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Introduction

In last few decades several authors succeeded in proving theorems from combinatorics and
combinatorial geometry by a surprising use of tools from algebraic topology. In these lecture
notes we cover a part of such results, mainly those proved using the Borsuk-Ulam theorem
and its generalizations. The proofs presented here require a minimum of material from
algebraic topology (and this minimum is covered as well); we use only one more advanced
fixed point theorem (which we will not prove), and everything is derived from it by relatively
elementary means.

These are lecture notes for a course I taught at the Faculty of Mathematics and Physics
of the Charles University in Prague in fall 1993. The first version of the notes (in Czech) was
written by the participants of this course, I have then modified, combined and moderately
expanded these notes and translated them into the present English text (a Czech version also
exists).

The understanding of this text should require no specialized knowledge of topology or
combinatorics. The reader should suffice with the basics of the topology of metric spaces.

The main sources (which are not explicitly mentioned in the sequel) are the survey papers
[4] a [3] (in which also the references to original works and a plenty of further material can
be found). Other references are given in the text.

I will be grateful for comments and suggestions from the kind readers.

Acknowledgment. I would like to thank the course participants for their support; they
are Petr Cizek, Jif{ Fiala, Petr Hlinény, Tom4s Kaiser, Martin Klazar, Martin Loebl and Jif{
Otta. Special thanks go to Jif{ Fiala and Tom&s Kaiser for reading the text and for numerous
useful comments.

Prague, June 1994

Jifi Matousek



1 Simplicial complexes

1.1 Notation, conventions

IR will denote the set of all real numbers, R? the Euclidean space of dimension d. For

z = (21,...,24) € R? the Euclidean norm is defined by ||z|| = {/2? + - - - + 3. The distance

of points z,y € IR? will also be denoted by dist(z, y).

All the considered topological spaces are subspaces of IR?, thus, in particular, metric
spaces. The existence of a homeomorphism (i.e. of a continuous bijection with a continuous
inverse mapping) between spaces X,Y will be written X 2 Y.

1.2 Geometric simplicial complexes

Definition. A point set {vg,v,...,vx} C IR? is called affinely independent if the vectors
vy — Vg, V3 — Vg, ..., Vx — Vg are linearly independent.

Remark. We present 2 equivalent definitions of the affine independence (the equivalence
is easy to see).

¢ A point set {vg, vy, ..., v} is affinely independent iff there are no real numbers ag, ay, . . .
such that 3% a0, =0, Y% ;a; = 0 and (ay,...,o1) # (0,...,0).

e A point set {vg,v1,...,vx} is affinely independent iff the (d + 1)-dimensional vectors
(1,v0),(1,v1),...,(1,vx) are linearly independent.

Definition. The convex hull of a finite affinely independent set A in IR¢ is called a simplez.
The points of A are called the vertices of this simplex. The dimension of this simplex is equal
to |4] - 1.

Example. Simplices in IR? are triangles, segments, points and the empty set.
Definition. The convex hull of a subset of the set of vertices of a simplex is called a face
of that simplex.

Example. The faces of a triangle are the whole triangle, its edges, its vertices and the
empty set.

Definition. The relative interior of a simplex ¢ arises from o by removing all its faces of
dimension smaller than dim o.

Definition. A family of simplices A = {01, 039,...,0,} is called a simplicial complez if the
following conditions hold:

(1) Each nonempty face of any simplex o € A is also a simplex of A.
(2) 01,02 € A = 01 N oy is a face of both o7 and o5.

The union of all simplices in a simplicial complex A is called the polyhedron of A and is
denoted by ||Al]|. The dimension of a simplicial compler dim A = max{dim ;0 € A}.

Observation.  The relative interiors of all simplices of a simplicial complex A form a
partition of ||A||, i.e. for each point z € ||A|l there exists exactly one simplex o € A
containing z in its relative interior. This simplex will be denoted by supp(z) and called the
support of the point x.



Remark. A simplest example of a simplicial complex is the set of all faces of an n-
dimensional simplex. This simplicial complex will be denoted by ¢”. The n-dimensional
simplex itself, as a geometric object, can thus be denoted by ||o™||.

Definition. ASF = {o € A;dimo < k} is called the k-skeleton of A (it is also a simplicial
complex). Further we set A* = {6 € A; dimo = k}. In particular, A° is the set of all
vertices of a simplicial complex A.

Remark. Any homeomorphic image of the “standard” (geometric) simplex will also be
called a simplex.

1.3 Abstract simplicial complexes

Definition. An (abstract) simplicial complez is a pair (V,A), where V is a set, and A C
2V \ {0} is a hereditary system of nonempty subsets of V,i.e. c € A, § £ o' C o = o' € A.
Further we define the dimension dim(A) = max{|o| — 1;0 € A}.

Remarks. In the literature, one often includes also the empty simplex @ into a simplicial
complex (abstract or geometric one), here we exclude it (following [3]).

We will assume V = |JA; the it suffices to write just A instead of (V,A).

We will consider only the case when V is finite. From the topological point of view, this
is quite a restrictive assumption (since then we cannot express e.g., the space IR? as the
polyhedron of a simplicial complex), but it is sufficient for our combinatorial applications.

Each geometric simplicial complex A determines an abstract simplicial complex: The
points of the abstract simplicial complex are all vertices of the simplices of A, and the sets in
the abstract simplicial complex are just the vertex sets of the simplices of A. The abstract
simplicial complex obtained in this way is also denoted by A. The following theorem considers
the opposite transition.

Theorem 1.1 Every finite d-dimensional abstract simplicial complex can be realized as a
geometric simplicial complex embedded in R?#+7,

Remark. Later on we show that 2d + 1 is the smallest possible dimension. For d =
1 simplicial complexes correspond to graphs. The theorem says that every graph can be
represented in IR?, with edges being straight segments.

Definition. The curve {(¢,%%,...,1%);t € IR} is called the moment curve in R%.

Lemma 1.2 Every (d + 1)-tuple of distinct points on the moment curve in R? forms an
affinely independent set.

Proof.  Let (to,t3,...,t8),...,(ta,t5,...,t%) be points of the moment curve. They are
affinely independent, as the Vandermonde determinant
1ty &2 ...
1t 8 ..
,
1 td td “ o td
is nonzero whenever the numbers tg,y,...,t; are pairwise distinct. O
Proof of Theorem 1.1. Let V = {vy,vs,...,v,}. Distinct points vy, ve, ..., v, are placed

arbitrarily on the moment curve in R?**!, Let 01,05 C V be two simplices; we need to show



that the intersection of their convex hulls equals to the convex hull of the set o1 N oy. Let 2
be a point of the above mentioned intersection, i.e.

r = Z ;v = Z ﬂj’l]]', (1)

v; €01 v; €02

where a;,8; > 0and -, -, @i =1=3 B;. By subtracting we get from (1)

v; €02

oo awi— Y, Bivit+ Y, (k= Pr)up=0.

v;€o1\0o2 v;€02\01 vpEo1Mo2

The points ¢y U o5 are affinely independent by Lemma 1.2, and thus all the coefficient at
the left hand side of this equation must be 0, in particular ay, 8r can only be nonzero for
vk € 01MNo,. We have thus shown that an arbitrary point of the intersection of the realizations
of o1 and of o7 is a convex combination of points of o7 N oy. O

1.4 Simplicial mappings

Definition. Let Ay, A; be two abstract simplicial complexes. A simplicial mapping of
Aq into Ay is a mapping f of the set A into the set A such that for each o € A, one has
f(O') € A,

A bijective simplicial mapping whose inverse mapping is also simplicial is called an iso-
morphism of abstract simplicial complexes. Isomorphic abstract simplicial complexes are
thus “the same” set systems, they only differ by a renaming of vertices.

Observation. Let A;,A; be geometric simplicial complexes, and let f be a simplicial
mapping between the corresponding abstract simplicial complexes (thus f is defined at the
vertices of the simplices of Ay). Then f can be extended, in a unique way, to the domain
[|A1]| in such a way that it is linear on each simplex. Such an extension is denoted by || f||;
this is thus a continuous mapping ||A4]] — [|Az|.

In particular, an isomorphism between the abstract simplicial complexes corresponding
to A1, Ay induces a homeomorphism between the polyhedra ||Aq]|,||A2||- In this sense, the
abstract simplicial complex determines the geometric simplicial complex and its polyhedron
uniquely.

Convention. In the sequel, a simplicial complex will formally be understood as an abstract
simplicial complex (i.e. it will be a set system as a mathematical object). However, we
will also use topological notions for simplicial complexes (such as “a connected simplicial
complex”); in such cases we will mean the corresponding polyhedron. A simplicial mapping
f between simplicial complexes Ay, As is written as f : Ay — Aj (although, strictly speaking,
[ is a mapping A9 — AY).

Remark. If we express a topological space as the polyhedron of some simplicial complex
(such a simplicial complex is called a triangulation of X), we can translate many topolog-
ical questions to combinatorial ones. These can, however, remain difficult; for instance,
to recognize whether the polyhedron of a given simplicial complex is homeomorphic to the
5-dimensional sphere is an algorithmically undecidable problem.

1.5 Correspondence between posets and simplicial complexes

Definition. To each partially ordered set (poset) P corresponds a simplicial complex A(P),



whose vertices are the points of P and whose simplices are all nonempty chains (i.e. linearly
ordered subsets) in P.

Conversely, to a simplicial complex A corresponds a poset P(A), which is the set of all
simplices of A ordered by inclusion.
Definition. The first barycentric subdivision of a simplicial complex A is the simplicial
complex Sd(A) := A(P(A)).

Geometrically this means that we add the center of gravity of each simplex as a new vertex,
and we subdivide the simplex using this vertex and the already constructed subdivision of
its faces, see fig. 1.

Figure 1: The first barycentric subdivision of a 2-simplex.

Observation. We have ||A|l = || Sd(A)]].
Observation. A monotone mapping f : P, — P, between posets is also a simplicial
mapping f: A(P;) — A(P;) between the simplicial complexes.

Corollary. Consider an arbitrary mapping f, which assigns to each simplex o € Ay a
simplex f(o) € Ag, and suppose that if o/ C o then also f(¢’) C f(¢). Then f can be
regarded as a simplicial mapping f : Sd(A1) — Sd(Ay).

2 The theorem of Borsuk and Ulam

2.1 Several equivalent formulations

Let us denote by B™ = {z € R" : ||z|| < 1} the n-dimensional closed ball and by §"~! =
{z € R™: ||z|]| = 1} the (n — 1)-dimensional sphere.

The Brouwer fixed point theorem claims that every continuous mapping f : B — B"
has a fixed point: f(z) = z for some point € B™. The Borsuk-Ulam theorem is a statement
of a similar type.

Theorem 2.1 The following statements are equivalent (and true):

(1.1) For every continuous mapping f : S™ — IR"™ there exists a point € S™ with f(z) =
f(==).



(1.2) For every continuous antipodal mapping f : S — R" (i.e. f(z) = —f(-2z) Vo € §7)
there exists a point ¢ € S™ satisfying f(z) = 0.

(2) Whenever a continuous antipodal mapping f : S§% — S™ exists, we have d < n.

(3.1) (Ljusternik-Snirelmann) For any cover Ai,...,Ant1 of the sphere §™ by n + 1 open
sets there is at least one set containing a pair of antipodal points (i.e. A;N(—A;) #0).

(3.2) Similarly for a covering of the sphere by closed sets.

Proof of the equivalences (exercise):

(1.1)=(1.2) is clear.

(1.2)=(1.1) We convert f into an antipodal mapping g(z) := f(z) — f(—=z).
(3.2)=(3.1) follows from the fact that for any open cover A4y,..., A,+1 there exists a closed
cover By,..., B,y satisfying B; C A;,i =1,...,n+ 1: for each point z of the sphere choose
its open neighborhood O, whose closure is contained in some A;, and apply the compactness
of the sphere.

(3.1)=(3.2) follows from the fact that each set of a closed cover By,...,Bp4; can be
wrapped in an open set A5 = {z € §"; dist(z,B;) < ¢}. We let ¢ — 0 and we use the
compactness of the sphere. We obtain a convergent sequence of points zg,21,... € S with
dist(z;, B;), dist(—z;, Bj) — 0 for ¢ — oo and for some fixed j. The limit point of this
sequence provides the required antipodal pair in B;.

(1.2)=(2) If a continuous antipodal mapping f : §¢ — 57, d > n, existed, we can assume
d = n + 1. Then we have an antipodal nowhere zero mapping f : S*t1 — R"*+1,

(2)=(1.2) Should a continuous nowhere zero antipodal mapping f : " — IR" exist, we
consider the mapping g(z) := H%%W This yields a contradiction with (2).

(1.1)=(3.2) For a closed cover By, ..., By4+; we define a continuous mapping f : 5™ — R"
by f(z) := (dist(z, By),. .., dist(z, B,)) and we consider a point & € S™ with f(z) = f(—z) =
y, which exists by (1.1). If the ith coordinate of the point y is 0, then both z and —z fall
into B;. If all coordinates of y are nonzero, then both # and —z lie in B,41.

(3.2)= (2) We need an auziliary result: There exists a covering of S™~1 by closed sets
By, ..., Byy1 such that no B; contains a pair of antipodal points (to see this, we can use e.g.
the projection of the faces of the regular simplex with the center of gravity in the origin). Then
if a continuous antipodal mapping f : S™ — S™! existed, the sets f~1(By),..., f~ " (Bn+1)
would contradict (3.2).

O

2.2 A combinatorial proof of the Borsuk-Ulam theorem

Tucker Lemma. For z € R", ||z||; denotes the Li-norm of z, i.e. ||z||; = x|+ -+ |2nl.
For the proof, we imagine B™ as the unit ball of the Ly-norm, i.e. B = {z € R™;||z||; < 1}.
A simplicial complex T is a special triangulation of B™ if ||T|| = B™, T is a refinement of the
triangulation of B™ given by “cutting” by the coordinate hyperplanes (i.e. no simplex of T
spans over a boundary of an orthant) and is symmetric around the origin.

Lemma 2.2 Let the vertices of an arbitrary special triangulation T be denoted by labels
lab(u) € {£1,42,...,4n} in such a way that the vertices u € 0B™ (on the boundary) the



labeling satisfies lab(—u) = — lab(u). Then there exists a I-simplex (an edge) in T which is
complementary, i.e. its two vertices are labeled by opposite numbers.

Proof of the Borsuk-Ulam theorem from the lemma: Let f: 5" — IR" be a
continuous mapping, let B"™ be the unit ball in the “equator” hyperplane of 5™. We define
g : B" — IR" by setting g(z) = f(y) — f(—vy), where y is the point of the upper hemisphere
of §™ whose vertical projection on B™ is z. The mapping ¢ is obviously antipodal on dB" =
S§n=1. For contradiction, let us assume that g(z) # 0 everywhere; then from the compactness
of the ball there exists ¢ > 0 such that ||g(z)||1 > € for all z. Further, a continuous function
on a compact set is uniformly continuous, and thus there exists a number 6 > 0 such that if
the distance of some two points z,z’ does not exceed §, then ||g(z) — g(z')|j: < &/n.

Let us choose a special triangulation T such that the diameter of each its simplex is
at most §. We define a labeling of the vertices of T as follows: |lab(z)| = ¢ if |g;(2z)| =
max{|gi(z)|,...,|gn(2)|}, and sgnlab(z) = sgn(g;(z)) (if the maximum is attained for more
than one index, we take the first such index). From the lemma we know that there exists a
complementary edge zz’. Let lab(z) = —lab(a’) = 1, then g(z); > ¢/n and g(z'); < —¢/n,
hence ||g(z) — g(z')||]1 > 2¢/n — a contradiction. Therefore there exists a zero z of the
function ¢, and for the corresponding y € S™ we have f(y) = f(—y). O

Proof of the Tucker Lemma. [7, Freund-Todd] Let T be a special triangulation of B™.
For a simplex o € T we set sgno = (sgn y,sgn «a,...,Sgn &, ), where z is an arbitrary point
of the relative interior of . This definition always makes sense, since a special triangulation
refines orthants of IR™ and therefore the signs of the coordinates do not change inside o. We
say that o is completely labeled if the following holds for each ¢ = 1,2,...,n: if (sgno); = 1,
then some of the vertices of ¢ is labeled by the number 4, and if (sgno); = —1, then some
vertex of o is labeled by —z.

We define a graph G whose vertices are all completely labeled simplices, and in which
vertices o, 7 € T are connected by an edge if

(a) 0,7 € 0B" = 5" ' and 0 = —7, or

(b) o is a k-simplex and 7 is its (k — 1)-face whose vertices are already labeled by all
numbers required for a complete labeling of o .

The simplex {0} has degree 1 in G, since it is connected exactly to the edge of the triangula-
tion which is completely labeled by lab(0). Further we prove that any other vertex o of the
graph G has degree 2 except when ¢ contains a complementary edge. Since a graph cannot
contain only one vertex of an odd degree, this will establish the claim of the lemma.

Let sgn ¢ have k nonzero components, then the dimension of & can be k or k — 1. If ¢ is
a (k—1)-simplex, it is a face of two completely labeled k-simplices or it is at the boundary of
B", it is a face of one completely labeled simplex and it has the other neighbor —o according
to (a).

If ¢ is a k-simplex, it has k obligatory labels and one extra label. This extra label either
repeats some of the obligatory labels, then ¢ is adjacent to 2 of its faces, or it is opposite
to some of the obligatory labels, then we have a complementary edge, or finally it is yet
another number and the neighbors of o are one its completely labeled face and one adjacent
simplex of larger dimension determined by the extra label. For each possibility without a
complementary edge we thus have two neighbors. O



2.3 Application: The necklace problem

Two thieves want to divide a necklace composed of d kinds of precious stones on a string
(with 2 ends, thus the necklace is not closed) in such a way that each thief gets an equal
number of stones of each kind (we assume an even number of stones of each kind). What is
the minimum number of cuts needed?

Observation. At least d cuts may be necessary (place the stones of the 1st kind first, then
the stones of the 2nd kind, ...).

Theorem 2.3 [Alon] d cuts always suffice.

Proof. Let us have k; stones of the ith kind, n := Z?:l k;. We imagine the necklace on
the interval [0, 1], the kth stone corresponds to the segment [(k—1)/n,k/n). First we define
characteristic functions f;(2):[0,1] — {0,1}: for z € [&=L, £

n ’'n

0 otherwise.

file) = { 1 if the kth stone of the necklace is of the 7th kind

Fach function f; defines a measure y; on [0, 1], u;(A) := [, fidz.

A division of the stones between the thieves will be encoded by a point z € §¢. Let
0 <2z €29 <...< 23 <1 be the positions of the d cuts, and further let s; be +1 if the
part {z;_1, z;] goes to the first thief, otherwise let s; = —1, ¢ = 1,2,...,d + 1 (where 2 :=
0, zg41 := 1). Such a division of the stones is assigned the point (1,..,2441) € g4 C R
such that 2? = 2z — 21 and sgn(z;) = s;.

We define a continuous antipodal function f: 5% — R? by

d+1 d
(wh")xd-i—l) = (Z Sgn(ﬁj)ﬂi[Zj_l,Zj]) )
3=1 1=1
where z; = E:i=1 3.

From the Borsuk-Ulam theorem we get the existence of a point z € S¢ with f(z) = 0.
This z encodes a just division, since f(z); = 0 means that both thieves get the same number
of stones of the ith kind. If z encodes a “nonintegral” division (i.e. some stones would have
to be cut) we use a rounding procedure first (we proceed by induction). O

Remark. Surprisingly, the only known proof of the necklace theorem is the above presented
topological one.

Remark. For a solution of a similar problem with more than 2 thieves the Borsuk-Ulam
theorem needs to be generalized.
2.4 Application: The ham-sandwich theorem

“For every sandwich made of bread, ham and cheese, the bread, the cheese and the ham can
all be halved by a single straight cut.”

Theorem 2.4 (Ham Sandwich Theorem, a continuous version) Let ¢1,...,¢q4 be measur-
able functions' R? — [0,00) with [pa:dz = 1. Then there exists a hyperplane h such

!We can imagine () as the density of some matter of i-th kind, e.g., bread or cheese, at a point z, and
the total mass of the matter of the zth kind is 1.



that

1
/ p;de ==, fori=1,2,..,d
At 2

(h* denotes one of the halfspaces defined by h).

Proof. Leta = (ap,ai,...,aq) be a point of the sphere S, If at least one of the components
ai,as,...,aq is nonzero, we assign to the point a the halfspace

H(a) = {(z1,...,2q) € IRd; a1y + -+ agzqg < ap}.

Obviously antipodal points of S correspond to opposite halfspaces. For an a of the form
(a0,0,0,...,0) (where ag = +1), we have by the same formula

H((1,0,...,0)) = R¢
H((-1,0,...,0)) = 0.

We define a function f: 5% — R? by

f(a) = ( /. » wi(w)dw)

It is easily checked that if we have f(a) = f(—a) for some a € 5% then the boundary of the
halfspace H(a) is the desired hyperplane (clearly it cannot happen that f((1,0,...,0)) =
f((=1,0,...,0)), so H(a) is indeed a halfspace). For an application of the Borsuk-Ulam
theorem we need to show that f is continuous.

First we note that for every ¢ > 0 there exists a number R(¢) such that the integral
of each of the functions ¢; over the complement of an R(e)-ball centered at the origin is
< €. From this it is seen that every component of the function f is continuous at any point
a # (£1,0,...,0). For these exceptional points we note that if the points a approaches e.g.,
the point (1,0,...,0), the halfspace H(a) will contain an arbitrarily large ball centered at
the origin, and thus the integral of ¢; over H(a) tends to 1, which is what we need. O

d

=1

Remark. The proof can also be done using the (d — 1)-dimensional Borsuk-Ulam theorem.

Theorem 2.5 (Ham Sandwich Theorem, discrete version) Let Ay, Ag,.., Aq C IR? be finite
point sets. Then there exists a hyperplane h halving each A; (“h halves A;” means that both
the open halfspaces defined by h contain at most @ points of A;).

Sketch of a proof from the continuous version. For a number ¢ > 0 we manufacture a
density function ¢; . from A;, which corresponds to tiny balls around the points p € A;, each
ball has radius ¢ and mass 1/|A;|. For € \, 0 the hyperplanes halving ¢; . yield a halving
hyperplane for the A;. O

Remark. Recently Zivaljevi¢ and Vreéica [13] proved (by a more advanced topological
means) a nice generalization of the ham-sandwich theorem: for any k£ + 1 “reasonable”
density distributions ¢y, ..., o1 in IR® there exists a k-flat f such that any hyperplane
passing through f has at least d—lT-l-l of the ith mass on each side, for all i =1,2,...,k+ 1.
Ham-sandwich is obtained for ¥k = d — 1. The case k = 0 is another classical result known as
the centerpoint theorem.

10



2.5 Consequences of the ham-sandwich theorem

Theorem 2.6 [Akiyama-Alon] Consider d n-point sets Ay, ..., Aq in general position in R4
(we imagine that the points of each set are colored by one color). Then the points of the
union A;U...U Ay can be partitioned into d-tuples in such a way that each d-tuple contains
one point of each color, an the convex hulls of these d-tuples are pairwise disjoint.

Proof sketch. We halve repeatedly using the ham-sandwich theorem, until each piece only
contains d points, which are of different colors.

Remark. For d = 2 the theorem can be proved in an elementary way (consider the matching
with a minimum total edge length). No elementary proof is known in higher dimensions.

Examples of “equipartition theorems”.

o Any set in IR? can be dissected into 4 parts of equal size by 2 lines (this is an application
of the ham-sandwich cut theorem).

e Any set in IR? can be cut into 8 equally large pieces by 3 planes.

e The above cannot in general be done in R® (to cut a set into 32 equal parts by 5
hyperplanes).

e Tt is not known whether a dissection into 16 parts by 4 hyperplanes is possible in IR*.

o A “cobweb partition theorem” — a partition of a set in R? into 8 equally large parts
by a cobweb [11, Schulman], see fig. 2.

e For every finite set of lines in IR® there exist 3 perpendicular planes such that the
interior of each of the resulting octants is intersected by at most half of the lines [8,
Paterson).

Figure 2: A cobweb equipartition.
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3 Further topological notions and results

3.1 Joins

Quotient space. Let T be a topological space and let = be an equivalence relation on
its elements. We define a topology on the set T/~ of equivalence classes as follows: A set
U C T/= is open iff the union of all the classes of U is open in T'. If (S5;, 7 € I) is some
family of subsets of T, we define an equivalence = on 7' corresponding to this family as
follows: x ~ y iff * = y or there exists ¢ € I with z,y € S;. Then we write T/(S;, ¢ € I) for
T/~ (meaning: the space T/(S;, i € I) is obtained from T by shrinking each of the sets 5;
into a single point).

Example. Let U = [0,1] x [0,1] be the unit square. By gluing the two vertical sides
together, i.e. by taking U/({(0,¥),(1,%)}ye[o1]) We obtain the surface of a cylinder. The
horizontal edges can be further glued either in a “direct” way (that is, a point (z,0) is
identified with (z,1) for each z € [0,1]), this produces a torus, or in a “twisted” way (i.e.
a point (z,0) is identified with (1 — z,1)), which leads to the so-called Klein bottle (which
cannot be realized in IR?®, however).

Example. B¢/(§%1)= g2

Example. Let X,Y be topological spaces and z € X,y € Y be their points. We define the

wedge X VY = XUY/({z,y}) (in cases we will consider the choice of the points z,y does not
matter).

The join X *Y. The join of spaces X and Y is formally defined as

X*xY = (X xY x[0,1])/{(z,y,0),2 € X}yev,{(2,9,1),y € Y }zex) -

The points of X * Y are thus classes of equivalence on triples of the form (z,y,?), where
v € X,yeY and t € [0,1]. Such a triple is often written in the form of a “formal convex
combination” tz + (1 — t)y. This reflects the structure of the join somewhat, see an example
below, but we must not go too far in the analogy with a usual convex combination; for
instance, our new notation is not commutative: while e.g., %m + %y stands for the triple
(:c,y,%), %y + %:z: means another triple (y,x,%). Moreover, we have to remember that for
each y € Y we shrink all points of the form 0z + 1y (z € X)) to a single point (depending on
y, however), and similarly for each € X we identify all points of the form 1z 4+ 0y (y € Y').
The introduced notation should help to remember this identification.

Remark. dim(X xY) = dim(X)+ dim(Y) + 1.
Example. The join of two segments is a 3-simplex. Geometrically we can imagine the

segments being placed on two skew lines in IR3; then their join is the tetrahedron which is
the convex hull of these two segments. In general, we have ||o"|| * [[o™|| & |lo™T™+!||.

Remark. The “join” operation is associative and commutative, more exactly: by rearrang-
ing the parentheses or the order of the spaces in a multiple join we obtain homeomorphic
spaces.

Special cases of joins.

o Join of X with a one-point space is called the cone of X: cone(X) := X # {-}. For
example, cone(S5%) = B
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e Join of X with a 2-point discrete space, i.e. with S°, is called the suspension of X:
susp(X) := X % §°. For example, susp($¢) 2 S%*+1. From this we further get, using
the associativity of the join, §7 % §™ = gntm+l

Join of simplicial complexes Ay, A;. (We recall that @ ¢ Ay, Ay.) Let us suppose that
AN AY = 0, then we define the simplicial complex

A1 x A=A UAU {0'1002,0'1 S Al,U'z € Az}

Fact. We have ||Ag * Ag|| = ||Ag]] * ||Az|]. (Proof as an exercise.)
If AYNAY # 0 and we want to form the join A; * Ay, we rename the vertices of A first.
In particular, for joins of a simplicial complex with itself we have:

Definition. Let A be a simplicial complex. Its p-fold join A*P is a simplicial complex
whose point set is A? x {1,2...,p} and whose simplices are all nonempty sets of the form

{(v,1);v € o1} U{(v,2); v €32} U...U{(v,p); v € 0}

for a1,...,0, € AU{0} (this agrees with the previous definition of the join; first we make p
distinct copies of A and then we make the join).

A simplex of the above form can be mnemotechnically written as oy * g2 * - - - x 0, (but *
is not commutative here!).

The points of ||A*P|| can again be written as formal (noncommutative) convex combi-
nations of the form t;zy + a3 + - -+ + tpa,, where z1,...,2, € X, ty,...,%, € [0,1] and
ty 4+ ta + -+ + ¢, = 1 (with an appropriate identification of points with ¢; = 0).

Join and the cartesian product. The cartesian product X x Y of topological spaces X
and Y can be canonically embedded into the join X *Y: a point (z,y) € X x Y is mapped
to the point %x + %y € X Y. Similarly the pth cartesian power X? can be embedded into
X*P by (21,...,2p) — %wl +--- 4 %:vp.

Example. As was mentioned above, the join of two segments a, b, i.e. of 1-simplices, is the
3-simplex. The cartesian product a X b is a square, and the embedding identifies it with the
middle slice (parallel to 2 opposite edges) of the 3-simplex, see fig. 3.

N
N

Figure 3: Join of the segments a,b and the embedding a x b — a *b.

The meaning of the join for posets. If P;, P, are posets, we define P, x P, as “laying P4
below P,”. We have, using the notation of section 1.5, A(P; * P;) = A(Py) x A(Pa).
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3.2 Homotopy, k-connectedness
In the sequel, X,Y, Z are topological spaces, and all the considered mappings between topo-
logical spaces are implicitly continuous.
Definition. Mappings f,g : X — Y are homotopic, (which is written as f ~ g), if there
exists a mapping F : X x [0,1] = Y such that forall z € X
F(z,0)= f(z) and F(z,1)=g(z).

Spaces X,Y are homotopically equivalent, X ~ Y, if there exist mappings f: X — Y

and ¢ : Y — X such that fog ~ tdy and go f ~ idx.

Below we give a more intuitive description of the homotopic equivalence (Theorem 3.1),
first we need to introduce one more notion.

Definition. Let X C Y. X is a deformation retract of Y if there exists a mapping
F:Y x[0,1] = Y satisfying
(i) Ve eY :F(z,0)=2
(i) VeeY :F(z,1)e X
(ii) Vo € X : F(z,t) =z for all £.
Meaning: Y can be continuously shrunk onto X with X staying fixed during the shrinking.

Theorem 3.1 X ~ Y iff there exists a Z such that both X and Y are homeomorphic to
some deformation retracts of Z. (We omit the proof.)

Definition. A topological space X is 0-connected if it is nonempty and arcwise connected,
i.e. any two points can be connected by an arc (a continuous image of an interval).

X is k-connected (k € N)if it is (k—1)-connected and moreover any mapping [ : 5¥ — X
can be extended to a mapping f : BFt! — X.
Remark. Intuitively, the k-connectedness of X means that X has no “holes” of dimension
k + 1 and smaller. A hole of dimension k can be surrounded by a (k — 1)-dimensional sphere
within X, which cannot be contracted to a point inside X. This agrees with the following
Fact. S™is (n — 1)-connected and not n-connected.
Criteria of k-connectedness. We mention several facts without proofs (references and
more criteria can be found in [3]).
Fact. Homotopic equivalence preserves k-connectedness.

The following theorem speaks about “gluing” of simplicial complexes by suitable subcom-
plexes:

Theorem 3.2 Let Ay, Ay be k-connected (abstract) simplicial complexes (i.e. their polyhe-
dra are k-connected), and let A;NA, (which is also a simplicial complex) be (k—1)-connected.
Then Ay U A is k-connected.

In particular, the wedge of two k-connected polyhedra is k-connected.
For the readers who know the notion of a homological group:

Theorem 3.3 Let A be a 1-connected simplicial complex whose all homological groups up
to dimension k vanish. Then A is k-connected.

This criterion has been used in several papers proving combinatorial results. Here we avoid
using it.
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3.3 Generalizations of the Borsuk—Ulam theorem

Let p be a prime number.

Definition. A Z,-space is a pair (X, v), where X is a topological space and v is a free action
of the group Z, on X, ie. v: X — X is a homeomorphism such that for any z € X, the
points @, v(x) 2(.’17) ..,vP~}(z) are pairwise distinct and vP(z) = z.

AZ, mappmg f : (X,v) = (Y,w) is a continuous mapping of X into Y such that
fov=wof.
Remark. In the Borsuk-Ulam theorem we had a Zj-space (5", z — —z). We generalize
the statement that there is no antipodal mapping of §"! into $”. Later we will have a yet
more general theorem, but the proof of the following claim nicely illustrates the meaning of
k-connectedness in similar results.

Theorem 3.4 Let (X,v) be a k-connected Zj-space. Then there exists no Z;-mapping
f:(X,v) = (8F 22— —2).

Proof: by contradiction. Suppose that such an f exists. We find g : Sk+1 . X such that
fog:SFtY 5 Sk is antipodal.
First we construct the so-called equivariant decomposition of the sphere. Let M+ be a
set cons1st1ng of one arbitrary point of S¥+1, let My consists of its antipodal point, and set
= MF U My . Having defined L;_;, which is an (i — 1)-dimensional sphere embedded
1nt0 Sk+1 as a “great circle”, we consider some placement L; of the sphere §% within §*+1
as a “great circle” in such a way that L;_y is its “equator”. L;_4 divides L; into 2 open
hemispheres M", M, each homeomorphic to the interior of B, and these hemispheres are
antipodal, M+ = —M, . The sets M , M for 1 = 0, 1, ...,k + 1 form a partition of S¥+1,
(We could also write a definition usmg coordlnates = {(z0,...,%k41) € S* 2y >
O:E]_Ofor]-z+1 i+ 2,. k+1},similarlyf0rM)
The mapping g is constructed inductively. For # € Mg (which is a single point!) we put

g(z) := zo € X arbitrarily

g9(=z) :=v(g(2)).

This defines g on Ly. We now want to extend it from L; to L;4q (i < k); we assume inductively
that ¢ is continuous on L; and g(—z) = v(g(z)) for every € L;. L; is homeomorphic to
S*and L; U M7 %1 is homeomorphic to Bj;i. From the k-connectedness of the space X we
get that g can be continuously extended on the domain L; U M . It remains to put, for
reEM,, gz ) = v(g(—z)). This defines the mapping g on L,_H

For & € M, we have g(—2) = v(g(z)) by definition, and for z € M}, we have v(g(z)) =
vi(g(—z)) = g( z) (by the property v? = id), hence g is a Zy-mapping on L;4y. It remains to
verify the continuity of g which is routine. Let z,y € L}y be two close points, dist(z,y) < 6,
we want to show that also g(z),g(y) are close (i.e. for any £ > 0 we can choose § so small
that dist(g(z),9(y)) < €). If 2,y € L; U M, then this follows from the assumed continuity
of the extension. For z,y € L; U M, we have —z,~y € L; U M1+1, so g(—z),g(—y) are
close points, and g(w) = v(g(—2)), g(y) = v(g(—y)) are also close by the continuity of v.
Finally for = € M+1, y € M ; we can find a suitable point z € L; “in between” (e.g., the
intersection of L; with the great circle arc connecting z and y) and use the triangle inequality.

In this way g is extended on the domain Lgy; = S*+1.
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Let us now consider the mapping f o g. This is continuous and antipodal: f(g(—z)) =
f(v(g(z))) = —f(g(z)). The existence of such a mapping of §5+1 to §* contradicts the
Borsuk-Ulam theorem, however. O
A general theorem of the Borsuk-Ulam type. The following theorem uses the notion
of dimension of a topological space. We restrict ourselves to the case when the given space
is a polyhedron of a simplicial complex and we let its dimension be the dimension of the
underlying simplicial complex. The notion of dimension can however be extended to a much
wider class of spaces.

Theorem 3.5 [6, Dold] Let (X,v) be a k-connected Z,-space and let (Y,w) be a Z,-space
of dimension at most k. Then there is no Z,-mapping X — Y. (We omit the proof.)

3.4 Deleted products

The following operation produces a space with a natural Z,-action from an arbitrary topo-
logical space.

Definition. Let X be a topological space. Its p-fold deleted product is defined as follows:

XR=XxXx---xX\{(z,z,...,2); 2 € X}.
~ ———

pX pX

We define a Z,-action v on this deleted product as a cyclic shift of the coordinates by one
to the left, that is,
vi(Ty, 22,5 2p) — (T2,23,. .., Tp, T1) -

Observation. If pis a prime, then v is a free Z,-action (this need not hold for a composite
ph).

Example (important). Let us see how the deleted product (]Rd)g looks like. We interpret
the space R4*P = (IRd)p as the space of matrices (a:ij)d ?

t=1 7=
The elements of (R%)} are matrices of this form except for the matrices with all columns
being equal. For instance, for d = 1, p = 3 we get the 3-dimensional Euclidean space from
which the diagonal {z; = x5 = 23} is removed.

, with d rows and p columns.

Lemma 3.6 There exists a Z,-mapping ¢ : (]Rd)zz\ — §4p=1)=1_ ywhere one has a suitable
free Z,-action on the sphere Gdlp=1)-1,

Proof. First we consider the orthogonal projection g; of the space R*P on the d(p — 1)-

dimensional subspace I which is perpendicular to the diagonal. In coordinates, L will be the
subspace consisting of all d x p matrices with zero row sums, and g; maps a matrix ¢ = (z45)

to the matrix
1 4
gi1(z) = (xij -=> zik) :
pk:l

For instance, for d = 1, p = 3 is g; the orthogonal projection onto the plane zy + 22+ 3 = 0.
Further let g2 be the mapping contracting L \ {0} onto the unit sphere in L,

z
g2 2> o,
[l
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and ¢ = g2 0 g;. The range of g is thus the (d(p — 1) — 1)-dimensional sphere, which is
represented by matrices of L satisfying moreover 3, ; w?j = 1. The Z, action on this sphere
is the cyclic shift of the columns by 1 column to the left. Clearly g is a Z,-mapping.

Let us remark that $%(P~1~=1is a deformation retract of (IR) — this can be seen quite
similarly. O

As an example of application, we prove a generalization of part (1.1) of the Borsuk-Ulam
theorem 2.1 (the above theorem of Dold generalizes part (1.2)).

Theorem 3.7 Let (X,w) be a Z,-space, p a prime, and f: X — IR¢ a continuous mapping.
If X is (d(p — 1) — 1)-connected, then there exists + € X such that f(z) = f(w(z)) =

fW (@) = ... = f(w ().

Proof. Suppose that there is no point ¢ € X with f(z) = f(w(z)) = ... = f(wP™!(z)).
Then we can introduce a mapping f, : (X,w) — (R%)% by

z = (f(2), f(w(@)), .., f(w" 7 (2)))-

We consider a Z,-mapping g : (]Rd)g — §4P=1~1 35 in Lemma 3.6. Then, however, go f, :
(X,w) — §4r-D-1is a Z, mapping of a (d(p — 1) — 1)-connected space into a space of
dimension d(p — 1) — 1. We have a contradiction with Theorem 3.5. O

4 Non-embeddability theorems and coloring theorems

In this chapter we cover a general technique elaborated by Sarkaria [9], [10]. We explain
it step by step on several specific results. For some of the results we also give other, more
elementary proofs.

4.1 Topological Radon theorem

Theorem 4.1 (Radon) Every (d + 2)-element set in IR? can be divided into 2 disjoint
subsets whose convex hulls intersect.

(This can be proved in an elementary way, using affine dependence.)

An equivalent formulation of Radon theorem: Let f : ||o¢t!|| — IR? be a linear
mapping, then there exist two disjoint faces Ay, Ay of 0%+ such that f(||A1]])N (|| A2ll) # 0.

Proof of the equivalence: FEach such f is determined by the mapping of the d + 2 vertices
of the simplex. The image of a face is the convex hull of the images of their vertices.
In this section we prove

Theorem 4.2 (Topological version of Radon theorem [Bajméczy,Bardny]) Let f : |lod+Y|| —
IRY be a continuous mapping, then there exist two disjoint faces Ay, Ay of o4t such that

FUIALD N fOIAz]]) # 0.

First proof. We use the following

Lemma 4.3 There exists a continuous mapping g : $% — ||o%1|| such that for every z € S,
supp(g(z)) N supp(g(—z)) = O (recall that supp(y) denotes the simplex containing x in its
relative interior).
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13 23

12

Figure 4: Illustration to Lemma 4.3 ford =1

The mapping ¢ can be defined geometrically, for instance, see fig. 4 for d = 1 (we interpret
51 as the perimeter of a hexagon whose sides are labeled by the faces of o? they are mapped
to). We will discuss more general methods how to prove similar statements soon.

Using Lemma 4.3, the topological Radon theorem is proved immediately as follows: fog:
S% — R? is continuous, so by the Borsuk-Ulam theorem we have f(g(z)) = f(g(—z)) for
some z, and then A; = supp(g(z)), A2 = supp(g(—=2)) are the desired faces. O

For the proof of Lemma, 4.3 and of more general statements one can use deleted products,
this time deleted products of simplicial complexes.

4.2 Deleted product of simplicial complexes

Definition. Let A be a simplicial complex. Let the (twofold) deleted product of A be the
topological space denoted by ||A% || and defined by

IARN = UHlloall x llozll; o1,02 € A, 01 N 05 = 0} .

This is a subspace of the cartesian product ||A|| X ||A|| arising by removing cells intersecting
the diagonal. It is also a Zj-space, the action v is the exchange of the coordinates.

Explanation. We have defined the deleted product of a simplicial complex directly as a
topological space, not as a simplicial complex. The deleted product has no natural structure
of a simplicial complex (since e.g., the product of 2 segments is a square), but it is a so-
called cell complez, it is pasted together from cells of the form |[|a,|| X [|o2|, which are convex
polytopes. In this sense ||[AZ% || is a “polyhedron of the cell complex” A% . We will not consider
the cell complexes any more here.

Remark. We have ||A%]| C ||A]|A (the right hand side is a deleted product of topological
spaces, see section 3.4), the inclusion is strict in general.

Example. (o!)2 are 2 isolated points. The deleted product (c2)% is depicted in fig. 5 on
the left (the vertices of o are labeled 1,2,3, and e.g., the edge labeled 12 x 3 in the figure
arises as the cartesian product of the edge {1,2} and of the vertex {3}). The deleted product
(6®)4 consists of triangles and squares pasted together by their edges into a shape & §2
(fig. 5 right shows the graph of the corresponding polytope).

Observation. If (zy,22) is a point of [|A%]|, 1, 2 € ||Al|, then supp(z1) N supp(zz) = 0.

Outline of a proof of Theorem 4.2 using deleted products. As the above example
indicates, ||(o%t1)% || = S¢. We will not prove this here (later on we show how to circumvent

18



3 x12
13 x 2 23x1

1x 23 2x 13

12 x 3

Figure 5: Deleted product: (0%)% and (¢%)%.

this), but suppose for a while that we knew it (it would be sufficient to know that this deleted
product is (d — 1)-connected; this can be proved e.g., using Theorem 3.3).

As we saw in the proof of Theorem 3.4, we can then construct a Z;-mapping h : 54—
|(6%+1)2 ||. The values of the mapping h are pairs of points, h(z) = (v1,¥2), ¥1, 92 € [l[o" .
We claim that if we define a mapping g : §¢ — [lo%t!|| as the first component of the
mapping h, we obtain exactly the mapping required in Lemma 4.3. Indeed, if A(z) = (y1,%2),
then h(—z) = (y2,v1) (since h is a Zy-mapping), and thus supp(g(z)) N supp(g(—=)) =
supp(y1) N supp(y2) = 0.

Having the general Theorem 3.5, we can establish the topological Radon theorem more
directly as follows. For contradiction, suppose that there exists a mapping f : [jc!|| — RY,

for which the images of any two disjoint faces of o%t1 are disjoint. Then we can define a
mapping

fa: I(e™HAN = (R)A
by

fa i (zr,22) = (f(21), f(72))
(for the points z1,z2 we have supp(z1) N supp(zz) =0, so f(z1) # f(z2) by the assumption,
and hence the mapping f, indeed goes into the deleted product). Apparently this is a Z,-
mapping. The space on the left hand side can be further Z,-mapped into S¢~1 (as we know
from Lemma 3.6). Thus, if we knew that the deleted product on the left hand side is (d — 1)-
connected, no such Z,-mapping f; may exist, and the resulting contradiction would prove
theorem 4.2.

4.3 Deleted joins

In the preceding section we have omitted the proof of the (n—1)-connectedness of the deleted
product [|(¢™*1)4||. We now replace the operation of deleted product by the so-called deleted
join. This operation might look more complicated on the first sight, but as we will see, the
required n-connectedness of the resulting space is proved in a quite simple way.

Definition. Let A be a simplicial complex. A (twofold) deleted join A% is a subcomplex of
the join A*? consisting of all simplices of the form oy x 03, 01,02 € AU {0} with 61N oy =0
(thus, unlike the deleted product, the deleted join is a simplicial complex).

Remark. By the notation introduced in section 3.1, we can write the points of [|AX|| in
the form tz; + (1 — t)zg, where ¢t € [0,1], 21,22 € ||A]|. For the deleted join we moreover
have supp(z;) N supp(z2) = 0.
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Definition. On ||A%|| we define a free Zy-action v : tx1 + (1 — t)zg — (1 — t)zg + ta1.

Example. (01)22 is the perimeter of a square; the maximal (1-dimensional) simplices are
0 * {1,2}, {1,2} * 0, {1} * {2} and {2} + {1}, where 1,2 denotes the vertices of o'. The
Zs-action v is the symmetry around the center of the square.

The following lemma allows us to compute (o” )% easily.

Lemma 4.4 Let A, B be simplicial complexes. We have
(Ax B)? = ARZx BRE.
Proof — clear from the definition.

Corollary 4.5

”(U”)Z2 >~ 5",

Proof. We have o™ = (¢9)***1. By Lemma 4.4 we obtain

(6%)™ )3 = (o)) = (80 = 57

a
Second proof of the topological Radon theorem. For contradiction, we again assume
that there exists a continuous mapping f : ||o?t!]| — RR¢ which identifies no points with
disjoint supports. We define a new mapping
N A1y 2 d+1)?

fo @R — (RH1)

by
faiter + (1 —t)zg = (v1,v2),

where v; € R¥*! is the vector (¢,¢f(z1)) (the first component is the number ¢, the next d
components are the d components of the vector ¢f(z1)), and similarly v, = ((1 — 1), (1 —
t)f(z2)). The mapping f, goes indeed into the deleted product, since the equality v; = v,
would mean ¢ = % and thus also f(z1) = f(z2). Also, it is not difficult to check that
fo is continuous, and obviously it is a Zj-mapping. The space on the left hand side is
homeomorphic th §%+! (Corollary 4.5), and the right hand side can be Zy-mapped into g
(by Lemma 3.6) — a contradiction to Theorem 3.5. O

4.4 Tverberg theorem; p-fold deleted joins

A generalization of the Radon theorem is

Tverberg theorem. For any d,p, any (d+ 1)(p— 1) + 1 points in IR?® can be partitioned
into p pairwise disjoint subsets Ay, ..., A, in such a way that conv(A;)N...Nconv(A4,) # 0.

The original proof of this result is complicated. Recently Sarkaria found a simple proof
using some linear algebra and a lemma due to Barany.

Theorem 4.6 (Topological version of Tverberg theorem) Let p be a prime. Put N =
(d+ 1)(p— 1), further let f be continuous,

f: HcrN|| — RY.
Then there exist p pairwise disjoint faces Ay,...,Ap € oV such that

FAIAID N f (Al -0 f(1L AR # 8-
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Remark. It seems that this theorem might hold for an arbitrary number p (not for primes
only), but no proof is known.

The proof of the topological Tverberg theorem can be done very similarly as the proof of
the topological Radon theorem. We need, however, p-fold deleted joins. We give a slightly
more general definition than we actually need right now.

Definition. Let A be a simplicial complex, p € N, 2 < 57 < p. A p-fold j-wise deleted
join A*Ap(j) is the subcomplex of the p-fold join A*P formed by all simplices of the form
01 * + - * 0,, where the simplices of oy,...,0, € AU {0} are j-wise disjoint, that is, each
j of these simplices have an empty intersection. In particular, for j = 2 we only take p-
tuples consisting of pairwise disjoint simplices, and for 7 = p we exclude p-tuples in which
all simplices have a vertex in common. In this section we only need the j = 2 case.
Remark. Let us note the difference between the definition of the p-fold 2-wise deleted
join and the definition of the p-fold deleted product (section 3.4). In case of the deleted
product, we have deleted p-tuples of points with all components being equal, while in case of
the p-fold 2-wise deleted join we delete p-tuples of simplices in which at least 2 components
intersect. We could thus use the longer name p-fold p-wise deleted product, and in general
define a p-fold j-wise deleted product (of topological spaces or of simplicial complexes). In
our applications we only need the definitions given above.

Remark. The points of |[A*Ap(2)]] are of the form tyzq+- - - +tpzp, ¢ € [0, 1], 81+ - -+, = 1,
T1,...,2p € ||A|], supp(21), - . ., supp(z,) pairwise disjoint. On ||A*Ap(2)||, we define a free Z,,-
action v :tyzy 4 -+ tpzp o oo+ -+ Ty + 4120

Analogously to lemma 4.4 we have

Lemma 4.7 Let A, B be simplicial complexes. Then

(A= B)*Apm = AZ”(Q) * sz(2) :

|

Corollary 4.8 The space H(U“)*AP(Q)” is (n — 1)-connected.

Proof. This time we have
(™)) = (@)™ gy = (%)™ = (D)™,

where D, denotes the discrete p-point space. One can verify by induction that D;”H is
homotopically equivalent to a wedge of finitely many copies of S™ and thus (n —1)-connected.
O
Proof of the topological Tverberg theorem 4.6. We proceed almost literally as in the
proof of the topological Radon theorem (which is the case p = 2).

Using f, we define a new mapping

3 Ny*p d+1\?
fp @™ Zgyll = (R

fritizi + -+ tpzp — (v1,...,0p),

where v; = (#;,¢;f(z;)). One again verifies that this mapping is continuous, goes into the
deleted product and it is a Z,-mapping. The space on the left hand side is (/N — 1)-connected
according to Corollary 4.8, while the right hand side can be Z,-mapped into §(d+1)(p-1)-1
(Lemma 3.6) — a contradiction to Theorem 3.5. O
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4.5 Van Kampen-Flores theorem and its generalizations

The previous result is a theorem about the nonexistence of a certain embedding into IR?
(without p-fold points). Similar methods can be used to show also the following classical
result:

Theorem 4.9 [Van Kampen], [Flores] The simplicial complex K = (¢%#)<¢=! (the (d —1)-
skeleton of the 2d-dimensional simplex) cannot be realized in IR?¢~2,

Remarks. For d = 2 we obtain the non-embeddability of the complete graph on 5 vertices
into the plane. Generally this theorem shows that the dimension in Theorem 1.1 is best
possible.

In fact we prove more: If f : ||K|| — IR?%"2? is continuous, then there exist points
z1,22 € ||K|| with disjoint supports such that f(z1) = f(z2).

If we knew that K22 is (2d — 2)-connected, this claim would immediately follow similarly
as in the second proof of the topological Radon theorem in section 4.3. Flores has indeed
proved this; he has shown that || K3?|| ~ §%4-1.

Here we use a method of Sarkaria [9], which “completes” the simplicial complex K32 to
the whole (0%%)%? (for which we know how does it look like).

Auxiliary results. Let A be a simplicial complex, U C A be a subset of simplices (not
necessarily a subcomplex). Similarly as we have defined the first barycentric subdivision (see
section 1.5), we can put Sd(U) = A(P(U)), this is already a simplicial complex, a subcomplex
of Sd(A). The points of SA(U) are thus simplices of U, and the simplices are chains in the
ordering of the simplices of U by inclusion.

Lemma 4.10 Let A be a simplicial complex, A = U;UU,, where Uy, U, are sets of simplices
(not necessarily subcomplexes). Then one has a (canonical) simplicial embedding

@ :Sd(A) — Sd(Uy) * Sd(Us) .

Proof. A vertex of Sd(A) is some simplex o € A. We define

(o) = o+ foroel;
PI)=9 bxo for ¢ € Us.

A simplex S in Sd(A) is a chain ordered by inclusion, § = (61 C g3 € ... C 0%, 0; € A).
The simplices of S belonging to U; thus form a simplex in Sd(U4 ), and similarly the simplices

of & belonging to U, form a simplex in Sd(U;). Hence the whole chain § corresponds to a
simplex in the join SA(Uy) * Sd(Us;). O

Definition. Let X,Y,U,V be topological spaces. For mappings f: U — X ag:V —Y
we define the join of the mappings f and g:

fxg:UxV —- X %Y,

frg:tu+ (1=t tf(u)+(1—1t)g(v).

The verification of the following lemma is easy and is left to the reader.

Lemma 4.11
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i) If (U,wy) and (V,wy) are Z,-spaces, the mapping wy *wy is a free Z,-action on U x V.
P P

(i) If f: (U,wy) — (X,vx) and g : (V,wy) — (Y,vy) are Z,-mappings, then also f * g :
(U *V,wy xwy) — (X *Y,vx xvy) is a Z,-mapping.

Let A be a simplicial complex and K its subcomplex. On ||K32||, we have the natural
Zs-action v. Let us put U = A*A2 \ KZ:". We can also define a natural Z,-action w on
Sd(U): The vertices of Sd(U) are simplices of the form oy * g3, 01,02 € AU {0}; we define
wo(o1%03) = o2x0y. This is a simplicial mapping Sd(U) — Sd(U), and it defines a Z3-action
w = ||wol| on ||Sd(U)||, as is easily checked.

By Lemma 4.10 we have the embedding

@ Sd(A) — SA(K ) * Sd(U).

Lemma 4.12 The subspace ||o(Sd(A))|| C || SA(K 32)*Sd(U)|| is closed under the Z,-action

vV xW.

Proof sketch: The mapping v * w is induced by a simplicial mapping, hence it suffices to
verify that each vertex v of the simplicial complex ¢(Sd(A%?)) is mapped to a vertex of the
same complex by the mapping v * w. We omit the details. O

Proof of the Van Kampen-Flores theorem 4.9. Set A = 0?¢. We have a mapping
f:||K|| — R?¥=2; we suppose that it identifies no two points with disjoint supports.
First we define, similarly as in the second proof of the topological Radon theorem (sec-

tion 4.3), a Zy-mapping
%2 2d—1) 2
o KR = (R*)

A
(by putting fy : tzy + (1 — t)z2 = (v1,v2), v1 = (£, tf(21)), v2 = ((1 — 1), (1 = 1) f(x2)))-
As we did before lemma 4.12, we introduce the notation U = AX \ K%, and by

Lemma 4.10 we have the embedding
lell = AR — NER ]+ [| SAW)II -
We define a mapping g : Sd(U) — {1,2} = S9 as follows:

(01 % 3) = 1 foroy € K
g\o1* 72 2 foropc K.
This mapping is well-defined for each vertex of Sd(U): such a vertex is a simplex of U, and
has the form oy * 09, where 01,0, are disjoint faces of the 2d-dimensional simplex; at least
one of g1, 09 must lie in K, because the dimension of all simplices from A\ K is at least d.
Further, it is easy to see that g is a simplicial mapping, and that ||g|| is a Z,-mapping
(the Z,-action w on Sd(U) has been described above Lemma 4.12, the Z3-action on 5 is
the exchange of the points 1 and 2).
We consider the Z,-mapping

% - 2
F=foxllgl: B2+ 1) SA0)]| — (B*)" « 5°.
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The right hand side can be Zy-mapped into §242 x §° = §24=1 The mapping F’ can be
restricted to the domain ||@(A%2)|| 2 52¢. Since this subspace is closed under the appropriate
Z;-action by Lemma 4.12, we have finally obtained a Z,-mapping of a (2d — 1)-connected
space into a space of dimension < 2d — 1, and such a mapping cannot exist by Theorem 3.5.
d

A generalization of the same proof yields the following:

Theorem 4.13 Write A = o and let K be a subcomplex of A. Put L = A\ K and let
Lo be the set of all inclusion-minimal simplices in L. Suppose that x : Ly — 211273\ {¢}
is a coloring of the simplices of Ly by nonempty subsets of an m-element set, which satisfies
the condition

orNoz =0 = x(o1)Nx(o2) =0. (2)
Then for d < N — m — 1 there is no embedding || K| — RE.

Applications.

e Van Kampen-Flores theorem was with m = 1, N = 2d, the condition (2) was void since
L had no 2 disjoint simplices.

e As an exercise, let us prove that the complete bipartite graph K33 is not planar. We
put N = 5,d = 2,m = 2, K is formed by the vertices and edges of K33, L is its
complement to the 5-simplex, Lo are the 6 pairs which are not edges of K3 3. We color
the 3 pairs (non-edges) from one class of K33 by the color {1}, and the 3 pairs from
the second class by the color {2}. This works.

Proof of Theorem 4.13. Suppose that an embedding f : ||K|| — IR¢ exists. The mapping
f: KRN = (R

is defined as above. We again write U = A%Z\ KX2. We consider the values of the mapping
X, i.e. subsets of {1,2,...,m}, as faces of ¢™~!. First we extend the definition of x to all

simplices of A; we put
x(@)=|J x(n).

7€LY, 7Co

2
A

Note that x(o) = 0 iff 0 € K. Further we observe that this extended mapping now satisfies
the condition (2) for any 2 simplices 1,02 € L, and moreover it is monotone, i.e. o C ¢’
implies x(¢) C x(o0’) for any 0,0’ € A. We define a derived mapping

X2 : Sd(U) — Sd((e™ "))
by
xz(01 * 02) = x(01) * x(02) -
Since oy or oy belongs to L, x(a1) * x(o2) is indeed a simplex of the deleted join (¢™!)%2.

The monotonicity of x then implies that xo is simplicial (see the remark in section 1.5),
and thus it defines a Zy-mapping between the respective polyhedra. Finally we consider the

mapping ,
F = fyx ol s 1KE SO — (RH1) «[i(e™ 2.

The domain of F can be restricted to [|¢(A%2)]| 2 SV (and F remains a Zy-mapping). The
range of F' can further be Z,-mapped into 5¢ * ||(6™~1)3||. The dimension of this space is
d+ (m —1)+ 1= d+ m, therefore Theorem 3.5 requires that d + m > N — 1. O
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4.6 Kneser conjecture

The explained method can be used not only for proving the impossibility of an embedding
from the existence of a certain coloring (as in Theorem 4.13), but also the other way round
— for proving the nonexistence of a coloring from a suitable embedding. We illustrate this
procedure on the celebrated problem of the chromatic number of the so-called Kneser graphs.

Definition. Let n,k be natural numbers, n > 2k, X = {1,2,...,n}. The Kneser graph
G = G(n, k) has the set of vertices V(G) = ()k(), and the set of edges E(G) = {(4,B); A,B ¢
%), An B = 0}.

Theorem 4.14 (Kneser Conjecture, [Lovdsz]) The chromatic number of the graph G(n, k)
is equal ton — 2k + 2.

Upper bound for the chromatic number. We color the vertices of the Kneser graph
as follows: First we color the points of the set X by assigning color 0 to the first 2k — 1
points, and by assigning one color of 1,2,3,...,n — 2k — 1 to each of the remaining points.
The coloring of a vertex v € V(G(n,k)) is defined by x(v) = max{x(z), = € v}. Thisis a
coloring of the Kneser graph in the graph-theoretic sense, since at least one of two disjoint
k-tuples has some element colored by a nonzero color. The maximum of colors cannot be the
same for both vertices, since this would mean they have a common point and thus they do
not form an edge of the Kneser graph.

Lower bound for the chromatic number. This was first proved by Lovasz, all known
proofs are topological. The following proof is essentially due to Sarkaria [10].

Let us identify the set X with the set of vertices of an (n — 1)-dimensional simplex o™ L.
The vertices of G(n,k), i.e. k-tuples, can be regarded as (k — 1)-dimensional faces. We
assume that yg is a coloring of the Kneser graph by m colors, i.e. xo : ()k() - {1,2,...,m}.

We want to apply Theorem 4.13 in a “reverse direction”. To this end, we set N =n — 1
in that Theorem and we let K be the (k — 2)-skeleton of ¢”¥. Theorem 1.1 tells us that K
can be realized in R® with d = 2k — 3. The set Ly in Theorem 4.13 will be be the set of
simplices in ¢V of dimension k — 1, which is precisely the vertex set of the Kneser graph. For
o € Lo, define x(o) = {xo(c)} (formally we need coloring by subsets). Then the condition
(2) says exactly that xo is a proper coloring of the Kneser graph.

Since an embedding ||K|| — IR? exists this time, we can conclude from Theorem 4.13
that d > N — m. Substituing the values d = 2k — 3, N =n — 1 yields m > n -2k +2. O

The presented method can immediately be generalized to hypergraphs etc. (see the paper
[10]). We give one more proof of Kneser’s conjecture, which is very simple but for which no
similar generalizations are known.

Lower bound for the chromatic number — a second method. [Bérany]

Lemma 4.15 [Gale] Let k > 1, d > 0, then there exists a (2k 4 d)-element set V' C S% such
that any open hemisphere of §¢ contains at least k points of V.

Assuming this lemma, we proceed by contradiction. Let x : ()k() —{1,2,...,d+ 1} bea
coloring of the Kneser graph, where the set X is identical to the set V from the above lemma.

Further we define sets Ay,..., Agy1 C S% as follows: for a point z € S% we have z € A; iff
the open hemisphere centered at the point z contains a k-tuple of points of X colored by
the color 7. These classes Aq,..., Agy1 form an open cover of § 4 and by the Borsuk-Ulam
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theorem there exist i and z € S¢ such that z,—z € A;. In this way, we get two disjoint
k-tuples colored by the color ¢, which contradicts the coloring of the Kneser graph. O

Proof of Lemma 4.15. Let us denote
H(a)={z € §%z-a > 0},
S(a) = {z € §%2-a=0},
€; :(u,l,o,...,O),e:el+...+ed+1.

(i—1)x

Definition. A system of sets {Uy}aca is a k-fold cover of S if each point of S lies in at
least k sets from {Uy}aeca.

Lemma 4.16 (An equivalent formulation of Lemma 4.15) There exists a k-fold cover of .S d
by (2k + d) open hemispheres.

Proof. By induction on k. For k = 1 we take the cover H(ey),..., H(eqy1), H(—e). For
the inductive step from & to k + 1 we use the following

Claim. Let H(ay),...,H(ay) be a k-fold cover of §%. Then there exist points ani1, tny2
such that H(ay),..., H(anys) form a (k + 1)-fold cover of 59.

Proof of the claim. By induction on d. For d = 0 we set ap,+1 = 1, ap42 = —1. Suppose
that the claim holds for d — 1, and let H(ay),..., H(a,) be a k-fold cover of S% Then
H(ay),...,H(ay,—1) is a k-fold cover of S(a,), so by the inductive hypothesis there exist b,
b such that H(ay),..., H(an—1), H(b), H(b") form a (k 4 1)-fold cover of S(ay).

Let us put ¢ = a, —Ab, where ) is positive and sufficiently small so that S(c)is also covered
k+1 times (recall that we are covering by open sets). We now show that H(b) can be replaced
by H(a,) and we still have a (k + 1)-fold cover of S(c); to this end, it suffices to verify that
if z € S(c)N H(b) then « € H(ay,), and this holds since & - a, =z - (c+ Ab) = Az - b > 0.

Now we set ap41 = pb’ + ¢, anya = pb’ — ¢, where p is positive and sufficiently small. If
some point z € ¢ is not covered by some k41 of the sets H(a1),. .., H(an42) then necessarily
T-anp1 < 0,2 apez <0, orin other words pz -’ < z-¢ < —px-b,s0z-b > 0and z
lies in an arbitrarily thin strip around S(c). The compactness of S(¢) implies that u can be
chosen so small that « is covered by some k + 1 among the open sets H(a1),..., H(ay), H(b')
forming a (k + 1)-fold cover of S(c), but at the same time z ¢ H(b'), hence z is (k4 1) times
covered by H(ay),...,H(ay,). This finishes the proof of both the claim an Lemma 4.15. O

4.7 Colored Tverberg theorem

The Tverberg theorem implies that if we have sufficiently many points in general position in
IR?, we can select r pairwise disjoint (d + 1)-tuples of these points such that the simplices
determined by them all have a point in common. In this section we discuss a colored version
of this statement:

Colored Tverberg theorem. For any integers r,d > 1 there exists an integer t, such
that given sets Aq,..., Agy1 C IR? in general position (we consider each set as points of one
color), consisting of ¢ points each, one can find disjoint (d + 1)-point sets Si,...,5, such
that each S; contains exactly one point of each Aj, j = 1,2,...,d+ 1 (that is, the S; are
multicolored), and the simplices spanned by Si,...,5; all have a point in common.
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This theorem was conjectured by Barany, Firedi and Lovasz and proved by Zivaljevié
and Vreéica [12]. Here we present a proof using the above explained approach of Sarkaria.

While the Tverberg theorem can be proved in an elementary way, all known proofs for
the colored version are topological. The colored version is essential in proving a nontrivial
upper bound in a famous problem in combinatorial geometry, the so-called k-sets problem,
see Alon et al. [5].

We prove the following topological version (we leave the derivation of the colored Tverberg
theorem from it to the reader):

Theorem 4.17 Let d be a positive integer, p a prime. Let Aq,..., Ag+1 be disjoint sets of
cardinality 2p—1 each. Let K be the simplicial complex with vertex set A = AjU...UAg441,
whose simplices are all subsets of A intersecting each A; in at most 1 point. For any continuous
mapping f : ||K|| — R? there exist p vertex-disjoint simplices of K whose f-images have a
common intersection.

Proof. The structure is totally similar to the proofs we’ve already had, the main twist
is to define an appropriate coloring. Let A denote the simplex with vertex set A (K is its
subcomplex). Suppose for contradiction the existence of a mapping f : || K{| — R? for which
the claim doesn’t hold. We first define a Z,-mapping

fo NE | — (R

We recall that the points of HI&'ZP(Z)H can be written as formal convex combinations #;x1 +
.-+ 4+ a,t,, where z1,...,z, are points of |K|| with pairwise disjoint supports, and #; are
nonnegative reals with ¢; +--- +1, = 1. We define

fp2t1$1+"'+$ptp = (1)1,1)2,...,’073)

with v; € IR**! being the concatenation of the 1-element vector (;) and the d-element
vector t; f(z;). As in the proofs before, this map is continuous and commutes with the free
4 ,-actions.

For every simplex ¢ € A, define a coloring of ¢ by a subset of {1,2,...,d+ 1} (which we
think of as a face of o%):

x(o)={t e {1,2,...,d+1}; |on A;| > 2}.

This mapping Y is monotone, and x(c) is empty iff o € K.

Put U = A*A”(z) \KXJ@)' To each simplex of U, which is of the form ¢ = o1 * ... * 0y,
assign a simplex x,(0) = x(o1) *...x x(0p) € (¢¢)*P. This simplex is nonempty (since there
is at least one component o; ¢ K). Moreover, the intersection x(a1)Nx(02)N...Nx(0,) = 0,
since p disjoint simplices cannot each contain 2 points of the same A;, as A; has only 2p — 1
points. Therefore, the simplex x,(c) in fact belongs to the p-fold p-wise deleted join (od)*Ap(p)
(see section 4.4).

As usual, x, induces a simplicial Z,-map

Xp 1 Sd(U) = Sd((M) )
and we can form a Z,-map

F = foxlIxpll s 1K )1+ 1A — (R« (o)1
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We have the canonical embedding
@: Sd(AZp(Q)) — Sd(I(Zp(2)) *Sd(U),

and the domain of F can be restricted to ||Azp(2)|| with F’ remaining a Z,-map (a p-fold ana-
logue of Lemma 4.12 is straightforward). The domain of this restricted Z,-map is (dim A—1)-
connected. The deleted product (]Rd‘*'l)g can be Z,-mapped to §{#DFP-1)-1 and it is easy
to check that the p-fold p-wise deleted join (Ud)*Ap(p) has dimension (d 4+ 1)(p — 1) — 1. By
Theorem 3.5 we get

dimA-1<(d+1)(p-1)-1+(d+1)(p-1)—-1+1,

or (d+1)(2p—1)—2<(d+1)(2p—2)— 1, which means d < 0 — a contradiction. O

One could formulate a general theorem similar to Theorem 4.13 but concerning mappings
of a simplicial complex into IR? with no p-fold points, whose proof would use p-fold j-wise
deleted joins. We trust that the reader can do it by himself by now, and we encourage him
to seek more applications or interesting generalizations.
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