) to deg,(w) and push all the other ends of deleted
edges on the stack.

Step 7. Weput G, = H.I G, is the null graph we answer that the
tree-width of G is < 3 and stop. Otherwise we go to Step 8.

Step 8. If §,., = @ we answer that the tree-width of G is > 3 and stop.
Otherwise we replace p by p + 1, and go to Step 2 for next
iteration.

This completes the description of the algorithm. We claim that after the
completion of Step 5 the following conditions are satisfied for every
v e V(H): ‘

(1) 0C(r) < DE(0)/2.
() |DE(v) — degy(W)l < oc(v),

(3) if degy(r) <6 then DE(r) = deg,(v) and the edge-list of
contains no duplicate entries.

For (1) and (2) follow easily. From (1) and (2) we deduce that DE(r) <
2 deg (), and hence (3) follows. It follows from (3) that deg,(¢') < 6 can
be decided in constant time.

(4) If degy(r) <6 at any time during the execution of the algorithm.
thentv € S, for some p = 1,2,..-.

For either degg(t) < 61in which case ¢ € S, or at some stage of say the
pth iteration deg,(t) =7 and we delete an edge incident to U Then ¢ is
included in S,., at Step 6, as desired.

Now we prove the correctness of the algorithm. The answer of Step 1 i
correct by Lemma 1.5(iii), the answer of Step 7 is correct by Lemma 43 1t
remains to prove that the answer of Step 8 is correct. So supposc for a

R

FINDING TREE DECOMPOSITIONS 21

contradiction that the algorithm terminated at Step 8 with p =m, with
s .. =9 and with G, 1 (non-null and) of tree-width < 3. By Lemma
.“..m there exists an occurrence ¢ of a reduction in G, let vy,..-, 0, be
bounded vertices. Then ¢; € S, US, UL S, forevery i = 1,...,n

its
TR Na N G PRI

py (4). and let i, be such that t; € §; and {r..
5.) = @ i H -

The occurrence of ¢ did not exist continuously in H since the beginning
of the jth iteration, for otherwise it would have been detected and
destroyed. Therefore ¢ was created (or recreated) at a later step, but at
the time it was created, a bounded vertex of & wasaddedto §;, U -+ VY
S o.a contradiction. This proves the correctness of the algorithm.

\._,_.c cstimate the running time of the algorithm we first estimate the
running time of each step. Step 1 takes time O V(G)]), Step 2 takes time
s, by Lemma 4.4, Steps 3 and 4 also take time O:va. because all
the deletions and additions of edges can be done in constant time. Step 3
tukes time O(D) cach time it is called. Steps 7 and 8 take time O(1). Before
we examine Step 6 we need the following.

(5) Let | be the total number of edge insertions and edge deletions
performed during the execution of the algorithn. Then 1 = O(V(G).

For there are at most three additions and at most 12 deletions per
reduction, and the total number of reductions applied is < V(G
begause cvery application of a reduction decreases |V(H).

Step 6 is called at most 21 times, because a vertex is pushed on the stack
only after deletion or insertion of an edge. Let w € V(H). We say that
Step 6 is executed using w if w is the vertex obtained at the beginning of
Step 6. If Step 6 is executed using w, and DE(w) <12 or OC(w) <
DE(w)/2, then the execution time is O(1): otherwise it is O(DE(w) +
0C(w)) = O(OC(w)) by Lemma 45. But in the latter case there are
0OC(w) — | previous executions using w in which the execution time was
constant. Therefore the total time spent in Step 6 is O(IV(G)D). Since
obviously 18,1 + 1831 + - =< 21, we deduce that the overall running
time is OUV(G). O

5. DiscussioN aND OPEN PROBLEMS

The algorithm of Theorem 1.4 is relatively simple and practical, but the
algorithm of Theorem 1.1 is not, because the constant of proportionality is
enormous cven for small values of w. A natural question is, of course,
whether there is a deterministic algorithm with the same running time. A
related problem is whether there exist a constant C > 0 and a polynomial
algorithm which given a graph G and an integer w > 0 either produces a

22 MATOUSEK AND THOMAS

tree decomposition of G of width = Cw, or (correctly) answers that the
tree-width of. Gis = w. Letus remark that such an algorithm exists if we
replace Cw by Cw?*. Finally. does there exist 2 “local nsmnmnnnle:o:.. of
graphs of tree-width < w for w > 3, similarly as in Lemma 4.3 for w = 37

ACKNOWLEDGMENT

We are indebted to Hans L. Bodlaender and Eva Tardos for pointing out oversights in an
earlier version of this paper. We also thank the referees for helpful comments.

REFERENCES

1. S. ARNBORG, D. G. CORNEIL AND A. PROSKUROWSKI, Complexity of finding embeddings

in a k-tree, SiAM J. Algebraic Discrete Methods 8 (1987), 277-284.

2. S. ARNBORG AND A. PROSKUROWSKIL. Linear time algorithms for NP-hard problems on
graphs embedded in k-trees. Discrere Applied Math. 23 (1989), 11-24.

3. S. ARNBORG AND A. PROSKUROWSKL Characterization and recognition of partial 3-trees.
SiaM J. Algebraic Discrete Methods 7 (1985). 305-314.

4. 3. A. WaLD AND C. J. COLBOURN. Steiner trees, partial 7-trees and minimum 1F1
networks, Networks 13 (1983), 159-167.

5. 5. MATOUSEK AND R. THOMAS. On the complexity of finding iso- and other marphisms
for partial k-trees, submitted.

6. N. ROBERTSON AND P. D. SEYMOLR. Graphs minofs. 1L Zmo_..:_s_En aspects of tree-width,
7. Algorithms 7 (1983). 309-322.

7. N. ROBERTSON axp P.D. SEYMOLUR, Graph minors. 111. Planar tree-width. J. Combin.
Theory Ser. B 36 (1984). 49-64. .

8. N. ROBERTSON AND P. D. SEYMOUR. Graph minors. 1V. Tree-width and well quasi-order-
ing, J. Combin. Theory Ser. B 48 (1990), 227-254.

9. N. ROBERTSON anp P. D. SEYMOUR, Graph minors. V. Excluding a planar graph.
1. Combin. Theory Ser. B 41 (1985), 92-114.

10. N. ROBERTSON AND P. D. SEYMOUR. Graph minors. X. Obstructions to tree-decomposi-
tions, submitted for cccznu:os.

11. N. ROBERTSON AND P. D. SEYMOUR, Graph minors. XI111. The disjoint paths problem.
submitted for _uzwznm:o:.

i I | S

JOURNAL OF ALGORITHMS 12, 23-37 (1991

An improved Algorithm for the Planar
3-.Cut Problem

Xin He

Departmient of Compuer Science, State University of .zw:,. York at Buffalo,
Buffalo, New York 14260

Received August 1, 1988: revised November 28,1989

A 3-cut of a connected graph G is a subset of edges which. when deleted,
separates G into three connected components. In this paper we present an
Ot tog 1) atgorithm for finding 2 minimum 3-cut in planar graphs. Qur algorithm
improves the best previously known algorithm for the problem by an O(n/log)
factor. ¢ 1991 Academic Press, Inc.

1. INTRODUCTION

et G =W, E)be a connected simple graph (i.e.. nO self-loops and
multiple cdges) with n vertices. A k-cut of G is a subset of edges E, € E
such that the graph G = (V,E — E)) has k connected components. The
minimum k-cut problem is to find a k-cut in G with minimum number
of cedges. This problem is NP-complete for arbitrary (11} Recently
Os_amcra._% and Hochbaum showed that the problem can be solved in
O(n*’) time for a fixed k [11].

We consider in this paper a special case for this problem: Finding a
minimum 3-cut in planar graphs. This special case is interesting not only
4% an cxtension of the ordinary 2-cut problem, but also because of its
applications in cutting plane methods for the traveling salesperson prob-
lem {4].

There is a trivial 3-cut of size at most 10 in any planar graph G: Let u
..n.: vertex in G with minimum degree and let E, be the set of the edges
adjacent to u. Since the minimum degree of the vertices of G is at most 3
2L £ <5 Let @ be a vertex in the graph G — {1} with minimum
degree and let E; be the set of the edges adjacent to U As above we have
mu.m 5. The union of E, and E; is a 3-cut with size at most 10. To find 2
minimum 3-cut we simply check all subsets of edges with size < 10. This

23
0196-6774 /91 $3.00

Copyright € 1991 by Academic Pross. b
All rights of _‘nvaca:o:c: in any form reseined

