Almost-tiling the plane by ellipses*

KRYSTYNA KUPERBERG

Department of Mathematics
Auburn University
Auburn, AL 36849-5310
U.S.A.

e-mail: kuperkm@mail.auburn.edu

JIRT MATOUSEK

Department of Applied Mathematics
Charles University
Malostranské nidm. 25, 118 00 Praha 1
Czech Republic
and
Institut fiir Theoretische Informatik
ETH Ziirich, Switzerland
e-mail: matousek@kam.mff.cuni.cz

WLODZIMIERZ KUPERBERG

Department of Mathematics
Auburn University
Auburn, AL 36849-5310
U.S.A.
e-mail: kuperwl@mail.auburn.edu

PAVEL VALTR

Department of Applied Mathematics
Charles University
Malostranské ndm. 25, 118 00 Praha 1
Czech Republic
and
DIMACS Center
Rutgers University, NJ, U.S.A.

e-mail: valtr@kam.mff.cuni.cz

Abstract

For any A > 1 we construct a periodic and locally finite packing of the plane with ellipses
whose A-enlargement covers the whole plane. This answers a question of Imre Bérany.
On the other hand, we show that if C is a packing in the plane with circular discs of
radius at most 1, then its (1 + 10~%)-enlargement covers no square with side length 4.

1 Introduction

Let C be a system (finite or infinite) of centrally symmetric convex bodies in R? with disjoint
interiors; we call such a C a packing. For a real number ¢ > 0 and for C € C, we let C*¢
denote C enlarged by the factor 1 + ¢ from its center, that is, C* = (1 +¢)(C —¢) + ¢, where
¢ stands for the center of symmetry C. Let us call the closure of the set C¢\ C the e-ring of
C. We call the system C° = {C®; C € C} the (1 + €)-enlargement of C.
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For a class Cp of centrally symmetric convex bodies in IR?, we define the Bdrdny number
of Cy as the infimum of the numbers £ > 0 such that there exists a packing C C Cy whose
(1 + ¢)-enlargement covers the whole plane.

We observe that the system of all circular discs in the plane has Bardny number 0, since
we can produce the desired packing for any € > 0 by using larger and larger discs (add discs
to the packing one by one, and in the ith step, choose the ith disc so that its e-ring covers
the disc of radius ¢ around the origin). A different situation may occur if the diameter of the
bodies in Cy is bounded.

Motivated by a problem concerning convex polytopes, Imre Bérany [1] raised a problem
which in our terminology can be rephrased as follows: If £ stands for the class of all ellipses
of diameter at most 1, is the Barany number of £ zero?

In this paper we give a positive answer to this question:

Theorem 1 For every A > 1 there is a periodic packing of the plane with ellipses whose
A-enlargement is a covering.

On the other hand, if we allow only discs of bounded radius, then Barany’s question has
a negative answer:

Theorem 2 Let C be a packing of the plane with circular discs of radius at most 1. Then
(1 + 1075)-enlargement of C covers no square with side length 4.

Remarks. Our packing in Theorem 1 is locally finite and the details in the construction
can be done so that all ellipses in the packing have diameter between ¢/10 and 1, where
£ = A—1 (however, their width varies from exp[—const(1/¢) log?(1/¢)] to const, and we need
exp[const(1/e)log(1/e)] of them on each unit square). Our methods can be used to prove
that Theorem 2 (possibly with a different positive constant instead of 107°) holds also in
any dimension d > 2 and when Cy consists of convex bodies in R? with a constant-bounded
diameter and curvature. We do not prove these generalizations here, since the idea remains
the same but the details become messy. The value ¢ = 1075 in Theorem 2 is certainly not
the best possible one could get by our proof method, but it seems that a different method
would be needed to determine the Barany number for discs in the plane exactly or at least
to prove a reasonable lower bound for its value.

2 Almost-tiling by ellipses

Throughout the construction, a number A > 1 remains fixed. Choose an integer n such
that the regular 2n-polygon P = Py, circumscribed about a circular disk D is contained in
the interior of the A-enlargement of D. Denote two antipodal vertices of P by v~ and v*.



Suppose T is a triangle with a horizontal base B and vertex v above B. Then there is a
(unique) polygon P(T) satisfying the following conditions (see Fig. 1 which illustrates the
case n = 4):

(i) P(T) C T; (ii) There is an affine transformation A such that A(P) = P(T); (iii) A(v™)
is the midpoint of B and A(v*) = v; (iv) The angles at v of P(T) and of T are equal.

Figure 1: The affine copy of P properly inscribed in T

We say that P(T) is an affine copy of P properly inscribed in T. The existence and
uniqueness of P(T) follows from the fact that P itself, oriented so that one of its main
diagonals is vertical, is properly inscribed in a triangle, and an affine transformation that
sends this triangle onto T' (top vertex onto top vertex and base onto base) determines P(T')
uniquely. Obviously, P(T') contains an inscribed ellipse, namely A(D), whose A-enlargement
contains a neighborhood of P(T).

Observe the following property of the polygon P(T):

(1) Let v; and vy be the vertices of P(T) adjacent to v. Then the line v;v, is parallel to
B and partitions the height h of T at the ratio of

c:(h—c)= (l—cos%) : (1+cos%>,

where ¢ is the portion of h containing v (see Fig. 1).

It follows that

(2) For every vertex w # v of P(T) the distance from w to the line of B is less than or
equal to ph, where 1 < 1 is a positive constant independent from T'. Specifically,

o (1)
p==(1l4+cos—].
2 n



The construction continues with the following lemma:

Lemma. If U is a neighborhood of a side of a triangle T, then there is a polygonal
region W containing T \ U and contained in T, which can be tiled by a finite collection of
affine copies of P.

Figure 2: Partitioning G into triangles.

Proof. Denote the vertices of T' by a,b and ¢ so that U is a neighborhood of ab. We
introduce a rectangular coordinate system so that ab lies on the z-axis and the y-coordinate
of ¢ is positive. The affine copies of P used for the tiling will be referred to as tiles. We
construct the tiling by an algorithm describing the successive tiles and their respective proper
places. Let G; denote the closure of the untiled part of T' at the i-th stage of the construction
(1=0,1,2,...), at which point ¢ tiles have been put in place. Obviously, at the beginning,
the number of tiles placed is 0 and Gy = T. We define the first tile, P;, to be an affine
copy of P properly inscribed in T and we partition GG; into a collection of triangles 77 =
{Tll, T12 e ,T12"_2} each of which has its base on ab and top vertex at some vertex of the

first tile (see Figure 2).

The formula for designing and placing the next (i.e., the (i + 1)-st) tile in T is:

Next Tile. Among all triangles of 7; choose a tallest one, i.e., one whose top vertex v
has a maximum y-coordinate and call it 7;"®*. Let F be an affine transformation sending T'
onto T;°®* with F(c) = v and define P;, to be F(P;), which is an affine copy of P properly
inscribed in T;"?%. Then define the partition 7;1+1 of G;11 by replacing T;"®* with the images
of the triangles in 77 under F. (Fig. 3 shows the tiling stage at i = 7).

Let now y; be the maximum of the y-coordinates of points in the closure of G;. Of course,
y; occurs at one of the vertices of G;, thus at the top vertex of one of the triangles of 7;.



Figure 3: Tiling a triangle minus its base’s neighborhood.

Obviously, y; > 0, and y;41 < ;. Let M; be the line y = y; and let m; be the line y = py;,
where 0 < p < 1 is the constant described in (2). As we place the successive tile at the
(+1)-st stage of the construction, the top vertex of the tile eliminates one vertex of G; lying
on M;, and, by (2), every non-top vertex of this tile lies below the line m;. Thus, between
the lines m; and M;, the set of vertices of G;; is obtained from the set of vertices of G; by
deleting one element. Therefore there exists an integer k£ such that no vertex of G4 lies
above the line m;. It follows that for every ¢ there exists a k such that y;;x < py;, and,
consequently, 11_1}1510 y; = 0. This implies that there is an integer kg such that all vertices of

G, lie in the neighborhood U of ab, and the proof of the lemma is complete.

Figure 4: Triangulating the complement of the initial tile.

We now construct a periodic packing of the plane with ellipses. Begin with the familiar
regular tiling of the plane with congruent equilateral triangles. Place in one of the triangles



a properly inscribed affine copy of P, and call it the initial tile. Partition the remaining
portion of the triangle into 2n — 2 smaller triangles as shown in Fig. 4. The ellipse inscribed
in the initial tile, when homothetically A-enlarged, covers a neighborhood of the tile, hence
it covers a neighborhood of one edge of each of the smaller triangles. Tile each of the smaller
triangles minus a neighborhood of the edge already covered, in the manner described in the
proof of the Lemma (see Fig. 3). Finally, extend this pattern to all triangles of the regular
tiling so that the initial tiles in each of them are translates of each other (see Figure 5).
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Figure 5: A periodic arrangement.

Remark (Istvdn Talata). Instead of ellipses, affine images of an arbitrary centrally
symmetric convex domain can be used in the above construction, which would require minor
modifications only. In other words, the Bardny number of the class of bounded-diameter
affine images of a plane centrally symmetric convex domain is zero.

3 Packings with discs

Throughout this section, we have ¢ = 1075. Suppose for contradiction that there exists a
packing C with discs of radius at most 1 such that its (1 + €)-enlargement covers a square S
with side length 4. Let us say that a disc C € C bites into a set X C R2ifCNX # (. By
induction, we are going to construct a sequence of compact sets S = R; D Ry D R3... such
that for each n = 1,2,. .., no disc of C of radius greater than r, bites into R,,, where ()3,
is a decreasing sequence of real numbers tending to 0. Taking a point z € (>, R, leads to
a contradiction, since such an z cannot be covered by any C¢ with C € C.



Each of the regions R, will be of one of two types, called the square type and the crescent
type. We now describe the shape and the inductive hypothesis for these two types of regions.

A region R, of the square type is a square of side 4r,,, and we assume that no disc C € C
of radius greater than r, bites into R,,. As a basis of the induction, we choose r; = 1 and
we let Ry = S.

A region R, of the crescent type is defined using some disc C,, € C, and 7y, is the radius
of this C, (see Fig. 6). We fix suitable constants! @ = & and 8 = . Let c denote the

R,

Figure 6: A crescent-type region R,.

center of Cy; then R, is the intersection of an angle a with apex at ¢ with the G-ring of C,.
We say that R, is a crescent of C,, and we call the semiline originating at ¢ and dividing
R, into two equal parts the azis of R,.

We describe how R, is constructed from R,,. First, we treat the simpler case when R,
is of the square type. Let D be the disc of radius %rn centered at the center of the square R,
(Fig. 7). Choose Cyt1 € C as the disc of the largest radius that bites into D. If the radius
of Cp41 is at most 7, /2, set rp41 = r,,/2 and pick the region R, 1 as a square of side 47p4;
inside the disc D, as in Fig. 7(a). Otherwise, let r,,1 be the radius of Cy,41. In this case, we
pick R, 11 as a crescent of Cy, ;. The axis of R, is the semiline originating at the center of
Cn+1 and passing through the center of D; see Fig. 7(b) (if these centers happen to coincide
then pick an arbitrary direction of the axis). This finishes the definition of R,.;. Easy
geometric considerations, whose details we omit, show that thus constructed R,;; satisfies

!The choice of the constants in the proof is somewhat arbitrary. The goal, rather than trying to get the
best value of €, was to select them in such a way that realistic pictures can be drawn.
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Figure 7: The inductive step for a square-type region Ry,.

the inductive hypothesis (i.e, no disc of radius larger than r,4; bites into R,11).

It remains to discuss the inductive step from R, to R,.; for an R, of the crescent type.
For a simpler notation, we will measure distances in the units of r,, from now on, that is, we
may assume 1, = 1. In this case, we let I denote the intersection of R, with the ﬁ—-ring of

16
Cr, (see Fig. 8(a)). Let C be the largest disc of C distinct from C,, biting into I, and let r

(b)

Figure 8: The region I (a), and the case of a very small r (b).

be the radius of C. Here we distinguish three cases: r <

-8%, §%<r§%,and%<r§1.
The case r < é'%. Here we set rp 1 = -8% and we choose R, as a square of side 5% within

I so that C),, doesn’t bite into it, as in Fig. 8(b). This is a valid region of the square type.
The case -8% <r< %. Let ¢, denote the center of C,,, and let ¢ be the center of C. We set



Cn+1 = C, we define 7,41 as the radius of Cp11, and we choose R,+1 as a crescent of Cpyg
as follows (Fig. 9). The angle of the axis of R, and of the semiline cc, is %a and R, lies

20\«

. . 1
Figure 9: The case é% <r<g.

on the side of the segment c,c closer to the axis of R,. To verify the inductive hypothesis
for Ry, we first need to show that R,+1 C R,. That is, we need to check that the point w
in Fig. 9 cannot go beyond the side boundary of R, (the picture shows the largest possible
disc C, so apparently this condition works), that the point v has distance at most 1 + 3
from c¢,, and that u has distance at least 1 from c,. Let us check the latter two conditions
computationally. As for the first inequality, |vc,| < 1+ 3, we use the cosine theorem for the
triangle c,cv:

lenv]? = Jenc)? + |ev)? — 2|enc|-|ev] cos 3a = (Jenc| — |ev])? + 2lenc] - [ev](1 — cos 3a) <

B | €y B 1,1
<14 =4 - 2(1 + — 1 -y =(1 - 3a) = 1.055...
<( +16+8) + 2( +16+( +E)8) 8( cos 3a)
Thus, |cav] < 1.03 < 1 + 8 = 1.0625.

Similarly,

lenu)? = (Jene| = |eu))? + 2)enc] - |eul(1 — cos2a) > (1 — Br)2 +2-1-7- (1 — cos2a) >

>14+2r(l—cos2a—0)>1+ %(1 — cos 2 — ) = 1.000021...

To verify the induction hypothesis for R,,;1, it remains to show that no disc C’ of C with
radius in the interval (r,1] may bite into R,,i. Since r > é% is not too small, any such C'



biting into R,4; would have to intersect C, or C. C, itself doesn’t bite into R,41, since
lenu|? > 1.000021 and thus |cu| > 1 + €.
The case % < r < 1. Here we have the relatively large disc C' biting into the region I

(Fig. 10). Consider the circular arc a bounding the region I from the outer side, and let ag

—°

Cy
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Figure 10: The case -é— <r<1l

be the portion of this arc contained in the the disc C¢. Calculation shows that even if C
has the largest possible radius 1 and touches C), in the middle of the region R,,, one of the
portions of a \ a9 has angular length at least § (this extreme case is shown in Fig. 10). We
thus select a portion I' of the region I of angular length §, avoiding ag but adjacent to it.
What is the largest possible radius of a disc C' # C, of C that may bite into I'? The
possible radius is largest when r is smallest, that is, r = %. Fig. 11 shows how to upper-bound
the radius of C’; the radius of the disc D drawn there, which is well below %, is an upper
bound for the radius of C’. Now we repeat the considerations made above with the region

Figure 11: Estimating the radius of C’.

I' instead of I, that is, we choose the largest disc C' # C, biting into I', we let r' be its

10



radius, and discuss the cases depending on the range of r’. The first two cases (r’ < -é% and
-8% <r' < %) work in the same way as above; the only small change is that I’ is shorter than
I, so one has to check that there’s always enough room to accommodate the corner w of the
region R, (as in Fig. 9) in the region R,,. But this works because 7’ is small enough. And,
because of the restriction r’ < %, the third case discussed for the region I cannot occur for
I'. Theorem 2 is proved.
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