e - a—

JOURNAL OF COMBINATORIAL THEORY (B) 14, 216-240 (1973) MATROID BASIS GRAPHS. 1 217

: ‘a&.n:o. Independently Holzmann and Harary [7] showed that for every
“edgeina basis graph there is a Hamiltonian cycle containing it and one
aduding it.

.:..m main goal of this paper is to characterize basis graphs. Section 1
watains preliminary definitions and lemmas. Section 2 contains the
-Bmana and proof of our first characterization, which we call the
KJ: Theorem. In Section 3 we prove some partial strengthenings of the
Sain Theorem and make some conjectures. Section 4 contains the second
aaracterization, which involves mappings. Finally, in Section 5 we study
-8.:0: of homotopy which arises naturally from the methods of the
geevious sections.

One may ask to what extent basis graphs faithfully represent their
suatroids. We have answered this in [LO]. It has also been answered inde-
peadently by Holzmann, Norton, and Tobey [8] and by Cunningham [4].
te 2 sequel [11] to this paper we will investigate the relationships between i
satroids and their basis graphs further. |
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A matroid may be defined as a collection of sets, called bases, which satnfy
a certain exchange axiom. The basis graph of a matroid has a vertex for each
basis and an edge for each pair of bases that differ by the exchange of a single
pair of elements. Two characterizations of basis graphs are obtained. The
first involves certain local subgraphs and how they lie when the given graph
is leveled with respect to distance from a particular vertex. The second involves
the existence of a special mapping from the given graph to som¢ “full” bass
graph. It is also shown that in a natural sense all basis graphs are homotopically

trivial.

|. PRELIMINARIES

DenniTion 1.1, A matroid A on a finite set of elements E is a collection

INTRODUCTION - !
For all B, B’ € # and each € € B' — B, there exists some

ecB— B suchthat B —e 4 ¢ €.

There are several approaches to the study of matroids. The approsdh
emphasizing bases has the advantage that any one basis of a given matseill’
can be transformed into any other, without ever ceasing to be 3 basit,
by exchanging elements one pair at a time. Thus it scems appropriate 8
regard each basis as a vertex and each pair of bases differing by a wungls
exchange as adjacent. The graph obtained in this fashion is called @ g
basis graph of the matroid. :

It is well known that for any connected graph the spanning tamy
viewed as sets of edges, form the bases of a matroid. The basis grapmef |
such matroids, called tree graphs, have been studied for several yesss.
Cummins [3] showed that every tree graph (with two trivial excepuond &
Hamiltonian. Shank [13] simplified the proof. Very recently sevesd
researchers investigated basis graphs in general. Bondy [1] showed me
only that every basis graph is Hamiltonian, but also that most -

We !:.8 M = (E, B) or simply #(E, B). We say that B = B — e + e
.”73858 from B by a pirot step; € is pivoted in, ¢ is pivoted out. We 1 i *
: aho express this diagrammatically by 1

.

"

B ?.:I.V m\‘. A—v

. Our definition is equivalent to the original basis definition given by
Whancy [16]. In particular, one can easily show that all bases of a matroid
‘tne the same cardinality, called the rank.

@7, &) will be a finite graph with vertices ¥~ and edges £. We denote
.m*u in the form v, Neither loops nor multiple edges are allowed. Paths
- written #,r, =+ v, . We do allow repetition of both vertices and edges
{ L path. 8(r,, v') is the distance between ¢ and ¢’. Given G(#7, &), (¥ "> is
, m&'.&:nﬁw m\cwmwmv_.g on ¥ C¥ . Let | B| be the cardinality of set B.
| PSS ach pe ¥ s I S
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In practice it will not be necessary to consider both | B - B'| and
| B — B |, for it will be known that | B| = | B’ |. Finally, we say that ¥~
is properly labeled if (¥™> is. Clearly we may apply the notation (1) to
any properly labeled graph.

DerNITION 1.2, The basis graph of the matroid #(E, #) is the properly
labeled graph with labeled vertices 4. 1t is denoted BG(.#) or BG(E, 4).
A graph is a basis graph if it can be labeled to become the basis graph of
some matroid. Clearly two bases of .# are adjacent in BG(.#) iff they
differ by a pivot step. It follows that every basis graph is connected.

DermvuimioN 1.3.  1In a given graph suppose 3(v, v") = 2 and ¥ consisls
of v, v and all vertices adjacent to both. Then (¥} is called the common
neighbor subgraph CN(v, v') or simply a CN. The vertices adjacent to both
v and v’ are their common neighbors or the intermediate vertices.

In Figure 1 we display three graphs that will be of constant use. It
should be clear which name applies to which.

Lemma 1.4. In a basis graph each CN is a square, pyramid, or ocla-
hedron.

Proof. Suppose 8(B, B') = 2. We may write B’ as B— (b, +-by)1-(c; +¢y).
There are only four possible common neighbors: B — b, + ¢,

FiG. 1. A square, a pyramid, and an octahedron.
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B—b,c;, B—by+ ¢, and B— b, 4 c,. By the exchange axiom
there must exist bases B — b + ¢, and B — b’ + ¢, , where b and b’ are
each either b, or b, . If no other common neighbors exist, b = b’ and we
have a square: otherwise the exchange axiom is violated with the roles of B
and B’ reversed. If there are three common neighbors altogether, no
matter which three they are we get a pyramid. If all four exist, we get an
octahedron. |

DEFINITION 1.5, A leveling of G(¥7, &) from v, is a partition of ¥
into sets ¥, k = 0, 1, 2,..., such that

Ve ={ve? |8, v) = k}.

If G is leveled, and properly labeled up through level k, we adopt the
following conventions. For 0 < j < k we write &, instead of ¥ . B, will
be (the label of) the single vertex in &, . C will be the set of elements in at
least some label but not in B,. We may pick any one labeled vertex and
write it as A U D, where A C By, D C C. Then using the letters a, b,c,d
(with various subscripts and superscripts) to name elements of A, B, — 4,
C — D, and D respectively, we may write any other labeled vertex in the
form

AVD —(ay+ay+ - +d + )+ (by + by + -+ o+ )
We will abbreviate this as
A&uam et &ﬂ ...\@u@& e A.— ....v.

When a labeled graph is unleveled, or its leveling is temporarily
irrelevant, the letters a, d will not be used, and the letters b, ¢ may take
on other meanings to be explained when needed.

With a few explicit exceptions, all figures will be subgraphs of leveled
graphs. Vertices will be grouped into distinct horizontal layers. The lower
the grouping on the page, the higher is the level number.

LeMMA 1.6 (The Positioning Condition). Let BG(E, %) be leveled from
B, . Then every octahedral CN lies

(1) entirely in some 4, ,

(2) across two levels as in Figure 2, or

(3) across three levels as in Figure 1.

Moreorer, every other CN lies as an induced subgraph of an octahedron
positioned as above.
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Proof. Let 8(B, B') = 2. Suppose Be #,_, and B’ € %y, . Then by
the definition of leveling all common neighbors must be in %, . Now
suppose Be B, , B' € #,,, . Writing B = 4 U D we have B’ = (a,a,/bc)
or (ad/c,c,). In either case an inspection of the labels of the four possible
common neighbors shows that we get either Figure 2 or an induced

Fig. 2. An octahedron lying across two levels.

square or pyramid. Finally suppose B, B'e%;. If B = AU D then
B’ = (aa./b,b,), (didy/c:cy) or (ad/bc). In the first two cases the CN lies
entirely in %, . In the last case we get the octahedron of Figure 1 or an
induced subgraph. ||

DeriNiTION 1.7.  Let G(¥7, &) be leveled from v. Then {¥}) is called
the neighborhood subgraph N(v).

Recall that the line graph L(G) has a vertex for each edge of G and an
edge for each pair of edges in G which share an end-point.

LEMMA 1.8, Suppose B, is a vertex in some BG(E, #). Then N(B,) is the
line graph of a bipartite graph.

Proof. Define G'(E, &") by bce &' iff By — b 4 c € B, where be B,,
ce E— B,. Clearly G’ is bipartite with partition By, E — B, . Morcover
bc <> B, — b -+ cis a bijection between the vertex sets of L(G’) and N(B,).
We have

bc is adjacent to b'c’ <>

b = b or ¢ = ¢ but not both = (8}

(By— b+ ¢)— (By—b + ) = 1.

Thus L(G') and N(B,) may be identificd. 1§
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2. THE MAIN THEOREM

THEOREM 2.1 (The Main Theorem).
only if:

(1) it is connected,

G(¥", &) is a basis graph if and

(2) each common neighbor subgraph is a square, a pyramid, or an
octahedron, ‘

() in every leveling each common neighbor subgraph meets the
Positioning Condition; and

(4) for some v, the neighborhood subgraph N(v,) is the line graph of a
bipartite graph. .

zmnommma\ has already been shown. The proof of sufficiency is the rest of
this section.

._.mmﬁ.uwm_s 2.2. Suppose G is connected and properly labeled with a
w&?a:e.x Z of subsets of some set E. Then (E, #) is a matroid, and hence G
is a basis graph if and only if every CN is a square, pyramid, or octahedron.

Proof.  First we show that, if 8(B, B’) = 2 and

(by,cq) (bg,c)

B B, B,

then there are vertices B, and By, not necessarily distinct, such that:

by,
B2, p

?.J; h (b,,5)
As.nuv

B, =0, p

Here {x, y} = {¢;, ¢;} and {z,w) = {b,, b,}). For consider CN(B, B').
b, = B — b, + ¢, is an intermediate vertex. If there is only one o.::u.
b,. then it must be B — b, 4 ¢, and we may set B, = B; = B, . If m.
does not exist, there must exist two intermediate vertices adjacent to B :
ad they must be labeled B — b, + ¢, and B — b, - ¢z . These satisfy »mm
eonditions for B, and Bj, respectively.

Now _.2 B, B’ be any vertices. We must show that for any c,€ B — B
ere exists by B — B’ so that B — b, -+ ¢, is in B. There must be a
mth P from B to B, say

_ Av_.a.—v Q- .«.._v
B = ) ——> By - B, - lvwai =B,
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We first consider the case in which P is non-redundant, that is,
(b1 yers bpy N {C1 5oy €} = D

In this case each b, must be in B — B’ and mmnr. ¢, in B — B. m:l&
¢y = cpforsome k, 1 < k < n. If k = 1, simply pick by = b; . Il k # 1,
apply the first part of the proof to

(br1:€x—1)

By By

(by,cq)

By
to get

(x,cq)

By By,

, C:nwlmr

By .

Performing such a shift k — 1 times altogether, we make ¢, SE
Now suppose P is redundant. There is an element e and indices &, p

such that either

(0,0)
B; e, By By -2 B,,
or
(e,c)
B, .0, By v By C2s B,,

and no proper subsequence of B, -~ B, is redundant. We handle the Ti
case; the second is similar. Suppose p = k + 2. If b = ¢, then B, - &
and we may simply delete B,, B, from P. If b ¢ thoe
B, = B, — b + c and we may take the shortcut

ma (5,c) wﬁ .

If p > k + 2, we may use the shifting technique on B, =+ B, to obess

(b",e)
Bi %> By -

Then the case p = k -+ 2 applies. In any event this redundancy of ¢, »ad

likewise every other redundancy, can be eliminated. {

To prove the Main Theorem we now need :Bo._,n_vn. construct a propm
labeling on G. Here, and for the rest of the mno.:o_.r the letters G, v, £
(without superscripts) refer to some graph satisfying (1)-(4). Alwa, ¥,
will refer specifically to the leveling of G from v, of (4). The purpose of «&

is to get the labeling started.

LemMA 2.3. ¥, U ¥#] can be properly labeled.

Proof. By (4), N(v)) = L(G’) for some bipartite G'(E, £'). Arbstrarlly
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ket one set in the partition of E be called B, , the other C. Rename the
vertices in N(vp) by the rule bc — B, — b + c. It is immediate from the
definitions that N(v,) is now properly labeled. Finally, label v, with B,. }

Remarks. First, were the roles of B, and C reversed, the labeling of
7,U 7] would be complemented, that is, each B would be replaced by
E— B. Indeed, complementation gives another proper labeling for any
properly labeled #™'. This is essentially matroid duality [16].

Second, if G’ is disconnected, not only can the order of the partition
change, but so can the sets themselves. This important observation is
pursued elsewhere [8, 10].

Finally, Lemmas 1.8 and 2.3 are not really new. In essence they were
#nst proved by Kishi and Kajitani [9].

We will now properly label G by induction on the following:

LABELING HYPOTHESIS. Cwuc ¥ can be properly labeled. For any proper
Mbeling, if Be B; then | B — B, | = J.

Lemma 2.3 proves the hypothesis for k = 1.

LemMA 2.4, Assume the Labeling Hypothesis Jor k. Given a particular
Wieling. suppose 8(v, B) = 2, where ve¥;,,, Be Bi_1 . Then there is a
wque label for v which extends the given labeling 1o a proper labeling on

O\, B).

Proof. B and v must have two common neighbors B, , B, such that
B3cB, is a square. Let B = 4 U D, We must have B, = (a/c); any other
aoxce, (d/c) say, makes | B, — B, | + k. Likewise B, = (d'/c’)and @’ +# a,
¢ v c. Now r is a common neighbor of B, and B, . Of the four labels t
oght thus have —A4 U D, (a/c’), (d'[c), (aa’jcc’)—the last is always proper
#d nonc of the others ever is. |

Let CN(r, B) as above be called an upward CN on v. We note that
W'cc’) - By| = k + 1, so the Labeling Hypothesis will be true for
4 - 1l all the locally proper labelings on upward CNs from ¥, are
podully consistent. We will prove global consistency in the following
-

Snee I Each v e 7, is given the same label by every upward CN on
]

$re Il. Forall B e %, and ve ¥;,,, if v has label B by Step I, then
Bve& it |B—B|=1.
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Ster HI. If v, v € ¥4, and v 5 v, then their labels are different.
Thus we may use the names B, B', #,,, instead.

Step 1V. Forall B, B' € %#,,,,
BB €& iff

Before taking these steps we need more preparatory work. .

We will often consider configurations in which appear two u&mon.:.
common neighbors B,, B, of some upward CN(v, B). We may write
B = A v Dand B, = (a/c). Thus B, is either (a'/c) or (a/c’). In the ?::2
case, CN(», B) contains either another common neighbor (a/c") m&moo__.
to B, or (a'/c") adjacent to B,, so v becomes (aa’/cc") for won ¢ not
determined by B, B,, B,. In the latter case, v becomes (aa”/cc’), where
a” is not determined. .

Actually, in most situations we need not even consider the _.m:oq case.
Suppose the goal is simply to show that the whole mozmmca.m:o: can be
labeled consistently or that some two labels therein differ by just so many
elements. If the desired conclusion obtains in the case B, = (a’/c), 32_.3
complementing the entire labeled subgraph we get the same oo:n_&_@
for the case B, = (a/c’). Henceforth we produce a label for », and skip
the redundant case, without comment.

We introduce one more convention. In the diagram of a subgraph a
dashed line between v, v’ will mean that v’ is not even an edge &. :..o
supergraph G. Of course, it will not be necessary to use this convention if
two vertices are two or more levels apart. When v, v* are less than :.6
levels apart and no line is drawn between them, solid or dashed, no claim
is made about the existence of vv'.

|B—B|=1.

LemMmA 2.5.

Proof. If uv ¢ &, then CN(u, v) has at least two vertices, x and w, in
the next level down. This contradicts the Positioning Condition, whether

In Figure 3, (a) implies (b).

U v
u v
w X w X
(a) (b)
Fic. 3. (a) implies (b) by Lemma 2.5.

# tbeadjacent in ¥
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or not wx € &. The same argument, turned upside down, shows that wx is
iné. |

The unleveled subgraph in Figure 4 is called a Propeller with shaft uv

and tips w, x, y. The edges wx, xy, yw, if they exist in the supergraph, are
called tip edges.

LEMMA 2.6 (The Propeller Condition).

Any Propeller in G has exactly
one or three tip edges.

FiG. 4. A Propelier.

Proof. Suppose Figure 4 has two tip edges, say wx and xy. Then
CN(w, y) is improper: the common neighbors u, x, v form a triangle. On

the other hand, if Figure 4 has no tip edges, relevel G from y. Then
‘M, 0. w, x» violates Lemma 2.5. 1

LemMa 2.7 (The Book Condition). Suppose Figure 5(a) is an unleveled
abgraph of G. Then both oW, xz €& or neither is. In short, there are no
“half open Books.”

Proof.  Suppose vw, say, is an edge but xz is not. Leveling G from x we
xt Figure 5(b). But now square uwzy violates the Positioning Condition. |

LemMA 2.8 (The Siblings Condition).  In any leveling of G, ifu, ve ¥

k+l
oducc &, then thereisawe Y% such that uw, vw e &.

We think of the levels as representing generations. Thus this lemm

a says
Bat every pair of siblings has a common parent.

Proof. The case k = 0is trivial. Assume the case k = p — 1 and let u,

»+1 - Let x be any parent of v. If x is not also a parent of u,
eonsider CN(u, x). If this is a pyramid or octahedron, by the Positioning
Condition one of the intermediate vertices is a common parent of u, v. If
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We can now take Steps I-1V. Although Step I is logically first, it is the
most intricate and we present it last.

Step 1I. By Step I assume that every upward CN on v € ¥, labels v
~ with B. Although for all we know so far some other vertex in ¥ e gets
the same label, we may without fallacy use v and B interchangeably below.

That B've & implies | B — B’| = 1 is easy: for any parent B” of B,
CN(r, B") is properly labeled. As for the converse, we first prove

LeMMA 2.9, Suppose Cwuc ¥ is properly labeled. If v € ¥, has label
AV D, then for any b € By, — A there exists d € D such that v has a parent

“b).

() thy

Proof. Let B,,; = B. Let By, By - B,B, be a path ascending directly
from B to B, . Somewhere along this path b is pivoted in. If this happens
® the first step, B, = (d/b). If this happens later, we shift b forward by the
wchnique of Theorem 2.2. Although we do not know that all of G is

peoperly labeled, the technique still works, for at least each CN we consider
s properly labeled. |

Fic. 5. The Book Condition.

this is a square uvxy, then y € ¥, , and by mmw—::n:o:.x. y have a common
parent z. If CN(u, z) contains a vertex w not adjacent to y, we pget
Figure 6(a). By the Book Condition w is a common parent o% u. v.lf oo
such w exists, we get Figure 6(b). Consider the Propeller with shaft yz
and tips w;, wy, x. By the Propeller Condition and symmetry we may

: Now suppose B= AU D isin ¥,,,, Be#,, and |B— B | = I.
assume w,x € €. But then CN(w, x) is a pyramid or octahedron after all. § p ki1 &

Then B’ is some (d/b). Applying the lemma to b, we get the existence of an
Y~ (d'/b). Since 4, is properly labeled, XB' € &. Also, by the Siblings
Condition X" and B’ have a common parent B". If BB’ ¢ &, CN(B, B")
sust contain Y such that B"XBY is a square. Moreover, YB € €. (See
Figure 7.) But now CN(X, Y) is improper, whether or not B, B” have a
&rd common neighbor. Thus BB’ € & after all.

(a)

Stie 111, Suppose v, 0" € ¥, have the same label B. Pick any upward
N on r. It must contain a square with » at the bottom. Call the top B”

w_.

(b

Fic. 6. Diagrams for the proof of Lemma 2.8, Fig. 7. Step Il: CN(X, Y)is improper.
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and the intermediate vertices B, , B, . By Step ll, v'B,, v'B, € § also. But
then (B, , B, , v, v') violates Lemma 2.5.

Step 1V. First we show that BB €& implies |B—B'|=1. As
siblings, B and B’ have a parent Z. Let W be any UNSJH of Z. Suppose
CN(W, B)is a pyramid with apex Z; see Figure 8(a). Consider the Propclles

(a)

b

FiG. 8. Diagrams for the proof of Step V.

with shaft BZ and tips X, Y, B'. By symmetry we may ccsn_can. -rn
XB e€&. Write W = AU D, X = (a/¢), Z = (a'/[c). Then B = :wn joch,
Similarly B’ = (aa’/cc”) where ¢” # ¢’ by Step I11. Thus | B - R |

If CN(W, B') is a pyramid with apex Z, analogous qmumoz_z_m .._R.-’
In the only remaining cases, both CN(W, B) and OZAx.\..mv include
squares containing Z; see Figurc 8(b). By the Book Condition PQc#
Now choose W = AU D, P = (ac), Q = (d@'[/c). We then %9..8. -
order, Z — (a"/c’), B = (aa"[cc’), and B" — (a'a"[cc’). Thus |B - B° - §
as claimed. ,

Conversely we show that | B — B’ | = 1 implies BB’ € £. Temporanily
let B= AU D. Then B’ == (a/b). By Lemma 2.9 some Z = (d/h) cxaia,
and by Step 11 Z is a common parent of B, B'. Let W cw any v::..i.lh
Relabeling, we get W = AU D, Z = (a/c), B = (ad’[cc’), B .‘..8 Nig}
If X = (a/c’) exists, then it too is a common parent of B, m n?. -
Lemma 2.5 BB’ € &. If X does not exist, CN(W, B) m.:a CN(W, B') mea
contain squares WZBP and WZBQ, respectively ( _u_.m_:n 8(b) 5& fone
BB’ deleted). We have P = (d'/c’) and Q = (a”/c'). mwsno tP--Q. =t
and P, Q € #,, PQ € &. By the Book Condition we still have BB ¢ &.
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Step 1. Two upward CNs on v are said to overlap if they have some
mtermediate vertex in common,.

Lemma 2.10.  If each pair of overlapping upward CNs on v assign it the
sme label, then all upward CNs on v assign it the same label.

Proof. Let vWB be a path in some fixed upward CN(v, B). Let vW'B’
& a path in any upward CN(p, B’) not overlapping CN(v, B). If w, w’
kve 4 common parent X, then CN(v, X) overlaps both CN(v, B) and
CN(r, B'), forcing both to assign v the same label. The only other possi-
Wity is that 8(W, W’) = 2 and CN(W, W’) is a pyramid with apex ».
Japarticular, W, W’ have a common neighbor W, on their level. But then
@ere cxist common parents Y, Z of W, Wy and W,, W, respectively.

Merefore CN(v, ¥) and CN(p, Z) provide an overlapping link between
ON(r, B) and CN(v, B). |}

We now need to show that two overlapping CNs on v € ¥3,, give v the
ume fabel. We will consider several cases.

Lewva 2,11, Suppose Cw.uo ¥'; is properly labeled, X, Ye ¥,  ve Vit
o XvYisapath Then | X — Y| < 2.

Proof. It suffices to show that there is a path of length 1 or 2 between
Jand Y in the properly labeled region. Clearly 8(X, Y) < 2. If XY ¢,
@ Positioning Condition ensures the existence of such a path in

X, Y. 1

Case 1. CN(v, B) and CN(p, B’) have at least two intermediate
wuces W and W’ in common. By Lemma 2.5, WW', BB' € &. Also, at
Wt onc of W, W' is adjacent to another intermediate vertex in CN(v, B).
Wemay assume W is. Likewise at least one of them is adjacent to another
sgermediate vertex in CN(o, B').

Case 1a.  We have Figure 9, where all the vertices on the lower level
# understood to be adjacent to v in the next level down., We follow this
eduticring convention until further notice.

Lt some parent of B, B’ be called 4 U D. Then B = (a/c) and
¥=(dic). Thus W = (aa’[cc’), W' — (ad’/cc”). Furthermore X = (aa"fcc’)
o) (dd/ce”). (Except where noted, different symbols in the same
sgment have always represented necessarily distinct objects. Here and
@ the rest of the section we allow the possible exceptions ¢ = a” and
dec)Infact,| X — Y| < 2by Lemma 2.1 1,s0d = a". Therefore both

Qe 8) and CN(v, B’) give v the label (aa’a”[cc’c”).
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edges. Also, cither WX or ZX is in &, else there is another improper
Propelicr with shaft B,y and tips W, Z, X. We may assume ZXc &,
' Likewise, either WY or ZY is an edge. However, given that ZX € & we
annot have ZY e &, for then the Propeller with shaft Bivandtips Z, X, Y
would have exactly two tip edges.

If B, B’ have a common parent, call it A U D. Even if they do not, let
" AU D represent the unique name it would have. Then B — (a/c),
¥ = (a'|c), B, = (ad'[cc’), and we may pick X = (aa’/cc”). Considering
CN(r, B'), Z is either (aa’[cc’) or (aa'/c’¢). Since XZ €&, we must have
®e sccond choice with ¢ = ¢". Now W =- (@'a’lcc’) and Y = (adfcc’),
bt by analogous reasoning d = a”. Finally we find that in both CNs v
geus labeled (aa'a”jec’'c”).

FiG. 9. Case la: both W and W’ are adjacent to another intermediate veriex.

Case 2b.  Only one CN, say CN(p, B'), is a pyramid with B, as apex.
We must have at least Figure 12. As before B — (a/c), B' = (d'|c)),
B, ~ (ad’/cc’). Then X = (aa”jcc”). We may pick

Z = (ad'lc'é), W = (d'd/cc).

Case 1b. We have Figure 10. The proof given for Case 2¢ also coven
this case; simply ignore vertex W.

Case 2. CN(z, B) and CN(r, B') have one intermediate vertex Bw
common.

Case 2a. Both CNs are pyramids and B, is the apex of both (Figure 1)
BB’ ¢ &, else there is a Propeller with shaft B'B, , tips W, Z, B, and no up

8' B

B8 =)

FiG. 12, Case 2b: B, is the apex of one pyramid CN.

) .‘,_‘2:::. 2L Z =X, |W—X|<250¢=c¢"andd = q" Again

.8 = (aa’a’/cc'c”) in both CN.

Case 2c. B, is the apex of neither CN. We have at least Figure 13,
sbere now we put o back in the picture. First suppose 8(8, B') = 2. We
ay writc B — (a/c), B’ = (a’/c'). Then By = (ad'[cc’), X = (aa"/cc"),

FiG. 10. Case 1b: W is adjacent to both additional vertices.

g 8 B

v

Fi. 11. Case 2a: B, is the apex of two pyramid CNs. FiG. 13, Case 2c: B, is the apex of neither CN.
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and Y = (d'd/c'¢). Using Lemma 2.11 again, d = a”, ¢ -~ ¢", and v is
labeled consistently.

On the other hand, suppose BB e€d&. We may writc B (ajc),
B’ = (d'/c). Once more B, = (ad'/cc’), X = (aa"/cc”), but now
Y = (d'd/c¢). By the Book Condition XY €&, so we still have ¢ - a°,
¢ == ¢",and v = (aa’a”[cc’¢”) in both CN.

This completes the proof of the Main Theorem.

3. STRENGTHENINGS AND CONJECTURES

The Positioning Condition for levelings other than from r, has beea
used solely to show that there are no Propellers without tip Q_mnw.":a no
half open Books. Either configuration, were it to exist, would be an Sa:.o&
subgraph. This is immediate for Propellers. For Books, consider
Figure 5(a). Whether or not vw and xz are edges, we have vz, xw ¢ ¢ ; for
instance, were vz € &, then CN(v, y) would be improper. Therefore we have

THEOREM 3.1 (Main Theorem, Second Form). G is a basis graph if and
only if:
(1) it is connected,
(2) each CN is a square, pyramid, or octahedron;
(3) no induced subgraph is a Propeller or a half open Book:
(4) for some vertex v,
(i)  N(vy) is the line graph of a bipartite graph; and
(i) in the leveling from v, each CN meets the Positioning Condition.

We now consider redundancies in condition 4¢i). Recall that a clique
is a maximal complete subgraph.

LEMMA 3.2, Suppose each CN of G(¥", &) is a square, pyrumid, e

octahedron, and no induced subgraph of G is a Propeller. Then. for any °

vg €Y7, Nlvy) satisfies the following conditions:

(1) no two cliques have an edge in common;
(2) each vertex is in at most two cliques.

Proof. (Part 1), Suppose ' is in distinct cliques C, C’. There must
be vertices w in C and x in C’ such that wx ¢ &, else neither C nor C
would be maximal. But then CN(w, x) in G is improper, for the commos
neighbors v, v', r, form a triangle.
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(Part 2) Suppose v is in three cliques C,, C,, C;. No v’ # v is in two
of these cliques, for then vv’ would violate (1). Thus we may pick v, , 1, , vy,
one from each clique and all distinct from » and each other. No two of
these are adjacent. For suppose v, € &. Then there would exist some Cy
containing {v, v, , v,} and Cy, C, would have v, in common. Thus the
Propeller with shaft v, and tips v, , vy, vy is left with no tip edges, which
B impossible. |

COROLLARY 3.3. Given the hypotheses above, N(v,) is a line graph.

Proof.  Krausz’s Theorem [6, p. 74] says that a graph is a line graph if
#s edges can be partitioned into complete subgraphs in which no vertex
appears more than twice. By the above lemma, the set of all cliques of
Mro) provides just such a partition. |

We call a cycle a cligue cycle if no three of its vertices are in the same

dique.

TueoREM 3.4, Suppose that each CN of G(Y", &) is a square, pyramid
or octahedron, that every pyramid CN containing v, has v, as its apex, and

shat no induced subgraph of G is a Propeller. Then N(v,) is the line graph of
s bipartite graph.

Proof. By Corollary 3.3, N(vg) = L(G’) for some G’'. We prove the
teorem by establishing two claims. First, G’ may be constructed so that
exch cycle in it corresponds to a clique cycle in N(r,), in the sense that the
#dges of the former become the vertices of the latter. Second, N(ry) has no
dique cycles of odd length. It follows immediately that G’ has no odd
oxcles whatsoever and is thus bipartite.

To show the first claim let H be any graph meeting the condition of
Knausz's Theorem. A graph G such that L(G') =~ H is constructed by
mtung down a vertex v’ for each complete subgraph K in the partition of H,
od an edge incident to o' for each vertex in K. Now suppose specifically
g Ot /7 — N(v,). Recall that in this case the partition is the set of all
f dquesin H.Let C' be acyclein G’ and C the corresponding cycle in N(v,).
Qesrly no three edges of C’ have a common vertex, so no three vertices
. of C arc in the same subgraph in the partition, i.e., no three are together
. @ any clique. This proves the first claim,

. As for the second, since no graph has a clique cycle of length 3, it
" elfices to show that, if N(vy) has a clique cycle of lengthn > 5, then it also
§ W one of length n — 2. Figure 14(a) shows a clique cycle in N(r,) with
¢ » 5. Consider CN(u, v) in the supergraph G. Because it includes U
& & cither an octahedron or a pyramid with apex v, . In either case u, v

ol14/3-4

~ el
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(@ (h)

Fic. 14. Clique cycles in N(vo).

have another common neighbor y in N(v,) and xy¢d&. m.:_no :ﬁ._.o an
only two cliques containing v, and neither wo or yv is cliqued with v,
we get wy € &. Likewise zy € &. We have Figure 14(b). Now replace il
by wyz. The new cycle has length n — 2. Moreover, y ou::& be in the
same clique with two other vertices of the new cycle, because either w ot ¢
is in a clique with any set of vertices y is cliqued with. Thus the new cyce
is a clique cycle. |

We note that the Propeller Condition depends only on (2) and (3) of the
Main Theorem (first form). Thus, as a special case of Theorem 3.4 we gt

THEOREM 3.5. If no CN of G is a pyramid, then the condition on N1
in either form of the Main Theorem is redundant. §

CONJECTURE 1. The condition on N(vy) is redundant for all basis graphs

We believe there is further redundancy in our Main Theorem. fa
instance, condition (3) of the second form is perhaps unnecessary. We an
most interested, though, in eliminating the Positioning Condition, suns
this seems the strongest and most global of the conditions. In the socond
form the scope of the Positioning Condition is at least curtailed.

For a time we conjectured that a connected graph G is a basis gragh
simply iff every CN is a square, pyramid, or octahedron. C:?::g. .
this is false. Consider Figure 15. Augment this graph by adding an cdge
between each two vertices on the bottom level whose names, as scts
digits, are disjoint. Call the result A. Tt is not hard to see ﬁrm.ﬁ every CNd
H is a square. Moreover, N(4) is trivially a line graph of a bipartite graph,

and there are certainly no induced Propellers or half open Books in #=

there are not even any triangles. Nonetheless, f is not a basis graph, fet
not every CN satisfies the Positioning Condition. The square with vertass

5, 45, 12, 35 is an example.
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%]

»«v‘\\mf‘«/ Wl

12 13 14 15
Fig. 15. Part of a graph whose CNs are all squares but which is not a basis graph,

H has been discovered many times, for instance in [5]. We have found
8 way of viewing it, perhaps new, which generalizes in as much as its
wefulness to matroids is concerned. Briefly put, H is the edge graph of the
4dimensional cube with all the major diagonals added in. One may show
that for any n > 4 the edge graph of the n-cube with the major diagonals
8dded has squares for ail its CNs. However, in every leveling each of these
das improperly positioned squares lying across ¥,,_, U ¥, .

This construction generalizes even further. Take any basis graph in
shich each vertex has a unique “antipodal” vertex farthest away. Another
eumple (the n-cube is one) is the basis graph of the matroid of all n-subsets
of some 2n-set. If v, is the antipode of ¢, one can show that 8(v, v,) is
eonstant. If 8(r, v,) > 4, main diagonals can be added without violating
ssything but the Positioning Condition. In the additional example just
pven, onc gets some octahedra that lie incorrectly. However all these
gaphs still have some square CNs. Thus the best we can hope for in the
way of climinating the Positioning Condition is

CoNJECTURE 2. Suppose each CN of a connected graph is a pyramid or

ecsahedron. Then the graph is a basis graph.

4. A MAPPING CHARACTERIZATION

A matroid A(E, #) of rank r is full if # consists of all r-subsets of E.

.4 is full, BG(.#) is said to be full also. In this section we characterize

e class of all basis graphs in terms of mappings into the small subclass of
- ol basis graphs,

Clearly every full basis mz_vr has octahedral CNs only. The converse is
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also true, as is not hard to show [11]. Thus this mapping characterization
will be especially interesting if Conjecture 2, or some modification thereof,
should prove true.

In any basis graph, two adjacent vertices B, B’ are together in at most
two cliques; moreover, if B, , B, are other vertices, one from each clique,
then B, , B, are neither equal nor adjacent. All this follows by leveling
from B and noting Lemma 3.2. Or, setting B = B — b, + ¢, , one can
show directly that the vertex sets of the two cliques are

B = {BYU{B—by+ce#|ceE — Bj,
B = {B}U{B-—b+ coc#|beB].

(If either &' or B” is {B, B'}, then there is only one clique.)

THEOREM 4.1. Suppose G = BG(E, %) is full and #" C B. Then (E, &)
is a matroid if and only if

(1) (&' is connected, and

(2) for every adjacent pair By, By ¢ &', at most one clique containing
both intersects #'.

Proof. Suppose (£, #’) is not a matroid. Since (&) is properly
labeled, by Theorem 2.2 some CN(B’, B") in (&'} has just one intermediate
vertex or else exactly two and they are adjacent. In either case CN(B, B')
in G contains an adjacent pair By, B,e%# — #'. But now Be# ism
one clique containing B, , B,, and B" € #’ is in the other.

Conversely, suppose B, , B, ¢ #' are adjacent and two cliques containing
them intersect &'. Pick B’ € #’ from the first clique, B" € &' from the
second. Then | B — B” | = 2, but in (#") either CN(B', B") is improper
or 8(B’', B") > 2. In either case (E, %) is not a matroid. §

COROLLARY 4.2. Let BG(E,®) be full. Suppose #'C % has the |

property that B', B" € B" implies 8(B’, B") > 2. Then (E, % — #°) is
matroid.

Proof. Condition (2) above is satisfied vacuously. As for (1), we show 3
that, if B,,B,e# — #” and | B, — B,| = k > 1, then therc e

B, € B — A" such that B, is adjacent to B, and | B, — B, | = k — L.
Pick any b, '€ B, — By, and ¢, ¢’ € B, — B, . Let
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Recently PifT and Welsh [12] showed that for any A < 1, and » large
enough, the number of non-isomorphic matroids on 7 elements is greater
than 22"Y_ This greatly improves all previous lower bounds. Although
they state matters differently, their argument involves counting the number
of ways a set #” can be extracted from & as in the corollary above.

im call an injection f} ¥ — %" a monomorphism of G(¥", &) into
G(Y”, &) should f(u) f(v) e & iff uv € &. Clearly G ~ {f(¥)). ’

._._.*moxm_s 4.3 (The Mapping Characterization). A connected graph
G(Y", &) is a basis graph if and only if there is a monomorphism f of G into
wme full BG(E, &) such that for any adjacent pair B, , B, ¢ f(¥), at most
e cligue containing both intersects f ). ,

?ea\\. If Q\ = BG(E", #'), pick #(E, B) to be the full matroid with
E= E" and #' C #. Then by Theorem 4.1 the identity injection &' — &

wffices for f. Conversely, if some f exists, { f(¥)) is a basi
dus sois G, f(¥)) is a basis graph and

C. A. Holzmann informs us that he too has obtained this characterization

(sapublished). It is simpler than the Main Theorem b
t
Narder to test. m but clearly much

5. Homotory
I d(ve_y, vry1) = 2, we say that paths

\u_ TE O Vg Ul U and Nuw —

dfer by a 2-switch. If

e ’
Up " VgqUs Uy " Uy

@ v v =
(Ve-15 Vr41) = 1 and Py=v) - 04 0y 0,

®esay that P, and P, differ by a shortcut. If

Vpoy = 0 —
) k—1 N\k+~ m.:a wb == QM QRIMQ#.T» cee Q: ,

w sy P, and P, differ by a deletion. In all three cases we say that two

-‘E &:mw by an ammezSQ deformation. Finally, two paths are homotopic
anc can be transformed into the other by a finite sequence of
&dormations. ) elementary

of course, the classical notion of path homotopy applies to graphs, but
#% notion 1s not the same. Nor is it the same as Tutte’s [14].

By — B, — (b1 b) + (¢ + ¢).

At least two of the intermediate vertices of CN(B, , B,) arc in 4 — &,
whether or not B, is. Any one of theseis a By. |
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THeEOREM 5.1 (The Homotopy Theorem). If G is a basis graph, thes
any two paths with the same end-points are homotopic.

Proof. Suppose G = BG(E, #) and let P;, P, go between B and 8.
An inspection of the proof of Theorem 2.2 shows that all path changes
there are elementary deformations. In particular, by the last part of that
proof we may assume that P,, P, are non-redundant. Clearly, any two
non-redundant paths with the same end-points have the same length. Thms
we may write

(by.cq) (by,cy)

\u_“%“mmllvwm > B, ———— :.:”m\,
(0, .c;) ®,1c,")
mum“ B = @u 14 Nww\ w:\ — ntl T B,

We do induction over n. P, and P, are equal if n =
by definition if n = 2. ;
We may even assume that ¢;' = ¢, . If not, we may use the shifiing
technique of Theorem 2.2 to deform P, until ¢," does equal ¢; . We now

have several cases:

1 and homotop

Case 1. b, = b,. Then By’ = B, and any homotopy of BBy *** Bey |
with B,B;’ - B,., gives a homotopy of P, and P, .

Case 2. b, = b,. P, begins

Abu.nnv (b, .n.»v

B ww Wa s

and P, begins

b, 1) (by.cy

) p
B B, - By

We note that By, = B, — b, + ¢,’. Therefore we may perform a 2-swikh
on P, so that it begins 3

AG—.Q-V Aens.am‘v

B B,

mW\-
We are now back to Case 1.

Case 3. b, = b, for some k, 3 << k < n. Just as the pivoting ind
some ¢ can be shifted forward, so can the pivoting out of some b. (Sce te
first paragraph of the proof of Theorem 2.2.) In particular, we may shifi b’
forward to become b,’. We are now back to Case 2. |

Remark. 1In Case 3 we could shift b," forward to become b,’, but wa
have no guarantee, without the special argument of Case 2, that this cas ke
done without dislodging ¢, in the last step.
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Just as in the classical case we can define homotopy groups, and for a
connected graph G, =(G) is independent of the base vertex chosen. A less
obvious similarity is the fact that

(G X @) ~ 7(G) X 7(G").

Here, as usual, the direct product G(¥", &) x G'(¥™, &) has vertices (v, v')
sod edges (v, , v,')(v, , v;"), where either v; = v, and v,'v,’ € 8", or v, = v,
sad vy0, € &. Thus in some sense our homotopy may be “right” for graph
theory.

We note that 7(G) is not always trivial: consider any cycle with 5 or more
edges.

CoNieCTURE 3. G is a basis graph if and only if

(1) it is connected,

{2} cach CN is a square, pyramid, or octahedron, and
3) =(G) is trivial.

Without condition (2), a square with one diagonal (K, — x) would be a
sounterexample.

Note added in proof. The author has constructed a set of counterexamples to Con-

sture 2. This construction, and the constructions at the end of Section 3, all turn
s to involve covering spaces.
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THEOREM 5.1 (The Homotopy Theorem). If G is a basis graph, “
any two paths with the same end-points are homotopic.

Proof. Suppose G = BG(E, %) and let P,, P, go between B and g
An inspection of the proof of Theorem 2.2 shows that all path changes
there are elementary deformations. In particular, by the last part of ths
proof we may assume that P,, P, are non-redundant. Clearly, any tw:
non-redundant paths with the same end-points have the same length. The:
we may write

(bl,cl) (b,‘,cﬂ)

P,:B=B B, = B,

B, - B,

’

(RS b, ex))
.

P,: B =B B, - B, By, = B

We do induction over n. P, and P, are equal if » = | and homotopk
by definition if n = 2.

We may even assume that ¢;" = ¢; . If not, we may use the shifting
technique of Theorem 2.2 to deform P, until ¢,” does equal ¢; . We now
have several cases:

Case 1. b’ = b, . Then B, = B, and any homotopy of B,B; ** Ba:
with BBy’ --- B, gives a homotopy of P, and P, .

Case 2. b, = b,. P, begins

(by,¢1) (bg,c4)

B By,

B,
and P, begins

@y ,e1) (b1,¢2")

B

B, By

We note that By’ = B, — b," 4 ¢,’. Therefore we may perform a 2-swisck
on P, so that it begins

&y ,es))
B2 1 2

(by.¢q)

B By

We are now back to Case 1.

Case 3. b, = b, for some k, 3 < k < n. Just as the pivoting ind
some ¢ can be shifted forward, so can the pivoting out of some b. (Se¢
first paragraph of the proof of Theorem 2.2.) In particular, we may shift
forward to become b,". We are now back to Case 2. ||

Remark. In Case 3 we could shift b, forward to become b,’, but w
have no guarantee, without the special argument of Case 2, that this can
done without dislodging c, in the last step.
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Just as in the classical case we can define homotopy groups, and for a
anected graph G, 7(G) is independent of the base vertex chosen. A less
~vious similarity is the fact that

7(G X G') ~ 7(G) X =(G').

icre. as usual, the direct product G(¥7, §) x G'(¥”', &’) has vertices (v, v)
~Jd edges (v, , v, )(v, , U2"), Where either v; = vyand v,'v," € 6", or vy’ = vy
-d t,r, € &. Thus in some sense our homotopy may be “right” for graph
oIV,

We note that #(G) is not always trivial: consider any cycle with 5 or more
SR

CONJECTURE 3. G is a basis graph if and only if

by it is connected,

2y each CN is a square, pyramid, or octahedron, and
3y m(G) is trivial.

-

thout condition (2), a square with one diagonal (K, — x) would be a
nterexample.

\ore added in proof. The author has constructed a set of counterexamples to Con-
e.’.r¢ 2. This construction, and the constructions at the end of Section 3, all turn
' 0 involve covering spaces.
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