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Abstract .

1 .

This paper shows some useful properties of the adjacency structures of a class of combina-
torial polyhedra including the equality constrained 01 polytopes. The class of polyhedra
considered here includes 0-1 polylopes related to some combinatorial optimization problems;
¢.g. set partitioning polytopes, set packing polytopes, perfect matching polytopes, vertex
packing polytopes and all the faces of these polytopes.
First, we astablish two fundamental properties of the equality constrained 0-1 polytopes.
This paper deals with the polyhedra satisfying these two fundamental properties. We consider
a path on the polyhedron satisfying the condition that for ecach co-ordinate, the vertices in
a path form a monotonic sequence, When one of the end vertices of the path is optimal to an
optimization problem defined on the polyhedron, the associated objective values form a mono-
tonic sequence and the length of the path is bounded by the dimension of the polytope. In_
a sense, some of the results in this paper are natural extensions of the properties of the set _
partitioning polytopes showed by Balas and Padberg. ever, T
Balas and Padberg;wﬂm_mu_mmﬂ on {he pivotl operations. Next, we prave the
monotone Hirsch. conjecture for the combinatorial polyhedra considered here. In the last -
section, we show that the monotone Hirsch conjectute is true for all 01 polytopes. ' )

1. Introduction : ; '

The simplex method is an efficient algorithm for solving a linear programming
problem which moves between adjacent vertices of the polyhedron forming the set of
feasible solutions. Tt seems that the success of the simplex method justifies the
existence of efficienteedgesfollowing algorithms for some combinatorial optimization
problems. It means that an adjacency criterion for a class of polyhedra could provide "
a basis for an efficient algorithm which uses some sort of local search technique. In
fact, there exist such algorithms, &.g., various algorithms for minimum cost perfect
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matching probtems [4, 5, 10, 117, and the successful heuristic for traveling salesman |
problems proposed by Lin and Kernighan [19]. Some efficient algorithms for ranking 1
problems are also based on adjacency criteria for some combinatorial polytopes !
P [8,12]. However, it may be very difficult to test adjacency for a class of !
combinatorial polytopes. In [22], Papadimitriou showed that it is NP-complete to
. \,\ decide whether two given vertices of & symmetric traveling salesman polytope are
a0 non-adjacent. . } o
. / In this paper, we discuss the adjacency structures of some combinatorial polyhedra.
We begin this paper with an equality constrained 0-1 polytope P, i.¢., the convex hull
f the set of 0-1 valued vectors Jx€{0.,1}"[Ax = b}, where A is an mxn matrix
id B is an m-dimensional vector: All the entrics of the matrix 4 and the vector b
are real numbers. Since all the vertices of P are 0-1 valued, it is clear that \
-;7,{1 i:)ul;% b {x€{0,1}"| Ax = b} is the set of all vertices of P.

e W e 7T

EE i (e | Equality constrained 0-1 polytopes arise very naturally in combinatorial optimiza- ;
G s so bt e o exa . . : o
+! o hal vion piablers For example, the class of equality constedined 01 polytopes contains
Do 40 geode set partitioning polytopes, perfect matching polytopes, and all the faces of these ¢
: e \ + , polytopes. We can transform set packing polytopes and veriex packing polytopes to
TLw A W(f equality constrained 0~1 polytopes by introducing 0-1 valued slack variables. ~
d e i) ;"—V(M\qu"\{ﬁq\n [1], Balas and Padberg discussed the adjacency structures of set partitioning i

o l U polytopes. The adjacency criterion of perfect matching polytopes was derived by
2+ 3k 15 helh Balinski and Russakoff (6] and Chvatal [9]. lkura and Nemhauser discussed

M| the adjacency structures of set packing polytopes in [16], and extended some proper- -
r 10 ties of set partitioning polytopes Hhowed by Balas atid Padberg in [1-3} The
: adjacency criterion of vertex packing polytopes was discussed by Trubin {25] and
D Chvatal [9]. -

: ’ Section 2 of this paper considers the equality constrained 0-1 polytopes. In

. particular, we establish twa. fundamental properties of the equality constrained 0-1
polytopes, which are useful to discuss the adjacency structures of some combinatorial
polyhedra. In Sections 3 and 4, we consider the polyhedra which satisfy these two
properties. Section 3 shows some properties of a path on a polyhedron considered
here which satisfies the condition that for each co-ordinate, the vertices in the path
form 2 monotonic sequence. When one of the end vertices of the path is optimal to an
optimization problem with a linear objective function defined on the polyhedron, the
associated objective values form a monotonic sequence and the length of the path is
bounded by the dimension of the polyhedron. Some of the results obtained in Section
3 are related to the properties of set .partitioning polytopes showed by Balas and
Padberg in [1]. Their proofs are in 2 sensé constructive and based on pivot opera-
tions. On the other hand, our proofs are not based on pivot operations but on the two
properties established in Section 3. Section 4 proves the monotone Hirsch conjecture
for the class of polyhedra considered here. In Section 5, we give an idea which leads to
a local search method for set partitoning problems. At the end of Section 5, we prove
the monotone Hirsch conjecture for all the 0-1 polytopes. This proof is obtained by
modifying the proof presented in Section 4.
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2. Fundamental properties

In this section, we give some definitions and show two properties which we will use
throughout this paper. _

A sequence p = (2% x', x%, ... x) of distinct vertices of a polyhedron P S R" is
called a vertex sequence (of P) from 2° to £k, When a vertex sequence p contains K + 1
vertices, we say the length of p is K. A vertex sequence p = (x°, 2%, %%, ..., xX) is called
a monotone vertex sequence, when it satisfies the condition that:

for each index J, ¢ither x3 € x} € x} € - € xf or Nzxlzxlz oz

_ Then it is clear that every vertex sequence consisting of two vertices is monotone. If
wo vertex sequences (x°,.x',x%, .y XF) and (5% e ¥4, x') are monotone
(ie{1,2,...,K}) then the vertex sequence (2%, XN L PR A oors X5 ig also

THONOTONE; When-a-vertex—sequence--pis obtained from a vertex sequence i by
dropping some vertices in j, we say that p is a subsequence of p. Clearly, any
subsequence of a monotone vertex sequence is also mouotone. If a monotone vertex
sequence p from PtoxFisnota subsequence of any other monotone vertex sequence
from x° to x¥, we say p is maximal. ‘ '

Now, we show two fundamental properties.

This 1 S(Mj\m\}
- i 1 2 [
Lemma 21 Let P bea0-1 pofytope. When rwoldls’tmgz vertices x and x* of P are not / ,‘ L Foove Age
adjacent, there exists a vertex X of P such that (x', x', x"}is a monotone vertex sequence. ‘
i

dwo Hviom gy Qoo ¢

Proof. Since x* and x* are not adjacent, there cxists vertices y', )% ..., ¥~ of P such non- ad J'C'l,i e JY
that x! #y #x2 for all i€ {1,2,..., K} and the line segment connecting x' and x? Here 13 tk
containg a point expressed as a convex combination of the vectors y' ¥, ..., y*. Put D

x' = y'. Since the vertices o ey (= Xy , ¥~ of P and 0-1 valued vectors, it is . thicd “3"\0\*
obvious that (1) if x] = x}, then xj = xj= x3; (2) if x] # x}, then x] < x;€xjor USeS @ \,M?Q\ G/
x} 2 x} 2 x}. Thus, the vertex sequence (x!,%,x*) is monotone. [ ol on (P
Lemma 2.2. Let P be the convex hull of the set {xe{0,1}"| Ax = b}, where A s an Hoe 0 &;}W ber
mxn matrix and b is an m-dimensional vector. If (=, 5%, 1) Is @ monotone vertex OV ‘)Y;f\ﬁﬁ"'*""‘
sequence of P, then x* —.x* + x° is a vertex of P. : i =3

N~ s |
Proof. Denote the vector x' — x* + ®* by x* Clearly, Ax* = A(x' = 2+ 3)=5 sed \ QQ_ f
Since (x!, x?,x*) is a monotone vertex sequence of P and x',x?% x* are 0-1 valued QWI \
vectors, it is easy to show that x* is also 01 valved. 0 1,

e

Now recall the properties appeared in the above two lemmas.

Property A. Iftwo vertices x' and % of P are not adjacent, then there exists a vertex x
of P such that (x!,x,x%) is a monotone vertex sequence of P.
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Property B. If (x',x%,x*) is a monotone vertex sequence of P, then the vector
x! — x? 4+ x%is a vertex of P.

The lemmas above showed that the convex hull of the set {x € {0,1}"| Ax = b}
satisfies these two properties. In the following sections, we consider the polyhedra’
satisfying the above two properties in stead of the convex hull of the set
{xe{0,1}" Ax = b}. i

Before going to the next section, we d:scuss the relation between a polyhedron
satisfying Properties A, B and a combinatorial polyhedron defined by Naddef and

" Pulleyblank in [21]- A polyhedron is called. cambmatona! if all its vertlces are 0— 1
valued and it sausﬁes the. following property.’

Proper.ty C. If two vegtices x" and x? of P are not adjacent, then there exists a pair of
vertices { &, x*} of P such that {x!, 2} # {x% x*} and x" + x? = x* + x*,

N
N
— _')

Hausmann {14] calls Property C the “intersection-union” property, n {15], Tkebe
et al. discussed the adjacency of the best and second best valued sotutions of a linear
i programming problem whose feasible solutions form a combinatorial polytope. It is

o easy to see the following corollary.

| ¥
-

’;p;';v VAR ! e Coroltary 2.3, (1) If a po!yhedron P satisfies Propernes A and B, then It satisfies
N Property C.

~

o b (2) If a 0-1 polytope P satisfies Property B, then it satisfies Property C.

. . Here we note that the convex hull of the vectors {{0,0},(1,0),(1,1)} satisfies
’ - Property C but not Propcrty B. ‘ S
- . i
///7

i Siw \u» 3. Adjacency on combinatorial polyhedra

\

(trcu i
et b B. And we shall add Property A later, ) - ‘/ %d By
7 Given a vertex sequence p = (2%x', ..., ¥%) of P, the vectors &' =x'— =77
(te{,2,...,K}) are called difference vecrors of p. For any permutation
7:{1,2, ..., K} = {1.2,...,K}, the sequence (x%x 4+ d""x® + 4"V 4
d*?, L x% + TE | d") is denoted by p(s).
The following theorem plays an important role in the rest of this paper.

v ooy \j Wc will begin this section by considering a polyhedron P ¢ R” satisfying Property

i

Broptant

s Theorem 3.1, Let P be a polyhedron satisfying Property B and p = (x%x!, ..., x%)
— _— a monotone vertex sequence of P. For every permutation o defined on the index set
" Tl {W2, ..., K}, the sequence p() is a monotone vertex sequence of P..

Oy “‘L} /\\ ang L)?
NO

e
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Proof. It is sufficient to show the case that
({1, (2, e, a(K)) = (1,2, 0oy = Li+ LG+ 2,0, K)

for each ie{0,1,2,...,K—1}. Put pla) = (0 »' ... V) Then it is clear that
(0,08 s N, L yF) s equivalent to (%, x%, ..., 2" et #F)and soitis
a monotone vertex sequence of P. Thus, wé only need to show that ( YL Y)is
a monotone vertex sequence, Since Y=yt + d' m Tt xl 4 x'*1, Property
B implies that y is a vertex of P. The monotonicity of the vertex sequence
Lyt ) is clear. O

Theorem 3.1 says. that for every index Subset S¢ {1,2,...,K}, the vector .
X%+ Tsd 18 a vertex “of P Then it 'seems that the set -
{x0 + Tiesd'15 & {1,2,.., K} } contains 2% “distinct” vertices of P. This question is
taken up later, .

Next, we gonsider an optimization problem Q: min{cx|x € P}, where P < R and

PPE- LS iR that whign the polyhedron P has at least one vertex and the !
problem Q has an optimal solution, there exists at least one optimal vertex solution of !
Q. The next theorem gives a relation between the monotone vertex sequences of Pand

the optimization problem Q.

Theorem 3.2. Let P be a polyhedron satisfying Property B and p = {2 x!, xRy
a monotone vertex sequence of P. If the vertex x* is an optimal solution of the problem
Q: min{ex|xe P}, then cx® 2 ex! & - 2 ex®.

Proof. We have to show that ex' — ¢x'~! = ¢d' € Oforeachie {1,2, ..., K). Letg;be
the permutation defined on the index set {1,2, ..., K} which exchanges two indices
i and K. Denote the vertex sequence p(ar) by (7%, ¥*, .., y¥). Since y* = x%, we have
cf mexk g eyt tme(yf —d)andsoed 0. O i

Theorem 3.2 implies that if a monotone vertex sgquence p satisfies the conditions
described above, then for every permutation o defined on the corresponding index set,
the associated objective values of the monotone vertex sequence p{o) form a non-
increasing sequence. .

When the given polyhedron P is a 0-1 polytope, the difference vectors of every
monotone vertex sequence are mutually orthogonal. This fact directly implies that the
length of every monotone vertex sequence is less than ot equal to the dimension of P.
The following theorem implies that the same property holds for all polyhedra
satisfying Property B.

Theorem 33. Let P be a polyhedron satisfying Property B and p = (%%, x!, ... x5)
a monotone vertex sequence of P. Then the set of difference vectors
(d = ¢ = £ ]ie{1,2,...,K}} is linearly independent.
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Proof. Suppose that the set of difference vectors is linearly dependent, Then, without
loss of gencrality, we can assume that there exist two index sets 5, T and a vector

le RSV?“tisryingthatS(\ T'=¢0,5uTe {L2,.. K- L4i>0foralliesy T,
and . |

d‘z Zt{(d‘-‘ z‘lld"
fe§

isT

Put o< x4+ 3 . From Theorem 3.1, p is a vertex of P, By adding the vector
0+ (Teesdy + Zier 2)(d* + v) to the both sides of the above ¢quation, we obtain;

(1 +f_‘ W+

el

Z' i.)(u +d) =4y ;t,(d" o+ d) 4 Y (K 4y~ d'),'.
ieT 1111 laT .

(u+d‘)=§u+§%‘(d‘+v+d‘)+‘§%‘((1‘;{-v—d"),.
R L er v

-

S -~ “Where I=1% Zresh + TicrAr. From the definition of v, it is clear that v 4 &% j5

‘ a vertex of P and V' m {9} {d" + o+ dl)ics) V{d + 0o —die TV is a set of
vertices of P, Then the above equation shows that the vertex g + d@% is expressed as
a4 convex ¢ombination of the vertices in V. Since ¢! #Oforallie {1,2,....K Jitis
clear that v + & is not contained in V", Contradiction. [ :

Theorem 3.3 directly imp!iea_ the following,

Corollary 34. Les p be a polyhedron satisfying Property B, Then the length of every
Manotone vertex sequence of P iz Jos than or equal to the dimension of P.

.- From Theorem 33, it is obvious that the set (¥ +5.sd'|S < {1,2, - K}}
" .. tonsists of 2K distinct vertices of P, '
At the end of this section, we consider a relation between the maximal monotonpe

Lemma 35, Lot p pe 4 polyhedron satisfying Property B and p=(x%x, .. xK)

@ mototone vertex sequence of P, Ix~'and ¥ are adjacent for all i e {1,2, ...k Lothen
the sequence p is maximal. |

Proof. Suppose that 2 is not maximal. Then there exists a monotone vertex sequence
el LN ) o X5) of P for some i e (L2, ...,K). From Property B,
=l 2 s also avertex of P. Then x! + y'*! m y' 4 yv and so x! and y/*!

are not adjacent. Contradiction. [ }

When a given polyhedron satisfies Property A, we can show the converse of I
Lemma 3.5.
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Theorem 3.6, Let P be a polytope satigfying Properties A and B and p = (2%, &, ..., x¥)
a monotone vertex sequence of P. Then the monotone vertex sequence p is maximal if and
only If x'~% and x' are adjucent for all 1€ (1,2, ..., K}.

Proof. What remains to show is the only if part, i.e., the statement that if p is maximal,
then consecutive two vertices in p are adjacent. Suppose x*~', ' are not adjacent.
Property A implies that there exists a vertex x’ such that (x',', £*1) is a monotone

“sequence, Then p is a subsequence of the monotone vertex sequence
, 6 0 xt*1 ., xF). Contradiction. O

the statements in Theorems 3.1 and 3.6, we can say that. if
) ; oy s a maximal monotone vertex sequence, then for every permuta-
tiont ¢ deﬁned on the corresponding index set, the monotone vertex sequence p(vo) is
also maximal and there exist K! distinct paths coninecting x° and £k
Theorem 3.6 shows that when a polyhedron P satisfies Properties A and B, every
maxmhnmfoneweﬂeﬂequomof—kmsp@dumodgﬁonomng path on P.
Then it seems possible to construct an edge following algorithm for the problem
Q which determines any path on the polyhedron P from an initial vertex satisfying the
conditions that (1} the sequence of vertices in the path form a monotone vertex
sequence, (2) associated objective values form a non-increasing sequence, and (3) its
length is less than or equal to the dimension of P,

4
4. Monotone lesch conjecture

In this section, we consider the monotone Hirsch conjecture. Givena polyheclron P,
the dimension of P is denoted by d(P) and the number of facets of P j s denotod by
f(P). The monotone Hirsch conjecture is described as follows.

Monotone Hirsch conjecture. Let P be a polyhedron in R™. For any vector ¢ € R” and
for any vertex x° of P, the following statements hold. If the optimization problem Q:
min{cx|x & P} has an optimal vertex solution, then there exists a vertex sequence

p = (2%, ..., x%) of P satisfying that:

(1) % is an optimal solution of the problem Q: min{ex|x & P},

(2) ¢! and x! are adjacent for allie {1,2,..., K},

(3) ex® 2 ex! 2 .- > oxF, and -
(4) K (the length of p) is less than or equal to f(P) — d(P).

When we drop the condition (3), we obtain the famous Hirsch conjecture. Klee 7
proved the monotone Hirsch conjecture for all 3- dimensional polyhcdra However,
Todd [24] showed that the monotone Hirsch conjecture is false in general for
polyhedra of dimension 4 or more. There exist some special classes of polyhedra for
which the monotone Hirsch conjecture is true [7,13,23]. See [18] for survey.




CPAM, UC BERKELEY TEL: 1-510-642-6726 Feb 5,96 14:24 No.00D8 P.0S

38 - T. Mawsul, S. Tamura | Discrere Applied Muathemuativs 58 { 1995) 311- 321 i

In the rest of this'paper we call a vertex sequence satisfying the conditions (1)-(3), |
a monotone path. Here, we prove the monotone Hirsch conjecture for all the polyhedra
satisfying Properties A and B. To show this, we need the following lemma.

I
- * v

Lemma 4.1, If P is a polyhedron sansfymg Pmpert:es A and B, then every face F af
P also satisfies Pmperhe.s A and B,

Proof. Let ar < b be an inequality such that F = {rePlax = b} and for all xe P
.ax < b. Property B: Let (x!, x?, x?) be a monotone vcrtcx scquence of F. Then they are
also vertlces of P and Property B implies that §* = x* — x? + x®is a vertex of P. Since
ax* = b, x*is also a vcrtex of F. Property A: Let {x!,x?} be a pair of non-adjacent
vertices of F. Since both x* and x* are vertices of P, Property A implies that there
exists a vertex «” of P such that {(x!,x',x?)isa monotone veriex sequence of P. From’
. Property B, x" = x! — x' + x? is a vertex of P and so ax’ b and ax" € b. The
equality x' 4 x? = & 4+ x" implies that ax’ = ax” = b. Thus, ' i3 a vertex of F and
(x,»",x7) is a monotone vertex sequence of F. o o

Now we show the monotone Hirsch conjecture for the polyhedra satisfying Proper-
ties A and B. The following proof is similar to that of the Hirsch conjecture for the 0-1{
polytopes given by Naddef in [20].

Theorem 4.2, The monotone Hirsch conjecture is frue for all the polyhedra satisfying
Properties A and B.

Proof, The proof is by induction on the dimension of the polyhedron. For one-
dimensional polyhedron, it is easy to show. Suppose it is true for every polyhedron
satlsl'ymg Properties A and B whose dimension is d — 1. Let P be a polyhedron
satisfying Properties A and B and d(P) = d. Clearly, there exists a maximal monotone
vertex sequence p from the given initial vertex x® to an optimal vertex x* of the
problem Q. Theorems 3.2 and 3.6 show that p is a monotone path of P. From
Corollary 3.4, the length of p is less than or equal to d(P). When f(P) = 2d(P), we arc
done. Supposc f(P) < 24(P). Since every vertex must belong to at least d(P) facets,
there exists at least one facet F containing both x® and x*. From Lemma 4.1,
F satisfies Properties A-and B and d(F) = d(P) — 1 = d — 1. So, by applying induc-
tion to F, we obtain a monotone path on F from x° to x* whose length is less than or
equal to f{F)—d(F) < (f(P)- 1)~ (d(P)- ) =f(P)-d(P) O

5. Discussions

In this paper, we established two properties and discussed the adjacency structures
of polyhedra satisfying these two properties. From the historical point of view. some
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of the results in Section 3 are natural extensions of some properties at set partitioning
polytopes showed by Balas and Padberg [1 3] However, different from the Balag and
Padberg studies, our proofs are not based on the pivot operations.

-Qur results indicate that when a polyhedron P satisfies, Properties A and B, it is .
possible to construct an edge following algorithm for the problem min{cx|xe P}
which determines any path on P from an initial vertex satisfying the conditions that (1)
n@qum of vertices-in !he path {form a monotone verlcx scquence (2) associated

If we have a monotonc vertex sequence p = (x%,x!, ..., x“) of P satlsfymg Property B
~ then

F—

V= {x" + L(f - X ')ISC{l 2, ...,K}}
ial
is a set of 2% distinct veftices of P and we can easily find a vertex in ¥~ which minimizes
a linear objective function. More precisely, the vertex x° + T g (x' — %"V in V*
attains the vatue min{ex|xe V'), where §' = {ie {1,2,..., K}|e(+' ~ ¥ "1} < 0}.
In the following, we describe a local search method for set partitioning problems. It
represents a by-product of our results. Consider the case that P is expressed as the
convex hull of the set {x € {0,1}"] Ax = 8} where A is a 0-1 valued m x n matrix and
b is the m-dimensional all one v&ctor, i.e., P is a set partitioning polytope. When a pair !
of distinct vertices {x',x"} of P is obtained, we can easily construct a maximal !
monotone vertex sequence from x” to x” as follows. Let A be the matrix consisting of ‘
columns of 4 indexed by I' = {jix; # x/}. Then A i3 the transpose of the incidgnee . 4
matrix of a bipartite graph G’ whose vertex sét corresponds to I’ and edge set . b
corresponds to the rows of 4. It is well known that two vertices x and x* of P are
adjacent if and only if the bipartite graph G’ is connected (see {1,9,16,25] for _ i
example). When G is not connected, we can construct a partition {I,, [, ... Ix} of I i
such that each index subset I; represents the set of vertices of a connected component .
of G'. Let xf (e {1,2,.2, K}) be the 01 valued vector satislying - ;

x5= l—xj. i.ijIIUI;U"'UI(, i
X} otherwise. - ‘

Then it is clear that p = (x', x', x% ..., #F = x") is a monotone vertex sequence of P. !
Since each index subset I; corresponds to a connected component of G, it is easy to
show that each consecutive two vertices in p are adjacent, i.e,, p is maximal.
From the above discussion, we can construct a local search method for set
partitioning problems, when we have an algorithm which generates a set of
feasible solutions, e.g, a branch and bound method. When a pair of non-
adjacent vertices {x',x"} are obtained, we construct a maximal vertcx sequence
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(«,2%,..., x" = x") as described above and find a vertex in the set of distinct 2%
vertices {x" + Tyes{x' = ¥~ 1)|§ = {1,2, ..., K}} which minimizes a given linear ob-
jective function. The time complexity required for this local search is bounded by
O(nm). When the diameter (the maximum length of & shortest path between any pair
of vertices) of the given set partitioning polytope is large, it seems possible 10 find an
improved solution by this local search technique. o

In the previous section, we showed that the monotone Hirsch conjecture is true for
all the polyhedra satisfying Properties A and B, Recently, Naddef proved the Hirsch
conjecture for all 0—1 polytopes [20]. Here, we prove the monotone Hirsch conjecture

for all the 0~1 polytopes. To show it, we néed the following lerama which is similac to
Corollary 34, o

Lemma 5.1. Let P R® be a 0-1 polytope. For any vector ce R* and for any
‘vertex x° of P there exists a monotone path whose length is-less than or equal to the
dimension of P.. . o

Proof, We show that there exists a monotone vertex sequence p = (x% ¢, ..., x*)of
P which is also a monotone path on P, If it exists, since the vertices are 0— valued, the
difference vectors of p are mutually orthogonal and it implies that the length of p is
less than or equal to d(P). i

If the initial vertex is optirgal, we are done. Otherwise, let x* be an optimal vertex
solution of the problem min {cx| x € P}. Let I be the index subset {j1x§ = x}}. Then
F =P {xeR"|x; = x} forallj € I'} isa face of P. Since £° and x* are vertices of F,
there exists a vertex x! of F which is adjacent with x° (on F) and satisfies ex® = ex®, a
Since F is a face of P, {x x'} is an adjacent pair of vertices of P, From the definition |
of F, it is obvious that (x%x! x*) is a monotone vertex sequence of P and
{j1x] = x?}| < |{j|x} = x}}]. Thus, by applying this procedure conseculively, we
obtain a required monotone vertex sequence of P from x° 1o an optimal solution of
the problem min{ex|xe P}. O

whaind . .

Then we can show the folldwing theorem in the same way as Theorem 4.2 and/or
Naddef’s proof in [20]. o

Theorem $5.2. The monotone Hirsch conjecture is true for the 0-1 polytopes.

The above proofs show that when P is 2 0-1 polytope, it is possible to construct an
edge following algorithm for the problem min{cx|x e P} which finds a path on
P connecting a given initial vertex and an optimal vertex satisfying the conditions that
(1) the sequence of vertices in the path form a monotone vertex sequence, (2)
associated objective values form a non-increasing sequence, and (3) its length is less ‘
than or equal to min{d(P), f(P) — d(P)}.
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