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THE MAXIMAL NUMBER OF REAL ROOTS OF A
MULTIHOMOGENEOUS SYSTEM OF POLYNOMIAL EQUATIONS

Abstract
A multihomogeneous system of polynomial equations, with as many equations
as degrees of freedom, has instances for which there are as many regular real
roots, in the relevant product of projective spaces, as are allowed, for the
corresponding dehomogenized system, by Bernshtein’s [Ber] theorem. One

may, in addition, require that all roots lie in a prescribed open subset of the
solution space.

The general form of a sparse system of d polynomial equations in d variables is
f(x) = (f(x),. .., fa(x)) = 0, (1)

where x = (z1,...,24) and, for each i = 1,...,d, there is a nonempty finite .A; C N¢
such that f;(x) = 3¢ 4, ciax® for some coefficients c;,. (Here x® = z7'z3* ---zg?.) The
result of this note concerns the specialization of this framework in which the variables in

x are divided into s groups, so that x = (y',...,y®) where y* = (y¥,...,3%), and there
are nonnegative integers m* (i =1,...,d, k =1,...,s) such that
A; = Al x ... x Af, where ./ﬁli“:{aeNd’c tap+ ...+ ag <mky. (2)

To see the significance of this we construct the associated “multihomogenized” system
of equations. A new collection of variables is given by x = (§1,...,9°) where y* =

-~ ~ ~ ~ N k “ R ~
A=Al x ... x AS, where AF={aeN¥*':ay+a;+...+as =mF}.

There are bijections 8% : A* — A¥ and B; : A; — A; given by B5(ag,a1,...,a84:) =
(@1,...,a4¢) and B;(at,...,a%) = (BHaY),...,B§(a%)). For each instance of (1) there is an
associated multihomogeneous system of equations

F&) = (Fi®),..., fa®) =0€ R® where fi(®)= Y cipax® (3)

&EA,’

Each f; is homogeneous of degree m¥ as a function y*, for any fixed values of the other
variables. The notion of a multihomogeneous polynomial, defined in this way, generalizes

the concepts of homogeneous polynomial and multilinear function. The definition of a
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totally mixed Nash equilibrium of a normal form game gives rise to a multihomogeneous
system in which, for each k =1, ..., s, there are d* indices i for which m¥ = 0 and mf' =1
for all ¥’ # k. These systems are studied by McKelvey and McLennan [MM]; the proof
below is a straightforward generalization of their argument.

Let IR* = IR\{0} and C* = C\{0}. The products of projective spaces PE =
P¥(K) x ... x P¥(K), for K = R*,IR,C*,C, are natural spaces in which to look for,
and count, solutions of (3). In the obvious way we regard these spaces as nested: PE C
PE ¢ PC and PR c PS" C PC. For

%=...,9°) € (CTF\{0}) x ... x (CF*\{0})

let [x] = ({§*],...,[9°]) denote the corresponding element of PC. If x = (y,...,¥%)
is a solution of (1), where y* = (y¥,...,y%.), then an associated solution % of (3) is
derived by setting ¥* = (1,4%,...,y%) and [&] = ([§%),...,[9°]). Although the Theorem
below is most naturally understood as pertaining to (3), for several reasons it will be more
convenient to argue in terms of system (1).

We will be most interested in real coefficients ci,, but for several points in the ar-
gument we consider the space of vectors of complex coefficients. Let HE (HC) be the
set of f with real (complex) coefficients in which no f; vanishes identically. Consider
(f.x) € HE x (IR*)¢ (HC x (C*)%). Since x has only nonzero components, no monomial
x% vanishes. Since the coefficients of each f; can be varied freely near f; without leaving
HER (HC), it follows that (f,x) is a regular point of the map (f,x) — f (x). The regular
value theorem implies that

VE = {(f,x) € HF x (R*)*: f(x) = 0} and VO := {(f,%) € HC x (C")*: f(x) = 0}

are smooth manifolds of the same dimensions as H% and HC respectively.

Let 78 : VB 5 HR and n€ : VO — HC be the restrictions of the natural projec-
tions. Evidently (f,x) is a regular point of 7B (7€) if and only if there are no vectors in
Ts0)VE (T, VC) that are parallel to (IR*)? ((C*)9), which is precisely the condition
that x is a regular point of f. Let Z® and UC be the sets of f in H™® and H® having
only regular roots. Applications of Sard’s theorem to 7 and 7€ show that UE and UC
are dense. Note that the discussion in this and the last paragraph is general, in that (2)
plays no role.

For systems satisfying (2), a root [%] € P€ of f is said to be regular if % is a regular
point of f. 1t is easy to show that if X = (§',...,¥°) is a regular point of f, then so is
(&'§t,...,0°y®) for any a',...,a° € C*, so this definition is meaningful.

The convex hull of A; is denoted by Q;, and is called the Newton polytope of f;.
Generalizing a result of Kushnirenko [Ku), Bernshtein [Ber] shows that, for the general
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system (1), every f in a dense subset of UC has MV(Q1,...,Qq) roots in (C*)¢, where
MV(Q1,...,Qq) is the mixed volume of the d-tuple of Newton polytopes. (The concept
of mixed volume is due to Minkowski; Betke [Bet] is a recent treatment.)

We show that, if (2) holds, there exists a real coeflicient vector for which there are as
many real roots as are allowed by Bernshtein’s theorem. (The example d =1, A; = {0,3}
illustrates how, in general, this may fail to be the case.) More precisely:

Theorem: When (2) holds, for any open U C PE there is an f € UT for which the
corresponding f has MV(Q1,...,Qq) regular roots in U.

Remark 1: For the general version of system (1) the maximal number of real regular
roots of f for f € UR is denoted by p(Aj,. .., Aq). In view of the correspondence between
roots of (1) and roots of (3), the Theorem implies that p(Ay, ..., Ad) = MV(Q1,...,Qa)
when (2) holds. Other work studying p(A,...,Aq) includes the theory of fewnomials of
Khovanski [Kh], in which arguments are based on the number |A;| of monomials in each
equation, and Sturmfels [S] and Itenberg and Roy [IR], who use the methods of the theory
of sparse systems of polynomials to derive bounds on p(A;,...,Aq). These authors also
consider the maximal number of roots in the various orthants of IR%. For the specialized
system given by (2) the Theorem shows that these maximums coincide with p( Ay, .. ., Aqg).
Supports A1, ..., Aq with these properties are interesting from the point of view of the
conjectures presented by Itenberg and Roy, since the assertions of these conjectures can
hold only in quite particular ways. We mention now that the part of the proof of Lemma
3 below that moves real Toots into a prescribed orthant depends on a condition (a € A;
whenever a < b € A;) that is more general than (2).

Remark 2: The Theorem suggests that multihomogeneous systems are well behaved in
the sense of sharing properties of the general homogeneous system considered in Bezout’s
theorem. Additional evidence for this point of view is given by Sturmfels and Zelevinsky
[SZ], who give Sylvester type (that is, determinental) formulas for the resultant of the un-
mixed (Ag = A; = ... = Ay) multihomogeneous system in which the number of equations
exceeds the number of degrees of freedom by one.

The Theorem follows from Lemmas 1-3 below.

Lemma 1: If (2) holds, there is an f € U for which the corresponding f has no roots in
PC\ PR,

-roof: For each 7 let
s mf
fix) = [T T1 ™)
k=1£=1
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for some choice of affine functionals p* : RY 5 R. It is easy to see that

- TTTT0)

k=1£=1

where, for each i, k, £, ¥ is the linear functional on IR +1 that reduces to pk ¢ under the
specialization yf = 1.

For each k let
MF={pft:1<i<d1<e<mf}

We may choose the affine functionals ufl in general position in the sense that, for any
subset M C MF, the intersection of the kernels of the elements of M is an affine subspace
of R of dimension d* — #M. We may also insist that the intersection of the kernels has
an intersection with each coordinate subspace of the expected dimension, so that when
#M = d*, the unique common root has nonvanishing coordinates.

Let [&] = ([§1],...,[§*]) be a projective root of (3). For each i there must be some
(ki, £;) such that ﬂfie* (%) = 0. The general position assumption implies that for each
k there are at most d* indices i with k; = k, and since the total number of indices ¢ is
d =d'+...+d¢, for each k there must be exactly d* such 7. Therefore each y* is a solution
of a system of d* linear equations in d¥ + 1 variables that has exactly one projective root,
which is real, namely [(1,9¥,...,y%)] where y* = (f, .. .,y5.) is the unique root of the
associated system of d* affine functionals u¥¢. This shows that all roots of (3) are in ’PR

Suppose k; = k. By varying y* in the intersection of the kernels of the other p./ Four b
with k; = k, we may vary f; without changing the value of any other f;. Thus the image

of D f(x) spans the standard basis of IR%, 50 x is a regular root. This shows that all roots
are regular, so that f ¢ UF. B

Remark 3: For the system of equations in the proof above, the roots are evidently in 1-1
correspondence with the set of d-tuples ((ki,%¢1),...,(k4,%q)) with 1 < ¢; < m¥ for all 4
and #{i: k; = k} = d* for all k. An inductive formula for the number of roots can be
developed from the observation that setting pkf = 0 results in a multlhomogeneous system
with one fewer equation and one less degree of freedom, in that p* (C) is replaced by a
plane of codimension one. (Cf. [MM, Sect. 5].)

Lemma 2: For f € UR, if the corresponding f has no roots in P€ \ P®", then

p(A1, ..., Ag) = MV(Q1,...,Qq).



Proof: Consider a root [%] of f. If x = (§1,...,§°) where y* = (yg,y’f,...,ysk), we
set x = (y',...,y%) where y* = (y¥/vk,...,v% /). Applying the (complex) implicit
function theorem at x, then multihomogenizing, we see that there exist neighborhoods

Uz C HC of f and Wiz C PC of [%] for which
{(f',[%']) € Uy x Wig) : [%'] is a root of '}

is the graph of a C* function r[g) : Ug) = Wig)- At this point we have not used the
hypothesis that f has no roots outside of PE" and by applying the argument to this point
to some f with the maximal number of real regular roots, we may conclude that

p(Ala . ‘aAd) < MV(QI» .- -an)~

If every neighborhood of f in #€ contained an f’ for which the associated f’ had a
root in P \ U{i] Wis, then, since this set is compact, it would contain a root of f , which
is impossible. Consequently it must be possible to choose a neighborhood U of f small
enough that, for every f’ € U, the only roots of the associated f" in PC are the various
ri%)(f'). Since U is open in HEC, generic f' € U must have MV(Q1,...,Qq) roots, so we
see that this number is also a lower bound on p(Ay,..., Aq). B

We will say that a set A C N¢ is comprehensive if a € A whenever a,b € N¢ with
a<be A

Lemma 3: Suppose that (2) holds, and f € UR . If the corresponding f has no roots in
PC \ PR then for any open U C PE there is an f' € UR for which the corresponding
f’ has as many roots as f, with all of them lying in U.

Proof: Let x = (—C....,—C) € IR? for some C > 0. Each .A; is comprehensive, implying
that in the system f” :x — f(x + x) each f/’ has no monomials with nonzero coefficients
that are not already in .A;. The roots of the system f are precisely the points of the form
x—x where x is a root of f, and by taking C large, we can insure that they have only positive
components. This being the case, if the corresponding f' had a root [%] = ([§],...,[§"])
in P€ \ PE" there would necessarily be some & for which [7%] was in the hyperplane of
Pdk(C) given by y& = 0, and there would be a corresponding root of fin PC \ PE",
contrary to hypothesis.

By choosing C large, we can force all the projective roots of f” into an arbitrarily
small neighborhood of

(10,1,...,1)},..,[(0,1,...,1)]) € PE.

The action of the product group G = O(d +1) x ... x O(d* +1) on R +! x ... x R¥'*1
induces an action on the space of multilinear systems (3) with real coefficients. Under such
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a transformation, the roots of the transformed system are related to the roots of the given
system by the corresponding action of G on PR = P¥(IR) x ... x P*(IR). By choosing an
appropriate element of G we can move ([(0,1,...,1)],...,{(0,1,..., 1)]) to any other point
in PR, and under the induced action f" is transformed to a system f’ having all its roots
in the corresponding neighborhood of the chosen point. With C sufficiently large, and the
point in P chosen suitably, this results in f’ having all its roots in U. Finally, it is easy
to check that the transformations considered in this argument preserve the regularity of
all roots, so that f' € HE. &
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