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ABSTRACT

Fractional Power Series Expansions and Resultants

John C. McDonald
Advised by Mikhail Kaprznov

In this work, we consider two problems which, on the surface, seem quite unre-
lated, but which hopefully form the beginnings of a unified approach to studies of

generalized discriminants.

The first section explores the question of constricting fractional power series
expansions for systems of algebraic equations. We give primary attention to a
generalization of Newton’s polygon construction for eguations in two variables. The
nature of this construction, and the series solutions it produces allows us to make
some surprising connections between collections of pover series solutions and normal

fans of various fiber polytopes.

From these results, we also derive a relationship between these normal fans and
ramification loci of projections of the variety in qu:stion. The first of these loci
corresponds to the vanishing of the classical discriniinant of the polynomial with
respect to one of its variables. More general loci, however, correspond to a common
generalization of classical discriminants and resultaits — the mixed discriminant.
Moreover, we propose a generalization of the fiber polytope, called the mixed fiber

polytope which would extend the above relationship: to this more general locus.

The second section makes the first step into investigating generalizations of the
resultants studied in [12]. In a direction proposed by Deligne in [7}, we attach

an algebraic line bundle to the direct image of a p:oduct of Chern classes. This
il



line bundle is given as a generalized resultant. Moreover, we are able to attach a

determinantal representation to these line bundles, which greatly facilitates both

interpretation and calculation.

Conveniently, these determinantal representaticns yield generalizations of the
cube theorem for the determinant bundle on the Pizard group of an algebraic vari-
ety. These cube theorems are key tools for deriving rhe properties of the generalized
resultants. Moreover, through these theorems, we re able to derive a few general
formulas connecting discriminants and generalized resultants.

It is hoped that the methods in this second section will be extendible, through the

use of more general resolutions of loci, to the case of the above mixed discriminant.
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Part 1

Fiber Polytopes and Fractional Power Series






CHAPTER 1

Preliminary Concepts

1. Introduction and history of the problem

Consider k algebraic equations in k + £ variables
Fi(z1,...,2,y1,...,yx) =0for« =1,...,k.

We wish to construct k fractional power series expansions, y; = ¢i(z1,...,s),
for » = 1,...,k, such that Fj(z1,...,2¢,¢1,...,¢3) = 0 formally for all j. We
are particularly interested in constructing complete sets of fractional power series
solutions for these equations which converge in some common region of (C*)¢, where
C* = C — {0}. On the common domains of convergence of these series, we require
*hat

Fi(z,y) =0 for all j <= y; = ¢; z) for all i.

This classical setup, which dates back to Newton, turns out to be related to
the structure of various polytopes. The series solutions themselves are intimately
related with edges on the Newton polytopes of the F;. Also, in developing such
expansions, a relationship to a fiber polytope (as in'roduced in [3]) emerges.

The classical case of two variables and one equatioa is well known, and is is due to

Newton. We will briefly sketch his original construction later in this section. More
2



recently Bruno and Soleev considered k equations ir k + 1 variables in [6]. In each

of these situations, the fiber polytopes involved are <imply line segments.

In chapter 2 we treat the case of a single equation in N variables. In this case we
construct a single power series in NV variables. It may, on the surface, appear that
this case could be handled by simply iterating Newton’s construction. However,
such a method would produce only series with increasing powers in all variables.

That is, such series would have support only in the tle first “quadrant” of the space

of exponents.

We wish to consider more general solutions with exponents in some arbitrary
convex cone. For this we give a generalization of Newton’s polygon construction.
We demonstrate that full collections of series solutioiis correspond to the vertices of
a certain fiber polytope, and that the normal cones of these vertices determine the

regions on which they converge.

In chapter 3 we demonstrate the relationship in a more general setting. For com-
puting such series expansions we again give an exter sion of Newton’s construction.
Whereas, in the first case, only a special class of firer polytopes arise, here more

general fiber polytopes appear.

In the most general case, we cannot assure that the construction gives a series
solution. However, under certain explicit conditions, we can prove that the con-
struction can be carried out and that the series built have common domains of
convergence. We will see that, generically, the nuriber of systems of series solu-
tions converging in a given cone is equal to the mixed volumes of the projections of
P(F1),...,P(Fy) to RF. This agrees with the theorsm due to Bernstein [2] on the

number of solutions to a system of equations.



In this case, however, we do not have as convenie1t a correspondence as before.
Only certain vertices of the fiber polytope correspond to complete systems of solu-
tions. The results here suggest existence of a “Mixed Fiber Polytope” X( P, ..., P)
of k polytopes. This polytope should be a summan| of the fiber polytope of their
Minkowski sum, and should be equal to the Fiber polytope L(P) in the event that
the & polytopes are equal. Finding such a polytope would conveniently generalize
the relationship in chapter 2 between power series epansions and the normal fans
of polytopes. Moreover the results here suggest a possible relationship between this

mixed fiber polytope and a generalization of the clissical discriminant, called the

mixed discriminant.

2. Polytopes, cones, and convex geometry

1.2.1. Polytopes. Consider a real vector space / = R™. We will always work
with convex polytopes and will therefore often leavs out the term “convex”. For

this development, the most convenient definition is

DEFINITION 1.2.2. A polytope P C V is the convex hull of a finite set of elements

of V, i.e. for some finite set S = {v1,...,v,} we hare
P = conv{vy,...,vn} = {/\101 Fooe Aty > O,Z’Ui = 1}.

A polytope is called rational if all of the v; have rational coordinates. (Actually,
it 1s only strictly necessary for those v; which are vertices of P, but this makes no

difference for our purposes.)

Under this definition all polytopes are bounded. Dften polytopes are defined as

intersections of half-spaces. There the possibility e:ists that the resulting set will



not be bounded. In this case, the resulting objects are usually called polygons or

polyhedra. The word “polytope” is often reserved, i1 these cases, for bounded sets.

DEFINITION 1.2.3. Let P be an m-dimensional polytope, and let v € (R™)* be

a linear functional. Then the set

fr={p€ P:(y,p) > (7,p) for allp' € P}

is called the extreme face of P in the direction 4. Note that f, is itself a polytope,
being the intersection of P with a hyperplane. As & polytope, it has a well defined
real dimension k, and is hence called a k-face of P. A vertex of P is a face of

dimension 0, while a facet is an m — 1-dimensional face.

Through any k-face f there passes a unique k plane. (Take a point p on the
relative interior of the face, and consider the k-plan: spanned by all vectors from p
to points on the face.) We say that this k-plane is determined by f. A hyperplane
H C R™ is said to support a polytope P if H ccatains points of P, and P lies
entirely in one of the half-spaces determined by H.

The next definition gives a useful construction for forming a new polytope out
of a collection of polytopes in such a way that the structure of the new polytope

reflects an amalgamation of the structures of each cf the former polytopes.

DEFINITION 1.2.4. Let Pi,..., P, be n polytopes of dimension m. The Min-

kowski sum of these polytopes is the set of all vector sums of elements of Py,. .., Pa,
le.

Pt -+ Po={p+-+pa ipiEPz'}l
It is easy to show that P; + --- + P, is itself a polvtope. In fact, it is the convex

hull of the sums of the vertices of the P;. For inforration see [31].



P Q P+Q

FIGURE (1.1). The Minkowski sum of two polytopes

For an example of the Minkowski sum of two 2 dimensional polytopes, see fig-
ure (1.1). On the Minkowski sum of a set of polytop s we can distinguish two classes
of faces of dimension greater than 0. Extreme poirts on P; + --- + P, in some di-
rection 7y are always sums of points of the P; that are extreme in the direction +.
Thus, a face f of P is uniquely the sum of faces of 1, ..., P,, though some of these

faces may be vertices (and though the points in f ¢re not uniquely a sum of points

of the P;).

DEFINITION 1.2.5. Let Py,..., P, be m-dimensicaal polytopes, and let P be their
Minkowski sum. Let f be a face of P. We say that f is decomposable if f =
f1+ -+ fa where f; is a face of P; and dim(f;) > 0 for all 7, otherwise f is called

indecomposable.

To analyze number of common solutions to collections of polynomials we will

consider the mired volume of the polytopes P(Fy), ..., P(Fy).

DEFINITION 1.2.6. Let Py,..., P, be m-dimensional polytopes. The mixed vol-



ume Vol( Py, ..., P,) is the alternating sum
1 &
Vol(Py,...,P,) = — S (-1t 2 Vol(Py 4o+ By,
T k=1 1<11 << <0

Here the volume Vol(P) of a polytope is normalized so that the standard n-simplex
has volume 1. It is well known that Vol(P,..., P) := Vol(P). Again, for details see
[31].

1.2.7. The Newton polytope of a polynoraial. The following polytope is
one of the main tools used in this work for connecting the study of polynomials and

their power series expansions to convex geometry.

DEFINITION 1.2.8. Let F be a polynomial in m variables, i.e.

F = Z a ]a:I
I
with I € Q™ ranging over some finite subset. The Newton polytope of F is the
polytope

P(F) =conv{Il € Q" : q, # 0}

P(F) is a rational polytope because F' is a polynomial with rational exponents and

so has only finitely many non-zero coefficients.

The set Sp = {I € Q™ : a; # 0} is called the sunport of F. We will also use the
notation Supp(F’) to denote the support.

Consider the connection between the polytopes >f a collection of k polynomials
in £ variables and the number of common roots of these equations. let Fy,..., F}
be k polynomials in £ variables. Let S; ¢ R? be their supports. By considering the
coefficients of these polynomials as variables, we can consider F; as a point in C%i.

Hence we can consider the system F1,..., F} as an element in the space IIC%. By



a generic system of equations, we will mean a systen. Fi,..., F} which lies on some

specific Zariski open subset of IC%.

THEOREM 1.2.9. Consider k generic equations in £ unknowns,
Fi(y1,...,y¢0) =0 fori=1,... k.

and let P; = P(F;) = conv(S;) be the Newton polytope of F; for all i. Then the
number of non-zero solutions of this system is generically equal to the mized volume

Vol( P, ..., Py) of the polytopes Py, ..., Pg.

For the proof of this theorem see [2].
Once we have the language of normal cones and linear functionals, we will be
able to demonstrate the beginnings of the tight reli tionship which exists between

polytopes and series expansions.

1.2.10. Convex polyhedral cones. A convex Holyhedral cone in R™, is a set

of the form
C={rivi+ - +rpvg:r €b,r; >0},
where vy,...,v, € R™ are fixed vectors. A cone is rational if v; € Q™ for every ¢,
and is strongly convex if it contains no non-trivial linear subspaces.
We identify the dual space (R™)* with R™, by me::ns of the usual pairing (u,z) =

Y- uiz;. Let C be a strongly convex rational polyhed al cone in R™. Define the dual

cone, C* C (R™)*, to be the set
C*={ueR™: (u,z) <0VreC}. )

This is the cone consisting of all linear functionals v-hich have a maximum on V.



We will often work with polytopes in R™ = R"** where k is the number of
equations and £ is the number of independent varialiles. Therefore, we will assume

throughout this work that we have chosen a direct sum decomposition
R™=R‘® RF.

The coordinates in R¢ and R* will be denoted by a,...,a; and f,..., B respec-
tively.
Let II be a k-plane in Rk'{'z, then I is called admissible if the projection 7 : II —

R* is injective. Thus on such a IT we have a parameterization

o =3 (8 + &) = e+ 3 (6ij ;).

)

The matrix ||6;5|| is called the matrix of slopes of II. On a polytope P we will say
that a k-face is admissible if the k-plane it determir es is admissible.

Let f be an admissible face of P, and let w € (R* " be a linear functional. Then
w determines a unique hyperplane Hy,, in R™ whic contains f and on which w is
constant on every fiber of the projection to R¥. (The equation (w, z) = z determines
a hyperplane in R%.) Such a hyperplane is called w-:onstant.

Consider the case ¥ = 1. Let w be any linear function on RfY. We extend w

trivially to a linear function of R*! by defining for r € Rf*!
(w,z) == (w,(z1,...,2¢))
A hyperplane H in R*! is then w-constant if for esch ¢ € R
(w, HN{zg41 = c}) = {{w,z) : 2 € HN{xpy) = c}} = {d.}

for some d. € R. i.e. w is constant on each “vertic.]” section of H. Since we will

be using the z1, ..., zy-hyperplane frequently, we will call it the null-hyperplane.
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1.2.11. Normal and barrier cones. Let w € RZ)* be a linear functional on
R’ such that the coordinates of w are linearly indenendent over Q. Such a linear
functional is called irrational. The equation (w,z) =: z for any fixed z has at most
one solution in QF. Therefore, w induces a linear orlering on Q.

Consider the projection
T: P — Q=m(P)CRR¥

onto the last k coordinates. The fiber of 7 over any interior point ¢ € Q is a d — k
dimensional polytope. Note that this fiber is given b+ a system of linear inequalities
with rational coefficients, but possibly with irrational right hand sides. Since w is

irrational, there exists a unique point p, € 771(q) si.ch that

(w,pq) > (w,p) forallp e "r_l(q)

Therefore, w defines a section of ©# which is called she maximal section of 7 with

respect to w. This section is denoted by Sy (P) = Sy (P).

DEFINITION 1.2.12. Let P be an m-dimensional polytope, and let f be an ad-
missible k-face of P, with m = k+£. The normal ccne of f is the closure of the set
of all irrational linear functionals in (R%)* such that f is contained in Sy x(P). The
normal cone of f is denoted by N(f). The barrier one, denoted B(f), is defined
to be the dual N*(f) of N(f).

In particular, this means that for a vertex v of F, the normal cone N(v) is the
cone in (R™)* consisting of all linear functionals waich achieve a maximum on P
at v. Notice that, under this definition, the barrier cone of a k-face does not lie in

the same space as the polytope. Rather, it lies in R”. Likewise, the normal cone of

a k-face lies in (R®)" rather than (R™)*.
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There is another, more geometric definition of the barrier cone of a vertex v.
Clv)={Mp—-v): X €Ry,p € P(F)}

1.e. the cone spanned by the vectors from v to poirts in P(F). The dual of C(v) is

obviously the normal cone of v.

Let K(f) be the k-plane in R™ which contains * he face f. We can consider the

following subset of R™.
N(f)xK(f)={:eR™"=R'GR* : 2 € Nif) +y, where y € K(f)}

We will call this set the barrier wedge of f, denot:d W(f). Note that the barrier
wedge of a k-face is just the cone spanned by all vectors from an interior point of f
to points in P.

As an example, consider the case of the barrier wedge of an admissible edge of a
polytope are considering admissible edges. Let e te any admissible edge of P(F).
The vertices of e with the largest and smallest T4 coordinates will be respectively
called the major and minor vertices of e, and will be denoted by m(e) and M (e)
respectively. Write m(e) = (p1,...,pe41) and Mie) = (q1,...,qe41). The slope
vector S(e) of e with respect to x4y is

1
S(e) = ————(q1 —p1,-..,9¢ — 1)
qe+1 — Pe41

For such an edge the barrier cone of e is the follow ng subset of RX.
Let L be the line in R**! determined by e, and l2t y be the point of intersection
of L with the null-hyperplane (such a point exists since ¢ was assumed not to be

parallel to this plane). Then the barrier wedge of e in Ré*! is

Wie)={Mp—2)+z:XeRy,ps P(F),z €L}
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FIGURE (1.2). The barrier wedge and con:: associated to an edge

The intersection of this wedge with the null-hyperplane is a convex rational poly-
hedral cone, C(e) = B(e) + y, which has its vertex at y. See figure (1.2). This
is a translate of the barrier cone B(e). For convenience, we will often relax our

definition and refer to translates of cones as cones t1emselves.

EXAMPLE 1.2.13. Also, in the case k = 1 we havc a more familiar interpretation
of the maximal section of a linear functional. Let P be a polytope in RZ'H, and let
¥ : R — R be the projection onto the last coordinate. A monotone edge path
on P is asequence E = {ey,...,en} such that for each i, M(e;) = m(eiy1) and e;
does not lie parallel to the zi,...,z,-plane. Therefore the edge path is increasing

with respect to . A monotone edge path is called -:oherent if

N Ner) # {0)
1=1

That is, a coherent edge path is a maximal section o the projection of the polytope

to the line R.

1.2.14. The normal fan. One important aspect of the normal cones of the
vertices of a polytope is that they knit together to f>rm a fan of (R™)*, since every

linear functional attains a maximum on some face of P, and hence at some vertex

of P.
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DEFINITION 1.2.15. Let {vy,...,v,} be the set of vertices of P. Then the col-
lection of pairwise disjoint cones N(v1),...,N(v,) forms a fan that covers (R™)",
This fan is called the normal fan of P and is denotec A p. These definitions coincide

with the standard notions [31].

As an example of how the structure of the Minkowski sum of a collection of poly-
topes is related to their individual structures, not.ce that the normal fan of the
Minkowski sum of n polytopes Ap, .4 p, is the rmallest common refinement of
Ap/,...,Ap,. That is, cones in the normal fan of t1e Minkowski sum are intersec-
tions of cones in the normal fans of each of the summands. For a more complete

discussion of these ideas see [12], pp. 190-191, and 31].

1.2.16. Fiber Polytopes. In the following two chapters we extensively use the
notion of the fiber polytope of a projection of two polytopes P 4, @ as defined in
(3], for a projection 9 from X to Y. Let us recall t ie definitions.

Let P C RY be a convex polytope. Let 0 : RY — RY be a surjective linear map

and let @ = ¥(P). The Minkowski integral it the sct of vector integrals

/P:/QP:/Q'y(:c)ix

where v ranges over all continuous sections of .

The fiber polytope ¥y (P, Q) is defined to be the normalized Minkowski integral

1
S(P,Q) := Vol(Q)/Q P

The following are some of the important properti:s and results concerning fiber

polytopes. We leave out most of the proofs here, as they can be found in [3].

Two polytopes are called normally equivalent if they have the same normal fan.
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PROPOSITION 1.2.17. The fiber polytope (P, Q) is a nonempty convexr polytope
in RN=M _ Moreover, there exists a finite subset {z1,...,z,} C Q such that the

Minkowski sum of the fibers Py + -+ + Pr, is normnally equivalent to (P, Q).

Let ¢ : P — @ and let F C P such that F} it a face of P; for every z in Q.
Then the projection F' — @ is called a face bundle of P. If there exists a linear
functional ¢ on RY~M such that F; is extreme i1 the direction (in the same
sense as above), then F' is called a coherent face hundle. Notice that a coherent
face bundle such that each F; consists of a single point (i.e. a vertex of Pr) is a

maximal section of P — @ in some direction.

PROPOSITION 1.2.18. The faces of £(P, Q) are ir one to one correspondence with
the coherent face bundles of P. In fact, the faces of the Minkowski integral Jo P are
the integrals of the coherent face bundles of P. In p.rticular, the vertices of (P, Q)

correspond to the mazimal sections of P — Q).
Putting these first two propositions together yields

COROLLARY 1.2.19. Let v be a vertex of X(P,Q), and let ¢ be the corresponding
mazimal section of P — Q. The normal cone of v is the intersection of the normal
cones of the ¢(z) C Py. Equivalently, the normal cone of v is the intersection of

the normal cones of the M-faces of P in ¢(Q).

1.2.20. Rational functions and polytopes. The following example demon-
strates, for the special case where x4y is a rational function in zi,...,z4, the
relationship between the Newton polytope of a polynomial and the power series

expansions of zgq. Let

(1.1) Te41 = 7
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FIGURE (1.3). The Newton polytopes for a rational function
Consider the Newton polytope of F(z), see figure (1.3). We can expand 1/F(z) as
a power series in different ways using the geometric series expansion. Factor out of

f(z) a monomial which corresponds to one of the vertices of P(F).

1 1
agyzlo 1+ g(z)

Ti41 =

where g() = Y14, a]xl/aIOwIU. By the geometric expansion we get

-
(1.2) Tpi] = -1
= S )

By factoring out one monomial we have shifted tl.e exponents in the denominator
so that the new denominator has the polytope shovn in figure (1.3), a translate of
the original polytope. We are taking the geometric progression of terms that lie in
the barrier cone of the chosen vertex, so all monomials appearing in series (1.2) also
lie in this cone.

If we had tried to factor out a monomial corresponding to a point of P(F) that
wasn’t a vertex we would have constructed a series in which finding a coefficient

would involve summing an infinite number of termr. For obvious reasons, we avoid
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such expansions. The construction for rational func ions can be summarized by the

following theorem.

THEOREM 1.2.21. The series expansions of xgry = 1/f(z1,...,2¢) with mono-
mials given by points in some convex cone corresponrd to the vertices of the Newton
polytope of f(x1,...,z¢). If a vertez v of P(f) coriesponds to the series expansion
¢(x1,...,x¢), then the monomials in ¢ correspond t points lying in the barrier cone

of v, and converge in some translate of the normal cone of v.

For more information see [12], chapter 6.

Note that the equation for this rational functior can also be written in the fol-

lowing polynomial form

F(m) = :Cg+1f(:171,...,:vg) -1=0.

The Newton polytope P(F') is a cone over the Newton polytope of f. Therefore,
the vertices of P(f) correspond to edges of P(F'). Since the series expansions of
xn41 correspond to the vertices of P(f), they co respond to the edges of P(F).
Moreover, the fiber polytope of the projection of this cone to the line, is just the
Newton polytope of f. So, in the setting of fiber po ytopes, the series expansions of
F correspond to the vertices of the fiber polytope %(P(F)), and converge in some

translate of the corresponding normal cone. We wi | extend this correspondence in

the next two chapters.

3. Fractional power series »:xpansions

1.3.1. Newton’s original construction. For ' he convenience of the reader, we

recall the well known construction of fractional pover series via Newton polygons,
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and illustrate the construction with an example. L2t f(z,y) = 0 be a polynomial

equation in two variables, with

(1.1) flz,y) = Y aia'y’.

We wish to write y as a fractional power series ¢(z), so that formally
f(z,¢(z)) = 0.

The game is to determine what the lowest order term in the series expansion must
be, and then proceed by induction, building the serics one term at a time. We write

our prospective series expansion as

8(c) = ca® + y(a).

Where 1(z) contains all higher order terms of ¢.

Substituting this expression into equation 1.1 yie ds

flz:8(2) = D aijz’ (cz® + ¢(2))
= Y ayd (xj"“"i) + higher order terms.

In order for this to be identically 0, the lowest order terms in this expression must
cancel. So, there must be at least two terms (z,7) an 1 (¢', ') in the above expression

such that

(1.2) B=ja+i=ja+i <j"a+1",

for some fixed § and for all (", ;") € §;. ‘
All of the (7", 5") lie on P(F) by definition, so e«.uation 1.2 defines an line con-

taining two points on the polytope (namely (i,7) a1d (¢, ;') and assures that the
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rest of the points (:”, ;) lie on or above this line. Ience, equation 1.2 defines an

edge e on the bottom of P(F).

Since the terms whose exponents satisfy equation 1.2 must sum to 0,

(Z aijcj) z? =0,

the coefficient in this term must be 0
(1.3) F. = Zaijcj =0,

where (2,7) ranges over all indices whose terms sztisfy the equality in 1.2. We
therefore find ¢ as a root of equation 1.3. This equation must have a non-zero root,
because the expression has at least two distinct terms. Equation 1.3 is called the

edge equation of e.

Once we have found the term of least order in the -eries we make the substitution
cz? +v

in place of y in the original equation, and proceed a; before to find the next term.
We will prove all the remaining details of this ccnstruction as a special case in

the next chapter, but this is the procedure.

1.3.2. Parameterizations of branches of varieties — an example. The fol-
lowing example illustrates this connection between Newton polytopes and fractional
power series, and also indicates the necessity for uiing fractional powers, instead
of just ordinary integer powers in the expansions >f branches of the varieties in
question.

Consider the folium of Descartes.

2 +y® —3zy = 0.
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FIGURE (1.4). The Folium of Descartes and its first approximations.

This curve is pictured in the first graph of figure (1..:). Notice that two branches of
the curve pass through (0,0). The first branch, as illustrated by the second graph
in figure (1.4), looks like the parabola, y = (1/3)z? The second, however, can be
best approximated initially by a curve of the form y = £+/3z'/2. Also note that
this “branch” is actually two branches when it comes to parameterizing the curve
with respect to z. We will carry out Newton’s cons ruction for the case of the top
half of this double branch.

The Newton polytope of the folium is the first pol--tope in figure (1.5). It has two
bottom edges, one of slope —2 and one of slope —1 ‘2, confirming our initial guess
for the exponents of the first terms of the expansions. Moreover, the edge equation

for the edge with slope —1/2 is
S —3¢c=0.

Since we ignore the zero root, we obtain ¢ = ++/3, as we had guessed.
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SN

FIGURE (1.5). The polytopes in Newton’s coastruction for the folium

Choosing ¢ = /3 we obtain the first approximaticn for the desired branch
y = Va2,
Substituting v/3z'/2 + y into the original equation t1en yields
3
0 = 2%+ (\/gwl/z + y) ~3z(-/32? + y)
— 1«'3+61‘y+33/2$1/2y2+y;.

Whose Newton polytope is the second polytope pictured in figure (1.5).

We need to choose an edge on this new polytope and repeat the above actions.
Consider the edge on the bottom of the polytope wita slope strictly less than —1/2.

(The next exponent must be strictly greater than the first.) This is the edge e

containing the terms 6zy and z®. Since, it has slope —2 and edge equation
6c+1=0,

the next term in the expansion is —1/6z2, yielding :. second approximation for the

expansion

Yy = V3212 — %wz.
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Substituting —1/6z? + y into the last equation y elds

Vo2 a-13 52 2/3..1/2 3 _p-36, 1 4 1 2o
6xy+mx -3 x/y+3/x/y—l—y -6 x+Ewy—§my,

whose Newton polytope is the last picture in figure (1.5). The slope of the desired

edge is —7/2 and calculating the edge equation yields a third approximation

1 1
_ 1/2 > .2 T2
y= VBN - ta? Tl

Continuing in this fashion builds the series one step at a time.

1.3.3. Rings of fractional power series. The following definitions will facil-
itate our connections between the classical techniques in the previous section with
series expansions in several variables.

If n is an integer greater than zero, and C is a strongly convex rational polyhedral

cone in RY, then the set
1, e
n

forms a semigroup under addition. From such a se nigroup we can form the semi-
group ring C[Cy], i.e. the ring of all finite formal sums of the form 3 a,z® where
a € Cp. We regard elements of C[C}] as fractioral Laurent polynomials in the
variables z1,...,x,. Let C[[Cy]] be the completion of the ring C[C,]. The ring of

all formal fractional power series, Y ,ec, @az?.

DEFINITION 1.3.4. If C is a strongly convex ratioaal polyhedral cone in R¥, then

the ring of fractional power series in the variables ry,...,z, with support in C is

defined by

oo

CllColl = U ClCal]

n=1
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More generally, the ring of fractional power series w'th support in some translate of

C is

C((Co) = U =*Cl[Cqll
ate

It is essential to require that C' be strongly convex, otherwise the set C[[Cg)]
does not have a well defined multiplicative struct ire, since finding a coefficient
when multiplying two generic series involves an infiiite sum.

Let C be a strongly convex rational polyhedral ccne. For any

flz)= 3 aaz®
CYEQZ

in C((Cgp)) we define the support of f to be the se' of exponents which appear in
fyie. Supp(f) = {a € Q: aq # 0}. Since f € z°C[[C,]] for some n, the support
of f must lie in some lattice %ZZ.

For example, if { = 1 and C = Ry, then C[[Cy|] is the usual ring of Laurent
power series, C[z]], over the complex numbers, anc C((Cg)) = Uan :c“(C((a:?lT)) is
the ring of fractional Laurent series in one variable as in [30] where it is denoted
C(z)*. In [30] the Newton polygon construction is used to show that C(z)* is an

algebraically closed field.

1.3.5. Convergence and convex geometry. .n order to speak of the conver-
gence of fractional power series in C((Cg)), we must define the manner in which
these series act as functions on C¥. More precisel:', we must define the action of
z® = 271... x?e on (C*)¢. To do this we only neec to choose, in each variable, a
sector in C* and define a branch of the logarithm i1 this sector, e.g. the principal

branch of the log: Let C\ R~ be the chosen sector and define

w?i — % log z;



23

for each variable x;. We are primarily interested in the regions for which an f €

C[[C]] is absolutely convergent (i.e. where 3 |ag||z @ converges).

DEFINITION 1.3.6. If C'is a convex rational polyl.edral cone, then C{{Cgp}} will
denote the subring of C((Cg)) consisting of all series which are convergent at some

point of (C*)¢, i.e. if for f € C((Cq)), Dy is the domain of convergence of f, then

C{{Ca}} = {f € C((Cq)) : Dy # 0}

Note that C{{Cgq}} consists only of convergent scries whose exponents all lie in

Z[1/n] for some n.

It 1s convenient to pass to the logarithms of the |z;| when considering convergence,

therefore we introduce the space legg called the lcgarithmic space of (C*)¢. This

space is associated to (C*) via the map
Log : (C*) — R
given by

Log(z1,...,2¢) = (log(|z1),. .., log(|¢l)).
The usefulness of this notation is indicated by the {sllowing lemma.

LEMMA 1.3.7. For each f € C{{Cg}} the domuin of convergence of f has the

form Log™Y(U), for some convez set U C Rfog.

PROOF. For each such f there exists some n ¢ Zy such that f € C((Cy)).
Therefore, this lemma follows, by a change of variables, from the well known fact

(see [19]) that this is true for power series with integer exponents. [

LEMMA 1.3.8. Suppose f =3 aqz® is in C((Cg)) and f has a nonempty domain

of convergence D (i.e. f € C{{Cq}}), then there cwists some A € (C*)¢ such that
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laa| < |A%| for almost all . Moreover, if z is any point in D, and C is any cone

which contains the Newton polytope P(f), then C* + Log(z) C Log(D).

PROOF. Suppose z € (C*)* satisfies 3 |aa||z|® < co. We may assume that

laq||z]* <1 for all e, since this must be true for all but a finite number of a. Also
we can assume that Supp(f) C C since f = 2P g for some 3 where g has support

lying in C'. Now if we rewrite the above inequality, we get

1 T\
<$—1,,;\7> .

Suppose «’ € (C*)¢ such that Log(z') € C* + Log(z). Then since Log(z') =

1

:L‘CY

|aa| <

w + Log(z) for some w € C* and (w, a) < 0, we have that for each a € C
<Log(x'),a> < (Log(z) a)

and so

oy log([zy]) + - + e log(lzp]) < anlog(lan]) + -+ + ey log(lze])
which implies that

log(|J2} ! -+ - 2}™|) < log(|e1®1 -+ z,%¢]).
Since, on Ry, the function log is monotone increasing, we get
R

Therefore, for every a € C, |2'|* < |z|%, yielding ttat 3 |ag||2'|* < T |aaliz]|®. O

We say that f converges at some point y € R{Xg £ Log—l(y) C D where D is the

domain of convergence for f. The above lemma ca1. be summarized by saying that

N

if f converges at some point y € Rlog

then f con erges on some translate of C*.

Using these two lemmas it is now possible for us tc prove the following theorem.
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THEOREM 1.3.9. If C is a cone in R® and if a series f € C((Cq)) is algebraic
over Clz1,...,x¢] then there is some translate of C* on which f is convergent.

PROOF. The fact that there is a point at which f converges follows from [1].

Given this, the theorem then follows from Lemma 1.3.8. []



CHAPTER 2

Expansions of a single equation

1. The main construction

For the case of a single equation k = 1, it is conven ient to use a common letter for
all the variables involved. As there is only one ‘y’ coc rdinate, we drop that notation
and work with a single list of variables z1,...,zy,;. We use the index N so that
the notation will not be confused in the more gener:1 case.

We are now ready to turn to the question posed n the introduction: How does
one construct a fractional power series £ 541 = ¢(z1, ...,z ) which satisfies a given
algebraic equation F'(z1,...,z541) = 07 To answ r this we will need to closely

investigate the Newton polytope of F.

2.1.1. Construction for generic equations. The following theorem is the

main result of this chapter

THEOREM 2.1.2. Let F(z1,...,2N+1) be a polyncmial in N + 1 variables. Let e
be any admissible edge of the polytope P(F). Let C* = C*(e) C RY be its normal
cone, and let ke be the length of the projection of e ¢nto the zy,;-axis. Then

a) For each irrational w € C* there exists some strongly convex rational poly-

hedral cone Cy, such that w € C}, and such that the ring (C((Cw@)) contains
26
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at least ke series {¢;}; counted with multiplicity such that for each i

F(:I:l,...,:L‘N,qﬁi) =0.

b) In fact, (C((CwQ)) contains, up to multiplici’y, exactly k. series that corre-

spond to e.

PRrROOF. We will prove part a) and defer part b) until a later section. To prove

a) we inductively build a series of the form

Rl ap 1 A, N -
chzl ’ ...xN’ = 2“ ’(!)n.
n=1 n=1
So we first build ¢; and then move on to ¢, for any n. In most respects, the

constructions will be identical.

Let

Fi(zy,...,zy41) = Fz1,.. ;284 ) = Z arz!
IESl

where 51 = Supp(F'). Let e; = e be the edge of P/ F}) chosen in the hypotheses,
and let W(e) and B(e) be the barrier wedge and cone of e; respectively. The edge
e1 has a slope with respect to zy 41, say S(e1) = (s 1,...,51,n). Define

=311 —S$1,N
qf)l(:l?l,...,xN)zclxl --‘:L‘N

where ¢y is a solution of the equation

(2.1) Fe(t) = | Z %Gy v FN+1—™EON41 = .

(21, . ,'LN+1)€81F'151
where m(e)n41 is the (N + 1)-st coordinate of the minor vertex. We refer to this
equation as the edge equation of e. This sum ranyes over all of the terms of F}

which correspond to points on the edge e;. Such a solution exists since there must

be at least two points of S on e;.
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The degree of equation (2.1) (discounting zero ryots) is equal to the difference
between the largest and the smallest iy,; appearing in e; N S. Therefore, the
number of non-zero solutions to equation (2.1), cointing multiplicity, is equal to
the length, ke, of the projection of the edge e = e; into the zy41-axis.

For the rest of this construction we will need to 1se the chosen element w of the
normal cone of e;. By assumption w is irrational. So, for any o # o' € Q" we have
(w,a) # (w, '), and hence w induces a linear orde: on QV. If ¢ = :cil xlj\-’fv is a
monomial in NV variables, we will let (w, ) indicate the value (w, (i1, ...,in)).

Assume that Fy_1(21,...,2§+1), en—1 (an edge o P(F,_1)), and é,—1 have been

constructed. Let F, be defined by

Fo(z1,...,2n41) = Facai(21, .oy an, Yoot + 2N 41)
We assume that ¥, = 0 is not a solution of Fy, = (. If it were we would have the

desired solution of F = 0.

To construct ¢, we will choose an edge on the Newton polytope of F, satisfying
the conditions of the following lemma. For every ¢z = 1,...,n — 1 we let k; be the

multiplicity of ¢; as a root of the edge equation of ;.
LEMMA 2.1.3. On the Newton polytope P(F,) tiere is a unique coherent edge
path
E == el,n, “ee ,ek’n
such that

a) The major vertex M (e ) lies on the line, L, through en—1.
b) The minor vertex m(e1 ) lies on the null hyverplane.

c¢) The major vertex M(e ) has zy4y coordinate equal to ky_1.
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d) (w, s(en-1)) < (w,5(exn)) < -+ < (w, s(e1,0)).

e) w e N, C*ein).

The last condition assures us that for each edge e;, the unique w-constant hy-
perplane containing e; , is a supporting hyperplane for the polytope P(F}).
Let e, be any edge on the edge path of Lemma 2.1.3, and define

b = “Sn,l TN
n = Cnly Ty

where the N-tuple (sp1,...,8, ) is the slope of the edge e, and ¢, satisfies the

edge equation

(2.2) Fen(t) = | Z % i 1t’N+1—m(e)N+1 =0.
(Z], ce ,zN+1)eennSn
where S, = Supp(Fy).

The fact that
(w;5(ent1)) > (w,s(en)) > (0, 5(e1))
assures us that the terms are linearly ordered undcr the order on Q" induced by
w. We will define ¢, = ¢n—1 + . Having inductively constructed v, and. ¢, for
all n we define our candidate for a solution of F' =) to be ¢ = Y52 9.
To complete this construction and show that ¢ satisfies the conditions of part a)

of theorem 2.1.2, we must

(1) Prove Lemma 2.1.3.

(2) Show that Supp(¢) lies in some proper cone Cy, of R¥

(3) Show that the exponents of ¢ lie in some lat:ice %Z.

(4) Show that ¢ satisfies the equation F(zy,...,2N41) = 0.

(5) Show that the number of series, up to multiplicity, created by this process is

greater than or equal to the length of the projection of e onto zy41.
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2.1.4. Proof of Lemma 2.1.3. We will constr ict the required edge path and
simultaneously prove parts a), b) and e) of Lemnia 2.1.3. Consider F, and its
Newton polytope, P(Fy). We will investigate its relitionship to Fi,—1 and P(Fp—1).
As above, let S,_1 = Supp(Fr—1) and

Fooi(z) = > arz!.

I:(io,...,iN+1)ESn_ 1

Therefore
1 1 ;
Fo(ay,..ozne) = D) aref ozf (Yam1 + o) N+
IESn_l
. . 1\ . .
_ 11 zN ‘ N+1 1N+1—]
= Z aIl‘l "':EN ‘ ( . 7'l 1$N+1 .
IeS, 4 j =0 J

If we rearrange this second expression we get

(2.3)

IN+1

N+1 j 11+J ‘n—1,1 ’Nﬂ% 1,N 1N+1 J

Fuonan) = 3% (M ard el
IeS, 1 j=0

Notice that, in these expressions, the exponent on ry.; is always an integer. Ex-

amining these expressions, we can also see that for ach term,

IN+1 ; '1+-7““n 1,1 iNtoan_ 1N S N+170
TZ( : )IC] TN IN+1

the point on the Newton polytope, P(F},), which ccrresponds to T, lies on the line
through I (a point of Supp(Fy—1)), with slope (—2p—1,1,..., —n—1,n5). So each
point on the Newton polytope P(Fy) lies on a line through a point of P(F,—1) and
parallel to the edge ep—;. One consequence of this is that the Newton polytope
P(Fy) is supported by the w-constant hyperplane 1%, determined by en—1.
Consider the summand of F,, whose terms corresprond to points on the line L,_3

determined by e,_1. Let P; be the point L,—1 N {zy4+1 = 0}, i.e. the point of
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intersection of L,_; and the null-hyperplane. Le; Py = M(en~1) be the major
vertex of e,_;. We will examine the coefficients of the monomials in F,, which
correspond Py and P». Both monomials have the possibility of occurring in F, with
non-zero coefficients, since both appear in equatior (2.3).

For Pp, the coefficient of the corresponding mon«mial is

(2.4) S et

TeSy_1Ney_1
since all of the terms in expression (2.3) which con:ribute to expression (2.4) must
correspond to points on the edge e,—1 of P(F,-1) and must also have a vanishing
TN +1-exponent. By the construction of ¢, this sura is equal to 0. Therefore P; is
not in P(F,).

The coefficient of the term corresponding to P; is unchanged from what it was
in Fp_1. Any term ajz'l .- z'N+1 other than that corresponding to P, contributes
only terms corresponding to points lying on the 1 ne through I, parallel to en_1,
and lying to the left of I (i.e. their )y, coordinates are less that that of I). Since
there are no terms in Fj,_1 corresponding to points on L,—; to the right of P, the
only contribution to P, in F, comes from P, itsel’. So J in expression (2.3) is 0,
and hence the coefficient remains unchanged.

Lastly we need to note that there are terms in F}, which correspond to points on
the null-hyperplane. Since ¢, = 0 is not a root of .7, = 0, such points exist.

Putting all of this together, we get that there a e points of P(Fy) which lie on
Ln—1. We know that all such points have strictly poitive £ y1-exponents, and that
there are points of this polytope lying in the null-hy perplane, 1.e. strictly to the left
of all points in P(Fy) lying on L,—;. Hence conditions a) and b) of the lemma are

satisfied. Since P(Fy) is the convex hull of a set containing these points and lying
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FIGURE (2.6). The edge path E and th: previous edge ep—1

on one side of the w-constant plane P,, there must be an edge path, €1 q,..., €k,
on P(F,) such that M(ek) lies on L,—1 and m(e; ,) lies on the null-hyperplane,
namely the edge path E that maximizes w on each v rtical section (See figure (2.6)).
Hence condition e) is satisfied. Since w is irrational this edge path is unique.

Next we will establish d) of Lemma 2.1.3 by shov ing that

<w,s(ek,n)> > (w, s(en-1))

The other inequalities follow from the same argument.
Let P, be the w-constant hyperplane containing e,—;. Note that Py is a sup-
porting hyperplane for P(F,,_1) and P(F,). Define the vectors u := (u3,...,up,1)
and v; = (v1,...,vy,1) associated to e,—; and ., respectively as follows. If

M = (My,...,Myn+1) and m = (m1,...,my41) ar: the major and minor vertices
of ep—1, then
M; —m;
My41 —my4

and likewise for eg, and v. Note that v and v a-e tangent to e, and eg,, and

Ug

(u1,.-.,un) and (vi,...,vy) are the slopes of e, and eg, with respect to zy11
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respectively. If I = (41,...,iy41) is the point of intersection of ek,n and L,_;, and
Ly is the line containing ek,n, then the points of intersection of L,_1 and L, with

the null-hyperplane are
p1= (11 = iN41UL,. .-, IN — Lu41uN,0)

p2 = (41 —iN4101, -+ o, iN — Gy41VN, 0)

respectively. Let L be the line of intersection of the plane P, with the null hyper-
plane. P, contains L,_1, so the point p; lies on L while P; lies in the interior of
the half N-plane determined by P, that contains F(F,) N {zy4; = 0}.

By the construction of the linear functional w and the edge path E, we have that

(w,p1) > (w, p2) and so
<w, —2N+1U> > <w, —iN,__1U>

which implies, since w is linear, that (w,u) < {(w,v) and hence that <w, s(ek,n)> >
(w, s(€n-1)). This finishes the proof of condition d) of Lemma 2.1.3.

Last, we need to prove condition c). Let e, be any edge on the edge path. Note
that the normal cone of this edge does indeed intersect C*(en—1), since in particular
w 1s contained in both of these cones.

We need to show that the 21 coordinate of M(. &) is kn. Consider the deriva-

tives with respect to zy 41 of both F,_; and F,. Racall that

¥pn—1,1 p—1,N
F, = n_l(arl,...,:cN,cn_lxl Ty -}—mN_H).

Hence, F;, = F,_y(z1,...,2N,%n + TN41), Where 7 denotes the derivative of F,
with respect to zy41. Let P and P’ be the polytopes of F,—; and F!._; respectively.

We are taking the derivative of a polynomial in integer powers of z 41, so P is
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obtained from P by removing the points of P lying o1 the null-hyperplane and then
shifting the rest of the polytope by —1 in the z x4 coordinate.

Let Ly—1 be the line through e,_1, and let L!,_; b= the translate Ln—1 —(0,...1)
of L,_1. Finally, let Q-1 and Q' _; be the intersection points of Ln—1 and L,_;

respectively with the null-hyperplane. We define th: coefficient restriction of Fy_1

to the edge e,—1 by

Fn—llen_l= Z ara ™l
Ieeq_1

Unless (Fr—1 len_l)' is a constant, L], _; is the unique line which contains the terms
Of (Fn_llen_l)l.
Let {a;z%} be the monomials of Fn_1|en_1. By construction, ¢;—; is a root of

the edge equation
(2.5) 3 a;t* N+ =

So the coefficient in F,, of the monomial corresponcing to Qp—1 is

(Z aitaN+1,i“i0) | =0

t=cy_q
To determine the coefficient on the monomial corresponding to Q),_; in Fj,, consider
!
the terms of (Fn_1|en_1) . They are

oy ayi enp1-1 0 d
ON+1,i0iTy - Ty Ty = dent

(aiz®)

By the chain rule we get

d d
pr— (Fa) = (dzN+1(Fn—1)) (T1y+- - TN, Pn—1 + TN41)

So in the same way as we showed that (2.5) was ‘he coefficient of the monomial

corresponding to Qn,—1 in F, we see that

(2.6) Zdi (@it N+14) y

d .
t t=cp_1 - % <ZC ita‘N'H’l) ‘t=cn—l
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is the coefficient of the monomial corresponding to Q',_; in F!.

If k1 = 1 then c,_1 is not a root of equation (2.6). Therefore the coefficient
of Q,_; in F, is non-zero, and so the zy,; coordinate of M(ek,) is 1. The case
where kn,—1 > 1 follows by applying the same argument as above with higher or-

der derivatives. This completes the proof of part ¢) and therefore the proof of

Lemma 2.1.3.

2.1.5. The exponents of ¢ lie in a lattice. This argument is almost identical
to its single variable counterpart (see [30]). For all » sufficiently large, ¢, is a root
of some multiplicity kng, since the multiplicity of ¢, as a root of the face equations

can only drop a finite number of times. (Usually this stable multiplicity will be

zero.)
Let n > ng, and let (aj, ;) and (ag,0) be the riajor and minor vertices of e,

respectively, where a; € RY, and j = k,_;. Since we have only carried out a finite

number of steps, F, lies in some lattice l/mZ‘N a1d so there are vectors mg, m;

such that
mo my
— =gqg and L = Gj.
m m
Since ¢; determines a line with slope a, = (1,5 -0y QN,R)
ag = aj + jan
and hence
ap — ay mo —my P
an = n = T = me—
J mj mq

where p € Z" and q € Z such that there is some 7 for which piy and g are relatively

prime.
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If (ap, h) € e, and ap = mp/m then

J4 ag—ap _ Mo - My
— = Q0p = = .

mq h nh

Therefore g(mo — mp)iy = pigh, and since (¢, piy) =: 1, we know that g divides h.

Therefore the edge equation of e, has the form

Fen(t) = g(t7).

But by above for n sufficiently large ¢, is a root of Fe, of multiplicity kn—1 =

degINH(Fe ). Therefore
F,, = d(t — cg)Fn-1.

Since kn—1,d and ¢, are all non-zero, Fe, (t) must hve a non-zero coefficient at tl.

Hence ¢ = 1 which implies that a, € 1/mZN for all n sufficiently large.
2.1.6. Proof that the support of ¢ lies in a cone.

LEMMA 2.1.7. There exists some ng > 0 such ihat for all n > no the major

vertices of e, are the same.

PROOF. By Lemma 2.1.3 we know that the majcr vertex of e, has z y41-coord-
inate equal to k,_; which is a decreasing sequence. Since k, > 1 for all n there
must be some ng > 0 such that kno_l > k"o but £, = k"o for all n’ > ng.

We now proceed by induction on n > ng. Since " he claim is obvious for e, let
n > ng. The length of e, is equal to the length of e,—;. Therefore the edge path
constructed in Lemma 2.1.3 consists entirely of one edge, e,. Therefore, the major
vertex lies on the line L,_; that contains e,_1 and has an z x4 coordinate less than

or equal to that of the major vertex of e,—1. Hence these two points are equal. [

LEMMA 2.1.8. The support of ¢ lies in some traislate of C(eny)-
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PROOF. Let w be any element of C*(eny). Now, Fy lies in the barrier wedge
of en,, and since the minor vertex m(eng+1) lies inside this barrier wedge, we can
conclude that P(Fy,+2) also lies in this barrier wec ge. Using this argument recur-
sively shows that for every n > ng, P(F}) lies in the barrier wedge of eng- This fact
implies that the minor vertex of e, lies in the barrier wedge of en, but not on the
line through Eng-

Using the same argument as was used in Lemma 2.1.3, we can show that

(w, s(en)) > <w,s(en0 ;>
Which shows, since w was arbitrary, that o, = —7(en) € C(en,) for all n > ng,

Since all but a finite terms are in this cone, the enfire series must be contained in

a translate of C'(eny). O

2.1.9. Proof that ¢ satisfies the equation. (‘onsider F' as an element of the
the polynomial ring over C ((Cy)). Since ¢ is itself 8 member of this ring, we have a
well defined notion of ¢ satisfying F(¢) = 0, where F(¢) = F(z1,...,zn,¢). This

result will follow from the following lemma.

LEMMA 2.1.10. For each r > 0 there is a ng > 0 such that if n > ng and if
B(0;r) is the ball of radius r about 0, then
Supp (F(z1,...,2x5,6s)) C RY < B(0;7).
i.e. all the exponents of Supp (F(z1,...,2xN,én)) lic beyond the ball of radius r.
PROOF. Let v; be the intersection of the line 1 containing e; with the null-
hyper-plane. Since Supp(#) is contained in a half-plane determined by w, and w

is a linear functional, it is sufficient to show the fcllowing. If, under the ordering

induced by w, p1 and py are the largest points of Supp(F(¢»)) and Supp(F(dn+1))
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respectively, then p; > pp. (Recall that w gets sm..ller as we move out along the
terms of @.)
We need to compare the two series F(zy,...,zp,¢n) and F(z1,...,ZxN, dnt1)-

To do this we will consider

Fo=F(z1,...;28,¢n +an41) and Fpi1 = F 21,..., 2N, nt1 + TN41)-

Assume that neither F'(z1,...,2n,¢n) nor F(z1,...,2N, ¢nt+1) is 0, since, if ei-
ther were true, we would trivially have the desired result. By the discussion pre-
sented in the proof of Lemma 2.1.3, we know that }'(Fy) lies above the w constant
plane determined by e,_; and likewise P(Fy,41) lies above the plane determined by

en. With this, the inequality,

(w, s(en-1)) < {w,s(ex))

yields the desired result. [

2.1.11. Proof of the lower bound on the number of solutions. To con-
clude the proof of theorem 2.1.2 a), we need to show that the number of solutions
obtained from an edge is at least the length of the jrojection of that edge onto the
T N41-aXIS.

The first coefficient of any solution series corresponding to the chosen edge e is
a root of a polynomial whose degree is equal to the length, k., of the projection of
that edge. So there are, counting multiplicity, k. possibilities for this first coefficient.
For each distinct root we get a different solution series and hence we get at least as
many series as the number of distinct roots of this :quation.

For each multiple root we need to consider what happens with later coeflicients.

So assume that ¢, is a multiple root of the edge e juation of e,. Since the length
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of the edge path constructed in Lemma 2.1.3 for e.,+1 is equal to the multiplicity
of ¢, as a root of the edge equation of e,, we see that the total number of possible
choices for the (n +1)-st coefficient is at least equal ~o the multiplicity of ¢,. Again,

distinct coefficients will yield distinct series expansions.

Let ¢ be built as above. By Lemma 2.1.3, for all n sufficiently large, ¢, has
some fixed multiplicity k4 as a root of the edge equation Fe,(t). We claim that the
multiplicity of ¢ as a root of F' = 0 is at least k4. Suppose kg > 1 then by the proof
of Lemma 2.1.3 each ¢, is a root of d(k)Fen(t)/dtk for all n and all 1 < k < ky.
Therefore ¢ is a root of dkF/d:vﬁv_*_l and hence has multiplicity at least k4. Since
the k4’s must add up to at least the degree of the ed.se equation of e; we see that up
to multiplicity the number of series solutions is grezter than or equal to the degree

of F, and hence the length of the projection of e; into the z 41 axis.

Since all of these solutions lie in strongly convex rational cones whose duals
contain w, and since w is irrational, there must be some strongly convex rational
cone C containing the supports of all of these seies. This finishes the proof of

theorem 2.1.2. O

2.1.12. The case of simple roots. For a poly omial F(z1,...,zx41) we will
let Azy . (F ) denote the classical discriminant of .” with respect to ;. Recall
that the discriminant of a polynomial p(z) in one variable is a polynomial in the
coefficients of p(z) defined only up to a non-zero constant multiple and which van-
ishes precisely when p(z) has a multiple root. (For a thorough discussion of classical
discriminants see [12] chapter 12.) Likewise for a polynomial g(t) of one variable,
A¢(g) will denote the discriminant of g with respec to #. In the next part, we will

explore more general descriptions of discriminants and the related concept of the
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resultant.

COROLLARY 2.1.13. If ¢1 is a simple root of Fe(t), and ¢ is the series built by
the above algorithm, then Supp(¢) C C(e). More generally, if the discriminant

Ay(Fe(t)) # 0 then all series generated from this ed je have support in C(e).

PROOF. Since k; = 1, ng = 1 and so the result follows from the proof in sec-

tion 2.1.6.

REMARK 2.1.14. Recall that in section 1.2.20 we :onsidered the case of a rational

function

F(z)=2zy41f(z1,...,2n)--1=0.
Note that the Newton polytope P(F) is a cone over the Newton polytope of f.
Therefore, the vertices of P(f) correspond to the admissible edges of P(F'). For
(vi,...,vn) a vertex of P(f), the slope of the corresponding edge in P(F) is

(—v1y...,—vpN).

2. Applications and conments

2.2.1. Fiber polytopes and full solution sc:ts. If d is the degree of F' in
the variable z 541, then we would like to find rings of fractional power series which
contain a full set of d solutions to the equation F' = (1. We apply this construction to
the following situation. Let P = P(F) be the Newton polytope of F, let @ = [0, d]
where d = deng+1(F) and let ¢ be the projection onto the last coordinate.

If E'is a monotone edge path (see section 1.2.11) which is maximal, i.e. ¥(E) = @,
then E defines a section v of 1. From now on we consider only maximal edge paths.
It was shown in [3] that the vertices of £y (P, Q) have the form fjg 4 v£(x) dz, where

vE 1s a the section corresponding to a coherent ecge path E. Moreover, if v is a
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vertex [yp(z)da of ¥y (P, Q), then the barrier cone C(v) is the union of the barrier

cones of the edges in F.

We may now formulate the following corollary to theorem 2.1.2 (a).

COROLLARY 2.2.2. Let F(zy,...,zy41) = 0 be 1n algebraic equation such that
each edge of P(F') satisfies Ay(Fe) # 0. Let E = [e1,...,en} be a coherent edge

path on P(F). Letd = deg$N+1(F) be the degree of F with respect to zy4+1 and let

be the union of the barrier cones of the edges in E. Then the ring C((Cg)) contains d
solutions to F(z1,...,2x41) = 0, counting multiplicity. Therefore complete systems

of solutions are in one to one correspondence with ‘he vertices of ¥ (P(F),[0,d]).

PROOF. By the proof of theorem 2.1.2, if &; is the length of the projection ¥ (e;),
then the number of solutions, counting multiplicity, that correspond to e;, is at least
ki. Again, as in the proof of theorem 2.1.2, we can crder Cg via an element of Cg*,
to get that if ¢ corresponds to e; and ¢’ correspon:ls to e;. then the lowest order
monomial of ¢ and ¢' must differ. Hence, in this case ¢ # ¢'.

By these two facts we see that the number of so.utions of F(z1,...,znx41) =0
in C((Cg)) is at least k; + --- + k, = d. Since this equation can have at most
d solutions in any integral domain, we have that the number of such solutions is

exactly d. O

REMARK 2.2.3. In the case where the edge discriminants are not necessarily 0
the same proof will apply to show that some cone (', with w € C}; has a full set of

d solutions, where w is chosen as in theorem 2.1.2.
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2.2.4. Proof of theorem 2.1.2 part b). We can use remark 2.2.3 to prove
theorem 2.1.2 (b). Let e be an edge of the polytope P(F), and let k be the length
of ¥(e). Let w € C*(e) be a linear functional wit1 coordinates that are linearly
independent over Q. Then as described above, w defines a coherent edge path
E = {e1,....ex} on P(F). Since w is maximized or e, we get that e € E.

By remark 2.2.3, there is some cone, C, such that ‘or each ¢, C(e;) C C, and such

that the ring C((Cg)) contains d solutions, counting multiplicity, to
F(:L'l,. . .,.’EN_H) = 0,

ki of which correspond to each e;. Since C((Cgp) can contain no more than d
solutions and k1 4 - - -+ k, = d, we have that the nuriber of solutions corresponding
to each edge, and e in particular, is exactly k;, the ength of ¥(e). This completes

the proof of theorem 2.1.2.

2.2.5. Estimate for the Ramification Locus. Let X C (C*)"+! be the va-
riety defined by the equation F(zi,...,zy41) = ). Assume that X is smooth
and that F satisfles the discriminantal condition o’ corollary 2.2.2. Consider the

projection I1: X — (C*)¥ defined by

O(zy,...,z2x41) = (21,...,ZN).

A point (C*)V is called ramified under II if the num er of inverse images of y is less
than the degree d of the mapping f, d = degzNH(F'). A point that has n inverse
images is called unramified. Note that the locus D taus defined also includes points
where xy4; becomes infinite. Therefore this locus is a subvariety given by the

equation

Pd(mla'-'va)AIN_*_l(F: =0
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—» Normal
Cones

~
= <«— Log(D)

FIGURE (2.7). The normal fan and the ramification locus

where Py is the coefficient of z4,,; in F(z1,...,2p 41) and A (F) is the dis-

IN+1
criminant of F' with respect to the z ;.

Suppose that F* has a complete set of d fractional power series expansions of
zN+1 through z1,..., 2511 in some ring C((Cg)). " here exists some translate C’
of C'g such that the inverse image, under I, of of Log ~!(Cq’) is a union of graphs of
analytic functions given by convergent fractional powver series in (C*)¥+1, Since X
is smooth, these graphs do not intersect. Therefore, he number of inverse images of
any y € Log_l(C@) is precisely d. Hence, none of th:: points of this set are ramified.

Suppose that F is chosen so that Ay(Fe) # 0 for all admissible edges e C
P(F). Let {C; C R¥} be the normal cones of all vertices of the fiber polytope
X (P(F),[0,d]). By Corollary 2.2.2 there are transla es C! of C; for each ¢ such that

all points of Log™!(C!) are unramified points of II. Hence

Log(D) [ (C1) = 0

. ea.

where m is the number of vertices of ¥ (p(F), [0, d]). So through the above methods

we get a bound on the image, under the map Log, o the ramification locus of II as

indicated in figure (2.7).
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EXAMPLE 2.2.6. Consider the general polynomi:l of degree n in one variable

z. We consider the coefficients of this polynomial to be independent variables

themselves, i.e.
F=zy+ziz+ 202 + -+ - - Tpz"

The Newton polytope of F' is a simplex, and the f:ber polytope of its projection
to the line segment [0, n] is just the secondary poly.ope (See [12]) of the polytope
[0,n]. Thus our results here agree with [12], where n it was shown that the New-
ton polytope of the classical discriminant was precisely this secondary polytope.

Note that, this secondary polytope has 2" ! vertices corresponding to the various

triangulations of [0,n].

2.2.7. Fields other than C. Note that the pioof above works for any alge-
braically closed field of characteristic 0. As in the s ngle variable case, a version of
this construction works for fields of arbitrary characseristic. For fields of character-
istic p, the inductive construction must be carried cut transfinitely and so we may
have solution series which have supports containing imit points, as in [25], [28] and
[29]. Such solution series will always have well order:d supports in Q" with respect
to the chosen linear functional ~w. The statement 1hat the support of the solution
series lies in a lattice and the proof that the constructed series lies in some cone no

longer hold.

3. Necessity of the discriminartal condition

The following example will show that the conclusicn of Corollary 2.1.13 is not nec-

essarily true for edges that don’t satisfy the discriminant condition of that corollary.
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Let

F(z,y,2) = 14222+ 2yz + 22% -~ 222% 4 y222.
We want to express z as a series in z and y. The Newton polytope of F is a simplex
with vertices (0,0,0), (2,0,2), and (0,2,2). Let : be the edge with end points
(0,0,0) and (2,0,2). Then e itself is a maximal edge path and

Fle =142z +2%% = (z: + 1)

Therefore F,(t) = 1 +2t+1% and so AF.(t) = 0. Let C(e) and C*(e) be the barrier
and normal cones of e respectively. Assume that C(C (e)Q)) contains a full set of
2 convergent series expansions for F' = 0. There is then some translate C*(e) + v
of C*(e) such that there exist two series expansions on C*(e) + 7. Note that C*(e)
is the cone generated by (0,—1) and (1,1).

Calculating the discriminant A,(F') we see that it is equal to 8(zy — 1) and so the
zero locus of A, (F) is the irreducible variety zy—1 = 0. The ramification locus R(F')
of the projection 7 : {F' = 0} — R must be a subvariety of the zero locus of A,(F).
Therefore R(F) = {xy—1=0}. Taking Log(R(F)) we get log|y| = —log|z|.
Therefore

R(F) = {(u,v) € Rlzog R VTRES —v}
This implies that, regardless of what v is, R(F)NC"(e) +~ # 0. By the remarks in
section 2.2.5, this is a contradiction. Therefore C((t ’(e)@)) cannot contain 2 series
solutions for F' = 0.

Figure (2.8) shows two “slices” of the surface i1. this example. The first view
contains the slice y = z, while the second is the slice y = 2z. Notice that the
ramification happened in the first view at £ = 1 and in the second at z = 1//2.

Just as our calculations indicated.



FIGURE (2.8). Two slices of t1e surface
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CHAPTER 3

Expansions of several equations

Suppose now that we have k algebraic equations ir k 4 £ variables
Fi(z1,...,z0y1,...,y5) =0for i =1,... k.

We wish to construct k fractional power series expansions, y; = ¢i(z1,...,z¢), for
¢ = 1,...,k, such that Fj(z1,...,2¢,¢1,...,6;) = 0 for all j. Again, we wish to
construct complete sets of fractional power series solutions to these equations that
converge in some common region of (C*)¢.

In chapter 2 we demonstrated the relationship in a restricted setting (k¥ = 1 and £
arbitrary). For computing such series expansions wz gave an extension of Newton’s
construction, based on the Newton polytope of F' In that case, however, only a
special class of fiber polytopes appeared, namely those that arise from the projection
of a polytope to a line segment.

As we are considering k equations, we will be using £ Newton polytopes P(F;) C
R**¢, and the Minkowski sum P of the P(F;). The construction here will be based
on k-faces of P.

In the most general case we cannot assure that the construction actually gives

a series solution. However, under certain explicit conditions we can prove that the
47
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construction can be carried out and that the series luilt have common domains of
convergence. These conditions are direct generalizaticns of the simple-root condition
given for one equation in the last chapter.

We will see that, generically, the number of series solutions converging in a given
cone is equal to the mixed volumes of the projecticns of P(F1),..., P(F}) to R*.

This agrees with the theorem due to Bernstein [2] 01 the number of solutions to a

system of equations.

1. Transfinities and transfinite induction

The construction of these fractional power serie. solutions will be based on a
transfinite algorithm similar to the methods used in constructing series solutions
for polynomials over fields of characteristic p, see [..5], [28] and [29]. Therefore, a

brief review of transfinites and transfinite induction is in order.{15]

Recall that a transfinite symbol, v, is defined to be an equivalence class of well
ordered sets, where the equivalence is given by orcer preserving bijection. Since
bijections preserve the cardinality of a set, all sets 11 the equivalence class, v, have
the same cardinality. We call a transfinite countible if every set in its class is
countable. Let I' denote the set of all countable transfinites, and note that I' is

itself a well ordered but uncountable set.

In T there are two types of transfinites, those that ..rise as the immediate successor
of a given v € T, and those that arise as the limit of the transfinites preceding it
in the order on I'. These two types are usually referred to as isolated and limit

transfinites respectively and are written as

v+ 1 and limé.
<y
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For example, the empty set is a well ordered set r:presented by the symbol 0, it
is the first ordinal number and is therefore the smallest symbol in I under its well
ordering. Any other finite symbol n is the immediase successor of another symbol,
namely n — 1, and has n 41 as an immediate successor. Therefore all finite symbols
are isolated transfinites. The first limit transfinite w . is the class which contains the

well ordered set of positive integers under their ustal order. So, w can be defined

as
w=limn

The isolated symbol w + 1 is represented by sets which increase to a limit point and

then contain either the limit point or some element ‘arger than the limit point. For

1 1 1
O e R |
{032’ 33 4’ 7}

1s a set in the equivalence class w + 1.

example, the set

Transfinite induction is carried out in two steps that of proceeding from 7 to
7+ 1, and that of passing to a limit transfinite v, or ce the process has been carried
out for all § < 5. For any v € I' we will build a series ¢, such that if v/ < ~, then
¢.s 1s a summand of ¢,. We will accomplish this by showing that if one has built
¢ for all transfinites § < +, then we can build ¢,. In particular this means that for
an 1solated transfinite, v, if we have constructed ¢., then we can construct ¢41.
If v is a limit transfinite we must show that if we have @5 for all § < v then we
can construct ¢, = @y 5. Finally, we must show th.t we can build ¢y and that the
process will stop after some countable transfinite .

Transfinite induction will only be formally needel in the following construction.

Once we have the general construction for the series expansions, we will be able
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to prove that its exponents never actually accumul ite. in practice, therefore, the
construction 1s never transfinite in nature, and the series thus constructed are just

ordinary fractional power series in several variables.

2. The construction for generic systems

3.2.1. The first step. Let
Fi(l‘,y) = Fi(xl,...,:cg,yl,...,yk) = 0, 1= 1,...,]6‘

be a system of k equations in k + ¢ variables. We denote by P; C R™ their Newton
polytopes and will appeal to the notation of section 1.2.10 with respect to the
decomposition of R™ = R*** = R!® R*. We will coatinue to use the notation of
and 3 as the coordinates on R¢ and R¥ respectively. We assume, as before, that we
have fixed an irrational linear functional w € (RY)".

Suppose

Fi(z,y)= Y aiqpz'y’
(a,8)€S;

where S; is the support of F; in R™. We need to bu.ld & series of the form
¢i = Z c.,,,':cé%i = Z Q"“(,’i
7€l v€r
where I' is some well ordered countable set, and for each 7, the set {é,}, is a well
ordered subset of R® with respect to the order give:. by w. We will denote by ¢-;

the 4-th partial sum of ¢;.

We will first build all of the ¢;; and then we wil. consider the inductive step of

moving the construction from 7 to 4+ 1 and then d=fine 9, ; for a limit transfinite

v. In many respects the first two parts will be ideniical.
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Let P1(0)7 ce ,go) C R™ be the Newton polytop=s of Fi,..., Fy (i.e. Pi(o) =B
for all 7) and let PO = Pl(o) +-- 4+ PISO) be their Minkowski sum. For the purposes
of iterating the process described below, we will now write Fz-(o) instead of Fj.

Let S be the section of 7 : P(© — RF determired by maximality with respect
to w. We choose any admissible decomposable k-face f(O), of S. Let {f,-(o)} be the
faces of P; respectively which sum to f(®). By assumption dirn(fl-(o)) > 0 for all ¢.
Let Q) be the k-plane determined by f© and le: ng) be the translates of Q(0)
which contain fi(o) respectively, i.e. Pz-(o) N QEO) = f‘,‘:o).

Since f is admissible, it has a matrix of slopes

61 611 b12 -+ iy

62 62,1 22 -+ boy
b=\ "= " . .

8 Ok Ok o Oy

For the first terms of our expansions we set

s —b ¢
Vi =cizy Ty

where ¢ = (cy,...,c¢k) is a non-zero solution to the system of equations

Z ai,a,ﬁcﬂ =0
(a,ﬁ)ESiﬂng)
These equations are called the face equations of f(*). Note that by theorem 1.2.9
the number of such solutions counting multiplicity i-, in general, equal to the mixed
volume of the projections of fl(o), e ,f,go) to R¥.
A priori we have no guarantee that this system actually has a solution. For now,
assume it does. Momentarily, we will give an explicit situation in which we can

assure that it the above system of equations actually has a solution.
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3.2.2. The inductive step. Next, we will loo: at the inductive step of pro-
ceeding from the transfinite v to the transfinite v + 1. We will consider the case of
a limit transfinite at the end of this section. So, assume that we have constructed

o1 i for all ¢ and for all 7" <+ where v is an isolated transfinite symbol.

!
Suppose that, in constructing the o i We have constructed polynomials Fi(”

By
!
and their polytopes Piﬁ ). Let
! !
Fi(7 )(x,y) - Z agly Bl,ayﬁ’
()
(a,B)€S;

(+)

!
.~ 1s the support of F),

where S i

!
Suppose that we obtained faces f,-(” that sum o an admissible decomposable

k-face f(7’) of their Minkowski sum P(*). Also ass ume that

(+)
by i = c57l):v"5i7

where

is the slope matrix of f('fl), and c('V’) is a non-zero solution of its face equations,
which have the same form as the face equations given above for f (©), Notice that
all of these criteria are met by the objects used in the first step of the construction.

To proceed from v to v + 1 we substitute

(7) )
e pys, e g

in place of y1,...,y; in the polynomials F,-h) to obtain the polynomials Fi(7+1). Let
P,-(7+1) =P (Fi('rﬂ)) be their Newton polytopes a1d let P(**1) be the Minkowski



53

sum of these polytopes. Let S;TH) be the support of Fz-(7+1). To continue this

construction we need to find a face f(**1) on P(*11) satisfying the following three

conditions:
1) If
5§7+1)
6g‘Y+1)
6I(c7.+1)

is the matrix of slopes of f(**1) then <w, 51( -,+1)> > <w,6z(7)> for all :.
2) I N <f(7)) 1s the normal cone of f,m (and likewise for f(7+1)) then

N (f(7+1)) AN (f(r)) 40

and in fact this intersection contains w.

3) The face equations of f(7*1) have a non-zer) solution.

We will find that it is not always possible to find such a face, and that, even
when one exists, its face equations may have no sclutions. In the the next section
of this text we will explore a case in which we can .lways find a decomposable face

satisfying all three of these criteria.

For the rest of this section assume that, at every solated transfinite symbol v +1

such that the expansions ¢,; =3 is not « solution to the original system

7 <y Vol
of equations, suppose we can find a face of P(Y+1) satisfying the above conditions.

Then we set, as in the first step of the constructior,

1) D)
¢7+1,i:c$7 C
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where ¢(**1 is a non-zero solution of the face equaiions of fO*1), We set
¢‘Y+1,l = Z w-yl'
¥ <+l

For a limit transfinite v, we set

bi= T by

v <y

This completes the description of the inductive pro: ess.

3.2.3. Properties of the series expansions. .1ere, we assume, for a series we
are attempting to construct, that we were able to carry out the entire inductive
process described above. So, at every step, we cotld find a decomposable face of
the next Minkowski sum which satified the three ciitera on page 53. Later we will
describe conditions under which we can assure tha' the above process works. We
note, however, that these proofs are not interdep:ndant. In other words, when
we attatch the conditions we do not rely on any of the following properties in
the construction. This discussion is more or less ziven as a general theorem on

such series expansions. The series we construct in {he next section will have much

stronger properties.

THEOREM 3.2.4. Assume that the series expansins ¢; have been constructed by

the transfinitely inductive process described above. "hen

a) The {¢;} are formal roots of the original system equations {F; = 0}.
b) The exponents of the ¢; lie in some strongly convex rational polyhedral cone
C in R® such that w € C*.

c) The exponents of the ¢; lie in some lattice %:»ZZ.
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Notice that b) and c) imply that the ¢; are elernents of the ring C((CQ)), the
ring of power series with support in some translate of C. This gives us that the
power series have convergence in some translate «f the cone C* (Lemma 1.3.9).
Therefore, they have a common domain of convergence. Note that c) also implies
that transfinite induction is not actually needed in “his process. Unfortunately, the

proof of c) depends heavily on part a).

PROOF. First we will prove part a). For this we need to show that the largest

terms of

Fi(mla-"7$fa¢7,17'"7¢7,k)

with respect to the linear functional w are decreasii g as v increases, and that they

decrease without bound. Notice that

Fi(‘/-!—l)(x’y) _ F_(‘r)(x’c(‘r)w—s(ﬂ +3)

1

FO D (g, g8 . a=0,=6)

= - =Flzy+ 3 c(a/)x_,s(v')
¥ <y

= Fi(z7¢7+y)

and so
F,'(zl‘l, ey Ty, ¢7’1, ceey ¢7,k) = Fi(7+l)(a‘1, ey Ly, 0, ce ,0).
Therefore we can prove a) by showing that the maximal terms of Pz-h) N R, with

respect to w, decrease without bound.

3.2.5. Finding a supporting hyperplane. A:sume that

F,-h)(:v,y) _ Z ag"‘ro?’ﬁ xayﬂ
a,0es!"
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Explicitly carrying out the above substitution gives us

81 Pk
FZ-WH)(:c,y) = Z ag:g’ﬁxa (cgv)w_5£7)+z,1> ...(c?)x'6?)+yk>
(a,ﬂ)GSZ(‘Y)
k M g._y.
o —v;:b B;—v
- w5 (8) ()
(@,8)est) y=1 \rj=0
= £ 5 (a0 st ol oo
(0’7:8) v g

Where (#) = 1 (%).

vy
We set <1/, 6(7)> = 1/16§7) +- 4 Vk5,(c7) to simplily this expression, and we con-

solidate the coefficient, obtaining

‘5(7)
(3.1) ( Z Az a,ﬁ'l' <V' >oyﬁ—y
(a,8),v
Analyzing the exponents appearing in this equatio: yields that the points in the
(1+1) )

polytope, P; , arise from points on P,-“ and lie o11 k-planes through these points
with slope §(7) with respect to Rk, i.e. k-planes par lel to the face f(7).
Consider the points in Pz-(7+1) that arise from (e, 3) € 51(7). Since v in the above

expression ranges over the set
Qop = {(vi,-..,v) 1 vi € 2,0 < v; < B for all ¢}

and the exponent of y is 8 — v, we see that points in Pi(7+1) that arise from (¢, 3)
project to points in the set Q, g under the projection to the last k coordinates. See
figure (3.9) ,

Let Hz-(7) and H() be the unique w-constant hyjerplanes through the k-planes

ng) and Q") respectively. Note that these hyperpla 1es support their corresponding
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Points in 2" which
can come from (a, )

(e, B)

the y,...,y-plane
, a,

FIGURE (3.9). Points on 2"V

1
polytopes, because points on the new polytope must come from points on the old
polytope translated along planes which are parallel 50 a supporting k-plane.
Recall that in the inductive hypothesis we assumr ed that we had obtained faces

fz-(V) of Pz-m of dimension > 0 and a k-face f") of F(?) such that
FO 4 g0 2 g

Let Q") be the k-plane containing f(*) and let Qgﬁ be the translate of Q(?) which
contains fi('r).

By the above discussion, we see that on the plare Qgﬂ we get points in Pi(7+1)

whose coefficients are only affected by the terms of f,-(ﬂ = Q(ﬂ N P,;("). Moreover

1
we get that these points must lie in the region of QSY) lying above the sets @, g for

the various (¢, 8) € fl-(Y). Note also that, since every point of Pi(7+1) lies on a plane

through some point of pY parallel to Q(’Y) and since H,-(7) was a supporting hyper-

1 i
plane for Pi(v), we see that Hz-(ﬂ is a supporting hyperplane of Pi(7+1). (Actually, to
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conclude this we also need that PZ-(7+1) N Q$7) # () s that the polytope in question

actually touches this hyperplane, but we will demonstrate this momentarily.)

3.2.6. Points in Rf lie strictly below the plane. In order to show that the
upper bound (with respect to w) on the terms in the series decreases at every step,
we must show that the points of Pi(7+1) which lie in the null-hyperplane lie strictly
below the supporting hyperplane we constructed al.ove. (Note that, in our view,
the hyperplane supports from above, with respect t« w.)

Let ¢; = QE") N R®. We need to determine the coefficient of the monomial cor-

responding to ¢; in equation 3.1). Considering all t1e terms in equation 3.1) that

contribute to the term corresponding to ¢;, we get t1at this coefficient is equal to

‘ 8
(3.2) > alls(dr)
(a,8)es{ "

Since this is precisely the ith face equation of f(¥), and () was assumed to be a

root of the face equations, we see that this coefficiert is zero for all <.

REMARK 3.2.7. There are several other points ttat we can explicitly determine
on Pl-(7+1). Suppose ¢ is a point on fi(A’) such that for every other point ¢’ on fi(ﬂ

there is some j such that ¢; > q;. Then the only term in Fim that can contribute
(

to the term corresponding to ¢ in F; ™1 s the term corresponding to ¢ itself.

Therefore the coefficient of ¢ in Pi(7+1) is unchange:| from the previous step. Such

vertices will be called extreme on the face f. Note that this proves that there are
points of Pi(7+l) on QEY), and so Hl-(Y) is a supportir g hyperplane for P,-(7+1).
Hence, if there are points of P,-(A') on R® they m st lie “below” the w-constant

hyperplane Hi(ﬂ in the sense that they have smaller weight than the points on the
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intersection of the hyperplane RE. (all these points have the same weight by the

definition of w-constant.)

3.2.8. The decreasing upper bound. Since the polytope P,-(Hl) is supported

by Hi(ﬂ and by Hl-(7+1), we see that the following are upper bounds on the the
points of PO ARE

2

<w, Hi(‘r) N R£> and <w, Hi("—| Yn RZ> .

(7)

Recall that w is constant on H; " over every point of R*. We will have a decreasing

upper bound on the points of Pi(7+1) in R® if we ca:. show that
<w,H§7) n R‘> > <w,H,-(7+1 n R">.

Suppose that <w, Hiﬁ) N RZ> < <w, H1~(7+1) N R£:>. Since the slopes of f(7+1) are
all strictly greater than the corresponding slopes of ;(*), and H,-(‘H_l) contains points
of Pi(7+1), we get that H,UH) lies strictly below Hi(' ) for all i. But this contradicts
the known fact that each of these hyperplanes support Pi('H-l).

The fact that this upper bound decreases without bound as « increases, follows
from the fact that we are using a transfinitely inductive process. This process does
not stop until the system ¢, ; satisfles the system of equations, i.e. until all the

Pi(V) have no terms left in R®. This proves that the series expansions obtained are

formal roots of the initial system of equations.

3.2.9. The rest of the theorem. Both b) and c) can be proved using an
application of the single equation construction deta:led in [20]. We accomplish this
by considering resultants. Namely, consider that the ¢; all have terms that are well

ordered by the linear functional w. Therefore ¢; are elements of the ring C((w)) for
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every ¢, where C((w)) is the ring of transfinite pover series whose terms are well

ordered with respect to w.

Let F'(x,y) and G(z,y) be any polynomials, we vill denote by
’R,zj(F, G)

the classical resultant of F' and G with respect to z;. This is a polytope on the
coefficients of F' and G as polynomials in z;, which s 0 if and only if F' and G have
a common root. Note that in this case, the coefficients of F' and G are themselves
polynomials in several variables.

Since ¢4, ..., ¢r simultaneously satisfy the systen.
Fi(z,y) = Fi(y1,---,y%) =0
we see that ¢1,..., ¢r_y satisfies the system of k — | equations
Ry (Fi, Fr).

By repeated applications of this argument we see thet y; = ¢; satisfies a polynomial
F'in the variables z1,...,z¢,y;. Therefore, since tlie terms of ¢; are well ordered
with respect to w we see that ¢; must be one of the: series solutions to F' obtained
by theorem 2.1.2. Therefore ¢; has exponents lyin; in some lattice and contained

in some strongly convex rational polyhedral cone C such that w € C*. The proofs

for the other ¢; follow similarly. [

3. Conditions on the roots of the face equations

In this section we will explore one situation in wich we can continue the above
process. In this case we can determine a great deal ¢ bout the structure of the series

solutions generated by the procedure. We will requiie that the initial choice of roots
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of the face equations be a simple solution of the system, i.e. the Jacobian of the
face equations is non-zero at c, and that all partial derivatives of the face equations

of the initial face do not vanish at c.

THEOREM 3.3.1. Let P be the Minkowski sum of the polytopes P; of the polyno-
mials Fy, and let § be the matriz of slopes of f. Assime that the root ¢ = (c1,...,ck)
of the face equations f is a simple root, and assum« that the first partial derivatives

of these face equations are all non-zero at c. Then

a) The induction of section 4 can always be continued.

b) The support of ¢; lies in the translate of the barrier cone of f with vertez at
—&; for all i and (Lemma 1.3.9) the ¢; convzrge in Log ™ (C* +v) for some
v in (RE)*.

PROOF. We will first analyze the second step of the induction for such systems
and then move on to the inductive step.

Recall that f(%) was the chosen face of the Minkowski sum of the initial polytopes,
and fl(o), cee, f,go) were the faces that sum to f(9). We had
(3.1) > ag’o(z,ﬂcﬁ =0

(28)es{ Vel

as the face equations of f, where Q(®) was the k-plane determined by f(®). Further,
QEO) was the translate of Q(®) containing fi(o).

We will now replace ¢ by t = (t1,...,%;) in eq.ation 3.1, i.e. we consider the

expressions on the left hand side of 3.1 as polynom als E; € Clti, .-, tn)-

(3.2) Ei(t1, ..., t) = > Gia,pt°
(a,ﬂ)eS,-anm
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The condition that ¢ is a simple root of 3.1 means that the matrix

oF o0E
Wll(c) e —3—"'—}}‘0)
(3-3) M = : :
oF 8EyL ,
W]k(c) e mkﬁ\C)

is nonsingular, i.e. det(M) is non-zero.
Our second assumption gives that for all 7 and j

OF;
(070

To draw conclusions from this second assumption w:: need introduce some notation.

DEFINITION 3.3.2. Let P = conv {p1,...,ps} b any m-dimensional polytope.

For each of these points, set p; = (pi1,...,pi,m). Ve define the partial derivative
of the polytope P with respect to ¢; by

gt ~ o {pi —ej:pij =1}

where €; is the ¢-th standard basis vector in R*.

So taking the derivative of a polytope with respect to ¢; has the effect of shifting it
by —1 in the t; direction, and removing the parts tl.at have negative ¢;-coordinate.

If F'is a polynomial and P(F') is its Newton polytc pe then we get the identity:

p a_F _6P(F)
8tj N at]‘ '

3.3.3. Finding an appropriate decomposable face on P(1). We need to
explicitly find a decomposable admissible face of the polytope P(). So, let

i=Q" NRY,

be the intersection points of these k-planes with R®. We noticed, in the second step

of the construction, that since this coefficient is thc: same as the i** face equation,
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the coeflicient on the term corresponding to ¢; in ! 'i(l) is 0 for all . Let

¢ = 99~ 2
! Ot

nRY,

The Newton polytope of the partial derivative is just a translation of the original
Newton polytope (with part cut off at the null h-perplane). So, showing that a
point lying over e; is actually a vertex on the bottom of the polytope is equivalent
to showing that the coeflicient on the term corresoonding to qz in (')F /8y] is
non-zero. (Such a point would necessarily lie on the previous hyperplane, but points

in the null-hyperplane lie below it with respect tc w.) By the chain rule, we get
that

A m) 9 (FO (1) = 6(7)

Therefore, the partial derivatives of face equations E;j of f(?) are the face equations
of the partial derivatives of f(%). So, in the sam: way that we showed that the

. . 1 .
coeflicient on z% in Fi( ) was zero, we can show thi:t the coefficient on

G . oFY | oy

(3.4) (z,y)%  in 63;]‘ is E,_(C)
Since
aE,
dt;
for all ¢ and j, we see that the term in 5F( /0y; rorresponding to q(]) has a non-
zero coefficient. For all 7, we let s,( D = (sg),.. (k),e]) be the point on Q

that projects to the point (0,¢;) in RF. Taking the partial derivative of Pi( ) with

respect to y; takes sgj) to qz(j). By equation 3.4, an« the fact that we are taking the

derivative of a monomial containing ¢}, we see thai the coefficient on

(1)

(3.5) (z,y)% in FD is OF

5 (@

J
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Hence the term in Fi(l) corresponding to ng ) has a 1on-zero coefficient for all J- So

()

. . ) . . . 1
s;”” 1s contained in, and is in fact a vertex in Pi( ),

Let r; = (ri1,...,7i,0,...,0) be the maximal po nt of Pz-(l) in R* (maximal with
respect to w). If we assume that {y; = cgo)xéz@)} is not a solution to all of the
equations, then there must be points of Pi(l) on R 1or some ¢. If Pi(l) has no points
in RY, then we formally set r; = co. We add the firite r;’s to the sgj)’s, and so get
a set of points on P(1). To complete this construction we must use these points to
find an explicit decomposable k face on P(Y). The structure of the slopes of this
face will give us some interesting results on the st ucture of the fractional power
series that we generate from this process.

First, we notice that, on each of the Pi(l), the (k— |)-simplex formed by the points
{sgj)} is a (k — 1)-face. (Call this face f;.) This is because this (k — 1)-simplex is
contained in QEO), a supporting k-plane for Pi(l), a1 d because each of these points
lies over one of the coordinate axes. (There are no points of Pi(l) with negative y;
for any j.) Therefore all of the Pi(l) have at least one parallel (k—1)-face. Moreover,
this face is maximized by w since QEO) is a support ng hyperplane in the direction
of w. Therefore, f; + --- + frisa (k — 1)-face of F(1). This face has vertices with
a; coordinate equal to ke; for all 5. See figure (3.10 .

Consider, next, the points r;. In the discussion asove, we showed that (w,r;) <

(w, qi). (Recall that ¢; = QEO) NRY) Chose iy such that the expression

(3.6) <w,q,~0> - <w,r,~0>

1s minimal. The k-face formed by

O

iy r+ 180 s Tig}
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One Newton polytope now So, their Minkowski sum
Q; L has a face of this form. has a decomposable face
of this form.

And all have a k-1

1 Q" Face of this form k

Q(O)

FIGURE (3.10). The face on the Minkowski ~um of the new polytopes

1s a w-maximal face of Pz-(oo) . Call this face f;. Reor ler the polynomials (and hence

the polytopes) so that the first 7’ polytopes satisfy 1he above minimality condition.

l.e. for all z > i’ we have that

(3.7) (w,qi) = (w, i) > (w,qp) — 1w, ry) .

Then fV) = f; +--- + fa+ fi’-}-l +---+ f is a maximal admissible decomposable

face of P(1). For the sake of notation rename its su nmands as fi(l).

3.3.4. Slopes of the face. We need to show that all of the slopes for this
decomposable face are actually increasing with respect to w. For this, we look at
the parallel faces fl(l), . .,fz.(,l). We see that f,-(l) 1 spanned by the k& + 1 affinely

independent points

ri = (ri,...,ri,0,....0)
s o= (W sW 0,00

B = o, 0
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Moreover, these are the only points of Supp(Fi(l)) that fi(l) contains. The same
analysis holds for ¢‘s greater than ¢', but without the first point in the list. (They
are k — 1 faces, and each of the previous k-faces cor tains such a k — 1 face.)

The k-faces summing to this face are all parallel and the k — 1 faces all lie on
translates of Q(®). Therefore, the slopes of f(1) with respect to z are the same as
the slopes of fl(l). So, consider the slope of fl(l) in tle direction of y;. fl(l) contains
the point sgi), which lies over e;. It also contains "he point r; which lies over 0.

These two points differ, over Rk, by 1 in the y; direction. Therefore the slope of

fl(l) in the y; direction is

51(1) = (sgil) —Til,.- .,sgik) — ) = sgi) —r1.

We set the exponents in the second terms of our seres expansions to be —§(1)
3.3.5. Solutions of the face equations. To fin sh the proof of part @), for this

step, we need to show that the face equations of f(1 have a solution. Suppose that

the coefficient on r; is p;. By equation 3.5 we get thut the face equations of f(1) are

OE; OF, _
gr (Tt g Ol =
OE}, OE}, _
By Mt O =

Since the matrix M in 3.3 is non-singular and not all of the p;’s are zero, this system

of equations has a unique solution.

3.3.6. The series has support in the normal cone. To prove part b) of this

theorem (at least for this step) we need to show tlat for every w' € B(f(®) and
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_s®

every i, we get that is in the translate of the barrier cone of f = f(9) with

vertex at —51(0). For this we follow an argument similar to the one in lemma 2.1.8.
Recall that QEO) has the same slopes as f(©). Sii.ce sgi) 1s on ng), these slopes

are given by
60 = (8 — a1,y s —ain) = s — 1.

By equation 3.6 we see that

<wa6z(l)> = <w7‘9§i) - T‘1> > <w75§i) o q1> = <w’6z(0)>

Therefore we have that

(3.8) (.60 < (w, 5"

implying that (at least at this term) the series is decreasing with respect to w.

To show that the series is actually in the normal :one, we need to show that the
inequality in equation (3.8) holds for all w' € N(f(). For all w' € B(f®), let H,
be the unique w'-constant hyperplane through f;. Lt H; , be the translate of H
which supports Pi(o) at fi(o). Then Pl(o) also supports Pi(l) since all points of Pl-(l)
are translates of points of Pi(o) in the direction of f(° . Therefore the argument used
above for w will also work for all w'.

This completes the second step of the constructicn. To finish this proof we need

to show that the same analysis used in the second ste p will carry over into successive

steps.

3.3.7. The inductive step. Suppose in previous steps we constructed §(»=1)

Also suppose that, in doing so, we heve constructed FrY

polytope Pi(n_l)

and c(»=1, and its

for all <. Suppose, further, that tae pnY satisfy the following

condition.
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- The points sgi), defined above for the secon 1 step of the construction, are
(n—1)

vertices of P; , and that they are extreme vertices of fi(n_l). (Extreme

in the sense of remark 3.2.7.)

Note that this condition holds for the case n = 3 by the above discussion.

Since the sgi) are on a supporting hyperplane fcr Pi(n_l), and are extreme on

fz-(n_l), by remark 3.2.7 their coefficients are preserved in the transition from Pz-(n'_l)
to Pi(n). Therefore we have, on the Pi(n), faces of t1e same form as above. More-
over, the face equations of these faces have the san e coefficients as the system in
equation 3.8. Since, by assumption, the approximasion from the (n — 1)*! step of
the induction didn't satisfy all the equations, some «f the p; are again non-zero. So

we can continue the induction.

Since the faces we obtained for Pz-(n) have the saine form as those in the second
step, the same arguments apply to show that the support of the series lies in a
translate of the barrier cone of f(°) with vertex at —51(0). (Since Pi(") lies in the
barrier wedge of f(9). and the points of P are ol tained by translating points in

1

Pz-(n) in the direction of f(®) we see that P 55 ¢1s0 in this barrier wedge.) O

?

3.3.8. Complete systems and normal cones. The following corollary relates

the maximal collections of series solutions to the normal cones of the faces involved

in the constructions.

COROLLARY 3.3.9. Suppose that all of the decomrosable faces in the w-mazimal
section of P(®) have face equation with mazimal nur.bers of roots. (i.e. the number
of roots is equal to the mized volume of the projecticn to R* .) Also suppose that all

the roots of these systems satisfy the conditions of treorem 3.3.1. Then the number
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of solutions to the system {F;} in (C((CQ)), where

C= U B(H-= U N
f a face of S f aface of S
f decomposable f deconiposable

is equal to the mized volume of the projection of the polytopes Pl(o) Py

V = Vol (z (P(F1)), ..., 7 (P(Fy))).

Therefore, the number of solutions converging in some translate of the intersection

of the normal cones of these faces is equal to V.

Note that this intersection is non-empty since it contains w.

PROOF. We have, by theorem 3.3.1 at least onc distinct series in this ring for
each root. Therefore, this ring contains at least V -olutions. By theorem 1.2.9 the
number of series in this ring that satisfy the system can be no more than this mixed

volume. [

Calculations that have been performed on the polytopes of more general systems
of equations lead us to make the conjecture that - he conditions of theorem 3.3.1
can be weakened slightly. It seems that the conclus:ons of this theorem should still
hold true if ¢ is a simple root of the face equations, i.e. eliminating the condition

that all partial derivatives of the face equations are non-zero at c.

4. Fiber polytopes and the mixed fiber polytope

Suppose that all of the faces of P satisfy the conclitions of Corollary 3.3.9. Then,
this corollary tells us that complete systems of sc.utions correspond to maximal

collections of decomposable, admissible faces whose normal cones have a non-trivial
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intersection. Consider that, by choosing a linear finctional w, we get a coherent

section of the projection
T:P=P +--+P —»RF

of the Minkowski sum of the Newton polytopes of t} e original equations. By chang-
ing w, we change the section. Note, however, that if two sections differ by only
indecomposable faces, then they yield the same set of series solutions in the above
construction. If they differ by any decomposable faces, then they give (at least
some) distinct series solutions. Therefore, the ma dimal sets of series solutions of
F1,..., Fy correspond to equivalence classes of colierent sections of w, where two
sections are equivalent if they contain the same set . of decomposable faces.

If Py = ... = Py, then P is a dilation of P; for all . Therefore, every face on P is
decomposable, and hence the maximal sets of series solutions correspond precisely
to the coherent sections of .

Let A be the fan in R® whose cones are the domair s of convergence of the maximal
collections of series constructed above. Consider the fiber polytope [3] associated to

the projection 7. Let () be the image of 7, then th:s fiber polytope is denoted by

ETF(P) = EW(P7Q) = {/;27(x)dx Y € F(P)} :

Recall that the vertices of ¥ (P) are in one to one ccrrespondence with the coherent
sections of 7, and that the barrier cone of the verte : vy, is equal to the union of the
barrier cones of the faces that comprise the section Therefore we get the following

corollary to theorem 3.3.1.

COROLLARY 3.4.1. The normal fan Ay, of £r(F) is a refinement of A. If P, =
o= P, then Ay = A.
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The properties of the fan A suggests the existenze of a polytope L (P, ... , Pr)
called the mixed fiber polytope of the polytopes P. associated to the projection 7.

This polytope should satisfy the following properti :s:

1) Xx(P1,..., Pr) is a Minkowski summand o £(P), and hence the normal
fan of Xz(P) is a refinement of the normal 1an of (P, ..., P;).
2) tEPh=P=... = Py, then E-,r(Pl,. .. ,Pk) = EW(P)

5. The mixed discriminant and mixed fiber polytopes

As in chapter 2, these results indicate a relationship between the fiber polytope
and a certain ramification locus. Namely, consider the ramification locus of the
variety X defined by the equations Fy = --- = Fy = 0. Assume that X is smooth.
Then this locus corresponds to all multiple points in the projection to the z1, . . ., z;-
hyperplane, and since X cannot have singularities, must lie outside the domains
where we have complete collections of series solutic ns.

Just as in the last chapter, the Log of this ramiiication locus is bounded by the

cones which contain maximal series solution sets.

THEOREM 3.5.1. If the Newton polytopes of the F; coincide, then the Log of the
ramification locus of the projection of x to the z1, ..,zp-hyperplane is bounded by

translates of the normal cones of the fiber polytop. associated to the projection of

the Minkowski sum of the F; to R,

In general, it will be necessary to construct the mixed fiber polytope to extend
this relationship.
In chapter 2, this ramification locus corresponded to the zero locus of the discrim-

inant of F' with respect to x 4. Here, the locus is the zero locus of a generalization
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of this discriminant, called the mixed discriminant.

Intuitively, it is the locus where the equations F- = 0 have a common multiple
root. Generically, k£ equations in k variables intersect in a finite number of roots
determined by the mixed volume of their Newton polytopes. We wish to make
explicit the conditions on the F; which determine when two of these roots merge
into a common double root.

This happens when a translate of the yj,...,y -hyperplane is tangent to the
variety X. But this is equivalent to saying that the tangent planes to the varieties
{F; = 0} intersect in a {-plane which lies parallel to she z1, ..., zs-hyperplane. This

in turn is equivalent to the condition that the vectcrs

oF oF
det : : # 0.
9 d

In other words, the F; vanish, and thier first partia! derivatives with respect to the
y; are linearly dependent. This gives n + 1 algebr.iic conditions on the collection
of polynomials, and therefore is a codimension 1 coadition on the space of all such
collections of sections.

We formulate the mixed resultant more generally as follows. Let X be an n
dimensional algebraic variety over C, and let Ly, ..., L, be very ample line bundles

over X. (For the definition of very ample, see the ciscussion in chapter 4.) Let
V=HY(X,L) x---x H* X, Ly)
be the product of the spaces of global sections o’ these bundles. Consider the

subvariety V C V defined by

vV — {(31, s the s; vanish and their first }

partial derivatives are linearly dependent
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In order to completely construct the mixed discrirainant, it is necessary to prove
that V is an irreducible hypersurface. (At the mom :nt it is the irreducibility of this
locus that is posing a slight problem.) We would tten take the mixed discriminant
to be the irreducible equation of V. The mixed discriminant thus defined would be
a polynomial on the space V which is zero if and only if the collection of sections
vanishes and simultaneously their first partial derivatives are linearly dependant.
The above results would then give the following result on the zero locus of the

mixed discriminant of Fy,..., F}.

PROPOSITION 3.5.2. Suppose that the Newton pclytopes of the F; coincide. then
the zero locus of the mized discriminant of the 15 with respect to the variables
Yi,..., Yk 15 bounded by the normal cones of the fiber polytope associated to the

projection of the Minkowski sum of the F; to R
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CHAPTER 4

Introduction and Preliminaries on Resultants and
Discriminants

1. Introduction

Let X % S be a smooth projective morphism >f smooth varieties of relative
dimension n. Suppose that dim (X) =n +m = r, vith dim (S) = m. All varieties
here will be complex unless otherwise stated.

Let Eq,..., Ex be a collection of vector bundles «ver X of rank r; respectively.
Assume that the E; are relatively ample. That is, hat they are ample over each
fiber of p. Let [1,...,{; be a sequence of numbers 'vhich sum to n + 1. Consider

the integral of the product of Chern classes of the E |

(4.1) c= /s ey (E1)---ay (Ex) € 1% (8,7)

where [y, : H*"*?(X,Z) — H?(S,Z) is the direct image (integration over the
fibers). In singular cohomology, this integral is giver. by the following composition
of maps

-1

5
o2 (X, 7) Xy, (X;Z) 2 Hom_» (S;Z) 2 H2(S;Z),

where, for an n-dimensional real manifold Y, §y de:iotes the Poincaré duality iso-
75
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morphism
Sy : H(Y;Z) — Ho_i (V3 7)

and py is the induced map on homology.

In [7] Deligne proposed the problem of finding, functorially, an algebraic line
bundle

Ixss (e (Br), ... ey (Ex))

over S such that

1 (IX/S (czl (El),...,clk (E; ))) =c

The difficult part is to build a bundle in the case S = pt (S = speck, for k a field).
That is, to construct a canonical 1-dimensional k-vector space Ix/s for bundles E;
on a variety X with dim X = n. Once this has been accomplished, then one can, in
a very natural way, knit these spaces together to form a vector bundle over S.
Deligne executed the first step of this process, in 7], by introducing, for two line

bundles L and M over a curve X, a vector space
(L, M) .

Two meromorphic sections [ and m, of L and M respectively, define a non-zero ele-
ment ([, m) of (L, M) if and only if they have disjoin’ zero sets (divisors). Moreover,
the (I,m) satisfy the following condition. If f is a rational function on X, then fI

and fm are sections of L and M respectively, and

(fl,m) = f(divm) (I,r2)



77

where

f (X np) =T1F ()"

The most important aspect of this construction, though, is that (I,m) is 0 if and
only if [ and m have a common zero over X. A determinantal representation for
these spaces, which can be derived from the Koszil complex, was introduced by
Moret-Bailly in [23].

In [10], Elkik considered a more general case usiag the norm of a bundle with
respect to a projection. We will introduce a related i1terpretation of these integrals.
In some cases we can show that our construction is isomorphic to the previous
constructions. We construct “resultant” bundles -vith these cohomology classes
as first Chern classes. By identifying these bundle: as resultants, we are able to
interpret them as the determinant of the cohomolygy of a certain complex, the
Fagon-Northcott complex.

We will show that natural generalizations of the cube theorem also arise from
these complexes. They turn out to be key tools ‘or demonstrating the general
properties of the spaces Ix/s. We end the discuss on of applications with a few

results concerning the relationships between discriminants and resultants.

2. Ample vector bundles

For our main construction, the essential proper y which we need from ample
bundles is that they have enough sections to perform genericity arguments. The
theory of ample line bundles is well developed in [1-:]. Let L be a line bundle over
a variety X. Then L is called very ample if there is some embedding p of X into

a projective space P" such that L 2 p, (Opn(1)). L1 particular, this means that a
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very ample bundle is generated by its global sectiois.
A line bundle L is said to be ample if some potitive tensor power of L is very
ample. The following are some of the more important properties concerning ample

and very ample line bundles. Proofs may be found in [14].

PROPOSITION 4.2.1. If X is proper over k and L is an ample line bundle over
X, then for every coherent sheaf F' on X, there is some integer ng > 0 such that

foralln >ng and all i > 0,
Hi (X,F®L®") — (.

The following proposition from [14] gives some information on generating new

ample bundles from old.

PROPOSITION 4.2.2. Let X be a scheme and let L and M be line bundles over
X. Then
1) Ifn > 0 is an integer, then L is ample < L is ample.
2) If L and M are ample, then so is L @ M.

3) If L is ample and M is arbitrary, then L®™ 3 M is ample for large n.
The definition for arbitrary vector bundles is a gen ralizations of these notions.

DEFINITION 4.2.3. A vector bundle F on X is ample if for every coherent sheaf
Fon X, there is an integer ng > 0 such that for every n > ng the sheaf F ® S™(E) is
generated as an Ox module by its global sections. (Here S™(E) is the nt* symmetric
power of E.) If X %5 § is a smooth projective mr orphism, then a bundle E over

X is relatively ample if its restriction to any fiber s is ample.

THEOREM 4.2.4. For every vector bundle E over an algebraic variety X, there is

a line bundle L such that E ® L is ample.
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3. Resultants

4.3.1. The classical setting. Let f(z) and g(z) be two polynomials in a single

variable z over C. Suppose

flz)=ap+aiz+---+ayz"

glz)=by+biz+- +bp:"

we wish to determine when f and g have a commor. root in C. Polynomials have a
common root if and only if their greatest common civisor is non-constant. But this
is true if and only if their least common multiple I as degree less than m + n. So,
f and g have a common root if and only if there e<ist polynomials F and G with

deg(F') < deg(f) and deg(G) < deg(g) and such th it
We write F' and G in general form

F(JZ):Ao-l—AlI-{-----I-An_lxn—l

G(IL‘) =By+Biz+---+ Bm_[;vm_l.

The equality 4.1 thus becomes a system of linear equations on the coefficients of F
and G. Moreover, this is an m + n by m + n system, which has a solution if and
only if its determinant is non-zero.

Therefore, the resultant is a polynomial on the :oefficients of f and g which is
zero if and only if f and ¢ have a common root. Writing the determinant this way
yields the classical Sylvester formula for the resultaat. We will denote the resultant

of f and g by either R(f,g) or by (f,g) following Deligne’s notation. See [16] or

[12] for a more complete discussion of the classical -esultant.
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4.3.2. The modern setting. The modern met 10ds for resultants put the above
1deas into the following setting. (For a complete ciscussion of the ideas presented
here see [12].) We consider n + 1 line bundles Ly, ..., L, over an irreducible projec-
tive n-dimensional variety X. Certainly, we must «onsider sections of line bundles
rather than polynomials when working over arbitrary X. (Even over P! this is con-
venient, as O(n) is the line bundle whose sections ire homogeneous polynomials of

degree n.) Let
vV =T]H(X, L)

be the product of the spaces of global sections of the L;, i.e. the space of global
sections of the bundle F = Lo @ --- & L,,.

Consider the following subset of V
V ={(s0,...,81) € V:sp(z) =+ = 8,(a) =0 for some z € X}

Then, V is the collection of all n+ 1-tuples of sections which vanish simultaneously

somewhere on X.
PROPOSITION 4.3.3. V s an irreducible homogeneous hypersurface in V.

ProOOF. That V is an irreducible algebraic varisty is easily seen from the fact

that it is the projection of the incidence variety
I={(z,50,...,90) € X X V:sp(z)=: -+ = sp(z) =0}

And that I is a vector bundle over the irreducible variety X assures us that I is
irreducible. Hence, so is its projection, V.
The fact that V is homogeneous can be easily ieen by considering that if s =

(50,...,8n) € Vis an (n + 1)-tuple of sections, tlen the s; are simultaneously 0
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somewhere on X. Then the sections
As = (Asg,...,Asp)

are simultaneously zero at the same points as s. So. As is in V as well.
That V has codimension one arises from a simple dimension count completely

analogous to those given later, when we construct t1e generalized resultant spaces.

For details see [12]. O

The resultant for these bundles is defined to be the irreducible equation of this
hypersurface, and is denoted Rpg,.,1n- This polrnomial is defined, only up to
a non-zero constant multiple, on tuples of section: and is zero if and only if the

sections in question have a common root.

4. Discriminants

Classically, the the question answered by the discriminant is this: How can we
determine when a polynomial of one variable f(z) lLas a multiple root. The answer
is simply that it has if and only if f(z) and f'(z) have a common root.

Therefore, we can define the discriminant of f to be

A(f) = R(f, f).

The above discussion applied to this definition yields the classical Sylvester formula
for the discriminant. Again, complete discussions cen be found in either [16] or [12].

An exhaustive discussion of the more modern af proach to discriminants can be
found in [12]. Momentarily we will use the descript on of the discriminant in terms
of jet bundles. We can, however, define the disc iminant in a manner which is

completely analogous to the definition of the result int.
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Consider an irreducible smooth algebraic variety X. For a line bundle L over X,
we define the discriminant Ay as follows. Let V = H? (X, L). Then the collection
of all sections in V' which vanish somewhere on .{ along with their first partial
derivatives (i.e. have a common root), form a hypersurface V. We are looking for
the intersection of n + 1 forms on X. Their intersection is thus a codimension one
condition on V.

It can be shown (see [12]) that this hypersurface :s irreducible and homogeneous.
The discriminant is defined to be the irreducible homogeneous equation of this
hypersurface, and is again defined only up to a nor -zero scalar multiple.

For computational purposes, a more useful defini‘ion of the discriminant uses the
theory of jets. We review some of the basic defini ions and results for this theory
here.

For a line bundle L we define the bundle J(L) of first jets of sections of L as
follows. The fiber of J(L) at a point z € X is the juotient of the space of sections
by the space of all sections defined near z which h..wve a double root at z. Namely,

if I is the ideal of functions which vanish at z, then
J(L); = L/I2L.

Therefore, an element of this fiber is defined by a section’s value at z and the values
of its n first partial derivatives. This implies that this fiber has dimension n + 1.
Let f be a section of L. We can associate to f tle section j(f) which at z is the

image of f in J(L);. Note that this correspondenc: is C-linear, but not Ox-linear.

PROPOSITION 4.4.1. For any algebraic line bunile L, we have a short ezact se-

quence

0— QoL -% gL L —o.
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where O is the sheaf of algebraic one forms on X and B takes any vector j(f)(z)
to f(z) € Ly.

With this, we can define the discriminantal spa«e as follows. Consider the set
V C V = H%J(L)) consisting of all sections which vanish somewhere over X.
Then one can show that V is an irreducible homogeneous hypersurface in V. We
define the discriminant for L to be the irreduciblc equation of this hypersurface

(defined only up to a non-zero constant multiple).

5. The canonical vector space associated to a homogeneous

hypersurface

Our development of Iy,g will arise from the construction of a canonically defined
vector space which is associated to a homogeneous 1ypersurface in an affine space.
The ideas in this section will clean up some of t1e notation in the last several
sections. Resultants and discriminants will no long:r be defined only up to a non-
zero constant multiple.

We work over an arbitrary base field k. Let X te a finite dimensional k-vector
space (regarded as an algebraic variety over k). Lt H C X be a homogeneous
hypersurface (a reduced subscheme of codimension one, such that if z € H, then
Az € H for all A). It is well known that H can be given by one homogeneous
equation {f = 0} which is unique up to a non-zerc constant factor. Consider the
set of all level hypersurfaces of H. If f is an equation for H, then H is unambiguously
defined by {f = 0}, and the other points in the vector space are unambiguously
defined by {f = d} for various d. Call this set £ (H).

This set forms vector space structure over C in the following way. Let f be a

fixed equation for H. Then f has a well defined va ue on any level hypersurface of
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h, namely d. We denote this by A = Hy, and say shat f(h)=d. If Hy and H), are

elements of L(H), then the vector space structure >»n L£(H) is given by

Hd-{-d’ = Hd + Hdl
cHy = Hgy.

These operations are well defined because any two equations of H differ by a non-
zero constant multiple. Note, however, that £ (H) ‘s not canonically identified with
C. The defining equation f is only defined up to a scalar multiple, as there are many
choices for the function f. As mentioned above, £ (V) is the canonical vector space

wherein the “equation” f of H takes values. Namely, we have a canonical map
v: X — L(V)

which takes a section # € X to the level hypersurfiice of V which contains it.
We can tighten the relationship between H an!l L£(H) by considering the one

dimensional space £ (H) of equations of H. In fact. these two spaces are dual

An equation for H has a well defined value on every level surface of H, and so

defines a linear map from £ (H) to R.
PROPOSITION 4.5.1. Suppose that
E-5LY
is a vector bundle of rank n and that Ey is its fiber »ver the pointy of Y. Let H CY
such that H is algebraic and Hy = H N Ey is a horvogeneous I?ypersurface of degree

din Ey for ally € Y. Then there exists a natural line bundle L (H) whose fiber over
y €Y is L(Hy).
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PROOF. Consider the space Py, of all hypersurfaes of degree d in the n-dimen-
sional vector space Ey. Collectively, they form a projective bundle Py — Y. The

map
1:Y — Py
y — Hy

defines a section of this bundle.

Consider the bundle Op (—1). Its fiber over any y, H') is L(H'). Therefore,



CHAPTER 5
The determinant of the cohomology

1. Derived categories

In this section we outline the construction of the derived category of complexes
of objects in an abelian category. Recall that this is the category of complexes of
modules with quasi-isomorphisms formally inverted

Let M be an abelian category (we will primarily use the category of sheaves
of modules over Ox over some variety X). Let .{ b(M) be the category whose
objects are bounded (both above and below) complexes of objects of M, and whose
morphisms are the homotopy classes of maps betwesn complexes. Since homotopic
complexes have isomorphic homology, and since hor 10topic maps produce the same

map on homology, we still have well defined homology functors H* : Kb(M) — M.

5.1.1. Properties of k(M) and triangulated categories. While the cate-
gory of complexes and actual morphisms of comple:xes is an abelian category, when
we pass to the category whose morphisms are merely homotopy classes of morphisms
we lose the ability to always define images of morph sms. For a proof of this, see [9].

Since the homotopy category of complexes is not abelian, we no longer have

the notion of an exact sequence of objects. We do. however, have a notion which
86
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conveniently replaces exact sequences, namely triangles. A triangle in K®(M) is a

sequence of morphisms
X—=Y—7— X[],

where X[1] is the complex X with the indexing shifted by 1.

Consider that every morphism in K%(M)
f: X—Y

fits into a triangle with Z = M(f) = X[1] & Y, the mapping cone of f. (Here
X[1] is the complex X with its grading shifted by cne.) We say that a triangle is
distinguished if it is isomorphic to a triangle of this form. We will also refer to such
a triangle as exact.

The main reason to consider this structure on th:: category K°(M) is that dis-
tinguished triangles share many of the properties of exact sequences in abelian
categories.

Any category with such a structure of triangles is called a triangulated category.

Formally it means we have an automorphism T on {he category and distinguished

class of triangles
X-Y—-Z-5T(X)
which satisfies a list of five axioms satisfied by the above triangles formed with
mapping cones. For a list of the axioms and proofs of the following propositions,
see [9].
Let K be a triangulated category, and let A be an abelian category. An additive

functor
F:X—- A

is called cohomological if it takes distinguished trianzles to exact sequences.
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PROPOSITION 5.1.2. For any X € K the functors homy(X,e) and homy(e, X)
are cohomological functors. Also, for an abelian caregory M, the functor HOe) :

K%(M) — M is cohomological.

5.1.3. The derived category. The construction of the derived category of an
abelian category is based on the notion of formally nverting a set of morphisms in

the category.

As before let M be an abelian category, and let K ¢ (M) be the homotopy category
of complexes of objects in M. Consider the collect:on S of quasi-isomorphisms in
K% M), i.e. morphisms which induce an isomorplism on cohomology. We then
formally invert quasi-isomorphisms in M. The derived category D®(M) is the
category whose objects are complexes of objects o M and whose morphism are
symbols of the form o~'a where a is a morphisn in K®(M) and « is a quasi-

isomorphism.

One can check that, given a morphism b38~!, we :an rewrite it as o~la for some
morphism « and quasi-isomorphism «. For this it ic sufficient to show that given a
morphism @ : Y — Z and a quasi-isomorphism ¢ : ¥ — X that there exists some
complex Y', a quasi-isomorphism 3 : Z — Y', an¢ a map b : X — Y’ such that

ba = fa. For details see [9].

The derived category thus constructed inherits she structure of a triangulated
category by taking a distinguished triangle to be a diagram of complexes which
is quasi-isomorphic to a distinguished triangle in K%(M). Often we will refer to

distinguished triangles in K®(M) as exact.
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5.1.4. Derived functors. Let F' : A — B be 1 left exact additive functor of

abelian varieties. For any such functor, we obtain tlie right derived functor
RF :D(A) — D(B

As described in [9]. This construction is intimately related to the construction of
the right derived functors R'F usually given in homclogical algebra. In fact, for any
object A € A, the objects R'F(A) are the cohomolcgy of the complex RF(A). We
will spend a moment to explicitly work out the deta Is of the derived functor in the
case of the direct image on sheaves. We obtain the so-called derived direct image.
Let p: X — S be a smooth projective morphisri of smooth algebraic varieties.
The derived direct image is the complex which calc 1lates the higher direct images
of sheaves on X (these can be thought of as the cc homology of F over the fibers
of p). We define the higher direct images R'p,F as follows. Let I® be an injective
resolution of 7. We define the derived direct image to be Rp.F = p.(I*) € D*(S).

Then the higher direct images are
R'p.F = H' (Rp,F) := H (j, (I')) .

Turning to the case of a complex F* of cohereat sheaves over X, if we take
an injective resolution of F*, we obtain a double ccmplex, I*®. The derived direct
image Rp,F* is the direct image under p of the total complex of this double complex

Rp*j'_. = { @ p*Im1}.

m+n=t

When we take the cohomology of this complex, we obtain the hyper-direct images

(completely analogous to the hyper-cohomology) of the compléx F°,

Rip,F* = H' (Rp.F* .
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Suppose that F* contains only one non-zero sheef. Then the injective resolution
above collapses to just a single injective resolution and Rp,F* = p,I°. So, in this
case Rip, F* = Rip, F/, where FV is the non-zero term. Therefore, the hyper-direct
image can be seen as a generalization of the higher direct images of a sheaf. For a

more complete discussion of these ideas see [9].

2. Determinants

5.2.1. Determinants of vector spaces and complexes. Let W be a vector

space of dimension n over an arbitrary base field k. We define

top n
det(W) = \(W) = A(D).
Therefore, det(W) is a one dimensional vector space. In fact, det(W) is the canonical

one dimensional space wherein the determinants of maps
$:C" — W

lie. If ¢ : C — W is an isomorphism, then its determinant is, by definition, the
element of det(W) given as follows. Let wy,...,w, be the images of the standard
basis elements in C*. Then det(¢) is defined to be w1 A -+ A w, € det(W*).

The space det(W) is not canonically identified with k. In fact, choosing a basis
for W defines an isomorphism between det(W) and k. As usual, though, det(¢) =0
if and only if ¢ is not an isomorphism.

Let W* be a complex of finite dimensional vecto- spaces over k. Define

3

det(W*) = (®) det (W")@:_l)i

where V! stands for the dual space V* = Homyg(V, k) for any vector space V over

k.
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Note that in the case where a map from C" is regarded as a complex
W‘——-{---——rO—»C”-—)WO—vO—»---}

This definition of the determinant agrees with the fo-mer, because det(C") is canon-
ically isomorphic to C. (We say it is canonically trivialized.)

Generally, the determinant acts on an isomorphis m
V- w
in the following way. ¢ induces a map on the top e:terior powers
¢4 @ det(V) — det(W),

which can then be canonically considered to be ar element of det(V)* ® det(W)

which is the determinant of the complex
0—V 2w — C.

One of the key tools in working with determina:its is the the manner in which
the determinant behaves on exact complexes. For a complete discussion and proofs
of these propositions, see [12]. First, we consider th: effect of the determinant on a

short exact sequence, the so-called Euler isomorphi:m.
PROPOSITION 5.2.2. For an exact sequence of ve tor spaces
0—w-2v w0
there is a natural isomorphism
i($,1) : det V = det W @ det W'.

Using this proposition, one can derive the more gen«ral Euler isomorphism on com-

plexes
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PROPOSITION 5.2.3. Let (W,d) be a complex of vector spaces with d; : W' —

WL, There is a natural isomorphism
i(d) : det(W?*) — det(H* W?*)).

Note that, in particular, for an exact complex (W, d) this isomorphism defines a
canonical isomorphism between the determinant of W and k.

Another useful property in our situation is the manner in which the determinant
acts on triangles in the derived category of complex2s of k-vector spaces. In stating
this proposition, we consider complexes of R-moduls for R an arbitrary Noetherian
integral domain.

If R is coordinate ring of an algebraic variety (mo: e generally, for rings with nilpo-
tents, we must consider the scheme spec R), then vector bundles over the variety
correspond to projective R-modules.

We can define the determinant of an R-module W to be the top exterior power
of M, which is a projective R-module of rank 1. 'We define the determinant of a
complex of modules in the same way as before.

Assume that R is regular (in the geometric case such rings correspond to smooth
varieties). Since any complex of R-modules (for regular R) is quasi-isomorphic to a
complex of projective R-modules, we have a functor defined on the derived category

of complexes of R-modules.
det : DP(R) — Inv(R)

where Inv(R) is the collection of projective R-modi.les of rank 1, also called invert-
ible B modules because of their correspondence to line bundles.

We now move to the case of sheaves over varietizs. Let S be a smooth algebraic
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variety. Let F* € D¥(S), be the derived category o’ complexes of coherent sheaves
¥ g

over S.

We wish to define a determinantal line bundle ‘let (F*) = detg/s (F*) over S.
Recall that every complex of coherent sheaves on S is quasi-isomorphic (and hence
equal in the derived category) to a complex of vector bundles (locally free sheaves)

over S. So, choose a quasi-isomorphism
F* ﬁ) G*
and note that 7* = G* in the derived category.

DEFINITION 5.2.4. We define the determinant of this complex to be
det (F*) = ot (F*) i= @ det g)°*

This is just the ordinary determinant of the complex G°.

The fact that this is well defined is covered in [.8], and follows from the Euler

isomorphism on distinguished triangles.
PROPOSITION 5.2.5. For any ezact triangle in T’(R)
X5y 52725 X[
there is a natural isomorphism
ir(u,v,w) : det(X) @ det(Z) = det(Y)

which is functorial with respect to isomorphisms of ‘riangles, and is compatible with

octahedrons.

For a proof of this and the following properties, see 18] as well, they all follow from

the Euler isomorphim.
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PROPOSITION 5.2.6. Let F* be a complex of coh-rent sheaves on S.

(1) If F* is exact then det (F*®) is canonically tiivial.

(2) If F2 25 F3 is a quasi-isomorphism then det (F3) & det (F3) .

(3) det (F*) = @ detH* (.7-“')®(_1)i, where H is tne sheaf cohomology of the com-
plex H®.

(4) IfU is open in S, then detg/g (F')‘U = det,r;y (F*ly) -

5.2.7. The relative determinant. Let X — S be a smooth projective mor-
phism of smooth algebraic varieties. Let F be a sheaf on X.
The the relative determinant is defined to be the c eterminant of the derived direct

image
dety/s (F) := det (Rp.F) = @ det (p. I,-)®(—1)i
= ® det (Rip*F) o(-1)
This last equality is due to the Euler isomorphism.

In the more general case, let F* be a complex of sheaves on X. We define

detX/S(]-") - ®(d€tRp*.7:f)®(—l)

= & (det Rip, 7"

o(—1)i+7
i, )

3

Where the last equality happens again by the Euler 1somorphism. This construction
agrees with the previous construction if 7* has onlv one non-zero term.

Since det x5 (F*) is just det Rp,F*, we have ancther Euler isomorphism

detx/s (F*) = det (Rp. F*) = (X) det (Rip*f‘)@(_l) .

EXAMPLE 5.2.8. Consider the case of a projection from a variety X to a point,

S = . For a single coherent sheaf F the induced map p.« just associates to * the
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vector space H%(X,F) = I'(F). So, the functor g« is merely the global section
functor, and so its right derived functors are just R';(F) = H*(X, F). Thus, from

the Euler isomorphism, we obtain,

dety/, (F*) = det(Rp.F®)

® det(H* (X, 7))

. . ~1)iHI
® det (HI(X, f‘))®( )

i,j
If the sheaves in F* have no higher cohomology, then

det x/,(F*) = ) det (HO(X,?))®(”1) :

3. Koszul and Eagon-Northcot: resolutions

5.3.1. The Koszul Complex. For ordinary resultants (the first case in the
construction) the interpretation of the resultant as the determinant of the Koszul
complex is well known. We will briefly review this construction here in preparation
for what follows. For a complete discussion see [12]. This identification is obtained
through the Cayley method, which was used by Gelfand, Kapranov and Zelevinski
in [12] to derive formulas for the discriminant and r:sultant.

Let V be a rank n vector bundle over a variety .{, and let s be a section of V.

Consider the following complex K*(V') of vector bu 1dles

n

. n—1 . . .
0—)/\V*i> /\V*i)---i)v*i)OX——ﬁO

where

i i—1

is:/\V* — /\V*

g ‘
ViAAv b > (=LY vi(s)vi A AT A A
j=1
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Where the v; are sections of V*, and hence v;(s) is an element of Oy. One can
restate this simply by saying that the maps are giv.:n by contracting with s.

It is easy to see that this is a complex. If one co nposes «; with a;_;, the terms
will cancel in pairs. For a complete discussion wi-h proof of the following result

concerning the cohomology of K*, see [12].

THEOREM 5.3.2. This complex is exact if and cnly if s is nowhere zero on X.
Moreover, if X s smooth and s vanishes along ¢ smooth subvariety Z C X of
codimension ezxactly n and is transverse to the zeros section, then K(W) has only

one non-trivial cohomology sheaf, Oz regarded as a sheaf on X, in the last term.

5.3.3. The Eagon-Northcott Complex. For the more general cases of Iy/s,
we need to work with linear functions which are dficient in rank somewhere over
Y. This is handled via a generalization of the Koszu!l complex, known as the Eagon-
Northcott complex. This complex was originally introduced in [8], while a complete

modern discussion of the complex can be found in 9].

Let V and W be vector bundles over a variety 2, with tkV = k, tk W = [ and
[ < k. Let s be a morphism of vector bundles from ¥V to V. We wish to construct a
complex which will fail to be exact if and only if s !ails to have full rank over some
point of X. Note that this implies that we should consider only the case where the
rank of W is less than or equal to the rank of V.

Consider the complex

k _ k—1 ,
0 Sk—IW®/\V* LX) Sk_l_1W(§) Av* s 13
_ I+1 o1 Als l
2L SWR AV =S AV ES AW — 0
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where 6; is defined as the following composition of r1aps:
_ 41 . 41 . .
SW AV — STlwewe AV eg
, I+i . I4i-1
— STIWRVO AV — ST TWe A V.

This composition is a generalization of the maps in 1he Koszul complex. Instead of
contracting with a vector, we are contracting with a riatrix. A proof of the exactness
of this complex can be found in Eagon and Northcctt’s paper, [8]. We will denote
this complex by Ng(W, V). The grading on this con plex is usually counted with 0
being the degree of the right-most term. That is, all of the terms in this complex

are in degrees < 0.

This complex is generically a resolution of O regirded as a sheaf on X where Z

is the locus where s fails to have full rank.
THEOREM 5.3.4. The above complex is a free resclution whenever
codim(Vi(s)) 2 k—1+41
Where V) (s) is the subvariety defined by the vanishiag of the | x | minors of s.

PROOF. This situation is dual to that in [9]. O



CHAPTER 6

Generalized Resultants

We continue to use the same notations as before. Namely, we consider a smooth
projective morphism X — S of relative dimensi)n n, and let E be a relatively

ample bundle of rank r on X.

In sections 1 to 3, we will work exclusively with S = *. Once we have the
interpretation of [x/, as the determinant of the cchomology of some complex, we
will see that we can extend the definition to the rel..tive case. Recall from section 5
that this is the main problem. As long as the degrezs of the hypersurfaces involved
remains constant, proposition 4.5.1 assures us tha' the spaces in question can be
knit together to form a line bundle in the relative case.

We use the geometric interpretation of cp+1F and the direct image as a guide
for our construction. It is this geometric viewpoin: which enables us to construct
vector spaces, which when pasted together over S in the more general case, yield the
desired Chern class. Consider that the (n + 1)-st (‘hern class of E is the Poincaré
dual to the locus (if £ is ample) where a generic collection of » — n sections of E

are linearly dependent, see [22]. Moreover, the direct image -

cni1E
/X/S n+145
98
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is just the Poincaré dual of the projection of this loius in S.

One cautionary note. These geometric interpretat ons are a bit subtle in the case
we will consider for the next several sections. If S is a point, then X has dimension
n. Thus the (n+41)—st Chern class lies in the 2n+2 limensional cohomology group,
which is zero. Thus its direct image is also zero. (E--ery vector bundle over a point
is trivial as it is just a vector space.) Therefore, we keep in mind this geometric

goal for the more general construction in the case w= now consider.

1. The definitions of the resu tant spaces

6.1.1. The definition of Ix/s(cat1E) = [E], with rank (E) = n + 1. We
first define the desired bundles in a very simple a:1d classical case. This case is
a direct generalization of the bundles which Delig1e constructed (although in a
slightly different form.) In fact, they are covered in [12] where some of their basic
properties are investigated.

Let E be a very ample vector bundle over X of rank n+1. Let V = H°(X, E) be
the space of all sections of E, and let V C V be the subset consisting of all sections
which intersect the zero section of E. The proof o the following proposition can
be found in [12]. The special case when E is a diiect sum of line bundles is our

proposition 4.3.3.
PROPOSITION 6.1.2. V is an irreducible homogeneous hypersurface in V.
We define the resultant space of E to be
[E] = Ix/s (cnt1E) = L(V).

The hypersurface V has a single defining equation :alled the E-resultant, i.e. the
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resultant of sections of E. It is denoted
RE (s) € [E]

This is a polynomial on V' canonically taking values in [E], which is zero precisely
when a section has a root, since it is, by definition, zero precisely on V.

More generally, consider k bundles, Ey,..., E; whose ranks sum to n + 1. Then

we define

[El, . .,Ek] = IX/S (ctop (El) g 7ctop (Ek)) = J/X/S CtOp (El) .. -Ctop (Er)
= o . =5 Er
/X/Sct by (B10- ®E)=[E10- @ E]

So, [E1,..., Eg] is the bundle where the resultan s of sections of E1,...,E} lie.

Such a resultant is zero precisely when the sections of the F; have a common root.

But a section s of £y @ -+ @ E} is the same as a collection of sections s1,. .., s of
Ey. ..., Ex. Moreover, s is 0 precisely when s1,..., s; have a common root. So the
sections of this bundle are precisely the resultants of sections of E,..., Ej.

REMARK. In section 4 we will show that for arbit: ary S these spaces knit together

to form a line bundle over S with the desired Chern class

= E.
c /X/Scn+l

6.1.3. Definition of Ix/s(cnt1E), with E of arbitrary rank. We take this
intermediate generalization first, to get a feel for some of the pieces in the puzzle

before delving into the notation of the general case. Let E be a very ample vector
bundle over X of rank r > n+1. Let V = H? (X; F)"™" be the space of all (r — n)-

tuples of sections of E. Define V C V by

V = {(s1,...,8r—n) : the s; are linearly dependent somewhere over X}
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The following proposition is completely analogous t> proposition 4.3.3.

PROPOSITION 6.1.4. V is an irreducible homoger eous hypersurface in V.

PROOF. Consider the space V x X and the incic ence subvariety

V={(z,s1,...,8—n) :51(2),...,8-n (z) are LD}.

Then V is clearly a subvariety of V' x X because it is given by the vanishing of

various minors.

We have two naturally defined projections:
VAT x

Certainly, p; and py are both surjective, which th :n immediately i.mplies that V
is an affine variety in V. It is clear that p;'(z) is .. irreducible subvariety of V;,
because it is the collection of (r — n)-tuples of vec ors in EL™™ which are linearly
dependent at z. This is precisely the subvariety of 11, ,_,(C) consisting of matrices
that are deficient in rank, an irreducible subvariety. (For a proof of this see [13].)

So, V is irreducible and has the same dimension {or all 2. V, being a fiber bundle
over an irreducible variety whose fibers are irreducible and of the same dimension,
is itself is irreducible. Thus, V, being the surjective image of an irreducible variety,
is an irreducible subvariety of V.

The homogeneity of V follows easily from the fact that if s1,...,s,_y are linearly
dependent at some = € X then so are Asy,...,As,_,, for all A € C.

To prove that V is a hypersurface, we need to pe:form a dimension count. Since
we assumed that E was very ample, a generic collection of » — n sections in V

will have only one point of X over which they are | nearly dependent. Hence, p; is
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generically one to one and is thus a birational isomorphism, yielding
dim (V) = dim (V)

To determine the dimension of V, we calculate the dimension of V. We do this by
finding its codimension in V. Consider a single € .\ and consider its corresponding

fiber F, in V x X. Consider also the evaluation map at z:
¢, :V=H"(X,E)'™" — E’
S1yeevySren — (81(:2),. .., 8r—n(2))

Note that ¢, is a surjection and that #7!(p) his the same dimension for any
p € EI™™ So, if @ C EL™™ is a subset of codim:nsion k, then ¢71(Q) also has

codimension k.

Consider V, C EI™™ defined as the collection of {r —n)-tuples which are linearly

dependent. We know that, since F; is a vector space of dimension r, that
codim(Vg)=r—{(r—n)+l=n+1

And, so the codimension of ¢;1(V,)in V x {z} it n+ 1.

To finish off this proof, we notice that

V=1] ¢77(Va)

z€X
and hence V has codimension n + 1. Since dim (X) = n, we see that codim(V) = 1,

and is hence a hypersurface. O

We define

Ixjs(ent1(E)) = L(V).
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The generalized resultant R%’H of sections of F is tl e equation of V, note that this

is again a polynomial on V' canonically taking values in £ (V).

6.1.5. Definition of Ix/g(c1E1,...,cxE;) for E; of arbitrary rank. Let

Eq, ..., Ex be very ample vector bundles over X such that the sum of their ranks
T1,....Tk 18 greater than n + 1. Let [1,...,[; be a sequence of integers which sum
ton + 1. Let

V = HO (X, El)Tl"11+1 X oeer X HO (X;Ek)1k—lk+1 — ‘/1 N Vk

Define V C V by

(31,1a o 731,1'1—11-}-1, REE-) S EERR 7Sk,7‘k—lk+1) :
V= The collections s; are inearly
dependent somewhere over X

PROPOSITION 6.1.6. V is an irreducible homogei.eous hypersurface in V.

Proo¥F. Consider the space V x X and its subset

Y = (J"a SL1y -5 St ry=li+1s -+ -5 Sk15 - 0 Sk‘,rk—lk+l) :
The collections s; are all linearl dependent at x

Then V is clearly Zariski closed in V' x X because it is given by the vanishing of

various minors. Therefore, we have two naturally d=fined projections:
VAT 2 x

Certainly, p; and p2 are both surjective, which imp ies that V is a subvariety of V.
Again, py' (z) is irreducible for every z, being the product of the irreducible
varieties considered in the last case. Thus, V is an irreducible subvariety of V.

Moreover, V is homogeneous by the same argumen: as before.
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A generic set of collections of sections will have only one point of X over which
they are simultaneously linearly dependent. Therefore, p; is generically one to one
and is hence a birational isomorphism. Thus dim (V") = dim (V) .

So, to determine the dimension of V, we again calculate the dimension of V. Let

z € X and let F; be the corresponding fiber in V' x A". Consider again the evaluation

map at T:

biz: HO (X, Ei)ri_lﬁ_l — E'?“i_li_i-1

1,T

S1,15. .- asi,'ri—ll’-{—] — (Sl (x) ceee 73Ti—ll'+1 ("E))

Note that ¢, is a surjection and that ¢;ml (p) has the same dimension for any p €

o . ] . . . —_
E;,’I it So, if Q C E:,’z Lt 5s 4 subset of codimension a, then ¢ml(Q) also has

codimension «.

As before, we consider V; ; C E:'*liﬂ defined as the collection of r; — [; + 1-

1
,Z
tuples which are linearly dependent. We know that, since E; ; is a vector space of

dimension r;, that
codim(Vg)=r;—(ri—Li+1)+1=1

And, so the codimension of gbz_,; (Vig)in Vi x {z} s I;.
Now, if we let
k
v],z = ]_—_[ vi,z
1=1
we can see that the codimension of Vi in Vx {zi1isli+-- -+ =n+1.
To finish off this proof, we notice that

V= H ‘75;1 (vf,z:

zeX
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and hence V has codimension n 4 1. Since dim (X) = n, we see that codim(V) =1,

and is hence a hypersurface. OO
As before, we define
Iyss (e (B1),-- ety (Bx)) = £ (V).
The generalized resultant
R (5),
is the equation of V, canonically taking values in this space, which defines a function

on collections of sections
§ = {31,13 s SLr =l e SE Ly ‘Sk,rk—lk+1} ev
and is zero precisely if the sub-collections are sim iltaneously linearly dependent

somewhere on X.

2. Determinantal represeatations

Our next task is to find ways to calculate formulas for the equations of V and

hence determine the one dimensional vector space

Ixss (e (E1),- oy (2%)

in a functorial way. We will show that these spaces ci.n be represented as the relative

determinantal spaces of certain complexes of bundies. We continue to work over

S = *.

6.2.1. The case of a single bundle. Our development here will mimic the
proofs in [12] for the Koszul complex. Consider the case of a single bundle E over

X of rank r. We wish to prove
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THEOREM 6.2.2. If X is an n-dimensional variet, and E is a rank r bundle over

X, then there is a natural isomorphism

(6.1) |
®(_ ; )'L+1(T—’l:+l)

n r—n+i
IX/S(Cn-I—lE)g@detX/S ( /\ E*®M) ®detX/5 (M)
1=0

where M is any line bundle over X.

We will cover the more general case in section 6.2.5. The expression in that case

will involve determinants of tensor products over al E; of expression like 6.1.

PROOF. This proof will be carried out in three steps.
Step 1: Interpreting the vanishing of the resiltant as the non-exactness
of a complex of bundles. Let F be the trivial bundle of rank r —n. A morphism
¢ : F — E is precisely a collection of r — n sections of E. Let N (F, E) = N§ (E)
be the Eagon-Northcott complex. This complex fails to be exact precisely when ¢
is deficient in rank somewhere on X, i.e. ¢ = {v1,.. ,vn} € Vif and only if N3 (E)

is not exact. Therefore,
RE™(8)=0

if and only if N (E) fails to be exact.

Since the determinantal space doesn’t depend on the maps involved in the com-
plex, we will drop the ¢ when considering determinants in the following develop-
ments. Also, for the sake of convenience for calculations we will tensor this complex
with an ample line bundle M over X obtaining a complex N3%4. The resulting com-
plex is exact if and only if N* is.

Step 2: Interpreting the non-exactness of the complex of vector bundles

as the non-exactness of a spectral sequence. A spectral sequence is called
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exact if it converges to 0. Let I*® be an injective resc lution for the Eagon-Northcott
complex NJ (E).

Consider a map f : ¥ — Z of topological spices. Let F* be any complex
of sheaves on Y. There are two associated spectril sequences converging to the
hyperdirect image R®f,F* of F*. Both are derived f-om the sequence associated to

a double complex (the first page of one is simply t 1e first page of the other with

indices interchanged)

EY = Rf,F' = R™fF*
'EY = RfH (F*) = RHfF
where H is the sheaf cohomology of the complex. If Z is a point, then the hyperdirect
image is just the hypercohomology of ¥ with coeffic ents in the complex F*°.

In the present case, we take Y = X, Z = § = pt and f = p the projection to a

point. The hyperdirect image spectral sequences tal e the form
By = Rip.Njy(B) = R™p. (N3 (E)),
'Ey) = Rip.H' (NE) = R™p, (N} (E)).
Moreover, this sequence is exact if and only if the F *7p, (N4, (E)) are all 0. The

determinant of either of these spectral sequences is

detx;s (Vi (E)).

Step 3: Passing to the determinant of this sequence. To finish, we take
the determinant of the complex constructed in step 2 and show that the resulting
bundle is in fact Ix/g. Then the determinant defiies a rational function on the

space V = H®(X,E)"™" canonically taking values in the determinantal space of
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the spectral sequence
dety/s (N}) = det Rp Ny

= (X (det Rp. )

1

where N}'M is the it* term in the M-twisted Eagon Northcott complex. Note that

)®(—1)i

3

the above are, since S = pt, vector spaces, and in general are line bundles over S.
Let Ap a¢ denote this function. The proof of th: theorem follows from the fol-

lowing lemma.

LEMMA 6.2.3. Ap p and R%H vanish on the scme locus (namely V) with the

same multiplicity (namely 1).

Proof of lemma. In order to analyze R%’H and Ap a as functions, instead of
analyzing their effects on specific ¢, we turn to tae universal complex over the
symmetric algebra § = S* (V*), where V = H° (X, E) :

(6.2) N“(E):{S”F@/\E*@S_%..__)/\E*@S—»S}.

The individual complexes considered above are the fioers of this complex. This com-
plex is a special case of the above Eagon-Northcott complex, where all bundles lie

over P (V'), and the morphism which defines the coniplex is the universal morphism

o given by
(6,0) 2 (6,6 (w))
When we tensor this complex with M we obtain tl e complex,
(6.3) N/{,t(E):{ST(F)MS/\E*—)---———».\/lS A E*——>MS}

This complex is exact on the same locus as the complex 6.2 because the sheaves in

question are locally free.
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Consider the incidence variety W C X x P (V) of 1l tuples (z, f1,..., fr—n) such

that the vectors

{fl (f),---,fr—n (:E)}

are linearly dependent. (Note that W =P (V) fromr section 6.1.3.) Let
x w2 pwy

be the projections. Then P (V) = py (W), and p; is s wwjective. Now, p3 > (f1,-- ., fr)
is the collection of all z over which the sections fi,..., f, are linearly dependent.
As was mentioned in section 6.1.3, since F is very araple, this is generically a single
point. Therefore, ps is generically one to one and is 1ence a birational isomorphism
between P (V) and W. Let px and py be the projections of X x P (V) to each factor
respectively.

The complex N}, (E) is a resolution of the sheaf Oy ® p% M by theorem 5.3.4
(i.e. p% M restricted to the incidence variety W.) To see this, notice that o vanishes
precisely on W. But W has codimension n+1 in X x i’ (V) (W is the projectivization
of V .C X x V which has codimension n+1 by the agument in section 6.1.3). Since

rank F' = r —n, and rank (E) = r, theorem 5.3.4 telis us that since
codimW =rank £ —rankW+1l=r—(r—n)+1=n+1,

the complex N}, is a free resolution of Oy .

From this and the two spectral sequences we see hat

R'py. (N3 (E) ® pt M) = Ripy. (Dw ® pik M) .

We need to calculate the w-adic order of the deterrninant of this sequence for any

irreducible homogeneous form 7 on V. But by thecrem 30 in appendix A of [12],
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this order is equal to the alternating sum of the or lers of the terms of the limit of

the sequence along H, the hypersurface associatec to =, i.e.

ords (Epy. (Ow ® pig/4)) .

Since p : W — V is a birational isomorphism, th:: only hypersurface along which
these sheaves can have support is V, and the multiplicity of this support is 1.
To finish the proof of this theorem we need to us: the above results to construct

an isomorphism between the spaces

Ixis(E)py; and  dety/s (Niq(E)).

Let v € Ix/s(E),,, . Since R is surjective taere is some ¢, € V such that

v = R (4,). Indeed, any v in the appropriate |evel hypersurface of V will do.
Define

(] (v) = AE,M (¢v) .

By lemma 6.2.3 this map is well defined. In fact it is a linear map of one-dimensional
vector spaces which doesn’t vanish entirely, and thirefore is an isomorphism.
With this isomorphism between det (N) and L£(V), we see that, by the above
discussion, both Ag pr and R%‘H are polynomials vanishing on the same locus with
the same multiplicity. Therefore, they must be eual up to a non-zero constant

multiple.

The last step of this proof is to demonstrate the form of the right hand side of

the equation in this theorem.
Apy = det(N*(E,M))

= det (S"(F)@/\E*@M_}...__v A E*®M—>(9x®M>
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But, by the definition of the determinant of a comylex, this is then

n ) r—n+1 8(_1)i+1(r—?+i)
= R det (S’(F)@ A E*®M)
1=0
n T—n+i ®(_1)i+1 T—?-H)
= ®det( A E*®M) ® det (Ox ® M)
1=0

As desired. The last equality holds because F is trivial and so
. renti dim S*(F) /1 —n+i
S{F)® N\ EfoM = P A E* @M

- (T_’f‘“':) (T_/n\+iE*®M)

]

The result follows because the determinant of a dirc ct sum is the tensor product of
the determinants. Note that the last term in the scquence is A"~ F* = Ox since

F'is a trivial bundle. [

EXAMPLE 6.2.4. Let M be sufficiently ample th.it the twisted Eagon-Northcott
complex A}, has no higher cohomology. Then the st ectral sequence above collapses,

and the relative determinant of this sequence is just the determinant of the complex

of global sections.

6.2.5. The construction for several bundles. For the general case of finding
a determinantal representation of Ix/s (c,l Ei,...,¢ bEk) , we must find a resolution
for the intersection of the loci where /; generic se:tions of E; fail to be linearly
independent. We accomplish this by taking the :ensor products of the Eagon-
Northcott complexes associated to each of the E;, as described above. For notations

sake here and in the rest of this paper we will defin, for a bundle E of rank r over
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X
r—m;}-l-{-i) r—'m+i)

r—m+1+1t EB( T—m-+i 69( i—1
Cr (E) = _,( /\ E*) _)( /\ E*) .

the Eagon-Northcott complex obtained from V = F and F = O%. Conveniently,

we can rewrite the natural isomorphism in theorem 6.2.2 as

Ix/s (cnt1B) = detyys (C§;+1E) :

In a similar proof to that in the last section we can prove, for the more general

case
THEOREM 6.2.6. Let E1,..., E; be vector bundls of rank r1,...,r; over X —
S, a relative variety of relative dimension n. Let Iy, ...,y be positive integers which

sum ton + 1. Then there is a natural isomorphisn.

IX/S (cllEla e aCIkEk) & detX/S (Cl.l (F)®- - ® Cl.k (Ek)) .

Note that Cl.i (E;i) is a resolution of the locus where r; — I; + 1 generic sections of
E; are simultaneously linearly dependent. Therefore the tensor product of these
complexes 1s a resolution of the intersection of these loci, which is precisely the

locus needed in the construction of Ix/s (cl1 Eq, .. >ClkEk> .

3. The degree of the generalized resultant

Since we have an interpretation of these resultan:s as determinants, the following
is a direct consequence of Corollary 15 from apperdix A of [12]. There it is shown
that the degree of the determinant of a complex is a weighted sum of the dimensions
of the terms involved. Recall that if S is a point ther det x5 is just det H*®. Therefore

we have
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LEMMA 6.3.1. The degree of the (E,n + 1)-resul ant RE! is

)

T—n -t EB(
deg(REnt1) = . (=1)F* i dim H ( E*®M) +
irj

+Z_(—1)J’ dim H? (M)

n r—n+1 EB( i )
= Y (1)1 i ¥ (~1)! dim H’ (/\+ E*®M) +

1=0 J
+x (M)

r—n+i

n ) r—n+i 69( t )
= S (1) .y (/\ E*®/v) +x(M)

1=1

That is, the degree is just a weighted sum of the Eer characteristics of the terms
in the Eagon-Northcott complez.
If M is sufficiently ample so that the terms in the Fagon-Northcott resolution

have no higher cohomology, then
(TN
n ) r—n-+i € \T 7: l)
So(=D)*dimHY || A E*oM + dim H'(M)
=1
A similar result holds for the more general case. '“he degree of the resultant is a
weighted alternating sum of the Euler characteristi :s of the terms in the associated

resolution.

4. Arbitrary base spaces

Suppose now that p : X — S is a smooth projective morphism of smooth
varieties of relative dimension n. Let Fq,..., E; be relatively very ample bundles

on X of rank ly,..., I respectively. Suppose that 3" I; = n+1. We wish to construct
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a resultant bundle
Ix/s(ey En,. .oy Ey)

over S with the property that

c1 (IX/S(CzlEl,---,CzkEk)) =/

e, E1-- ¢, Ey.
X/ h k

We consider the case of a single bundle E of raik r over X. The extension to
the case of several bundles is a completely analogous construction. We perform the
above construction, for the case of X over a point, ‘or every fiber of the projection
p. For any y € S, let E, be the fiber of p over y. Over every point of y € S
we have a hypersurface in V, = H°(E,) given bs E — S over y. Also, since
p: X — S is smooth, and all sheaves in the con plex are locally free, the Euler
characteristics in the degree formula are constant cver S. Therefore, the degree of
the (Ey,n + 1)-resultant is itself constant over S.

By proposition 4.5.1 we can therefore construct « vector bundle L over S, whose
fibers are the resultant spaces constructed above. Let si,...,8,—n be a tuple of
sections of E. If we apply the E-resultant to the t-iple {3i|p—1(y)} for every y € S,
then we get an element of the fiber of this new budle at y. This defines a section
REg(s) of Ix/s(cns1E) which is zero at any poin~ y such that the tuple {s;} is
linearly dependent somewhere over the fiber p~1(y 1. It follows from 4.5.1 that this

is actually a regular section of L. This allows us tc prove

LEMMA 6.4.1.

ClIX/S (cllEl,. . .,ClkEk) = /

/s ey (E1) ey (Bx) -
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PRroOOF. Consider the Poincaré duals to the Chera classes in question:

[{31,17 s 7Sk,1‘k—-lk+1}]
c=08"(c Er-oep By) = si,j 1s a generic section of Ej.

the s; j are simnltaneously lin. dep.

. [{t =0}] : t is a generic section
12 =9 (CIIX/S (cllEk ) "C’kEk)> - { of I;/s (czlEk .. .czkEk) )

Where [ ] denotes the cohomology class of a locus. We need to show that 72 = c.
By the definition of fX/Sy c is the Poincaré dual tc the projection of the set where
generic collections of sections of Ey, ..., E; are similtaneously linearly dependent.
Such collections define a section Ry/s(s) of Ix/g :CllEk e clkEk>, but Rx/s(s)
vanishes whenever the collections are simultaneous!: - linearly dependent somewhere
in the fiber. So, the line bundle defined by the class = has sections which generically

vanish in loci which are homologous to the zero loci «f the polynomials Rx/s(s). O

To complete this discussion, we need to extend - he determinantal formulas ob-
tained above to the relative case. In fact, we have ¢ more general isomorphism be-

tween the resultant bundles and the determinantal lundles of the Eagon-Northcott

complexes.

THEOREM 6.4.2. If X — S is a smooth projectii e morphism of smooth varieties
of relative dimension n, and En, ..., E}, are relativily ample bundles on X of rank

li,..., Iy with 3 1l; = n + 1, then there is a natural somorphism
Iyss (cy Brs ..o By ) = detyys (CR(E) @+ ® O () -

PRroOF. Consider the fibers of

detX/S (Cl.l(El) QB CI; (Ek)) :
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Let y € S. Then the fiber of this bundle over y is
detig, sy (CF (B1) ® - @ O (Ev))

where the bundles are restricted to the fiber X,. Tlie proof of theorem 6.4 extends
more or less word for word to this relative case. Recall that the fibers of detx/s are
just the determinants of the cohomology of the fibsrs. So the fibers here are just

the spaces we encountered in the previous proof. []



CHAPTER 7

Applications, formulas and :omparisons

1. Cube theorems

In this section, we consider some generalizations >f the classical theorem of the

cube.

7.1.1. The classical theorem. Two good sourcss for information on the ideas
in this section are [4] and [5]. Let G be an abelian variety defined over a field .

Let L be a line bundle on G. Consider the variety €3 = G' x G x G, and let

m123(91,92,93) = g1+9: +gs
mij(91,92,93) = Gi+g;
pi(91,92,93) = g
be the maps G x G x G — G given by addition and projection on G3. Then the

classical cube theorem states that the “second differznce” bundle

miysL @ piL @ p5L R piL

O(L) =

on G? is trivial.

7.1.2. Determinantal bundles. Let X be an algebraic variety and let P =

Pic(X) be the Picard group of X, i.e. the variety :onsisting of line bundles over
117
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X. This is a disconnected variety whose component - consist of line bundles with a
common degree (first Chern class). The degree zero component is an abelian variety.
Then dety/, = det(H’), is a functor from line burdles on X to one dimensional
vector spaces. Therefore detx,, defines a line bundle on P. For simplicity of
notation, we will let det be det(H*®) for the remainder of this section. Moreover, for
convenience in this and the following sections, we will omit the tensor product, ®,

in the formulas, so for bundles L and M
LM =LQM.

Consider the Poincaré line bundle L, on X x P. This is the line bundle whose
restriction to X x ( is just the line bundle (. Consid r detx, p/p(Lp). Its fiber over

any ¢ € P is detx/,(¢) = det H*(z,(). The cube theorem for the determinantal
bundle is

THEOREM 7.1.3. Let X be an n dimensional var'ety, and let Ly,...,Lpyo € P

be very ample line bundles on X. Then the line bundle

2 ®(-1)!
det(K*(Li1,...,Lnt2)) = det Ox ® ® . ® | det(Lil e L,'j)
1=l \11 <eeee i
on P2 = P x ... x P is a trivial bundle.
PRroOOF. Consider the Koszul complex K*(Li,...,Lp42) associated to the L;.

The determinant of this complex defines a rational finction from V =[] H*(X, L;)
to det(K*). This complex fails to be exact only on a subvariety of V of codimension
greater than two. Therefore, the function det is a 1ational function on V which is
nonzero only on a locus of codimension greater thar one. Since a rational function

can only be non-zero on a locus of codimension one, this function must be non-zero
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everywhere. Thus det is a constant function, and therefore canonically trivializes

det(K*). [

This theorem is mentioned in [4].

Notice that, while the classical cube theorem holds for any line bundle L on
an arbitrary abelian variety, this theorem concerns a very specific bundle on the

determinantal bundle of a very specific variety, the picard group of X.

7.1.4. Cube structures arising from Eagon-Northcott complexes. Con-
sider the category B*™P whose objects are very amr ple vector bundles of all ranks
over X, and whose morphisms are isomorphisms. O1 this category we have several
operations (bifunctors), namely @, ®, and A . Let B2™P be the sub-category of B*™P
consisting of bundles over X of rank .

We restrict our view once more to the case where .7 is a point. In this case, det x4
determines a functor B2™P — Vect, the category o one dimensional vector spaces
over C. We can use the above methods to obtain re ations among these functors.

These relations are obtained by considering a locus of codimension higher than 1
in the spaces of tuples of sections. We will explain this first for the case of a single
vector bundle E of rank r. The case of several bundl s is similar and is covered later
in this section. Let X be a variety of dimension n. Consider V = H° (X,E)n_r_k
with £ > 0. Then the collection of (n — r — k)-tuples which are linearly dependent
somewhere over X form an algebraic subvariety of V of codimension k£ + 1 (by a
dimension count similar to that above.) When turning to the determinant of the

cohomology we consider here C3_; ., (E).

THEOREM 7.1.5. If dim X = n and k > 0, then wve have a natural identification
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of functors on B2™P
detx/, (Cv.z+k+1E) = C (The trivial functor).

PROOF. Consider that the calculations carried o1t for the determinant of the co-
homology can be carried out in this situation. When we reach the final step, though,
we see that all of the cohomology sheaves of the Ee gon-Northcott complex are sup-
ported on varieties of codimension greater than or equal to 2. The determinant of
this complex defines a rational map from V to detx/(Cnigy1(E)). This map is
non-zero where the complex is exact. But this hajpens on a locus of codimension
greater than 1. Therefore this function must be constant, and thus the determinant

1s canonically trivialized. [J
This discussion can easily be extended to the case of several line bundles,
CL(E)® - @Ch, (Fm),
ifly+---+1,>n+1. We obtain more generally

THEOREM 7.1.6. If dimX = n and I + -+ + Ly, > n + 1, then, for integers

Tly...sTm > 0 there is a natural identification of functors on B?{np X oo x BiTP
dety (CRE1®---®Cp I'm) 2 C.

We now consider what happens in the case where the collection of bundles can
be knit together to form a variety. Let B?P be tae category of stable bundles of
rank 7. Recall that the collection of stable bundles of rank r over X actually form
an algebraic variety M2™P (the moduli space of stuble bundlqs of rank r.)

For each bundle over X, the relative determinart det x/+ E defines a one dimen-

sional vector space, and therefore a line bundle on M2™P. Likewise, det x /.« (/\i E)
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defines a line bundle on M?™P. The above results actually give us relations between

these bundles on M2™P.

THEOREM 7.1.7. If dim X =n and k > 0, then ve have a natural trivialization
detx/. (C;+k+1) = Oyemp  (The trivicl bundle on MP™P).

A similar theorem holds for the case of several biindles.

2. Properties of generalized resultants

Here, we explore some of the main properties of tliese bundles. First we will work

with some relations with respect to tensor products.
PROPOSITION 7.2.1. Let
(7.1) 0—F-5LE-LF oo

be a short exact sequence of vector bundles on a relctive variety X — S of relative

dimension n with F of rank r. Then

———
I
(™)

S

Ix/s (B)pp ® @ Ixys(caFicsF').
a+f=n+1

PROOF. We will use the determinant of the cohmology, and the fact that this

determinant is multiplicative on filtrations of bund es. The main fact used here is

the following lemma

LEMMA 7.2.2. For a short exact sequence 7.1, there is a filtration of \' E whose

7t* quotient is

i~ j
A F' @ \F.
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PROOF. (of lemma) Consider, for every j, the niap

i=j

/\F@/\Eﬁ—)/\g.

We set

¢j = im (¥;) .
It is fairly easy then to see that

o  im(NTFeNE) Nro AP

¢i-1 im (NI FQNTUE)
a
Given this lemma, the rest of the proof amounts to applying this to the left hand

side of equation 7.2 and then re-ordering the terms O

In the following propositions and proofs we wil let det = detx/s for the sake
of convenience. Also we will let O = Ox be the structure sheaf (the trivial line

bundle) over X.

PROPOSITION 7.2.3. Let L and M be line bunales over X — S of relative di-

mension n, and let E be a rank n bundle over X. Then

Ix/s(LR®M,E) =Ix;s(L,E) 3 Ix/5 (M, E)
PROOF. Using the determinantal formulas we obtain

n+1l 1 »

i=1

:dwg@%mxgm@gﬁ”

i=1

- wo@@ (s r)oa(A£)) o

i=l

n ®(_1:1+1
® det (LM/\E) )
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But by the cube theorem for C3 ., (L, M, E) we have

n+2 j .
C = deto@A\LoMe B

j=1

n+2 j j-1 j-1L j—2 e(-1)’
= detOQ (det ( E) det (L A E) det (M /! E’) det (LM A E))

j=1

nt1 j j-1 j-t j-2 ®(-1)’
= det® (det (/\ E> det (L A E) det (M / E) det (LM /\ E)) ®

j=1

" ®(_1)n+2
® det (LM /\ E)

So

n ®(_1)n+1
det (LM/\E) o~
nl j i-1 i -2\ 8V
det0® <det ( E) det (L /\ E) det (M A E’) det (LM /\ E)) .

j=1

Substituting this into the above expression for Ix;5 (LM, E) yields

IR

n i im1 8(-1)"
Ix/s (LM, E) det’ O (X) (det (/\ E) det (LM A E)) ®
i=1
n+1 j j-1 j-1 §~2 (1)
®®(det( E) det(L/\E) det(M/\E) det (LM/\E))
ji=1
n i ®(-1)’ ie O i-1 -1
= det’ O (X)det’ (/\ E) det (L A E) det <M A E) ®
i=1
o1 N\ ®(=1)F i1\ (=1
® det (LM A E) det (LM A 1) ®
n (-1 +! n B(=1)"H
® det (L N E> det (M A E) )
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Obviously the two terms on the fourth line of this calculation cancel to yield

nt /00 O o1\ 8-
Ix/s (LM, E) det 0 (X) ((/\ E) dot (L A E) ®
i=1
ni1 [/ \ 8D ic1 \ O
®det0®((/\E> det (M/\E) )
i=1

Ix;s(L,E)Ix;s (M, E)

IR

il

Completing the proof of this proposition. O

PROPOSITION 7.2.4. Let L and M be line bundl s over a relative surface X —

S, and let E be a rank 2 vector bundle over X. Thin

Ix;s(LLE@M) = Ix;s(L,E)®Ix;s(L, M. M)® Ix/s(L,det E, M)

Ixis(L,E@M) = Ixs(L,E)®Ixss(L,M.M)® Ix/s(c1l,c1E,e1M).

PROOF. The second of these equations follows frcm the the first and the fact that
¢ (\E) = ¢ B.
We prove the first in a similar manner to the lawt proposition. If we write all of

these spaces in terms of the determinant of the coliomology, we get
detOdet (N*L@®EM)  detOde (N Le E)
det Ldet EM det (NN L@ EM)  detLdet Edet (\°L & E)
det O det (LM)? det (M2) det O det (L M) det (L A2 E) det (M A\? E)
*"det L (det M)Zdet (LM?)  det Ldet M det (A*E) det(LM AN°E)

We can rewrite the terms in this equation to obtain

det (LEM) det (M2 A2 E) N

det (EM) det (LM2 \" )

(det 0)* det (A" E) det (LE) (det (LM))* det M?  det LM) det (L A’ E) det (M A’ E)

(det L)? (det M)° det E det (LA\® E) det (LM?) det (A’ E) det (LM A’ E)
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Notice that between the first and second lines we cancelled a det O. If we rewrite
det (LM2 A? E) using the cube theorem for Ix/s (CI (L, M, M.\ E)) , we obtain
the following expression for the right hand side

det (LEM) det (M? \? E) det O det, (LM) det (" \? E) det (LE) det (LM)
det (EM) det L (det M)? det (A E) det (LM?) de: (LM A? E) det (M? A? E)

Now, cancelling terms in these expressions yields

det (LEM)det (M?A\*E) _ det Odet (A\? E) det (LE) det (LM)
det (EM)det (LM A E) ~ det Ldet M det Edet (LA’ E)

or

det O det (LE) det (LM) det (EM det (A2 E) det (LM A’ E)

det (LA = det Ldet M det E det (L /2 E) det (M A? E)

which is true by the triangle inequality for Iy (Cy (L, E,M)). O

3. Comparison with other constructions

In this section we will compare the above construc ion of Ix/g to the constructions
given by both Deligne and Elkik. In some cases w: will be able to show that the
constructions are naturally isomorphic. However, in the general case, more study is
needed for the isomorphism between the present spaces and Elkik’s.

Suppose E and F are line bundles over a curve . Then Ix/g(c1 (E) e (F)) =:
[E, F] = [E® F] is the vector space in which the rerultants of sections of E @ F' lie.
Consider, though, that a section of E @ F' is merel a section e of F and a section
f of F. Moreover s is zero precisely where e and f l.ave a common zero. Therefore,

[E, F) is the one dimensional vector space where th: resultants of sections of E and

F lie.
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We wish to show that this is isomorphic to Deligi.e’s space (E, F') . We have two

regular maps
E,F] & v 2 (B, i)

where ¢ is given by evaluating a section of E on the roots of a section of F. (This is
well defined by Weil reciprocity) The point is, they are both given by polynomials
that vanish on the same locus with the same multiglicity. So, as before, we can use
them to define a natural isomorphism between [E, /7] and (E, F').

If we construct the desired isomorphism in a different way, we will be more read-
ily able to extend the ideas to the case of Elkik’s work. Consider the following

commutative diagram.

0t g ¥

f

> ®z€dive E;
lE® f

F—E®—U"E®FT’(;BzediveFx®Ez

0
The right-hand column is formed by taking the cokernels of the horizontal maps
in the left-hand square. Note that the maps ¢ and ¢’ are quasi-isomorphisms of
complexes. Therefore their determinants are naturelly isomorphic.
The left-hand square is simply the Koszul comylex for L and M written as a
square instead of a complex, therefore, its determinant is [E, F]. Moreover, the

determinant of the right hand side is

det (@zedive EI b2 FI) — ®
det (@zediv e El‘)

z€dive

E:®F: _ ® F.=(E,F).
E; z€dive
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Therefore, these two spaces are naturally isomorphic.

7.3.1. Elkik’s Construction for line bundles. Next, we turn to Elkik’s con-

struction of Ix/g. In the case of line bundles, she malk es the following definition. Let

L1,..., L, be line bundles over a relative variety X £, § of relative dimension n.
Let I3, ..., be sections of these bundles respectively. Let Z be the set of common
zeros of Iy, ..., 1l,. Then

]X/S(Ll,...,LT) = NX/S(Jqu).

Over each fiber of s € S, let Z; = le_l(s), then the fiber of Ix/s (L1,...,Lr) is
(7.1) Nx/s(Lilz)z = @ (L1), -
T€73
We will use a diagram similar to the one used in tl.e last section In that diagram,

the top row of the left hand square is the Koszul complex of E, and the bottom row

is this complex tensored with F. Consider the diagri.m.

0

I(.(Lz,...,LT) @Iez(L2®"'®Lr)z

Li®@K*(Lay...,Ly) —= @;ez(L1®-- @ L )¢

0
The horizontal maps are again quasi isomorphisms > complexes, and so the deter-

minant of the left hand column (which is our Ix/s) i+ isomorphic to the determinant

of the right hand column (which is Elkik’s Ix/g).
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7.3.2. Elkik’s General Construction. At the moment we are unable to prove
that our general construction is isomorphic to Elkil:’s. This section contains some
conjectures along this line though, and raises some questions about relationships
between certain complexes.

Having constructed Ix/s (c1ly,.. ., ¢1Lp41) for line bundles over X, she proceeds
as follows. We will describe her construction for the case of a single vector bundle.
So, let F be a bundle of rank r over X — S of rel itive dimension n.

Elkik uses the Segre classes of E to extend the line bundle definition. The total

Segre class _ s; is defined as the inverse, in the cohymology ring of X, of the total

£

Using this formula, we can recursively determine tle classes s; uniquely as homo-

Chern class 3" ¢;, i.e.

geneous polynomials in the Chern classes (consider ng s; to have degree ¢). In the
same way, we can determine the Chern classes as hh mogeneous polynomials in the
Segre classes.

The procedures is to define Ix/s (SllE TN E) .nd then to use the description

of cpt1E as a polynomial in the Segre classes to lefine Ix/s(cn+1E). To define

Ix/s(sn+1E), she uses the fact that

D(r+n
sny1E = 5 x ! (OP(E) (1)® )) :

and so

_ &(r+n)
/X/S snp1E = o) (05 (1) )

We can use the developments in the above section on the determinant of the

cohomology to interpret this bundle as the determinant of a complex. Namely,
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consider the Koszul complex associated to ¢1 (O (1)) B(r+n) ,

T+n
0 — AOWT— - — O — Cpp) — 0

_ o(, 157 )
= 0—O0(r+n) —O0@+n-1)%r+n-V — ... — Opgy —0

Let p: P(E) — X be the projection. When we ptll this complex down to X via

p, and use the fact that p.O (k) = S¥E*, we obtain she complex

r+7 )

Sr.z+1E — {O SN Sr+nE* N (Sr+n—1E*)@(r+n~ 1 e — OX - 0} .

From this we then obtain that

Ix/s (sn+1E) 2 det (Sh,, E)

It is hoped that there are relationships between the determinants of the com-
plexes 5} E and C}E which will allow us to find the 1.ecessary isomorphism between
these two constructions. In particular, we are hoping that it may be possible to
demonstrate an isomorphism analogous to the relasionship between Segre classes

and Chern classes, namely we know that

(£ ()

and we are hopeful that there is an isomorphism

,
Rdet (S @ Cay) = T
1=0
4. Polarization formulas for discriminants and resultants
It is interesting to note that the above constructions can be used in determining
the structure of various discriminantal bundles as well. We recall the connection

between the classical discriminant and resultants for polynomials of one variable.
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Let f(z) and g(z) be two polynomials of a single variable. Let R(f,g) and A(f)

denote the resultant and discriminant respectively. Then

2 _ A(fg)
ML= Jhals:

We wish to generalize this relationship between dis riminants and resultants.

In [12] Gelfand, Kapranov, and Zelevinski demor strate that
A(L)=det(K*(J (L)),

where J (L) is the jet bundle of L, and K*® is the ordinary Koszul complex. From

this we see that

A(L) = Ixs(ent1(J).
By proposition 7.2.1 and the fact that there is a short exact sequence
0—Q®L—J—I1-—0

we obtain the useful formula

PROPOSITION 7.4.1. Let L be a line bundle over a variety X of dimension n.

Then

A(L) = Ixp (a1 (D) e (2 ® L))

where Qb is the bundle of 1-forms on X, note tha! this bundle has rank n, for a

smooth variety X.

7.4.2. Over a curve or a relative curve. Fi:st we will look at the classical
situation. We can now use the above results to prove the polarization formula
for resultants on a curve X. Note that our bundle A(L) for a curve is denoted in

Deligne’s work by (L).
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PROPOSITION 7.4.3. For all ample line bundles ., and M on a smooth relative

curve X — S,

(1) We have an isomorphism of line bundles

AL M)

A(L)A (M)
(2) For f € H'L and g € H'M, let R(f,g) € [L, M] be their resultant, and

[L, M]®? =

A (f) € A(L) be the discriminant of f. Theii, under the identification from

(1) we have

A(f)
NGHO

This is an analog of the above classical polarization formula, but for any line

R(f.9)=

bundle over any curve X.

PROOF. Given part (1), part (2) is obvious. For (1) we use proposition 7.4.1 to
obtain
ALeM) _ [L®8MIeMa
AL)AM) — (L, Le[M Mo
(L, L} (L, M) [L, Q] [AL, L) [M, M) [M, Q1]
[Z, L] (L, 0] (AL, M} [M, O]

Cancelling terms yields the desired result. [

7.4.4. Over a surface. We turn now to the situation over a surface X. For a
line bundle L over a surface, the discriminant of a s=ction [ is zero if and only if the

intersection of [ with the zero section is a singular :urve.

THEOREM 7.4.5. For line bundles L, M, and N on a smooth surface S,

A(L®M@N) L (L)A(N)A (M)

6 _
Lxys (L M N) = S S MAL 3 A (M@ N)
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PROOF. The proof of this follows by rewriting the right hand side of this ex-
pression using proposition 7.4.1, and then apply ng the formulas in section 2.of
convenience, we let [E, L] = Ix/g(c2E,c1L) where E is a rank two bundle over X

and L is a line bundle.
A(LMN)A(LYA(N)A (M)
A(LM)YA(LN)A(MN)
[LMN,Q'LMN][L, Q' L)[M, Q1 M][IV, QL N]
T LM, Q'LMI|[LN, Q'LN]|[MN, Q' VN]
L, Q'LMN|[M, Q' LMN][N, Q' LM V][I, Q' L][M, Q' M][N, QL N]

(L, QY LM|[M, Q' LM][L, Q' LN][N, CTLN][M, QLM N][N, QLM N]

Expanding these using propositions 7.2.4 and 7.2.3, and cancelling terms leaves only

six copies of [L, M, N] in the numerator. []

This theorem poses an interesting question. It sives an analog, for the surface,
to part (1) of theorem 7.4.3. But, if we attempted :o write down the analog of (2),
both the numerator and denominator in this expression would be identically 0, an
indeterminate expression. We hope that a suitable interpretation of this expression

exists. Perhaps one can perturb the system slightly to eliminate this indeterminacy.
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