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Abstract

This paper shows some useful properties of the adjacency structures of a class of combina-
torial polyhedra including the equality constrained 0-1 polytopes. The class of polyhedra
considered here includes 0-1 polytopes related to some combinatorial optimization problems;
e.g, set partitioning polytopes, set packing polytopes. perfect matching polytopes, vertex
packing polytopes and all the faces of these polytopes.

First, we establish two fundamental properties of the equality constrained 0-1 polytopes.
This paper deals with the polyhedra satisfying these two fundamental properties. We consider
a path on the polyhedron satisfying the condition that for each co-ordinate, the vertices in
a path form a monotonic sequence. When one of the end vertices of the path is optimal to an
optimization problem defined on the polyhedron, the associated objective values form a mono-
tonic sequence and the length of the path is bounded by the dimension of the polytope. In
a sense, some of the results in this paper are natural extensions of the properties of the set
partitioning polytopes showed by Balas and Padberg. However, different from the studies of
Balas and Padberg. our proofs are not based on the pivot operations. Next, we prove the
monotone Hirsch conjecture for the combinatorial polyhedra considered here. In the last
section. we show that the monotone Hirsch conjecture is true for all 0--1 polytopes.

1. Iatroduction

The simplex method is an efficient algorithm for solving a linear programming
problem which moves between adjacent vertices of the polyhedron forming the set of
feasible solutions. It seems that the success of the simplex method justifies the
existence of efficient edge following algorithms for some combinatorial optimization
problems. It means that an adjacency criterion for a class of polyhedra could provide
a basis for an efficient algorithm which uses some sort of local search technique. In
fact, there exist such algorithms, e.g., various algorithms for minimum cost perfect
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matching problems 4,5, 10, 11], and the successful heuristic for traveling salesman
problems proposed by Lin and Kernighan [19]. Some efficient algorithms for ranking
problems are also based on adjacency criteria for some combinatorial polytopes
[8,12]. However, it may be very difficult to test adjacency for a class of
combinatorial polytopes. In {22], Papadimitriou showed that it is NP-complete to
decide whether two given vertices of a symmetric traveling salesman polytope are
non-adjacent.

In this paper, we discuss the adjacency structures of some combinatorial polyhedra.
We begin this paper with an equality constrained 0-1 polytope P, i.e., the convex hull
of the set of 0—1 valued vectors {x € {0,1}"| Ax = b}, where A is an m x n matrix
and b is an m-dimensional vector. All the entries of the matrix A and the vector b
are real numbers. Since all the vertices of P are 0-1 valued, it is clear that
{x€e{0,1}"{ Ax = b} is the set of all vertices of P.

Equality constrained 0-1 polytopes arise very naturally in combinatorial optimiza-
tion problems. For example, the class of equality constrained 0-1 polytopes contains
set partitioning polytopes, perfect matching polytopes, and all the faces of these
polytopes. We can transform set packing polytopes and vertex packing polytopes to
equality constrained 0-1 polytopes by introducing 0-1 valued slack variables.
In [1], Balas and Padberg discussed the adjacency structures of set partitioning
polytopes. The adjacency criterion of perfect matching polytopes was derived by
Balinski and Russakoff [6] and Chvatal [9]. lkura and Nemhauser discussed
the adjacency structures of set packing polytopes in [16], and extended some proper-
ties of set partitioning polytopes showed by Balas and Padberg in [1-3]. The
adjacency criterion of vertex packing polytopes was discussed by Trubin [25] and
Chvatal [9].

Section 2 of this paper considers the equality constrained 0-1 polytopes. In
particular, we establish two fundamental properties of the equality constrained 0- 1
polytopes, which are useful to discuss the adjacency structures of some combinatorial
polyhedra. In Sections 3 and 4, we consider the polyhedra which satisfy these two
properties. Section 3 shows some properties of a path on a polyhedron considered
here which satisfies the condition that for each co-ordinate, the vertices in the path
form a monotonic sequence. When one of the end vertices of the path is optimal to an
optimization problem with a linear objective function defined on the polyhedron, the
associated objective values form a monotonic sequence and the length of the path is
bounded by the dimension of the polyhedron. Some of the results obtained in Section
3 are related to the properties of set partitioning polytopes showed by Balas and
Padberg in [1]. Their proofs are in a sense constructive and based on pivot opera-
tions. On the other hand, our proofs are not based on pivot operations but on the two
properiies established in Section 2. Section 4 proves the monotone Hirsch conjecture
for the class of polyhedra considered here. In Section 5, we give an idea which leads to
a local search method for set partitoning problems. At the end of Section 5, we prove
the monotone Hirsch conjecture for all the 0-1 polytopes. This proof is obtained by
modifying the proof presented in Section 4.
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2. Fundamental properties

In this section, we give some definitions and show two properties which we will use
throughout this paper.

A sequence p = (x%x',x% .., x¥) of distinct vertices of a polyhedron P = R” is
called a vertex sequence (of P)from x° to x*. When a vertex sequence p contains K + 1
vertices, we say the length of p is K. A vertex sequence p = (x% x!,x2, ..., x%}is called
a monotone vertex sequence, when it satisfies the condition that:

for each index j, either xP <xj < xf<-~<xforx)>xf>xt> > XK

Then it is clear that every vertex sequence consisting of two vertices is monotone. If
two vertex sequences (x°,x',x?% ..., x¥) and (x'7'p°%p', ..., b x') are monotone
(ie{1.2,..., K}), then the vertex sequence (x° ...,x"" ', y% .. y* x| .., xX) is also
monotone. When a vertex sequence p is obtained from a vertex sequence u by
dropping some vertices in u, we say that p is a subsequence of . Clearly, any
subsequence of a monotone vertex sequence is also monotone. If a monotone vertex
sequence p from x° to x¥ is not a subsequence of any other monotone vertex sequence
from x° to xX, we say p is maximal.
Now, we show two fundamental properties.

Lemma 2.1. Let P be a 0-1 polytope. When two distinct vertices x' and x? of P are not
adjacent, there exists a vertex x" of P such that (x*, x', x*) is a monotone vertex sequence.

Proof. Since x' and x” are not adjacent, there exists vertices p', y?, .., y¥ of P such
that x! # p' # x? for all i€ {1,2,..., K} and the line segment connecting x' and x?
contains a point expressed as a convex combination of the vectors y!,y2 ..., y. Put
x' = y'. Since the vertices x', x%, y' (= x'), p?, ..., y¥ of P and 0-1 valued vectors, it is
owi@:w :,EM 2...: xj =x}, then x} = x| = xMw Q) : xj # x2, :ﬁ:‘x\_ < x;< x}or
x; 2 x; 2 xi. Thus, the vertex sequence (x!,x’, x?) is monotone. [J

Lemma 2.2. Let P be the convex hull of the set {xe{0,1}"| Ax = b}, where A is an
mxn matrix and b is an m-dimensional vector. If (x',x% x*) is a monotone vertex
sequence of P, then x' — x? + x3 is a vertex of P.

Proof. Denote the vector x' — x* + x* by x* Clearly, Ax* = A(x' — x? + x3) = b.
Since (x',x2, x*) is a2 monotone vertex sequence of P and x!,x2 x3 are 0—1 valued
vectors, it is easy 1o show that x* is also 0—1 valued. [J

Now recall the properties appeared in the above two lemmas.

Property A. If two vertices x' and x? of P are not adjacent, then there exists a vertex x’
of P such that (x*,x', x?) is 2 monotone vertex sequence of P.

}
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Property B. If (x',x% x*) is a monotone vertex sequence of P, then the vector
x' — x? 4+ x3is a vertex of P.

Proof. It is sufficient to show the case that
(e(1),6(2),...,a(K))=(1,2,...,i- Li+ Lii+2, ..., K)

The lemmas above showed that the convex hull of the set {xe{0,1}"{ Ax = &}
satisfies these two properties. In the following sections, we consider the polyhedra
satisfying the above two properties in stead of the convex hull of the set
{xe{0,1}"| Ax = b}.

Before going to the next section, we discuss the relation between a polyhedron
satisfying Properties A, B and a combinatorial polyhedron defined by Naddef and
Pulleyblank in [21]. A polyhedron is called combinatorial if all its vertices are 0-1
valued and it satisfies the following property.

for each i€ {0,1,2,...,K — 1}. Put p(o)}=(»°p", ....y*). Then it is clear that
OO ph, Ly T L yK) isequivalent to (2% x!, L T X L x¥Yand so it s
a monotone vertex sequence of P. Thus, we only need to show that (3!
a monotone vertex sequence. Since p' =y +d'" = a7 — X"+ X!, Property
B implies that y' is a vertex of P. The monotonicity of the vertex sequence

A-ﬁ.,l_

DLyt is clear. T

Theorem 3.1 says that for every index subset Sc< {1,2,..., K}, the vector
x4 Yisd is a vertex of P. Then it seems that the set

Property C. If two vertices x' and x? of P are not adjacent, then there exists a pair of [x® + Yiesd'|S < {1,2,..., K}} contains 2* “distinct” vertices of P. This question is

vertices {x3, x*} of P such that {x',x*} # {x%x*} and x' + 2 = x> + x* 5 taken up later.
Next, we consider an optimization problem Q: min{cx|x e P}, where P = R" and
. - e R" It is well known that when the polyhedron P has at least one vertex and the

Hausmann [14] calls Property C the “intersection-union” property. In [15], lkebe ¢ . . P v\. o . Lo

ct al. discussed the adjacency of the best and second best valued solutions of a linear . problem Q has an on:.Bm_ mo_::w:, there exists at least one optimal vertex solution of
. . . . ) . Q. The next theorem gives a relation between the monotone vertex sequences of P and

programming problem whose feasible solutions form a combinatorial polytope. It is L

: the optimization problem Q.
easy to sec the following corollary.

Theorem 3.2. Let P he a polyhedron satisf)
a monotone vertex sequence of P. If the vertex x* is an optimal solution of the problem
Q: min{cx|xe P}, then ex® 2 ex! = -+ 2 exh.

. g Property B and p = (x° x!,
Corollary 2.3. (1) If a polyhedron P satisfies Properties A and B, then it satisfies

Property C.
(2) 1If a 0-1 polytope P satisfies Property B, then it satisfies Property C.

Proof. We have to showthatcx’ — cx' ™! = ¢d' < Oforeachie {1,2,...,K}. Leto; be
the permutation defined on the index set {1.2, ..., K} which exchanges two indices
i and K. Denote the vertex sequence p{s;) by (y%, '
p¥ = ex¥ <oy = ¢(y¥ — d') and s0 ed' < 0.

Here we note that the convex hull of the vectors {(0,0},(1,0),(1.1)} satisfies
Property C but not Property B.

... ¥*). Since p* = x¥, we have
|

3. Adjacency on combinatorial polyhedra Theorem 3.2 implies that if a monotone vertex sequence p satisfies the conditions

described above, then for every permutation ¢ defined on the corresponding index set.
the associated objective values of the monotone vertex scquence p(¢) form a non-
increasing sequence.

When the given polyhedron P is a 0-1 polytope, the difference vectors of every
monotone vertex sequence are mutually orthogonal. This fact directly implies that the
length of every monotone vertex sequence is less than or equal to the dimension of P.
The following theorem implies that the same property holds for all polyhedra

We will begin this section by considering a polyhedron P < R" satisfying Property
B. And we shall add Property A later.

Given a vertex sequence p = {x° x', ..., x*) of P, the vectors = x' — x'"!
(ie{l,2,...,K}) are called difference vectors of p. For any permutation
o (L2, K} - {1,2,....K}, the  sequence  (x%x° + "M x° 4 4V 4

d7®, x4 YK d79 is denoted by p(a).
The

following theorem plays an important role in the rest of this paper. satisfying Property B.
Theorem 3.1. Let P be a polyhedron satisfving Property B and p = (x% x', ... x*) Theorem 3.3. Let P be a polyhedron satisfying Property B and p = (x% x'. ..., x*)
a monotone vertex sequence of P. For every permutation ¢ defined on the index set a monotone vertex sequence of P. Then the set  of difference vectors
V120 KL the sequence pla) is a monotone vertex sequence of P. fd'=x'—x'"1ie{1.2,..., K} is linearly independent.

}
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Proof. Suppose that the set of difference vectors is linearly dependent. Then, without
loss of generality, we can assume that there exist two index sets §,7 and a vector
ieR¥“Tsatisfyingthat Sn T'=9,SuT< {1,2,...,K -1}, 4 >0forallieSu T,
and
=Y Jdi -y Ld.
ic§ ieT

Put v =x° + ¥ 4. From Theorem 3.1, v is a vertex of P. By adding the vector
v+ (Tieshi + Tier A} (d* + v) to the both sides of the above equation, we obtain:

1+ Y A+ Y hjo+d)=v+ Y Ld +v+d)+ Y i(d+v—di),

ieS ieT ie§ ieT

i A i _
T ot d)+ L2 o d,

1
(v+d¥)y=—v+
6 s it o

where 6 =14 Yics4i + Yier 4. From the definition of v, it is clear that v + ¥ is
avertex of Pand V' ={v} U {d*+v+d|ieS}u{d+v—-d|ieT}isa set of
vertices of P. Then the above equation shows that the vertex v + d* is expressed as
a convex combination of the vertices in V. Since &' # 0 for all i e {1,2, ...K} itis
clear that v + d* is not contained in V. Contradiction. [J

Theorem 3.3 directly impties the following.

Corollary 3.4. Let P be a polyhedron satisfying Property B. Then the length of every
monotone vertex sequence of P is less than or equal to the dimension of P.

3.05 Theorem 3.3, it is obvious that the set {x®+ ¥, ¢d'|S<c{1,2,....K}}
consists of 2% distinct vertices of P.
At the end of this section, we consider a relation between the maximal monotone

vertex sequences and the edge following paths on a polyhedron satisfying Properties
A and B.

Lemma 3.5. Let P be a polyhedron satisfying Property B and p = (x° x', ..., x¥)
a monotone vertex sequence of P. If x'™ ' and x' are adjacent for allie {1,2, ..., K}, then
the sequence p is maximal.

Proof. Suppose that p is not maximal. Then there exists a monotone vertex sequence
p=(x%xt X T xx L, x%) of Pfor some ie{1,2,..., K}. From Property B,

x'=x"—x +x"'tisalsoavertexof P. Thenx' + x'*' = x' + x"andso x' and x' **
are not adjacent. Contradiction. (3

When a given polyhedron satisfies Property A, we can show the converse of
Lemma 3.5.
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Theorem 3.6. Let P be a polytope satisfying Properties A and B and p = (x°,x*, ..., x¥)
a monotone vertex sequence of P. Then the monotone vertex sequence p is maximal if and
only if ¥ 7! and x' are adjacent for all i€ {1,2,...,K}.

Proof. What remains to show is the only if part, i.e., the statement that if p is maximal,
then consecutive two vertices in p are adjacent. Suppose x' ™', x’ are not adjacent.
Property A implies that there exists a vertex x’ such that (x',x',.x'*!) is a monotone
vertex sequence. Then p is a subsequence of the monotone vertex sequence
(x%xt, . x,x, xt L xX). Contradiction. O

Summarizing the statements in Theorems 3.1 and 3.6, we can say that if
p = (x%x!, ..., x¥) is a maximal monotone vertex sequence, then for every permuta-
tion ¢ defined on the corresponding index set, the monotone vertex sequence p(a) is
also maximal and there exist K! distinct paths connecting x® and x*.

Theorem 3.6 shows that when a polyhedron P satisfies Properties A and B, every
maximal monotone vertex sequence of P corresponds to an edge following path on P.
Then it seems possible to construct an edge following algorithm for the problem
Q which determines any path on the polyhedron P from an initial vertex satisfying the
conditions that (1) the sequence of vertices in the path form a monotone vertex
sequence, (2) associated objective values form a non-increasing sequence, and (3) its
length is less than or equal to the dimension of P.

4. Monotone Hirsch conjecture

In this section, we consider the monotone Hirsch conjecture. Given a polyhedron P,
the dimension of P is denoted by d(P) and the number of facets of P is denoted by
/(P). The monotone Hirsch conjecture is described as follows.

Monotone Hirsch conjecture. Let P be a polyhedron in R". For any vector ¢ € R” and
for any vertex x° of P, the following statements hold. If the optimization problem Q:
min{ex|x e P} has an optimal vertex solution, then there exists a vertex sequence
p=(x°x!, ..., x¥) of P satisfying that:

) x¥ is an optimal solution of the problem Q: min{cx|xe P},

) x'~* and x' are adjacent for all ie {1,2,..., K},

) ex® 2 ext 2 - = ex® and

)

When we drop the condition (3), we obtain the lamous Hirsch conjecture. Klee {17]
proved the monotone Hirsch conjecture for all 3-dimensional polyhedra. However,
Todd [24] showed that the monotone Hirsch conjecture is false in general for
polyhedra of dimension 4 or more. There exist some special classes of polyhedra for
which the monotone Hirsch conjecture is true [7,13,23]. See [18] for survey.
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In the rest of this paper, we call a vertex sequence satisfying the conditions (1)~(3),
a monotone path. Here, we prove the monotone Hirsch conjecture for all the polyhedra
satisfying Properties A and B. To show this, we need the following lemma.

Lemma 4.1. If P is a polyhedron satisfying Properties A and B, then every face F of
P also satisfies Properties A and B.

Proof. Let ax < b be an inequality such that F = {xe P|ax = b} and for all xe P,
ax < b. Property B: Let (x', x2, x¥) be a monotone vertex sequence of F. Then they are
also vertices of P and Property B implies that x* = x' — x? + x¥is a vertex of P. Since
ax* = b, x* is also a vertex of F. Property A: Let {x',x?} be a pair of non-adjacent
vertices of F. Since both x' and x? are vertices of P, Property A implies that there
exists a vertex x’ of P such that (x', x',.x?) is a monotone vertex sequence of P. From
Property B, x" = x' —x' + x? is a vertex of P and so ax' < b and ax” < b. The
equality x' + x* = x' + x" implies that ax’ = ax” = b. Thus, x’ is a vertex of F and
(x',x",x?) is a monotone vertex sequence of F. ]

Now we show the monotone Hirsch conjecture for the polyhedra satisfying Proper-
tics A and B. The following proof is similar to that of the Hirsch conjecture for the 0-1
polytopes given by Naddef in [20].

Theorem 4.2. The monotone Hirsch conjecture is true for all the polyhedra satisfying
Properties A and B.

Proof. The proof is by induction on the dimension of the polyhedron. For one-
dimensional polyhedron, it is easy to show. Suppose it is true for every polyhedron
satisfying Properties A and B whose dimension is d — 1. Let P be a polyhedron
satisfying Properties A and B and d( P) = d. Clearly, there exists a maxima! monotone
vertex sequence p from the given initial vertex x° to an optimal vertex x* of the
problem Q. Theorems 3.2 and 3.6 show that p is a monotone path of P. From
Corollary 3.4, the length of p is less than or equal to d(P). When f(P) = 2d(P), we are
done. Suppose f(P) < 2d(P). Since every vertex must belong to at least d(P) facets,
there exists at least one facet F containing both x® and x*. From Lemma 4.1,
I satisfies Properties A and B and d{(F) = d(P) — 1 =d — 1. So, by applying induc-
tion to F, we obtain a monotone path on F from x° to xX whose length is less than or
equal to f(F)— d(F)< (f(P)— 1) —(d(P) = ) =f(P) - d(P). 3

5. Discussions

In this paper, we established two properties and discussed the adjacency structures
of polyhedra satisfying these two properties. From the historical point of view, some

o

s R
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of the results in Section 3 are natural extensions of some properties at set partitioning
polytopes showed by Balas and Padberg {1-3]. However, different from the Balas and
Padberg studies, our proofs are not based on the pivot operations.

Our results indicate that when a polyhedron P satisfies Properties A and B, it is
possible to construct an edge following algorithm for the problem minjcx|xeP!
which determines any path on P from an initial vertex satisfying the conditions that (1)
the sequence of vertices in the path form a monotone vertex sequence, (2} associated
objective values from a non-increasing sequence, and (3} its length is less than or equal
to min{d(P),f (P} — d(P)}.

In Section 3, we showed some properties of the set of difference vectors
obtained from a monotone vertex sequence. When a monotone vertex sequence with
length K is obtained, we can deal with 2% distinct vertices implicitly as follows.
If we have a monotone vertex sequence p = (x% x', ... x*) of Psatislying Property B,
then

V=3x+ Y (X =X se{1,2,.. K]
ies

is a set of 2X distinct vertices of P and we can easily find a vertex in I which minimizes
a linear objective function. More precisely, the vertex x° + Yy (' — X' 1) in 17
attains the value min{cx|xe V'}, where ' = [ie {1,2, .. K}|c(x' = x'"") < O}

In the following, we describe a local search method for set partitioning problems. It
represents a by-product of our results. Consider the case that P is expressed as the
convex hull of the set {xe {0,1}"] Ax = b} where A is a 0- | valued m x n matrix and
b is the m-dimensional all one vector, i.e., P is a set partitioning polytope. When a pair
of distinct vertices {x’,x”} of P is obtained, we can casily construct a maximal
monotone vertex sequence from x’ to x” as follows. Let A be the matrix consisting of
columns of A4 indexed by I' = {j|x} # x}}. Then 4 is the transpose of the incidence
matrix of a bipartite graph G’ whose vertex set corresponds to I' and edge set
corresponds to the rows of A. It is well known that two vertices x’ and x” of P are
adjacent if and only if the bipartite graph G’ is connected (see [1,9.16,25] for
example). When G’ is not connected, we can construct a partition Iy, ik ofl
such that each index subset I; represents the set of vertices of a connected component
of G'. Let x' (ie{1.2....,K}) be the 0-1 valued vector satisfying

P—xj, iMjelyulwu -0l
j ,

X, otherwise.

Then it is clear that p = (¥, x', x?, ..., x* = x") is a monotone vertex sequence of P.
Since each index subset I; corresponds to a connected component of G', it is easy to
show that each consecutive two vertices 1n p are adjacent, Le., p is maximal.

From the above discussion, we can construct a local search method for set
partitioning problems, when we have an algorithm which generates a set of
feasible solutions, e.g., a branch and bound method. When a pair of non-

adjacent vertices {x',x"} are obtained, we construct a maximal vertex sequence
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(x',x', ..., xX = x") as described above and find a vertex in the set of distinct 2%
vertices {x' + Tyes(x' — x'"1)|S = {1,2, ..., K}} which minimizes a given linear ob-
jective function. The time complexity required for this local search is bounded by
O(nm). When the diameter (the maximum length of a shortest path between any pair
of vertices) of the given set partitioning polytope is large, it seems possible to find an
improved solution by this local search technique.

In the previous section, we showed that the monotone Hirsch conjecture is true for
all the polyhedra satisfying Properties A and B. Recently, Naddef proved the Hirsch
conjecture for all 0-1 polytopes [20]. Here, we prove the monotone Hirsch conjecture

for all the 0-1 polytopes. To show it, we need the following lemma which is similar to
Corollary 3.4.

Lemma 5.1. Let P = R" be a 0-1 polytope. For any vector ccR" and for any

vertex x° of P there exists a monotone path whose length is less than or equal to the
dimension of P.

Proof. We show that there exists a monotone vertex sequence p = (x° x', ..., xX) of
P which is also a monotone path on P. If it exists, since the vertices are 0—1 valued, the
difference vectors of p are mutually orthogonal and it implies that the length of p is
less than or equal to d(P).

If the initial vertex is optimal, we are done. Otherwise, let x* be an optimal vertex
solution of the problem min {ex|x € P}. Let I be the index subset {j{x? = x¥}. Then
F=Pn{xeR'fx;=x}foralljeI'}isa face of P. Since x° and x* are vertices of F,
there exists a vertex x! of F which is adjacent with x° (on F) and satisfies ¢x° > cx!.
Since F is a face of P, {x° x'} is an adjacent pair of vertices of P. From the definition
of F, it is obvious that (x° x' x*) is a monotone vertex sequence of P and
{Jlx§ = xf}|<|{jlx} = x}}|. Thus, by applying this procedure consecutively, we
obtain a required monotone vertex sequence of P from x° to an optimal solution of
the problem min{ex|xe P}. OO

Then we can show the following theorem in the same way as Theorem 4.2 and/or
Naddef’s proof in [20].

Theorem 5.2. The monotone Hirsch conjecture is true for the 0-1 polytopes.

The above proofs show that when P is a 0~1 polytope, it is possible to construct an
edge following algorithm for the problem min{exjxe P} which finds a path on
P connecting a given initial vertex and an optimal vertex satisfying the conditions that
(1) the sequence of vertices in the path form a monotone vertex sequence, (2)
associated objective values form a non-increasing sequence, and (3) its length is less
than or equal to min{d(P),f(P) — d(P)}.
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