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Abstract

The methods of Shub and Smale [SS93] are extended to the class of multihomogeneous systems of
polynomial equations. Theorem 1 is a formula for the mean (with respect to a particular distribution on
the space of coefficient vectors) number of real roots that has as corollaries: (a) Shub and Smale’s result
that the expected number of real roots of the general homogeneous system is the square root of the generic
number of complex roots given by Bezout’s theorem; (b) Rojas’ [Roj96] characterization of the mean number
of real roots of an “unmixed” multihomogeneous system. Theorem 2 asserts that, for unmixed systems, the
square of the mean number of roots always exceeds the generic number of complex roots, as determined by
Bernstein’s [Ber75] theorem, and there is extensive computational evidence in support of the conjecture that
this inequality also holds for mixed multihomogeneous systems.



The Expected Number of Real Roots of a
Multihomogeneous System of Polynomial Equations

1. Introduction

Shub and Smale [SS93] study the mean number of real roots (in real projective space) of the general
homogeneous system of n polynomial equations of fixed degrees di,...,d,, with respect to a particular
distribution on the space of real coefficient vectors, arriving at- the lovely result that the mean number of
real roots is m , the square root of the generic number of complex projective roots, as given by Bezout’s
theorem. Their approach is descended from [Kac43] which spawned an extensive literature that is ably
surveyed, and extended, by Edelman and Kostlan [EC95].

This note generalizes the methods of [SS93] to the class of systems of multihomogeneous polynomial
equations: there are n equations in n + k variables that are broken into k groups such that each equation
is homogeneous separately in the variables of each group. Fixing n, the decomposition into groups, and
the degree of each equation in each group, we study the average number of real roots (in the natural k-fold
product of projective spaces) of this system for random vectors of coefficients. The distribution on the
space of coefficient vectors is equivalent to the one proposed by Rojas [Roj96]. Below we will show that for
multihomogeneous systems this distribution is canonical in the sense of uniquely satisfying certain natural
conditions.

Our main result, Theorem 1, gives a formula that expresses the average number of real roots as a
product of the mean absolute value of the determinant of a random matrix and a ratio of products of Euler’s
function I', evaluated at multiples of 1/2. The Shub-Smale theorem is a corollary, as is the formula given
[Roj96] for unmixed systems. (Section 2 gives definitions for the terms ‘unmixed’ and ‘mixed,’ as they are
used in the theory of sparse polynomial systems.)

The celebrated theorem of Bernshtein [Ber75] (see also [Kus75]) is the generalization of Bezout’s
theorem to sparse systems of polynomial equations, and it is natural to wonder whether the theorem of
[SS93] extends, in some sense, to a relationship, for sparse systems, between the mean number of real
roots and the generic (in the space of complex coefficient vectors) number of complex roots, as given by
Bernshtein’s theorem. Indeed, Rojas’ Square Root Volume Conjecture [Roj96] would be such an extension,
since it proposes that within certain similarity classes of problems, the mean number of roots should be
proportional to the square root of the generic number of complex roots. Here we propose:

Conjecture 1: The mean (with respect to the probability measure on coefficient vectors described herein)
number of real roots of a multihomogeneous system is at least as large as the square root of the generic
number of complex roots.

Theorem 2 uses Rojas’ formula to establish this claim for unmixed multihomogeneous systems.

The formula of Theorem 1 is easy to evaluate on the computer. (The main obstacle to accuracy is an
integral that we estimate by Monte Carlo methods that have standard error proportional to the inverse of
the square of the sample size.) In addition, for multilinear systems it is possible to compute the maximal
number of roots recursively, as we describe in Section 5. The author has implemented these algorithms, and
compared the numbers they yield for thousands of multilinear systems, without finding any counterexamples
to Conjecture 1.

The author’s own interest in this topic is motivated by concepts of noncooperative game theory. (1)

(1) This is not the place to give a general introduction to noncooperative game theory; Fudenberg and Tirole (1991) is a
standard text. For the internal logic of this paper the description of quasieguilibrium (Section 2) is sufficient. For the connection
between this notion and the standard concepts of Nash equilibrium and totally mized Nash equilibrium see [MM97, McL97].
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McLennan and McKelvey [MM97] give a method for constructing games that give rise to systems of poly-
nomials having as many regular (real) quasiequilibria as are permitted by Bernshtein’s theorem. Roughly,
the message of this result is that the maximal number of Nash equilibria is large, at least compared to most
game theorists’ prior intuition.

Games that have the maximal number of equilibria are thought to be very atypical, and there arises the
question of whether the set of equilibria is not only potentially large, but also large on average. (Part of the
problem is to find an appealing definition of “on average.”) McLennan [McL97] investigates the application,
to this problem, of the methods of [SS93]. From the point of view of determining the mean number of
quasiequilibria, the results there are less general versions of Theorem 1 of this note, but additional problems
arise in characterizing the relations between these results and the mean numbers of totally mixed equilibria
and Nash equilibria of all sorts. From the point of view of the material here, the most important point is
that Conjecture 1 above would imply that, in a variety of senses, the mean number of Nash equilibria grows
exponentially with various measures of the size of the game.

In connection with speculation concerning whether Conjecture 1 might hold for more general classes
of sparse systems than the multihomogeneous ones, it is interesting to note that multihomogeneous systems
are potentially special insofar as they can have as many real regular roots as are permitted by Bernshtein’s
theorem. McLennan [McL98] proves this by pointing out that tl@%argument in [MM97], which establishes
this claim for the systems arising in game theory, is actually vaﬁa for any multihomogeneous system. In
particular, this is true of the general homogeneous system of Bezout’s theorem.

The remainder has the following organization. Section 2 describes multihomogeneous systems as a
certain type of sparse system. In Section 3 we introduce a certain group action, and use it to motivate
the definition of an inner product on the space of coefficient vectors of a multihomogeneous system. This
allows us to state the problem precisely, insofar as the notion of average is defined with respect to the
uniform distribution on a cartesian product of unit spheres, relative to this inner product, in the space of
coefficient vectors. Section 4 states Theorem 1 and presents a number of consequences. Section 5 defines
mixed volume, states Bernshtein’s theorem precisely, shows how the generic number of complex roots of
a multihomogeneous system may be computed recursively, and applies this recursion to Rojas’ formula to
prove Theorem 2. Sections 6-8 present the proof of Theorem 1.

2. Multihomogeneous Systems

We adopt some of the standard notation of the theory of sparse systems of polynomial equations. The
general form of a sparse system of n polynomial equations in £ variables is

Jx) = (fi(x),..., fn(x)) =0, (1)

where x = (z1,...,2¢) and, for each ¢ = 1,...,n, there is a nonempty finite A; C N* such that fi(x) =
ZaE.A, fiax? for some system of coeflicients f;o. (Here x® denotes the monomial 27232 - - -z;*.) The general
approach of the theory of sparse systems is to hold the n-tuple of supports (Au,...,A,) fixed while treating
the coefficients f;, as variables, for instance in the sense of studying properties that are generic in the
space of vectors of coefficients. Such a system is said to be unmjzed if Ay = ... = A,; otherwise it is
mized. Identifying a polynomial with its vector of coefficients, we regard H; := IR*' as the vector space of
polynomials with real coefficients whose supports are contained in A;. Let H :=H, x ... X H,.

The framework studied in this paper is a specialization of this general framework in which the vari-
ables in x are divided into k groups, so that x = (yi,...,yx) where y; = (yjo,¥j1,---,¥jn,), and each
equation is homogeneous of degree é;; as a function of y;, for any given values of the other variables
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(Y1, ¥j=1,¥j+1,---,¥k). More precisely, we require that there are nonnegative integers §;; (i = 1,...

j=1,...,k) such that

n

b )

Ai = Ain x ... x Aix, where A;; = {ae Nt ragt e+ ...t an; =65}

Henceforth we will always assume that £ = n + k, which means that there are effectively the same
number of equations and unknowns:

ny+...+ng=n.
Insofar as n is now determined by the vector n := (n1,...,nx), an instance of the type of system studied

here is specified by the vector n and the n x k matrix § := (;).
Three particular types of multihomogeneous system figure in our discussion:

(a) When k = 1 we have the general homogeneous system, for which the problem studied here was analyzed
in [SS93].

(b) The unmized multihomogeneous system studied in [Roj96] is described by the condition that all equa-
tions have the same support:

Syy=...=dn; (F=1,...,K).

(c) The systems arising, in game theory, from the concept of quasiequilibrium of a finite normal form
game, are characterized by:
o= {0 H00=5
ij =

1 otherwise,

(2)

where ¢ : {1,...,n} = {1,...,k} is the function defined implicitly by the inequality

n1+...+nq(,-)_1<i§n1+...+nq(,~).

3. An Invariant Inner Product

Since ny + ...+ nx = n, we may index the components of an exponent vector a € N*+* by the pairs
(j,h) for j=1,...,kand h =0,...,n;. For such an a let
-1 -1
aio!- ... ain,! o akol - ... Gkn,! _<a10+...+a1m) . .(ako+...+aknk>
(a10+...+a1n1)! (akg-i—...-}-aknk)! a0, ..+,q1n, Ak0y -y Okny

n(a) :=
We endow each H; with the inner product

(fio i =Y (@) fiafla- (3)

acA;

Let || - || be the norm derived from (-, -);, let M; be the unit sphere in #;, and let M := M; x ... x M,.

As a submanifold of #, M inherits a measure corresponding to the notion of volume, and the uniform
distribution on M is the probability distribution derived by normalizing so that the measure of M is unity.
When we speak of the mean or average number of real roots, it will always be with respect to this underlying
probability distribution. An equivalent (in the sense of having the same implied distribution of roots)
formulation emphasized by [EK95] and [Roj96] takes the coefficients fi; to be independent Gaussian random
variables with mean 0 and variance n(a)~!. {Roj96] presents a definition of these variances that is geometric
and general, in the sense of pertaining to any sparse system. Here, following [SS93], we will motivate the
inner product by appealing to invariance.
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Counsider the product group
G:=0(n1+1)x...x O(ng + 1).

There is the obvious component-wise action of G on R™*! x e X Rr 1 and for f; € A; and O € G,
fi o O~ 1 is easily seen to be a polynomial function that is multihomogeneous for the same numbers 4;;, so
fioO™1is an element of #;. Thus the formula Of; := f; o O~! defines an action from the left of G on A;.

Lemma 3.1: The inner product (4) is the unique (up to multiplication by a scalar) inner product on #;
that s invariant under the action of G and with respect to which the monomials are pairwise orthogonal.

Proof: We only sketch the method, leaving calculations to motivated readers. The claim may be proved

in the case k = 1, ny = 1, by observing that, for f; = i’;o apzty®r =P and ¢; = i‘;o bpzhybin—h we
must have (fi,g:) = >, yhanbs for some numbers v, .. Y51 > 0. The necessary information is obtained

by equating coefficients in the identity

8ix 2
_ , i1 .
You = 22 = [l(ez + (1 - ®) 2y |F = 3 4 ( i ) ot (1— a?)Pnh,
h=0 ’

The generalization to higher values of k and n; may be obtained by applying this calculation repeatedly in
an inductive manner. For example, we may equate coefficients in the identity

ey 17 = 2" (ay + (1 — o) /22)™ |12, o
Combining the actions of G on the various #;, we obtain an action of G on # given by
Of :=(fioO™ ..., fro0O7 ).

Each M; is invariant under the action of G' on H;, of course, so M is an invariant of the action of G on H,
and the restriction of this action to M is an action of G on M.

In general there will be other inner products on the coefficient vectors that are invariant under the
action of G, but in which the monomials are not pairwise orthogonal.(? It is interesting to point out that, in
the systems of equations characterizing totally mixed equilibrium of ncrmal form games, the requirement of
invariance automatically entails orthogonality of the monomials. For example, consider 7 such that q(f) = 1.
Then the monomials y2oyso . -.Yko and y21¥30...Yko are in the support of f;. Let ~1 be the element of
O(ny + 1) that maps (1,0,...,0) to (0,1,...,0) and (0,1,...,0) to (—1,0,...,0), while leaving all other
standard unit basis vectors fixed, and let v = (y1,...,7%) € G where vs,..., v are the respective identity
transformations. Then invariance implies that

(yzoyso -+~ Yk0, Y21Y30 - - -yko) = (’Y(yzoyso ‘. -yko);7(y21y30 . -yko)) = <y21y30 -« «Yk0, —Y20Y30 - . -yko) =0.

(2) A linear subspace of H; is invariant under the action of G if it is mapRg:_d into itself by each element of G. The action of
G on H; is irreducible if it is not possible to decompose H; as a direct sum, of two invariant subspaces of positive dimension.
Given such a decomposition, any pair of invariant inner products for the simmands can be combined to create an invariant
inner product for H;, so if the invariant inner product is unique up to multiplication by a scalar, then the action of G must be
irreducible. The converse is a basic result of the theory of group representations. To see that H; may be reducible, suppose
that &;1,..., 8,k are all even, and consider that the one dimensional subspace spanned by Hj (y?0 + y?l +...+ y?nj )5.'1‘ 12 ¢y,

is invariant. I am indebted to Jonathan Robbins for a helpful consultation on this point.
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4. Statement and Consequences of the Main Result

For j = 1,...,k let N; := P"/(IR) be nj-dimensional projective space. In concrete calculations we
regard N; as the space of pairs (; = [CJ, CJ] of antipodal points in NJ, where N is the unit sphere in JR%+1,
Let N:= Ny x...x Ny and N := Ny x ... x Ni. In the usual way, the equation f;(¢) = 0 is meaningful for
fieM;and (€ N even though f; is not a function defined on N. The incidence variety is

Vi={(f,Q) eMx N :f(¢) =0}.

In general, the mean of an integrable real valued function g on a compact Riemannian manifold P,
with respect to the uniform distribution, will be denoted by

1
E = dPp.
o) = 55

(Here we are letting P also denote the measure on P corresponding to the notion of volume induced by the

Riemannian metric.) Let 71 : V — M and w5 : V = N be the restrictions of the projections M x N — M
and M x N — N. Our goal is the computation of

E(n,5) := Ep (#(n71()))- (4)

Let [(s) == [, exp(—2)z*~! dz be Euler’s function(®).

We are now able to state the central result.

Theorem 1: For ¢ =1,...,n, let X; be R" with components indexed by the pairs (j,h) (j = 1,...,k,h =
1,...,n;). Let Z; : X; — IR™ be the linear transformation mapping x; to the vector with entries \/(Z . mf-.h.
Let X := X; x ... X Xp, and for ¢ € X let Z(z) be the n x n matrix whose i*" row is Zi(zi). Let
L= 1L; x...x Ly, where each L; is the unit sphere in X;. .
(2) m-d'mx .; §+
I‘(" nit) k rd) _ % 1w portumt.
Bm.d) = ()" (H %,1 ;) Ew(1det=0). (%)

2 —

{(b) The induced distribution of roots is uniform: for any open W C N,

vol(W)
vol(N)

Ex (#(r7() 017 (W) = 2 B(n,g).

The proof occupies Sections 6-9.

The remainder of this section develops some of the consequences of (5). Insofar as the function T
is familiar, this is primarily a matter of analyzing the term Ep(|det=(-)|). Although means of random
determinants have been studied extensively [Gir90] there seems to be little prior work on mean absolute
values of random determinants.

We begin by considering systems in which there is a subset of the variables that are determined by
equations involving only those variables. Specifically, suppose there is some integer k' between 1 and k
such that é;; = 0 whenever ¢(¢{) < k¥’ < j where ¢ is the function defined at the end of Section 2. Set

n' :=mny+ ...+ ng. Then
st 0
= g2 g2 |-

() In the statement of the theorem, and subsequently, we write F(%) when it might seem simpler and more informative

to substitute /7, since the author has found it helpful to adhere to a style in which the sum of the arguments to I" in the
numerator is equal to the sum in the denominator.
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where 611, 62! and 622 have dimensions n’ x k', (n—n'y x k', and (n ~ n') x (k — k') respectively. For any
£ € L, Z(£) has an n’ x (n — n') block of zeros in its upper right corner, so its determinant is the product
of the determinants of the n’ x n’ submatrix in the upper left and the (n — n’) x (n — n’) submatrix in the
lower right. In particular, the determinant of Z(¢) does not depend on 62!. Consequently (5) implies that
E(n,d) is also independent of 62!. When we set §2! = 0 we have a cartesian product of two independent
systems. The distribution of coefficients for the combined system that we are studying is easily seen to be
the product measure of the assumed distributions for the subsystems. For any particular coeflicient vector
for the combined system, the number of roots is the product of the numbers of roots of the subsystems, so

the following is a consequence of the fact that the mean of a product of independent random variables is the
product of their means.

Corollary 1: Suppose there is some 1 < k' < k such that dij = 0 whenever ¢(i) < k' < j, and let 6! and
4?2 be as above. Then

E(n&) = E((nl, .. .,nk:),dn) . E((nk:+1, .. .,nk),JZZ).

A second general principle results from the effect on the determinant of multiplying a row or a column
by a scalar.

Corollary 2: If there are nonnegative integers dy, ..., d, and ey, ..., e such that 6,{]. =d; - e; - 6;;, then

n k
Em,&) = |[Tdi ]}  En,é).
i=1 j=1

Consider now the particular case of k = 1 and §1; = ... = §,; = 1. This is a system of n linear
functionals in n + 1 variables, and there is be exactly one projective roots for almost all coefficient vectors.
In view of (5) we must have:

Proposition 4.1: The mean absolute value of the determinant of a random n x n matrix whose rows are

1.1.d. uniformly distributed points in $7~1! is F(%)"/I‘(%)I‘(%ﬁl)”‘l.

The results of [SS93] and Rojas follow directly from these last two results.

Corollary 3: ([SS93]) If k = 1, then E(n,8) = /[, 6i1.
Corollary 4: (Rojas) If there are nonnegative integers es, ..., ex such that d;; = e;, then
k -
[T D@ T4
j k y 1\ :
j=t1 ! Hj:l F(%)

There is a class of systems for which E(n,§) can be computed exactly by combining Corollaries 1 and
2 with Proposition 4.1. I know of no case outside this class in which the integral |, 1. | det Z(£)| d€ evaluates to
a closed form expression. For the systems arising from normal form games we are able to evaluate in closed
form only when k = 2, which corresponds to a game with two players. The computation can be executed
using the results above, but we leave details to the reader, in part because the result can also be derived

that the observation that the system consists of two systems of linear equations.

Corollary 5: In the case of the game equilibrium system given by (2), if k = 2 then

Em,d) = {

1 1fn1 = Ny,

0 otherwise.
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5. Comparison with the Generic Number of Complex Roots

We now state Bernshtein’s theorem, and analyze its consequences for multihomogeneous systems. Let
f(z) = (fi(z),..., fa(z)) be a general sparse system of n equations in the n variables Z1,...,2n, where f;
has support A; C N™. The Newton polytope of f; is the convex polytope Q; = con(A;). The mized volume
of Q1,...,Qn, which was first defined and studied by Minkowski, and which we denote by MV(Q1,...,Qx),
may be defined to be the coefficient of the monomial A; - ...- A, in the polynomial vol(@») where

Q)\ :/\1Q1+...+/\nQn.

Theorem: [Ber75] Let C* := C\ {0}. Let #C = #E x ... x #S where HE = C4 is the space of complex
polynomials with support .4;. For systems f in the complement, in %, of an algebraic set of positive
(complex) codimension, there are MV(Qy, ..., Q) roots in (c*ym.

We will apply this result to the “demultihomogenized” system obtained, from the given multihomoge-
neous system, by setting y10 = ... = yxo = 1. In comparing the roots of the latter system, in (C*)", with the
roots, in N, of the given multihomogeneous system, there is the possibility of roots in one of the coordinate
subspaces (in the projective sense) along which one of the variables vanishes, but invariance under the action
of ¢ quickly implies that generic systems do not have such roots. Similarly, for generic systems there are no
roots at projective infinity. Thus, generically, there is a one-to-one correspondence between the roots of the
given multihomogeneous system and the demultihomogenized system.

The Newton polytope of the i*P demultihomogenized equation is Q; = Hj:nj>0 0;;A(n;) where

A(ng) == {(zj1,-- -, 2jn;) ERY 1 zj1 + ...+ zjn, <1}
Let,
M(n,8) = MV( [T bya@my),..., ] 530 (n))
jn;i>0 jn;>0
be the generic number of complex roots. McLennan [McL98] shows that there are open subsets of the space
of real coefficient vectors for which all M (n,§) roots are real.

The next result is a straightforward (both in statement and proof) generalization of one given by
[MM97] for the systems arising from games. We adopt the convention that

M((0,...,0),6) = E((0,...,0),8) = 1, (6)

which means that the “null system” with no variables and no equations has one root. Given this, all other
values of M(n,d) are determined by the recursive relationship specified below. This relationship gives an
obvious algorithm for computing M (n,d) that is, in the author’s experience, much faster than the Canny-
Emeris algorithm [CE95]. (The Canny-Emiris algorithm solves a harder problem, in that it computes the
mixed volume of general n-tuples of polytopes.)

Proposition 5.1: Fori=1,...,nlet 6% be the (n — 1) x k matrix obtained from & by deleting the *! row.
Then, for each 1,

M(n,é) = Z 8ij -M((n1,...,mnj—1,...,ng),87%). (7

j:nj>0

Proof: Of course there is no loss of generality in assuming that i = n. We compute that

vol(Q) = vol (Z)\;Qi):vol Yl I damy) | ) =vo | TT O xdijAam))
i=1

i=1 jmn;>0 jn;>0 i=1
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=TI vol((Z/\ J,J) )— II (vOl(A(nj))-(,\nénj +T§/\,-5u)"f>.

im;>0 jmn;>0 i=1
We can now see that

coeffy,. .x, (vol(@y)) =

Z 6nj-coeff>\r,,,<>\n_1 n; - vol(A (Z)\ J,J) 1- H (vol (Z/\ J,h) h)

jn ;>0 h#j
Jing np>0

Since nj - vol(A(n;)) = vol(A(n; — 1)), this is the desired result except in the case of n = 1, which means
that there is some j such that n; = 1 and n, = 0 for all A # j. The claim holds in this case by virtue of the
convention announced above, and the fact that a nonzero linear functional in two variables has a single root
in projective space. N

The next two results are analogues of Corollaries 1 and 2.
Proposition 5.2: Suppose there is some 1 < k' < k such that di; = ) whenever ¢(i) < k' < j, and let 11,

621 and 6?2 be as in Section 4. Then

M(n,8) = M((ny,...,ner),8') - M((ngrga, . . ., nx), 622).

Proof: Arguing by induction on n' := ny+...+ny, (7) implies that A (n,d) does not depend on §2!. When
62! = 0 we have two independent systems, and for generic coeflicients the set of solutions of the combined
system 1s the cartesian product of the sets of solutions of the subsystems. W

Proposition 5.3: If there are nonnegative integers dy, . .., d, and e, ..,ex such that J,fj =d; -e; - 6i;, then
n
M(n,d’) (Hd,) ( H ?’)-M(n,tf).
i=1 Jjn;>0
Proof: Obviously it suffices to establish this when all but one of the rumbers di,...,dp,€1,...,€x are one.

If d; # 1, the claim follows directly from (7). If e; # 1, then
M(ni,...,ng;é') = e;jM(nl,...,n;.;J)

holds, obviously, when n; = ... = ny = 0, and that it holds generally follows from (7) by induction on
ni+...4+n,.

We now consider unmixed systems, finding a case in which the inzquality of Conjecture 1 holds strictly.

Theorem 2: Suppose that there is e = (e1,. .., ex) such that §;; = e; for all { and j. Then
E(n,8)? > M(n,d),

with strict inequality unless there is some j with n; = n (so that n = 0 for all h # 7).
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Proof: (In view of the last result and Corollary 4, it would suffice to prove the claim in the case e; = ... =
ex = 1, but this does not simplify the argument.) The argument is by induction on n, and begins with the
observation that, by (6), the claim holds when n = (0, ...,0). Substituting e; for d;;, (7) specializes to

M(n,d) = Z ej - M((n1,...,n; —1,...,n),08),
n; >0

30 the claim will follow from induction if we can show that

E(m,8)’> > ¢ E((n,...,nj = 1,...,n),8)?,
n; >0

with strict inequality unless there is some j with n; = n. Substitution of the formula for E(n;d)? given by
Corollary 4, followed by simplification, shows that this last inequality is equivalent to

ntly, o nitly, o n; nitly, g
(FI(‘(é))) ano(ré(é))) :"'n;f'i(%(fzj))‘

nj 5

Since n = ni +...+ng, this inequality (and the fact that it holds strictly unless there is some j with n; = n)
is a consequence of the following lemma. N

nt1y\2
Lemma 5.4: %(Fl(ﬁ—(i)—)) is a strictly increasing function of the integers n > 1.
2

Proof: Since I'(3) = v/, ['(1) = 1, and sT'(s) = T'(s + 1) for all s > 0, for odd n the inequality
LDy 1 (D)y2 1 (T(2f2)y2
) < areEn) <)

M) /) Sasi\TeEE)) S ne2\T(Eg)

n

1s equivalent to

2.4 -1 2 1.3 2 2.4 1 \2
a\Vr i 2 2) Shpi\Tad et ) Saia\FLg
Taking square roots, multiplying by a suitable factor, and simplifying, shows that this in turn is equivalent
to

n+1

2 n+2\1 3 3 5  =n n

Straightforward, but tedious, algebraic calculations show that the left hand expression is a strictly increasing

function of odd n, while the right hand expression is strictly decreasing. That this inequality holds for all

odd n > 1 follows from the well known [CS61, p. 268] fact that
2 2 4 4 n—-1 n+1
1335 n n

n (2 2 4 4 n—1 n+1) T n+1(2 2 4 4 n—1 n+1)

T
R |
2
In view of the argument proof of Theorem 2, and the fact that Bernshtein’s proof involves a similar
recursion, it i1s tempting to speculate as follows:

Conjecture 2:

E(,8) > Y bnj-E((ny,...,nj—1,...,m),67")2,

in;i>0

with strict inequality unless there is some j with n; = n.

By the same argument used to prove Theorem 2, this would imply Conjecture 1. As of this date (June
3, 1998) Conjecture 2 has been verified computationally for one thousand randomly generated systems.
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6. 75 1s a Fibration

The next three sections constitute the proof of Theorem 1, which, in both its overall outline and
many of its details, follows the analysis of [SS93]. This section develops manifold-theoretic properties of the
incidence variety.

Let € : H x szl R™i*t! 5 R” be the evaluation~map: E(f,¢) = f({). It is straightforward to argue
that 0 is a regular value of the restriction of £ to M x N, so the regular value theorem [GP65] implies that

{(f/,Q))eMxN:f(l)=0}isaC® (dim M)-dimensional submanifold of M x N. Consequently:
Lemma 6.1: V is a C*° submanifold of M x N with dimV = dim M.

It will be helpful to distinguish carefully between the two “fibres”
Vo=m () CVCMxN and Vii={feM:(f,{)eV}

over a point ( € N. For each ¢ let IA/“ be the set of f; € M; with f;(¢) = 0. As the intersection of M; with
a hyperplane, this set is a subsphere of M; of codimension one. Thus VC = V(,l X ... X Vc,n has a simple
topology that is independent of ¢, and, as one might expect, 7y is a C* fibration. As usual, to argue this
point in detail would be a longwinded and mundane affair, and we shall not do so. It is, perhaps, worth
mentioning that the “group” of the fibration may be taken to be G, and that a suitable atlas of coordinate
functions(¥) is given by the following maps: given (o € N, a neighborhood W C N of ¢, and a C® map
h =W — G satisfying h({)¢o = ¢ forall { € W, let ¢ : V¢, x W — w5} (W) be given by ¢(f,¢) := (R(¢)f, Q).

7. An Integral Formula

Sard’s theorem implies that almost all points of M are regular values of m;. Consider a regular point
(f,{) € V of ;. Since M and V have the same dimension, the inverse function theorem implies that m;
maps a neighborhood of (£,¢) diffeomorphically onto a neighborhood of f. There is a measure pon V,
assigning measure 0 to the set of singular points of 71, such that if U C V is open and the restriction of T
to U is injective, then p(U) is the measure assigned to m1(U) by the uniform distribution on M. In turn,
there is an induced measure v = gon;' on N. We have E(n,8) = (V) = v(N). A detailed consideration of
the consequences of these ideas leads to the following integral formula from [SS93, p. 273] which we quote,
together with preparatory discussion, verbatim(5):

Let M, N be (real) compact Riemannian manifolds and V' a compact submanifold of the product M x N with
dimV =dmM. Suppose that the restriction 3 : V' — N of the projection M X N — N is a locally trivial fibration.
Let Vy = ﬂg_l(y). Let T be a regular value of T, : V' — M, the restriction of the projection M X N — M. Define
Alz, 1/) : Ty (N) - T,;(M) to be the linear map whose graph is the orthogonal complement to TVy (:c, y) in TV(:E, y).
Let U be an open subset of V and #(:L') be the number of points in 71‘;1(13) nuU.

Theorem 3.

[ #@ar= [ [ det(a(e,0)AG,0) dvan.
rzem, U N JVvynU

(Here T'V (=, y) is the tangent space of V at (z,y), and A*(z,y) : To(M) — T,(N) is the adjoint of A(z,y).)

(4) " This terminology, and the definition of “fibration” we are appealing to, are from [Ste51, §2].

(¥) To avoid confusion we have changed the designator from ‘Theorem 1’ to ‘Theorem 3.’
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We now develop some of the consequences of this result for the problem at hand. Clearly N is invariant
under the action of G on H§=1 IR"i*1, and there is an induced action on N given by

0¢ = ([01¢1, —01Ci), - . ., [OkCr, —016k)).

Thus we have actions of G on M x N and M x N given by O(f,¢) == (Of, OE) and O(f,¢) := (Of,0¢).
Forany O € G, f € M, and { € N we have Of(Of) = fOO_l(Og) = f(f), s0:

Lemma 7.1: V is an invariant of the action of G on M x N: OV = V for all O € G. Consequently
O(Vg) = Vog and O(Vc) = VO(»

We endow each N; with the Riemannian metric inherited from its inclusion in R™+!, and N; is
endowed with the Riemannian metric derived from this in the obvious way. The Riemannian metrics on
N, N, M x N,and M x N are the natural product metrics. As in Theorem 3, for (f,{) € V the function
A(f,¢) : T¢(N) — Tj(M) is defined to be the linear map whose graph is the orthogonal complement of
TVi(f,¢) m TV(f,{). As is customary, we will not present a proof of the following; although a certain
amount of detail is involved, the argument is obvious and straightforward.

Lemma 7.2: Forany (€N, f € VC, and O € G,

det(A*(Of, 0C)A(Of,0C)) = det(A™(f,{)A(f,C))-

The integral J},{ det(A*(f, O)A(S, C))l/2 df does not depend on (. In particular, for any open W C N and
any ( € N,

By (#(r7 () nmy (W) = ﬁ% /v det(4"(f,Q)A(S, 0))'/* df.

Note that (b) of Theorem 1 is a consequence of the last assertion.

In evaluating the integral over VC in the last result, we are free to let ¢ be any convenient point in
N. For j=1,...,k let ejo,ej1,...,€j,; be the standard unit basis vectors of R"i*!. We will compute at
Co := ([e10, —€10], - . ., [ero, —exo]) € N. Abusing notation, we let (p also denote the point (e, , .. .y€Ro) €
N, and in general our notation will not distinguish between points in N and the corresponding point in N.
Let a;)] = (6i,0,...,0) € Ayj, and let af = (al},...,ad,) € A;. Since (¢ = 0 for all a € A; other than af,
and Cg? =1,

Vio={fEM: ffuo=0(i=1,...,n)}.

Suppose that é;; > 0. For h =1,...,n;j, let afh be a? with a?j replaced by (8;; —1,0,...,0,1,0,...,0) (the
‘1’ is component k). The tangent space TCON is spanned by the n vectors

bth:(O,...,ejh,...,O) (1S]§k,l§hsnj)

Then f £ 5 0
, o iar W03 >0,
Dii(Co)bin = {0 if §;j = 0.

In this way we obtain a description of Df((g) as an n x n matrix with rows indexed by fi, ..., f, and columns

indexed by the pairs (j, 4), with this (¢, jh)-entry.
We now compute A(f, (o) concretely. We have Ty (M) =~ Ty, (M1) x ... x Ty, (M,), and in our calcula-
tions below we will treat each Ty, (M;) as a hyperplane in R4:. We identify Ty, (N) with T¢, (), so that a
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vector w € Ty, N may be written as Z;=1 > nl, winbjn. Differentiation of the formula f({) = 0 shows that
a pair

(v,w) € T(s,¢0)(M x N) m Ty (M) x Teo(N)
is in TV (f,Co) if and only if, for each i,

nj
via? = - E E fz’a’."'wjh‘
T

j:é,‘j)O h=1

A pair (v, w) is in the orthogonal complement of T'V¢, (f, (o) in Tj (M) x T¢, (N) if and only if, for each
1, vig = 0 for all @ € A; other than a?. To see this, begin by observing that the orthogonal complement of
TVeo (f,Co) in Ty (M) x T¢, (N) is the cartesian product of T, (N) with the orthogonal complement of T} (f/};o)
in Ty (M). Since Ty(M) ~ Ty, (M1) x ... x Ty, (M), the orthogonal complement of Ty (Vg,) in Ty (M) will
be the cartesian product of the orthogonal complements of the Ty, (Vi) in Ty, (M;). A vector v; € RA
1s in Ty, (M) if it is orthogonal to f;, and if it is also orthogonal to T}, (V};M) then it is orthogonal to the
hyperplane in R*+ spanned by VCoh meaning that v;, = 0 for all @ ¢ A; \ {a?}. Conversely, if v;, = 0 for all
a ¢ A;\{a}, then v; is orthogonal to both f; and T4,(Veoi). Thus the orthogonal complement of TV, (f, (o)
i Tz, (M x N) consists of those (v, w) with viq = 0 for all i and a ¢ A; \ {a?}.

Combining the conclusions above, we see that the (¢,a?)-component of A(f, Co)w is given by the formula
above, while all other components vanish. Thus A(f,¢o) is described by a matrix with rows indexed by the
various pairs (i,a) with a € A; and columns indexed by the n pairs (j, h), with the row for (7, a) vanishing
unless a = af, and the (j, k) entry of row (4,a?) being fmﬂ. if 4;; > 0 and 0 otherwise. This matrix consists
of the rows of —~Df((o) together with a number of rows of zeros. Since the matrix of the adjoint of a linear
transformation is the transpose of the matrix of the transformation, and the domain and range of Df(¢o)
have the same dimension, elementary facts concerning matrices and determinants yield:

Proposition 7.3: Forall f € Vgo,

A*(f,¢0)A(f,¢0) = Df(Co)*Df (o)

and det(Df(Co)*Df(CO))l/2 l det Df(CO)I

For the calculations that occupy the remainder it is notationally convenient to define D(f,¢o) =
|det Df(¢o)|- With this notation we may combine the last two results, and set the stage for the computations
in the next section, as follows:

Lemma 7.4:
Bmn,5) = LS By (o, 6) ®

8. A Change of Variables

As we pointed out above, (b) of Theorem 1 has already been established, and the remaining task is to
prove (a) of that result. This is largely a matter of exploiting the fact that only certain of the coefficients
fia enter Df(Co), so that by changing variables we obtain an integral on a domain of low dimension.

Let A; be the unit sphere in the subspace of H; consisting of those f; with f;; = 0 for all a that are al®
for some indices j and h such that di; >0and 1< h < n;. Note that A; C VCO,;. Let J; be the unit sphere
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in the subspace of #; consisting of those f; with f;;0 = 0 and f; ;» = 0 “or all j and h such that &;; > 0 and
1 < h <n;. Note that

dimM,- = dimA; +dim J; + 2.
Let Ac= Ay X ... xApand J=J1 X ... x Jp.

The following two formulas will be proved subsequently:

vo . vo n dim J;+1 dim A;42
EVCO (D(’CO)) = ___1%1(‘7(# 2T (H F(F(d?mA,-i)I;ii(m Lé) )) ) EA(D(')CO)); (9)
o i=1
N ndim A4\ ndl
B0 ) = [T Tty - B4t 20). (1)

We now explain how these formulas lead to (a) of Theorem 1. Combining (8), (9), and (10) yields:

E(n,d) =

vol(N)~vol(J) ~vol(A) . n F(dimJ.-+1)F(dimA.-+1) I‘(ﬂ'—l) n _
vol(M) 2 (H F(d?mA,-j:gimJ,-iza) )( I‘(é) ) ‘Er(|det Z()). (11)

i=1

Recall the well known [Fed69 p. 251] formula

vol(S™~1) = 21;((27;, (12)

which is valid for any integer m > 1. Of course the volume of (m — 1)-dimensional real projective space is
half this. Since dim N; = n;, we have

vol(N) - vol(J) - vol(A) (151 Vol(N.))(" vol(J)~vo;(A,-))
J L. M;

vol(M) e v:)l(

. . (13)
YD N (T [ (dim Astdim J,+3)

= (H I‘(ﬁzil)) -2 (H F(%)_r(dimg.-+12)_1-\(dimA,-+1))

2

It is now straightforward to combine (11) with this to obtain (a) of Theorem 1.

It now remains to establish (9) and (10). We begin by describing, in general terms, the change of
variables at the heart of the calculations. For integers m, h with 1 < h < m—1, let S™~! be the unit sphere
in R™ =~ R* x R™" and let $»~! and S™~"-! be the unit spheres in the cartesian factors. Define

gm0 ST x S™TRTL 5 (0,1) = 5™ by gma(y, 2,1) i=ty + (1 — t3)Y/ 22,

Note that g, is a diffecomorphism onto its image, which is an open subset of S™~! whose complement has
measure zero. Preparatory to applying the change of variables formula, observe that

)| = — ——z|| = (1

2
Hagm;h 1 i )1/‘2 — (1 _ t2)—1/2.

With respect to orthonormal bases for 7,5%~! and 7,5™~*~!  the matrix of Dgm;n(y, z,t) is a diagonal
matrix, and computing the diagonal elements, then multiplying them together, gives

D(gm;h, (y,Z,t)) — th—l . ((1 _t2)1/2)m—h—1 . (1 _tZ)—1/2

m—h

14
= (P11 12", -
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The change of variables given by gy, . is already useful in the following calculation.

Lemma 8.1: Let 7 : S~ ! o R® be the projection w4 (2) := (21,...,24). Then
r(ALr(z)
Esmos (I () = Sitmas
L(4)r(m)

Proof: The following calculation applies the change of variables formula, then (14):

1
Bt (Im O = sy [ oy 180 0 5D Do, (7, 0) 2,0

1 / h-1 2\ m—h
= — t-th=1(1 —12)"3
VOl(Sm—l) Sm=1x§m=h=-1x(0,1) ( )

h—1y . m—h—1y pl I
_ vol(S*~1) . vol(S ) / th(l _ tz) -
vol(Sm-1) 0

(y,2,1)

The desired assertion is now obtained by using (12) to evaluate the sphere volumes and applying the formula
[SS93, p. 273]

1 . m=h\p(htl
/Oth(l—tz) ; =%lr"’(7_);,._1()2—) " (15)

The specific application of g, ., that we need is given by defining g : A x J x (0,1)" — VCO by

g, 1) = (g1 (A1, 91, 1), -0 9 (An, ¥ny 1))
where
9i = (dim A;+dim Ji+2);(dim A,+1) 1 Ai X Ji x (0,1) = Ve, ;.
Applying (14) yields
D(g fI 1= 42) 85 gdim e (16)

i=1

Lemma 8.2: For all (A, 4,t) € A x J x (0,1)",

D(g(A,%,1),¢0) = (H(l - tizﬁ)D(/\,Co).

i=1

Proof: As we saw in the proof of Proposition 7.3, the i*" row of Df(Co) corresponds to Df;({o), with entries
corresponding to the monomials that are the coordinates of ;. In comparing DAX(¢o) with D[g(A, ¥, 1)](<o),
we see that the entries of the ith row of the latter matrix are obtained from the corresponding entries

of the former matrix by multiplying by (1 — t,-z)%, so the claim follows from elementary properties of the
determinant. W

The next two results complete the proof of (a) of Theorem 1 by establishing (9) and (10).

Lemma 8.3:

( (- CO)) — VOI(J) vol(A g-n (1"_[ dlmJ +1)F(dim‘;\'+2

)
vol(V,) MM) ) -EA(D(,60))-
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Proof: Applying the change of variables formula, the computations above, and (15), yields:

v, (P(,0)) L '/'D(f,Co)df

vol(Ve,) ;
<o
1
= ~ : / D(g()‘)l/):t)aCO) D(g,()\,l/),t))d()\,t,b,t)
vol(Ve,) AxJIx(0,1)"
1 a d'mA dirn J;
= -~ 1—‘t ti ! D(A:C)d)‘at/))t)
Vol(VCo) AxTR(01)" (E ) o)l

vol(J) - vol(A) !

Towll%) (H (1) T g dt) s (Do)
o dim J;41 T dim A; 42
(H (QF(C?_iraAi)_-i-d(iLJijﬁ) )> -Ea(D(-¢0))- 1
2

vol(J) - vol(A) .
vol(V¢,)

Lemma 8.4:

n I\(dimA,-il)I\(_rﬂ-_l) .
Bo(P(,60)) = [ T rammaamypy Be (14t =0))
i=1 2 2
Proof: The argument refers to the maps
X vz and Z\{0}———A; (i=1,...,n)

which we now explain. As in the statement of Theorem 1, X; is JR" with coordinates indexed by the pairs
(,h) (1 <j<k,1<h<ng). Let Y; := RIGHE5>0 and let p; : X; — Y; be the obvious projection. Let
Z; C H; be the set of polynomials with support {a{h :d6;; > 0}, and let ¢; : Y; — Z; be the map taking
y; € Y; to the polynomial
nj
. ih
PV
j:6i;>0h=1
Observing that A; is the unit sphere in Z;, let p; : Z; \ {0} — A; be the map p;(2;) := z/||2l;- (Recall that
| - |]; is the norm derived from (-, -};.)

By evaluating the defining formula, we obtain 7(a?") = 1/8;; when d§;; > 0, so that ¢; is a linear
isometry. The map Z; described in the statement of Theorem 1 is (the numerical representation of) of c; o p;.
Since p; is an orthogonal projection, and ¢; is an isometry, if ¢; is a uniformly distributed point in L; \ Z;*(0),
then ||2(£;)|}; and p;(E(f;)) are statistically independent, and p; (2(£;)) is uniformly distributed in A;. These
facts allow us to compute that

EL(ldet(El(fl),...,En(fn))|) EL(ldet(pz( 1(£1)), - M- H” )
= Ea (D 60)) HEL 1. (&)

(Here the second equality follows from independence and the description of det DX{{o) developed in the
discussion leading up to Proposition 7.3.) The final step in the calculation is the evaluation of Ep, (1= e)l:)
by means of Lemma 8.1. 1
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