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Several graph-theoretic notions applied to matroid basis graphs in the preced-
sag paper are now tied more specifically to aspects of matroids themselves.
tactorizations of basis graphs and disconnections of neighborhood subgraphs
are related to matroid separations. Matroids are characterized whose basis
¢taphs have only one or two of the three types of common neighbor subgraphs.
T%c¢ notion of leveling is generalized and related to matroid sums, minors, and
<uab. Also, the problem of characterizing regular and graphic matroids through
teir basis graphs is discussed. Throughout, many results are obtained quite
eavly with the aid of certain pseudo-combivalence systems of 0-1 matrices.

1. INTRODUCTION AND PRELIMINARIES

In [7} we characterized matroid basis graphs. Three concepts which
~aed important roles in our main characterization were neighborhood
wheraphs, common neighbor subgraphs, and levelings. We will relate
e these features of basis graphs to features of the matroids they rep-
Txat. In Section 3 we show that a matroid is separable iff some neigh-
“rhood subgraph of its basis graph is disconnected, and also iff the whole
s graph is a direct product. Similar results have been obtained by
thers [1, 4] but not, we think, so concisely. In Section 4 we analyze
=atroids whose basis graphs do not contain all three types of common
*1ghbor subgraphs. The most interesting of these results is that a matroid
* binary iff its basis graph contains no octahedra. In Section 5 the notion
leveling s generalized and the special structure of the top and bottom
<¢ls (the polars) is explored. Finally, in Section 6 we ask whether there

* This paper stems from Chapter II of the author’s Ph.D. dissertation, done at
" 7weton under Professor A. W. Tucker, whose suggestions and encouragement are
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122 MAURER

are basis graph characterizations for such classes as regular and graphic
matroids. We obtain some answers, but question their usefulness.

To each matroid one may associate a set of 0-1 matrices closely related
to the cycle and cocycle matrices of graph theory. These matrices were
first studied systematically by Yoseloff [15]. As systems they have almost
as much structure as the combivalent matrices introduced by Tucker [11],
whence we call them pseudo-combivalent. We introduce these matrix
notions in Section 2 and use them continually thereafter. Although their
use is by no means necessary, we have found that they greatly simplify
the proofs and sometimes the statements of our theorems.

We use the Roman numeral I to refer to [7]. For instance, Theorem
1.2.2 is Theorem 2.2 of that paper. We make the present paper reasonably
self-contained by including several items from 1 below, sometimes slightly
reworded.

A matroid #(E, %) is a finite set of elements E and a collection of bases
4, all subsets of E, which satisfy the following

EXCHANGE Axiom. For all B,B' € # and ¢ € B — B, there exists
eeB — B suchthat B — e + e € 4.

All B € # necessarily have the same cardinality, called the rank. /# is
Sfull if # consists of all subsets of E with a given rank. A matroid ./#"'(E’, #')
is a submatroid of #(E, B)if E' = Eand #' C #. #(E, B) and A'(E', &)
are isomorphic (M ~ #')if there is a bijection f: E— E’ such that
BeZiff f(B) e #'.

G(¥", &) shall denote a finite graph with vertices 7" = ¥'(G) and
edges & = &(G). Neither loops nor multiple edges are allowed. For
ve ¥, the neighborhood subgraph N(v) is the induced subgraph on ali
vertices adjacent to v. If the shortest path from v to ' has length 2, i..,
8(v, v") == 2, then the induced subgraph on v, v’ and all vertices adjacent
to both is called the common neighbor subgraph CN(v, v'), or simply a CN.,
A leveling of G from v, is a partition of ¥ into

Ve = {v| 2& o) =k}, k=10,1,..
As usual, G and G’ are isomorphic (G & G') if there is a bijection
Y(G) — 77(G")

which preserves adjacency.

A graph is properly labeled if each vertex is labeled with a finite set (in
which case we write B, B', # instead of v, v, ¥") and furthermore, B, ¥
are adjacent iff | B — B' | = | B — B| = 1. G is the labeled basis graph
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BG(A), also called BG(E, #), if it is i
, i(E, B), properly labeled and its labels ar
the bases of the matroid M(E, B). G is simply a basis graph if it can wM

THEOREM 1.1 (1.22). Suppose G is connected and properly labeled.

Then G is a label 1 : ,
P a labeled basis graph iff each CN is a square, pyramid or octq-

Lemma 1.2.4 says that, if all but one vertex of a basis graph CN js
properly labeled, then there is a unique label for the remaining vertex

which properly labels the whole. Using thi i i
from v o ey e 8 this repeatedly while working out

LeMMA 1.2. Suppose G is a basis ]
: . sis graph and the induced subgra h
some v and a\\.:.q neighbors is properly labeled. Then there is at Wxam QMM
extension of this labeling which makes G a labeled basis graph

ﬁ_z fact, mc.o_; an extension always does exist. This follows from the proof
of our Main Theorem I.2.1. A more direct proof has been obtained

Eﬁ,._\.._“.ww»wwa M%@Q.Mw. Suppose M(E, B) is full If BCa has the
ha s B") = 2 for any disti " B” g ’
haperty tha Je v distinct B', B"€ &', then (E, B — #')

2. COMBIVALENCE AND vmmcco-OOZwZ?mZOm

Snn:w matroid which _.m. isomorphic to some such vector matroid is said
' w.msxwh@:mv\m. The important problem of characterizing representable
matroids is still unsolved. Ingleton (5] gives a good survey of current

8.” <Mn:wa ﬂgm:o_.m ALS .w)v is usually represented as a matrix by picking
.onn asis or the .::%1%5@ space and writing each v e I as a column
or over this basis. However, we will represent .# by a whole system of
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. T
smaller matrices. For X = {x; ,..., Xpyin &, let Y = { y; ..., yo} = V-X.
Then there are unique constants a;; such that

m
y; = M a;x;, J=1,2,..,n
i=1

Schematically we write

We refer to (2), border symbols included, as the reduced matrix M(X)df nm
AV, Z). For each X, M(X) is clearly unique up to order of rows sad
f columns. 3
ozhuﬂnonuo: AWV, Z) the set {M(X) XeZ} is called a .85?.:&2@
system, and the matrices therein are combivalent. Combivalence was
introduced, with an equivalent definition, by A. W. Tucker {11]. He ki w
applied the concept to linear programming, game theory, and gragh
theory [8, 12].
With X, Y, a;; as before, we have that X' =
a, # 0. If X' e Z, and M(X’) = [b,], then

X — x4+ » mmi‘ﬂlw

by = 1/an ; :
b, = —ayla,, i #K; \
by = axil@u, j »

by = ay; — (aanfan), i Fk,  jAL

form of (3) is easily remembered by the schema

q/p
s — (rq/p)

1/p
—rip

P q
r s

—_—

The (*) marks the entry indexed by the vectors to be exchanged. We will
refer to the entries on the right as p’, ¢’, r', 5.
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. Anyone familiar with linear programming will recognize (3) and (4) as

embodying the standard pivoting rules. As usual, the operation denoted
. ® (4) will be called a pivot step with pivot p, and a series of such steps will
be a pivot sequence. Indeed, in | we applied pivot terminology to the

general matroid situation, and when we introduce pseudo-combivalence
below we will apply it there too.

A is said to be binary if it is representable over the field F, = {0, 1}.
W For binary matroids (4) takes a particularly simple form. We have
X Vr=r=1,9 =gt =rinall cases, and s” = s except for
I* 1 1 1
10 I 1/ ©)
1* 1 11
I 1 1 0| )

A matroid is graphic if its bases are the edge sets of the spanning forests
of some graph. It is well known that every graphic matroid is binary. If
: AV, .T)is graphic and M(X) = [a;;], then

3

(i} Vixe | ay I}

dvi{yla, =1

®just the fundamental cocycle (cut-set) for the forest X and twig x,. . Thus
MY)is closely related to the usual cyele and cocycle matrices. Indeed, it
. Basubmatrix of either and determines both 3]

Given any #(E, &), not necessarily binary, we may still attach a 0-1
- satrix to each B as follows: create a row for each b e B and a column for
i exh ce £ — B, and let the (b, ¢) entry be | if B— b cc . Clearly
i B matrix is Just M(B) if .# is binary. In all cases we call it the reduced
k- avovit matrix C (B).

Surprisingly, the set of circuit matrices of a non-binary matroid behaves,
i ®ah just one exception, like a combivalence system. This result, first
etained by Yoseloff [15], will now be slightly reformulated and given a
ssple proof using basis graphs.

DenNITION 2.1, A pseudo-combivalence system is a collection # of
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0-1 matrices, each with its rows and columns indexed by a fixed set £,
such that :

(1) For each B C E there exists (up to order) at most one P(B) €.? with

rows indexed by B,
(2) Suppose P(B) exists and B’ = B — b + ¢, where b e B ad
ce E — B. Then
(i) P(B') exists iff the (b, ¢) entry of P(B)is 1;
(iiy if P(B’) exists, its entries are determined from those of A#)
by schema (4), except that both (6) and

1* 1
1 1

are allowed; and
(3) Any P(B") can be reached from any P(B) by a pivot sequence.

THEOREM 2.2. A set of matrices is a pseudo-combivalence system if o

only if it is the set of circuit matrices of some matroid.

(E, #), let P(B) =

let N

be any 2 X 2 submatrix of C(B). It corresponds to the CN of Figure kay
in the basis graph of the full matroid on E of which . is a submatras
Vertex b/c, that is, B — b + ¢, is actually in BG(#) il p==1, and w
forth. Should p = 1, we may pivot on p to obtain

~

S8
q\

This corresponds to the same CN as before, but now the matrix entres sy
attached as in Figure 1(b). Since by assumption both B and b/c exas

|

C(B). Conditicms )
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& ¥ = p = 1. Since g, ¢’ refer to the same vertex, ¢’ = q. Likewise r’ == r
‘: We now need only determine when s’ can or must differ from s, If 5 — _.
it eomsider CN(b/c, b'/c’) in BG(4). 1t must be a square, pyramid 3.

stahedron. Unless all the middle level vertices exist, we must mm<n
 f = 1. When they do all exist, we can, but need not, have s’ = 0. This

b/c', q

b/, p

bb'/cc!

(b)

s

F1G. 1. One CN as related to two submatrices.

FEMB'c’, b'/c) we see that s’ must be 1. This gives (5). In the remaining

(awes 3" must be 0: otherwise CN(B, bb'/cc’) is improper. i) i

poved. Finally (3) follows, as usual, :,OB\EW nxo:m_wmnﬂxmo%_.ém e is
A Necessity: Consider the properly labeled graph on # = {B| P(B) e &}.
. M@ connected by condition (3). Suppose 8(B, B”) — 2. There must be at
' bmet one intermediate vertex B’. We may assume B’ = b/c, B" = bb'jcc’

C Pea, by the same analysis as above for the case 5' = 1, we get Emm
s CW3B, B°) is a square, pyramid, or octahedron. By Theorem 1.1, (E, &) is

lhﬂ.n.l, ._n_uo_m,&:.os (2ii) does not say that one can choose between 6)
i 80 (7) at will. For instance, if one insisted on choosing (7) al
oweld have to allow & (7) always, one

1* 1 c 1% 1 @. 11
1 0 ~ @\_ 1 1 ‘ bl >
c ¢ b ¢

b
b’
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but this violates condition (1). 1t would be interesting to find some rules
for choosing so that one could

(A) pick any 0-1 matrix,
(B) pivot in it until no new matrices occur, using the same one rule
whenever a choice arises,

and thereby attain a pseudo-combivalence system. Clearly, condition (1)
is the only condition that might be violated. The rule “‘always use (7)"
does not work. The rule ““always use (6)"" does, for it strengthens pseudo-
combivalence to combivalence. Unfortunately, this is the only ‘‘good™
rule we know.

3. Sums, PArTS, PrRODUCTS AND DUALS

Given A\ (E,,#,) and MAE,,H,), where E,NE, = o, the ne
M = M, + M, is the matroid with elements E; U E, and bases

B, + By = {By Y By | Bye B, , By € By},

M(E, B) is trivial if E= o and B = {g}. If M = M, + M, and neitber
M, nor A , is trivial, we say ?mn M is separable with components .4&;,
My
A\ .. ./ . .
Given JA(E, #), e € E is a loop-if it is outside every basis. It is a coloap
if it is in every basis. Let L and C be the loop and coloop sets of #. Let

Es=E—(LUC), @Bs={BNEs|BeH).

Then
= (LY C{C}),

.\\\.w - Am.w ’ %hvu

L)

are matroids and we call them the insignificant and significant parts of 4.
The names are justified by

LemMA 3.1. A = M+ Mg, BG(H) is a single vertex, and
BG(A) ~ BG(A).

Proof. The first claim follows because B = (B - C)Uu C for o8
B e . The second is true by definition. The third follows from the hass
bijection B - C— B. ||
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9<o=. Q;%;... &3) and Gy(¥3, &,), the product G = G, X G, is the
graph with vertices 7] X ¥} and edges

{(, 0)(W', v)| wt” € €13 U {(u, 0)(u, v')] 00" € &)

Q.*\. , €) is trivial if it consists of a single vertex. If G ~ G, X G, and
R.:._ﬂ G, nor G, is trivial, we say G is composite with Jactors Gy , G, .
Finally, a bordered matrix M is a sum of blocks M, , M, if up to order

B.| M,

_
i
I
M= S i B 9
B, o“

.-R_. neither M, nor M, is empty or all zeros. B, represents a set of row
mdices, etc., and each O represents a submatrix filled with zeros, If M is

_ the sum of several blocks, we write M = 3 M, .

THEOREM 3.2.  Suppose M(E, #) has neither loops nor coloops. Then
e following are equivalent:

(1) .# is separable;

(2) BG(#) is composite;

() for some Be A, the subgraph N(B) of BG(A) is disconnected;
() for some B, C(B) is the sum of blocks.

Proof. (1) = (2). Suppose A = M(E,, %) + MAE,, B,). Then,

- BG(.H) ~ BG(#,) x BG(AM,) by the basis bijection B, U B, — (B, , B,).

Morcover, any loop or coloop of 4, i — 1 or 2, would also be one in

- J; hence BG(.4)) is not trivial.

2) == (3). m:vamo BG(A) ~ G, x G, where neither G, is trivial.
q—»n. any Bed. It corresponds to some (v, , v,) in G, X G,. By the
dfnition of graph product, the vertex sets in BG(A#) corresponding to

{(v,,0) vvy € 6(Gy)}, {(v, v,)| vv, € E(G)} (10)

ae both non-empty and disconnect N(B).

(3) > (4). By definition of circuit matrix, each vertex in N(B) cor-
lwos% to a I in C(B); moreover, two vertices of N(B) are adjacent iff
®ar I's arc in the same row or column. Also, since .# has no loops
oloops), C(B) has no zero columns (rows). Now if vertex sets 4, , 4,
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disconnect N(B), let B, , C; be the rows and columns of C(8) in which 1's
corresponding to %, occur. By the above, these partition Band C = E- B
and we have (9), where neither M, is empty or a zero matrix.

(4) = (1). Suppose some C(B,)is as in (9). By the pseudo-combivalence
rules, no pivot in the upper left (lower right) affects any of the other three
quadrants. In other words, any basis can be obtained from B, by making
exchanges in F; = B, U C; and E, = B, U C, independently. Let

@, ={BNE,| Be B

Then (E, , %,) and (E, , #,) both satisfy the exchange axiom and are thus
matroids A, , M, .Since B = B, + B, , M = M, + M,. |

If .# is allowed to have loops and coloops, a nontrivial separation of
A still corresponds to a factorization of BG(#) and a breakdown of each
C(B) into blocks, but the factorization may be trivial and one of the blocks
may be a zero matrix or empty (specifically, of size k x 0 or 0 x /).
Lemma 3.1 provides an example.

We can make the E_m:o:m:_.w\ between graph products and matroid
sums more precise. Suppose G ~ G, + G, by a vertex bijection f. For any
v, € ¥(G,), G, is isomorphic. to the induced subgraph of G on
{f(v, vy)l v e ¥(G,)}. We call this a natural image of G, by f. Likewise
there are natural images of G,. .

THEOREM 3.3. If BG(A) ~ G, X G, by f, then for any natural images
Q\Q\.Qs@u\.\wmu _wNu

(1) the vertices of G, are labeled with the bases of a matroid #;, and,
(2) except for loops and coloops of the M;, M = M, | M,.

Proof. Without loss of generality, we may assume that ./# is without
loops or coloops and that neither G; is trivial. Now, since G’ is an induced
subgraph of a properly labeled graph, it is properly labeled. Since it is a
factor of a connected graph, it is connected. Also because it is a factor, if
d(v,v) = 2 in G/, then all paths between v, v’ in BG(.#) and at least
partly outside of G’ have length greater than 2 (in fact, at Icast 4). Thus
CN(v, v") in G;' is the same as CN(v, ') in BG(#). By Theorem 1.1,
condition (1) obtains. If A == (E, #), we may write #; = (E, %)).

Let B, = f(vy, v,) be the unique vertex common to G," and G,". Con-
sider the intersections of the G, with N(B,). These N(B,) are just the
images by 1 of the sets (10) and thus disconnect N(B,). By (3) == (4) of
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Theorem 3.2, there arc partitions £ = E, U E,, E, = B, Vv C,,
E, = B, U C, such that all labels in N,(B,) are of the form

B'UB,, B'CE,, (11)
and all labels in N,(B,) are of the form
B, U By, B, CE,.

Infact, all labels in G,’ are as in (11): for, if some vertex in G, had ¢, € C,
in its label, or lacked b, € B,, then, by the exchange axiom applied to
A, so would some label in N,(B,). Thus the elements of B, U C, are
coloops and loops of .#, , and they all may be deleted to obtain a matroid
M/(E; , #,'). Similarly, by deleting B, U C, from .#, we obtain

My (Ey , By).

Finally, label BG(.#) using #,' + #,’. That is, if u; in G, has label B/,
label f(u,,u,) with B," U B,’. This labeling agrees with .# on B, and
N(B,). By Lemma 1.2, # = #' 4 #,. ||

This theorem can be obtained more directly from the previous one by
using some general (but messy to prove) graph factorization uniqueness
results of Sabidussi [10].

The dual A#* of A(E, #) is the matroid with elements £ and bases
#* = {E — B| Be %)}. Suppose A (E, %) and A'(E',#’) have loops
L, L', coloops C,C' and significant elements Eg, E’; see (8).Suppose
further that there exist A (E, , #,) and #(E, , #,) where E, U E, = E;
and

My = M+ M, . (12)

Finally, suppose there is an element bijection f: Eg5 — E" which makes
M~ M, A M, (13)
Then clearly f induces an isomorphism BG(.#) ~ BG(.#') by the basis
bijection
CUB,UB,—~C' Uf(B)V f(E, — B,).
For completeness we state the following theorem, which has been proved

by several people and published elsewhere [1, 4, 6). We also point out a
simple corollary which seems not to have becn noted.

TurOrREM 3.4. Suppose BG(.#) ~ BG(M') with basis bijection g. Then
there exist matroids A, , A, satisfying (12) such that (13) holds with an
element bijection that induces g.

If .#(F, #) is inseparable, it follows that each automorphism of BG(.#)
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arises from an automorphism of .#, possibly followed by a Q:m:Nm:Q._.
However, a dualization is not possible unless the e.x&m‘ | EY of .\\. is
exactly twice its rank. Thus, if I'(X) is the automorphism group of object

X, we have

COROLLARY 3.5. Suppose # is inseparable of order n and rank r. Then
T[BG(#)] ~ T M),

except that, if n = 2r, it is also possible that

T[BG(M)] ~ T M) X Z,. 1

We note that, if . is full, I'(.#) is as large as possible, namely S, ; __‘
also, n = 2r, I'(BG(#)] = S, X Z,. If # is separable and k 2,. is
inseparable components have order twice their rank, then I'[BG(.#)] is a

k
supergroup of I'(/) and a subgroup of I'(.#s) < [1 Z, .

4. Basis GRAPHS <<_._A:\wmm._,z_n.:ﬁ CNs

/
/

<<o:oim:m_wmocmmmmmqmvrmm: Eﬁ_.o: o:_v\o:oo_.ﬂioﬁwvmmoﬁnz.
occur. Throughout we make use of the relationship between CNs and
2 X 2 submatrices of circuit matrices set forth in Theorem 2.2. For
brevity, we call these submatrices 2-minors. -

The most interesting and simplest of our results is

THEOREM 4.1. A matroid is binary if and only if its basis graph coniains
no induced octahedra.

Proof. The only possible representation of a matroid by a 8335_38
system over F, is with its circuit matrices. ,H.:omn form a combivalence
system iff (7) never occurs. (7) never occurs iff there are no o..,:_:n_al
CNs. In a basis graph any induced octahedral subgraph is necessanly 8

CN. 1

We will now assume that circuit matrices do not contain rows or columas
of zeros. This assumption amounts to ignoring loops and coloops. it
makes no essential difference in the theorems to follow, but does some
times simplify their statements.

Turorim 4.2.  All CNs of BG(.#) are squares if and only if A u
representable by the combivalence system (over any field) of some M - ¥ M,
where each M, is either an m < 1 or a 1 > n matrix of 1's.

PRI
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Proof. Let # be the pscudo-combivalence system of .#. We note that
every CN of BG(#) is a square iff every 2-minor of every C(B)e 2 has
two or fewer 1’s. Also, if some C(By) = ¥ M, with the M, as above, then
the pseudocombivalence rules have exactly the same effect on % as would
combivalence rules over any field. Indeed, the only effect of pivoting is to
change the border symbols, not the matrix entries. In particular, every
2-minor of every C(B) would have two or fewer 1s. Now, if ./ is represen-
table by a combivalence system in which some M(By) =3 M;, then
M(By) = C(B,) and sufficiency is proved.

Conversely, suppose no 2-minor of C(B,) has more than two 1’s.
Rearrange the columns so that all the 1’s in the first row are consecutive
in the first p columns. If p > 2, there can be no I’s lower in those columns,
else we get a 2-minor with n > 3 I, If p = 1, rearrange the other rows
so that all the I's in the first column are consecutive in the first ¢ rows. If
q > 2, there can be no s further right in rows 2 through ¢ for the same
reason as above. Thus we get (14).

—.e s —

or

(14)

Proceeding inductively, we get M = M. 1

CorROLLARY 4.3. If all CNs of G = BG(AM) are squares, then G is a
woduct of complete graphs. If G contains no triangles, then it is an n-cube.

Proof.  Clearly each m x 1 or I X m matrix of 1’s corresponds to a
eomplete graph on m + 1 vertices. The first claim follows from the proof
of Theorem 3.2. If there are no triangles, m = 1 in all cases and each

eomplete graph is the interval K, . By definition, a product of intervals is
;n-cube. |

THEOREM 4.4, A1l the CN’s of BG(.#) are pyramids if and only if M
om be represented by a combivalence System over F, containing a matrix
auirely of 1’s.

Proof.  Sufficiency: Suppose .#(E, #4) is representable over F, and
wme M(B,) is all I's. Then each ce E — B, can be interchanged with
ech b e B, . However, since all ¢’s are represented by the same vector, at
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most one of them can appear in any given basis. In short, # consists of
B, and all its neighbors, and N(B,) is “full.” Therefore all CN’s are
pyramids; indeed, B, is the apex of every one. :

Necessity: We first show that

byl 1 1 0 )
¢ Cy C3

cannot be the submatrix of any C(B). Pivoting on (b, , ¢;) we get

by 1 p (16)
1

1
ol l o

by ¢y ¢

If p = 1, the first two columns of (15) and (16) correspond to an octa-
hedron. If p = 0, the second two columns of (16) oo:m.mbo:a to a square.

Now arrange C(B) so that the row with the most 1’s is on top and these
1’s are consecutive in the first k oo_casm.ﬁ,: there are no 0.92 rows (oe
not even one) we are done. If some other row has a 1 outside the .ma k
columns, it must also have 1’s in the first & oo:E:_m as well; otherwise we
get a submatrix )

10 ,
I
o 1l (Im

which gives a square CN. But then this row has more 1’s than the firg,
which is also impossible. We conclude that there are no 1's beyond
column k, and thus no columns beyond column k either.

Next suppose some row other than the first has at least two 1's. By the
impossibility of (15) that row must consist entirely of 1’s. m.:c,.__a. some
entry is some third row be 0, we get the transpose of (15), ir._o: is impos-
sible by the same type of argument. Thus, if some row other than the firg
has two 1°s, all entries of C(B) are 1’s. ‘

If every row other than the first has just one I, these must all occur i
the same column; otherwise (17) occurs (up to order). If we pivot on the
in the first row and that column, we get a C(B’) which is all 1’s.

Finally, since there are no octahedra, {C(B)] B %} must form s
combivalence system over F, . |
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We note that we have also proved

COROLLARY 4.5. If every CN of BG(A#) is a pyramid, then they all
share the same apex. |}

THEOREM 4.6.  All the CN’s of BG(A#) are octahedra if and only if M
i full.

Proof.  Suppose each CN of #(E, Z%) is an octahedron. We claim that
every C(B) is a matrix of 1’s. For suppose some C(B) had a 0 in it. Since
every row and column has at least one 1, we would get a submatrix

01
L p

and thus a CN with a missing vertex. Now pick Be # and let S be any
subset of E with | B| = | §|. Pick any s€S — B and be B — §. Then
B— b+ sed since C(B) is all I’s. Continuing for | B — S| — | pivot
sieps more, we get S e Z.

The conversc is obvious. [

We now consider the cases in which one type of CN is excluded. The
ectahedral case was Theorem 4.1,

THEOREM 4.7. 4 matroid has no pyramid CNs if and only if it is a sum

o full matroids.

Proof. No CN is a pyramid iff no 2-minor of any circuit matrix is
wp to order)

11
1ol (18)

As for necessity, consider any C(B) and let the I's in the first row be
eonsecutive in the first & columns. Any other row which has even one 1 in
#ose columns must have I’s in exactly those columns, for otherwise (18)
socurs. Thus, bringing such rows to the top, we get

|
{
_“
Lol | . (19)
|
|
!
|
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By induction, C(B) breaks into blocks of 1’s. The only way pivoting could
cause a 1 to be replaced by a 0 would be (6), but this involves (18). Thus
each block represents a full matroid.

As for sufficiency, each C(B) is a sum of blocks of 1’s, so (18) does not
occur. |

We call a 0 — | matrix pseudo-triangular if, up to order, it has the form
(20). As long as we assume there are no zero rows or columns, the region
of 1’s must extend all the way to the top and the right.

. (20)

1's

THEOREM 4.8. A matroid has no square CNs if and only if every one of
its circuit matrices is pseudo-triangular.

Proof. Tt suffices to prove that a matrix M{ is pseudo-triangular iff it
does not contain (17). Necessity is clear. As for sufficiency, arrange the
rows so that row i is above row i’ if i has fewer 1’s. Arrange the columns so
that j is to the left of j* if it has more 1I’s. If row / has a 1in column p, it
must have 1’s in all the columns to the left of p; if it had a 0 in column
n < p, by the column arrangement we would obtain (17) after all (up to
order). Thus by the row arrangement, M is pseudo-triangular. ||

This characterization of matroids without square CNs is quite artificial.
We now present an interesting characterization for a certain subclass, but
unfortunately the subclass is proper.

Let E, , E, ,..., E; be subsets of a finite set E. A subset {e, ,..., e;j of Eiis
said to be a system of distinct representatives (SDR) if there is an injection
e; — E.» where e; € E, ;) . Let & be the collection of maximal SDRs. As
shown by Edmonds and Fulkerson [2], (E, %) is a matroid, a transversal
matroid. Note that this definition allows for loops and coloops, as does
the material to follow.

A transversal matroid is (properly) nested if the E; are (properly) nested
by inclusion. There is a simple mapping, due to Welsh [14], between
0 -1 sequences a,a, - a, and nested transversal matroids. Namely. let
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E=in={1,2,..n} and let j be an E, iff a; = 1. Clearly any properly
nested collection E, C E, --- C E; can be obtained in this way by first
numbering the elements of E consecutively, starting with those of E,
then E, — E,, and ending with E — E, . Below we assume such a ::EH
bering has been made.

It is easy to show that every nested transversal matroid is isomorphic
to a properly nested one; indeed, every transversal matroid is isomorphic
to one with distinct E;. Thus Welsh’s correspondence is essentially a
surjection. As he showed, it is also an injection. An alternate proof
follows from the comment after (23) below.

THEOREM 4.9.  Nested transversal matroids have no square CNi.

Proof. If there were a square then some C(B) would have a submatrix

, @n

where we may assume i < j. Because of the nesting and ordering, a lower
number not being used as a representative can always replace a higher
number which is. Since B — /+ j is a maximal SDR, B — / + { must
thus be one too, contradicting (21). |

Suppose .#(E, %) arises from the proper nest E, C E, - CE, . Ifeis

the smallest element of E; — E; ,, we call the maximal SDR
s = {e, s ey} standard. When the elements of B, and E — B, are
arranged in order, C(B,) is pseudo-triangular. For instance, if | E} = 6
k — 3 and ,
E, =3, E, =75, E, == 6, (22)
then C(B,) is

1M1 10
411 1 1 (23
611 1 1 )

2 35

.oso can show that any other C(B) of ., when suitably arranged, has 1’s
in at least all the locations where they occur in C(B,).
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Now let .#’ be obtained from a full matroid of order 6 maa rank 3 .3
deleting any two bases distance 3 apart. By Theorem 1.3, .\\ is a matroid.
Clearly each C(B) of .#' contains at most one 0. If £’ were a :nmgma
transversal matroid, its standard circuit matrix would thus be Am@ E.a its
E; would be (22). But there is only ore 3-subset in that system which is not
a maximal SDR, {4, 5, 6}. Thus .’ is not a nested transversal matroid.

5. POLARS

Whereas the top level %, of a leveled basis graph has only a single <n_‘12.
we have seen that the bottom may have many. Also, two adjacent vertices
in one level must have a common neighbor in the level up Arnaq..u 1.2.8)
but not necessarily in the next level down. Nonetheless, :aozw is much
symmetry between up and down. There is also B:o.: m:.E.”ER in the top
and bottom levels, which we call polars, and these tie in nicely with other
matroid concepts. .

We begin by generalizing levelings in a way which makes the symmetry
clear. Given (E, #) and E' C E, let

v

s
M(E) = max| BN E"|,  m(E) min | BAE'|.
Then a matroid leveling of #(E, %) with index\E’ is a partition of 4 into
%, ,k =0,1,.., where N\

~.

B, =(BI|ME)—|BOE =K~ (4

If E' = Be @, this is precisely the leveling from B we have :mo.a swo.
viously. Tn general, we call the top level %y (E') and the bottom AYE).

Clearly the matroid leveling from E — E’is just the leveling from E’ turned
upside down. In particular,

B(E — E') = BE"). 25

This leveling generalization is closely related to one o.m the mr,.aa.ﬁ.a
definitions of minors. The reduction of M(E, #) to E’, written A - E', s
the matroid (E’, #') where

# ={BNE| BeB, |BNE|=ME).
The contraction M % E"is (E", #") where

B ={BNE"| Be#, |BNE"|=mE)}.
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A minor of .# is any matroid that can be obtained from by a series of
reductions and contractions. It is well known (and implied by the next
proof) that .# - E” and .4 x E’ are in fact matroids. Also, any minor can

be obtained by at most one reduction followed by at most one contraction,
or vice versa.

From the definitions it is clear that #,(E’) is a subset of the bases of
M E 4 M X (E— E. In fact, we have

THEOREM 5.1.  (E, B(E")) is a matroid #(E'), and
ME)= M E + # X (E— E).

This is essentially proposition 3.53 in Tutte’s lectures [13], but we give
another proof. For any Be Z(E’) let

B =BNE, B =Bn(E—E),
C'=(E—-BNE, C =(E—BnE~—E)

Then the circuit matrix at B must be of the form

Bl M, m M,

e S b (26)
B 0 | M,

c C

for, if some entry in the lower left were 1, then [ B’ | would not equal
M(E’). By the pseudo-combivalence rules, no matter what M, is, no pivot
m M, affects M, , and vice versa. Also, pivoting in M, takes us out of
#¢E’), and this is never needed to reach another B e %(E"). For instance,
we can pivot in all the elements of (B — B) N E’ first and then pivot out
(8 - B) N E”; this necessarily avoids pivoting in the upper right and gets
wfrom B to B. Thus, as far as #(E’) is concerned, we may set M, — 0. ]

By symmetry, #°(E’) forms a matroid
MEY =M XE + H#-(E—E).

Considering any natural image of .# - E’ in A(E’), and any of # X E' in
A(L’), we see that reductions and contractions are, except for loops and
coloops, submatroids of .#. Since submatroids of submatroids are
mbmatroids, every minor is a submatroid in this sense, However, the
converse is false; unless its factorization is trivial, (E, B(E") is not a
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minor. In the next section, it is shown that minors may be distinguished

from submatroids in general by the nature of their subgraphs in BG(.A).
Situations in which the factorization of #(E’) is trivial are not without

interest. A circuit of #(E, &) is a subset of E contained in no basis and

minimal with respect to this property. A cocircuit (cut-set) is a minimal

subset among those that intersect every basis.

COROLLARY 5.2. Suppose E — E' contains neither a circuit not a
cocircuit. Then ignoring loops and coloops, # - E' and M X E’ are polars.

Proof. From the definitions, .# X (E — E) and A - (E — E’) are
trivial. |

As an example, suppose edge e of graph G is neither a loop nor a bridge.
Let 4 be the forest matroid of G (see next section). Then the matroids of
the graphs obtained by deleting and contracting e are polars of /. As
noted by many people, their bases partition those of ..

Clearly there are three more corollaries analogous to the one above; one
merely trivializes a different pair of factors from #(E’) and #(E')". We
go on to duality. /-

/

THEOREM 5.3. [M(EN* = [MXE)N = M*(E — E').

Proof. The second equality is an instance. of (25). As for the first, B s
a basis of #(E') iff | BN E’ | is maximal for 4 But this is clearly equiv-
alent to |(E — B) N E’ | being minimal for .4*. |

As for the non-polar regions, our only result is

THEOREM 5.4. Let BG(E, %) be leveled with index E'. Then the induced
subgraph on B, \J By, is connected.

Proof. Let B=AUD and B'= A"UD" be distinct vertices
B, J Bryr ,where A, 4’ C E'and D, D’ C E— E'. By up-down symmetry
we may suppose Be &, . If D' — D = ¢, we must have D’ = D; other-
wise B’ is in some &; , j < k. Thus applying the exchange axiomto 8, ¥
gives B =B—a+de%. . 1fD—-D+#*g, pick any d'e D" - D,
forsomebe B — B ,wegetB"=B — b+ d € B.1fbe A, then B e A,

If be D, B" € %, . In all three cases B" € #, Y By, and |B" - B -
| B— B'| — 1. The result follows by induction. }

In general, %, is not connected and (E, #; Y B 41) is not a submatrosd.
Finally, we compare matroid levelings to another generalization of the
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original levelings, one which makes sense f i
and ¥ C ¥, let or any graph. Given v € 7(G)

8(v, 7"’y = min 8(v, v').
¥
Then the leveling from ¥ is a partition of ¥~ into sets
Ve =1{v|8(,¥") = k}.
THEOREM 5.5. Every matroid leveling is a leveling.

Proof. We must show that i i i
o at in the matroid leveling (24) of #(E, %)

B, = {B|8(B, B,) = k).

If Bye By, Bye By, then | B,N E'| — | B,NE'| = k. Let

e

m.u = AW@ —_ Wwv N mw\, mn — Aww _ wcv NnE.

H

Then | E; | = m > k and | E,| = m — k. In particular, (B, ,%B,) =k
By the exchange axiom we may forge a path from B, to B m.o ﬁ._._m:\ wo_.,
c.n: &m.o one element of B, — B, is pivoted out and one o.m. By, — B, is
pivoted in. Let B’ be the j + 1 basis in this path, eg, B = B, ; >_wo»c

the nxnrm:.ma axiom, we may assume that the elements of E, mq%n.?oaa :v“
first, that is, one for each edge of B? --- Bm, Along the mm:_.o subpath an

aumber of elements of E, may be pivoted out, but by applying the oxv.,

change axiom to B™ and B® we ma i
y assume they are pivoted 1
Beds and 55, By o k8 p out last. Thus

By symmetry we get the following corollary, which for matrix matroids

amounts to a well-known result about pivoting.

| .?.q:mwzmz 5.6. Given JM(E, B), suppose one starts at some B, and moves
ough any sequence of bases which involves at each step exchanging an

las.mi of By for one of E — B,. When the sequence can no longer be
wontinued, the basis one has is in B%B,).

Proof. One could not possibly get stuck at some B’ outside BYB,)
for, by the proof above, there is a direct path from B’ to >

B(E — B,)) = B%B,)

e which one could continue. J
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In other words, if one wants to throw out as many o_oBm:mm of B, as
vOmmeo\\ono may do so by charging directly ahead and without any
advanced planning. This fact is useful in linear algebra.

6. REGULAR AND GRAPHIC Basis GRAPHS

Recall that #(E, &) is graphic if E is the set of edges of some graph Q
and 4 is its set of spanning forests. We write J# = M(G). A is cographic
if J* is graphic. #(G) is planar if G is. By a oo_n@nmﬁoa ?8.8:., nm
Whitney (translated into matroid terminology), «# is planar iff it is

i cographic.
mﬁﬂww«mﬂ“ Bw:% equivalent definitions of regular Em.qoam. From our
point of view the most interesting is that .# have a oOBUEm_Q.Sn Tepresen-
tation over the rationals in which every entry of every M(B) is either o, 1,
or —1. See Rockafellar [9, Section 6] for a discussion of the various
definitions. . .

Tutte [13] has characterized the classes of matroids mcgo in Snsm. of
forbidden minors. To use his results, we must make precise the relation
between minors of «# and subgraphs of BG(#). The wsacmoa w.cwmsv_.
Py of GV, €) is an SPC (shortest path complete) if ¥ satisfies the
following condition: whenever v € +" is on some shortest path of G vo»iom,_,
o' v" e ¥, then ve¥". Clearly every CN is an SPC. Zoaoém if ()
mm.mn SPC, then CN(v', v") in {¥"> is the same as CN(v', v") in Q By
Theorem 1.1 there is a submatroid .#’ such that (¥"> = BG(A'). In
fact,

THEOREM 6.1. A subgraph G' of BG(#) is an SPC if and only if it is
the labeled basis graph of a submatroid which is, except for loops and
coloops, a minor.

Proof. First we show that M'(E', ') is a minor of A(E, %) iff there
exists a partition E = E’ U L L Csuch that &' equals

@n

Sufficiency is easy: ' = [# - (E — L)] X E'. As for necessity, mﬁwvos
M — M - E’. Let C be any basis in 4 X (E- EYandletL=E-E ‘.h..
By definition, &’ is just the projection of #y(E’) under En mapping
S—>SNE. Since M(E)= M -E + M X(E— EY# is m_mo. the
projection of any cross-section of .&%mv arising from a fixed basis of
M % (E — E’). (27) is just such a projection. -

If #' = # X E', analogous reasoning applies. In all remaining cases

(BNE'|Be®, CCB, BNnL= 2}
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M = (# - E")x E' and we apply the special case twice. E" — E’
partitions into L’, C' such that the bases of .’ are the restrictions to £’ of
the bases in . + E” which include C’ and exclude L'. E — E" partitions
into L”, C" with similar properties in regard to 4 - E” and .#. Thus the
bases of A’ are Q7)) with L = L'V L"and C = C' U C".

Now we show that an induced subgraph G’ of BG(A) is an SPC iff
there exist L, C such that ¥ = #7(G") is just

B ={BecB|CCB,BNL=g). (28)

From this and the first claim the theorem follows.

Suppose ¥ = #'. Let B, .-+ B, be a shortest path between By, B, € ¥,
The only elements pivoted out (in) along such a path are those of
B, — B, (B, — B,). Thus each vertex on the path is in #' = 7",

Conversely, suppose G’ is an SPC. Let C be the elements which occur
in all Be ¥"" and L those which occur in none. Clearly ¥ C #’. Suppose
B’ were in %’ but not in #”'. Since any shortest path from B’ to any
B,e 7" is entirely in #', we may assume B’ is adjacent to B,, that is,
B = By — e; + e,. Because e; ¢ L U C, there exist B,, B ¥ such
that e, ¢ B, , e, € B, . Since (E, ¥"') is a matroid, by the exchange axiom
we may assume B, = B, — ¢; -+ ¢’ and B, = B, — e” + e,. But then
CN(B, , B;) includes B’ so B’ € ¥ after all. |

Incidentally, we have shown that {¥""> is an SPC iff it is connected and
every CN(v', v") in it is identical to CN(v, v") in BG(A).

By one of Tutte’s theorems, a matroid is regular iff it is binary and no
minor corresponds to the F, combivalence system of

O = -

—— O

—_—
—_

or its transpose. The matroids of these two systems are duals. Thus they
have the same unlabeled basis graph, call it G. They are also inseparable,
s0, by Theorem 3.4, any matroid with basis graph G differs from one or
the other merely by loops and coloops. We have

THEOREM 6.2. A is regular if and only if no SPC of BG(A#) is an
octahedron or G. |

Unfortunately, G has 29 vertices, so we do not find this a very useful
characterization,
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As for basis graph characterizations of/ graphic matroids, it is easy to
see that there are none. Any condition Q&cmmmm graphs which would accept
#(G) would also accept #(G)*, which need not be graphic. However, we
can attack the related problems of characterizing matroids which are
graphic and (or) cographic. Tutte has shown that .# is graphic iff it is
regular and no minor is .#(Kj3)* or M(K;)*. Likewise, 4 is cographic
iff it is regular and no minor is #(K; 3) or #(K;). Let Gy 5 and G, represent
the two basis graphs of these four matroids. Then

THEOREM 6.3. # is planar if and only if no SPC of BG(A#) is an
octahedron, G, Gs5, 0or Gs. |

To characterize the class of matroids which are either graphic or
cographic, we must modify the above to allow occurrences of G, 4 and G
as long as they are all labeled dually, i.e., with M (K5 5)* and A(K;)*, of
all not. This uniformity of labelings can be expressed graph-theoretically
in terms of chains of cliques in BG(#); see [1, Theorem 2]. However,
G, has 63 vertices and Gj has 125, so we see no point in working out this
characterization precisely.

Two final remarks: First, in light of the results above, we doubt that
basis graphs provide a fruitful context in which to attack the representa-
bility problem.

Second, we have used Theorem 6.1 in one direction only. Our bass
graph characterization of binary matroids provides an opportunity to go
the other way. We get that . is binary iff the full matroid of order 4 and
rank 2 is not a minor.
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