On simple polytopes*
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Abstract

Let P be a simple d-polytope in d-dimensional euclidean space EY,
and let JI( P) be the subalgebra of the polytope algebra IT generated by
the classes of summands of P. It is shown that the dimensions of the
weight spaces Z,(P) of II(P) are the h-numbers of P, which describe
the Dehn-Sommerville equations between the numbers of faces of P,
and reflect the duality between =,(P) and Z4.,(P). Moreover, I1(P)
admits a Lefschetz decomposition under multiplication by the element
of £, (P) corresponding to P itself, which yields a proof of the necessity
of McMullen’s conditions in the g-theorem on the f-vectors of simple
polytopes. The Lefschetz decomposition is closely connected with the
new Hodge-Riemann-Minkowski quadratic inequalities between mixed
volumes, which generalize Minkowski's second inequality; also proved
are analogous generalizations of the Aleksandrov-Fenchel inequalities,
A striking feature is that these are obtained without using Brunn-
Minkowski theory; indeed, the Brunn-Minkowski theorem (without
characterization of the cases of equality) can be deduced from them.
The connexion found between II(P) and the face ring of the dual
simplicial polytope P* enables this Ting to be looked at in two ways,
and a conjectured formulation of the g-theorem in terms of a Gale
diagram of P* is also established.
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1 Introduction

The g-theorem, which describes the possible f-vectors, or sequences of num-
bers of faces, of simple (or simplicial) polytopes, was formulated as a con-
jecture in 1970 (see {13)), and proved by Billera and Lee (sufficiency, [3)
and Stanley (necessity, [22]) about ten years later. Both before and since
the proof, the g-theorem has provided a focus for many investigations into
polytopes and related topics. However, while the proof of the sufficiency of
the conditions (often called McMullen's conditions) of the theorem was fairly
direct (if rather ingenious), that of the necessity involved deep techniques of
algebraic geometry—the hard Lefschetz theorem applied to the cohomology
ring of the toric variety associated with a rational simplicial polytope. One
main aim has therefore been to find a proof of this necessity which avoids
such heavy machinery, preferably entirely within convexity.

Such a proof is presented in this paper. It uses the polytope algebra II,
which was originally devised to investigate problems of translation decom-
posability of polytopes (that is, the analogue of Hilbert’s third problem with
lower dimensional components not discarded; see [16]). However, a notion
of stress on polytopes, investigated by, for example, Kalaj (8], Lee [10}, and
others, and applied to combinatorial problems, suggested connexions with
the polytope algebra. Motivated by details of the first proof in [22], and fur-
ther parallels with algebraic geometry, the exploration of these relationships
yields the new proof.

The basic object of our study is the subalgebra II(P) of II generated by
the classes of summands of a fixed simple d-polytope P. Associated with P
is its h-vector (ho(P),..., hg(P)), which encapsulates the information about
the numbers of its faces of each dimension. The A-vector has had a number
of interpretations, and was crucial in proving the upper bound theorem for
convex polytopes and its extensions. We now give it another interpretation—
it turns out that A,(P) is the dimension of the r-th weight space Z,(P) of
II(P). The upper bound theorem for convex polytopes is an immediate
consequence, using the argument of Stanley in {20].

In fact, more can be shown; the necessity of McMullen’s conditions results
from the existence of a Lefschetz decomposition of [I(P) (the analogue of
the hard Lefschetz theorem). However, the method of proof now no longer
parallels that from algebraic geomelry, since it involves demonstrating even
stronger results: there is a family of Hodge-Riemann-Minkowski quadratic



inequalities on II(P) (analogous to the Hodge-Riemann inequalities), which
generalize Minkowski’s second inequality. These can be used to provide far-
reaching generalizations of the Aleksandrov-Fenchel inequalities for mixed
volumes. A striking feature of the proof is that it does not rely on Brunn-
Minkowski theory; indeed, the Brunn-Minkowski theorem can be deduced
from it, although the characterization of the cases of equality in it is lost.

The paper may be briefly outlined as follows. After a discussion of gen-
eral background material on the polytope algebra, the basic properties of
the subalgebra II(P) are established, in particular the fact that the weight
space =.(P) has dimension h,(P). One main plank in the proof of the g-
theorem is that the Hodge-Riemann-Minkowski inequalities in one dimension
imply the existence of the Lefschetz decomposition in the next. The proof
of this parallels an argument in Aleksandrov [1], and is also reminiscent of
the proof in [5] of the lower bound theorem for simple polytopes (see also
(2, 23)), but actually establishes the g-theorem in that dimension, including
the generalized lower bound theorem of [18] (although with no insight into
when equality occurs). The other plank consists in keeping track of how the
quadratic forms change under flips (the duals to bistellar operations); the
changes turn out to be local, and depend on the Hodge-Riemann-Minkowski
inequalities holding (as far as is needed) for the transition polytope between
the two combinatorial types.

2 The polytope algebra

In this section, we give a brief description of the polytope algebra I, and of
its salient features which we shall need in the remainder of the paper. For
the general terminology and notation for convex polytopes, we refer to [7).

We shall work here only over the real field R, in contrast to [16]; in §15,
we shall make some remarks about more general fields.

The polytope algebra Il is initially an abelian group, with a generator [P)
for each P € P, the family of convex polytopes in E% we define [0} := 0. We
call [P] the class of P. These generators satisfy the relations (V): [PUQ] +
[P Q] =[P] +(Q) whenever P,Q € P are such that P U Q € P also {this
corresponds to the valuation property), and (T): [P + i} = [P] when P € P
and ¢t € E? is a translation vector (this is translation invariance). Next, the
(commutative) multiplication on Il is given by (M): [P).IQ] = [P + @], and

extended to II by linearity. Finally, we have the dilatation, defined on the
generators by (D): A(M)[P] = [AP)for P € P and X € R.

In this context, we recall that the vector (or Minkowski) sum of P and Q
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P+Q:={z+ylzePycQ)
we also write P+ ¢ := P + {1} if t € E%. Similarly, the scalar multiple of P
by AeRis
AP :={Az|z € P}.

The main structure theorem for II is the following.

THEOREM 2.1 The polytope algebra is almost a graded (commutative) alge-
bra, in the following sense:

(a) there is a direct sum decomposition II = D26, such that =, & Z,
and =, is a real vector space forr=1,...,d (with =4 = R);

() E.Z.=Z., for cachr,s (with Z, = {0} forr > d);

(c) ifz,y€ 2 :=@°,Z, and ) € R, then (Az)y = z(dy) = A(zy);

(4) ifz€Z, end X >0, then ANz = A"z (with \° =1).

We call =, the r-th weight space of II. The Lwo extreme cases need
special mention. First, =, is generated by the class [o] = [t} of a point (we
write [t] := [{1}] for t € E% o denotes the zero vector); we actually write
1 := [0}, and identify S, with Z in the obvious way. In some respects, it is
inconvenient not to have the full algebra properties; however, we can easily
impose these, if we replace Zo = Z by the tensor product R ® Z, & R (all
tensor products are over Z, unless specified otherwise). While this is more
satisfying from the algebraic point of view (and it is the convention we shall
henceforth adopt), it is perhaps less so from the geometric. Second, Zj is
just volume. Moreover, if L is a linear subspace of EY then we can define
the subalgebra II(L) to be generated by the classes [P], such that P C L +¢
for some t € E? (we only use this and related notation in this paragraph).
Ifdim L = k, then Zx(L) & R is just k-dimensional volume (in translates of
L), which we denote by voli, or vol if no confusion about the dimension s
likely.

We shall make much use of the separation criterion for II. A k-frame is
an orthogonal set W = (wy,..., ws) of unit vectors. If we denote by Q. the
face of the polytope @ in direction w, that is, the intersection of Q with its



support hyperplane whose outer normal vector is w, and define recursively

Qw := AQ?: ...._G.vae_. )

with W as above, then the mapping Q — Qw induces an algebra endomor-
phism = = zw of II. A frame functional of type r is then a mapping fw
defined by ’

fw(Q) := vol,Qw,

where W is a (d—r)-frame; this induces a corresponding homomorphism (also
denoted fw) on II. The natural convention is to take the frame functional
of type d (with empty frame) to be ordinary volume. We then have

THEOREM 2.2 The frame funclionals separate I1.

That is, if z € IT is such that fw(z) = 0 for every frame W, thenz = 0.

The frame functionals are not independent; relationships between them
are called syzygies. There are two kinds of syzygy, of which one can be
thought of as trivial; it just says 2::..\ if two adjacent vectors in a frame
are varied in a fixed plane with a fixed orientation, then faces determined
by the frames are encountered twice. The non-trivial syzygies arise from
Minkowski’s theorem on facet areas. Let Q be a d-polytope, whose n facets
bave unit outer normal vectors uy, ..., u, and corresponding areas ((d — 1)-
volumes) ay,...,an. Then

n
MU Qa;u; = 0.
j=1

The corresponding relation for the r-faces of an (r + 1)-face of a general
polytope leads to a syzygy between frame functionals of type r. We shall not
write it down explicitly, because we work directly with Minkowski's relation
itself; for more details in the general context, we refer to (18]

We now turn to the subalgebra II(P). We shall usually take P to be a
simple d-polytope (by which we mean, of course, that each of its vertices
lies in exactly d facets), but the definition holds for general polytopes. As
mentioned in §1, II(P) is generated by the classes [Q] of summands Q of P,
where Q being a summand of P means that P = Q@ + Q' for some polytope
Q'. In fact, II(P) is generated by the classes of polytopes which are strongly
(combinatorially) isomorphic to P, in the sense that parallel support hy-
perplanes determine faces of the same dimension; such polytopes are clearly
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(combinatorially) isomorphic in the usual sense. This claim is made clear by
the discussion in §3 below; actually, an even stronger result holds.

LEMMA 2.3 The subalgebra TI(P) is generated by the classes of polytopes in
any neighbourhood of P in ils strong isomorphism class.

The separation Theorem 2.2 has the following implication. Each face F
of P is of the form F = Py for some frame W. We then write z|p 1= zw for
z € II(P), which is an algebra homomorphism from H(P) to II(F), called a
face map. (Note that, if Q is 2 summand of P, then its face G corresponding
to F is a summand of F.) We then deduce from Lemma 2.3:

THEOREM 2.4 If P is a simple polytope and F a face of P, then the face
map T+ z|p from TI(P) to II(F) is onto.

The reason is clear: since we can translate the facets of P freely within
some ncighbourhood of P and stay in the strong isomorphism class, we see
that among the faces corresponding to F we can obtain a neighbourhood of
F in its strong isomorphism class. The result then follows,

Observe that we are not claiming that every polylope strongly isomorphic
to F can occur as a face of a polytope strongly isomorphic to P in this way;
generally, this is untrue.

3 The first weight space

In [16], we constructed an isomorphism between the first weight space =, and
a space Pr, which is the abelian group (actually, in a fairly obvious way a
vector space) consisting of the pairs (P, @) with P, @ non-empty polytopes,
factored out by the equivalence relation
(P,Q)~(P,Q"ifand onlyif P+ Q' = P' + Q + t for some t € E,
with addition induced by Minkowski addition, and given by
(PQ)+(P,Q):=(P+P,Q+Q).

Note that the identity is ({0}, {0}), and that the additive inverse of (P,Q)
is (Q, P); we recall that the property

Q={z€E|P+zeP+Q)

implies the cancellation law in the semigroup (P, +). Summarizing, we have
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THEOREM 3.1 Z, & Py,

If P is a non-empty polytope, we write (P):= % o [P]., with [P}, € =,
its r-component. We always have [P}, = 1, and since 2 := @B, =, i
nilpotent, log P := log[P] is well-defined; then [Pl; = log P, and we usually
employ this notation. The logarithm obeys the familiar rules, and its inverse
is given by [P] = expp, with p := log P.

Wkhen we further restrict to II(P), where P is a fixed simple d-polytope
with n facets, we can use the representation theory of [14] to find another
isomorphism. We need a brief outline of the representation theory of [14]
(see also [15])). Suppose that U := (u1,...,u,) is a fixed (ordered) set of
non-zero vectors which positively spans E°. (We shall usually assume that
Ewn&g(gwgw%osw:m (18], a linear transform of U is a

set U= (T,...,%,) € E™9, which is universal for the property

n
MU u; g T = o.
j=1
A more prosaic definition (see [14]) is the following. A linear dependence
of U is a vector a = (er,...,an) € E™, such that ey ogu; = o. If any
basis (or even spanning set) {a; = (@, ..., ein) )i =1,...,7} of the space
of linear dependences is chosen, then the vectors T, = (ej,...,0,;) € ET
form a linear transform U of U. (A rather more abstract definition is given
in {15].) The linear transform is defined exactly up to linear equivalence,
and that of U is again U. The important feature of the linear transform we
need is that a = (ay,...,a,) € E" is a linear dependence of U if and only if
a; = (4,T;) (j = 1,...,n) for some vector & € E™ ¥,
We denote by P(U) the family of polytopes in E? which are intersections
of half-spaces with outer normal vectors in U, If

Q:={ze€ ma:a.:b Sni(i=1,...,n)} e PU),

then we call 7,,...,7, the support parameters of @, and q := i1 €
E™"? the representative of Q. In fact, ¢ represents precisely the translates of
Q; however, if Q has fewer than n facets, or is lower dimensional, then other
points may also represent (.

The crucial connexion is that which determines the facial structure of Q
from its representative 9. We write

Gi={z e Ql{z,u;) = n;},

,Q\\aw.,

<

+romé

; 7
Q;Q%s\_n ‘

o

\hh 9

- ouP

which is (in general) a facet of Q. We then call a subset V C U facial (for
Q) if {G;|u; € V} is exactly the set of facets which contains a (non-empty)

face of Q. We call a subset V C U cofacial (again, for Q) if q € relintposV,
Then we have from [14]:

THEOREM 3.2 IfQ € P(U), then V C U is a facial subset for Q if and only
if V= {7;|u; € V} is a cofacial set.

The polytope Q, through its representative g, determines a type cone
K(Q), which is the intersection of the sets relint posV which contain q. Ev-
ery polytope in P(U) whose representative lies in K(Q) is then strongly
isomorphic to Q. The type cones have another characterization (see [14]):
they are the maximal relatively open convex subsets of posU on which the
representation is (non-negative) linear, so that

M@+ 22Q2 - Mgy + Moo,

with g; the representative of Q; € P(U) and X; > 0 for i = 1,2.

A particularly important case arises from our original simple polytope
P. Here, the type cone K(P) is full-dimensional, and hence its linear hull is
E"" itself. Theorems 3.1 and 3.2 together then yield

THEOREM 3.3 Let P be a simple &.ﬁo@,?vn with n facets. Then the first
weight space Z,(P) of II(P) is isomorphic to E™9,

Under this isomorphism, if Q is a summand of P, then Q has a unique
representative g € cl(P), which is then identified with log Q. Note, though,
that if Q has fewer facets than P, or is lower dimensional, it may well have
further representatives in the cone posU.

For future reference, we repeat the observation of [14] that the represen-
tative ¢ of @ € P(U) also represents each face G of Q. However, it must be
borne in mind that some of the normal vectors u; may now be redundant for
G, meaning that the corresponding hyperplane {z € E¥}{z,u;) = n;} does
not meet G, or supports it in a face of dimension at most dim ¢ — 2, so that
G has other representatives than q.

We have identified Z;(P) with E™“ in a natural way above. In this
context, the multiplication by an element of Z1(P) is performed by means
of the mixed volume calculation (see §6), bearing in mind the separation
Theorem 2.2 of §2. However, we can also identify an element of Z)(P) with
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the values taken by frame functionals of type 1; when we are concerned with
a given strong isomorphism class, this just corresponds to the lengths (which
may be signed) of the edges of polytopes in the class. In this context, it
is worth recalling (7, 15.1.2], which shows (in effect) how the edge-lengths
determine the support parameters of the facets.

4 The Dehn-Sommerville equations

Let P be a simple d-polytope with n facets. If 7 is an indeterminate, we write
f(P7) =T, fi(P)r) = Sp 79mF | where f5(P) is the number of j-faces
of P, so that (fo(P),..., fa-1(P)) is the f-vector of P, and the second sum
extends over all non-empty faces F of P. (P is taken as a face of itself, but
we usually omit mention of fy(P) =1 in the f-vector; the empty set is not
counted as a face.) Then the h-vector (ho(P), ..., hs(P)) of P is defined by
A(P,7):= f(P,7—1), with h(P,7) =: £3_, h,(P)7". The central relationship
involving the h-vector is:

THEOREM 4.1 (Dehn-Sommerville equations) If P is a simple d-poly-
tope and 0 < r < d, then h.(P) = hy_,(P).

Because this theorem is so important, we shall give its proof. In fact,
the method of proof is equally important for what follows. Let v be a (unit)
vector, which does not lies in any of the finitely many hyperplanes through
o orthogonal to an edge of P. Consider the faces of P which lie in the
variable half-space H~(v,0) := {z € E|(z,v) < B}. As § increases, so
that H~(v, §) moves through P, it acquires one vertex of P at a time. We
say such a verlex is of type r (with respect to v) if precisely r of the d
edges of P which contain it lie in H~(v,B) (and the remaining d — r do
not). In acquiring this vertex, H~(v,B) also acquires an r-face of P, and
all its s-faces (with s < r) which contain the vertex; there are just .“.
such s-faces. Thus, the total contribution to f(P,7) from this acquisition is
Af(Pry=3%1_, .“. 7 = (7 + 1), whence the corresponding contribution

to A(P,7) is AR(P,7) = 7". It follows that h.(P) is the (necessarily non-
negative) number of vertices of P of type r.

The proof is now easily completed. If we replace v by —v, then a vertex
of type r with respect to v becomes one of type d — r with respect to —v.
Thus h,(P) = hy_(P}, which is the assertion of the theorem.

This approach to the Dehn-Sommerville equations was first given in a
brief note at the end of [12], where the proof of the upper bound theorem
for the numbers of faces of polytopes with a given number of facets was also
sketched.

5 Weights

We now introduce a crucial definition for our investigations. This coincides
(as we understand from Carl Lee and Jonathan Fine—private communica-
tion) with the notion of linear siress on the dual polytope. Denote by F,(P)
the family of r-faces of a polytope P. Then an r-weight on P is a mapping
w: F.(P) — R which satisfies the Minkowski relations, namely that

2. w(F;)v;=0,

FicG

where such a sum runs over all the r-faces F;of an (r +1)-face G of P, with
v; the unit outer normal vector (parallel to affG) to G at F;. The real vector
space of r-weights on P is denoted by 02,(P).

The separation Theorem 2.2 associates each element z € Z,(P) with a_

unique r-weight ¢, so that there is a natural embedding Z,(P) < Q,(P). For

“this reason, we often use a symbol such a w for a weight, and write w|g for
its restriction to a face F. (If w is an r-weight, and F is an r-face, then w|p
is the value of w on F.) Our aim in this section js to prove that, for a simple
polytope, this embedding is an isomorphism. We may remark that this will
not remain true for a general polytope; for example, if P is a simplicial d-
polytope with n facets, then Z,(P) is 1-dimensional for each r = 0,...,d;
however, we clearly have dim Qg (P)=n—~d.

We begin, however, with an attempt to give a little insight into how
multiplication on IT works, and how it might be extended to multiplication
of weights. It is enough to multiply the r-component [P]. of the class of a
polytope P by the s-component [Q], of that of Q. Now the lifting theorem
of [24], applied to the (r + s)-faces of P+ @, shows that such an (r + s)-face
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can be dissected into a union of direct sums F + G of faces F of P and G of
@, withdimF +dimG =r+s. If dimF = r and dimG = s, then

vol,y,(F 4+ G) = apgvol,(F)vol(G),

where the constant ar depends only on the “angle” between the affine hulls
of F' and G (it is what is obtained if F' and G are replaced by unit cubes
with the same affine hulls). The sum of these volume terms (over the given
(r + s5)-face) now gives the appropriate contribution, thought of as a weight,
to =,4,. (Note that there are no binomial coefficients as factors, since we are
not calculating mixed volumes, but products in II(P).)

1f we now mechanically replace the terms vol,(F) and vol,(G) by r- and
s-weights, we appear to extend the multiplication from Z{(P)® Z.(Q) to
2%(P) ® 0(Q). However, two things are far from clear: first, that the
resulting expression is independent of the dissection of the faces, and second,
that it is in Q,4,(P + Q), in other words, that the Minkowski relations still
bold. In [17], we shall show this in general; it is just an extension of the
argument we give below.

Since we are concerned here with [I(P) when P is a simple d-polytope,
we shall confine our attention to this case. The main result is then:

THEOREM 5.1 For each r = 0,...,d, the embedding of Z,(P) in Q,(P) is
an isomorphism.

In fact, this result will also involve our establishing

THEOREM 5.2 For eachr = 0,...,d, the weight spaces Z.(P) and Z4_,(P)
are in duality under the multiplication on 1I(P).

Of course, this implies that these spaces have the same dimension.
We proceed in a different way from that above, which utilizes the alter-
native description of Z,(P) and of multiplication by its elements.

LEMMA 5.3 Multiplying an element of Q,(P) by one of Z,(P) yields an el-
ement of Q,.4,(P).

The alternative description of the multiplication is (apart from the omis-
sion of a constant factor) the mized volume calculation, as we shall call it.
We first recall that, if P,..., Py are d-polytopes in E9, if uy,...,u, are the
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distinct unit normal vectors to the facets of the sum P, +--- 4 Py, and if mj
is the support parameter of Py in direction u; (j = 1,...,n), then the mixed
volume of P,,..., Py is recursively given by

H n
V(P,...,P) = MMU 1 A(F2, .., Fy),
j=1

where F;; := Qu..v.: is the face of P; in direction u;, and A denotes mixed area
((d = 1)-volume). It is easily seen that, in fact, the mixed volume so defined
is symmetric in its arguments, ard coincides with the usual definition. The
scaling factor w is dropped below, since we shall calculate products in I1.

Now suppose that y € Z;(P). In view of Theorem 3.3 and the discussion
of §3, we can identify y with a generalized vector (7;,...,7,) of support
parameters, bearing mind that there is a free choice up to a vector of the
form ({t,w),...,(t,un)) with ¢t € E%. If a € Q4,(P) has weight a; on
Fj, then the natural generalization of the mixed volume calculation (which
accounts for the name) gives

ya = M 1%5-
j=1

The Minkowski relations for a ensure that the expression above is well-
defined, that is, independent of the choice of the 7; for the given y.

The calculations for Q,(P) withr < d—1 are similar, except that they are
performed on (r 4 1)-faces, and the vector of 7’s is replaced by the induced
(generalized) support parameters on those faces (we give a particular example
immediately below).

In order to check the Minkowski relations on the product, it suffices to
consider the case r = d — 2. The unit normal vector v; to the (non-empty)
(d — 2)-face Gji := F; N Fy of the facet F;of Pis

v = cosec(Uji)us — cot(¥i)u,,

where ¥, is the angle between the unit normals uj to Fj and uy to Fy. The
support parameter corresponding to Gji in Fj is thus

ik = Mrcosec(Vjn) — n; cot(W;),
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so that, if wjx 1= w(Gj), the product weights ;1= Y(F;) satisfy

i = Y nawi
k

2 mawircosec(d i) — ni(3 wik cot(dz)),
k k

where such sums extend over those k for which Gi # 0.
Now the Minkowski relation on F; says that

o = M WikVxk
k
= M wijxcosec(V i ug — AMU wik cot (Vi ))u;,
k 3
so that

n
2 by
J=1

- .

.M:U— *M mwijxcosec(djx) — SAM_,U wjx cot (Vi) }u;

Il
NgE

,ivw wjkcosec( i Juy, — AM.U wijk cot(V;u))u;}

1

il
Q .

’

by the above, where we have used the symmetry between j and k when
Gjx # 0. This establishes the lemma.

The core of Theorem 5.2 (and hence Theorem 5.1) is the analogue of
Theorem 11 of [16] (or, rather, of its consequence), namely

LEMMA 5.4 Let 0 < r < d, and let z € Q,(P) be such that z # 0. Then
there ezists y € Z4.,(P) such that zy # 0.

The extreme case r = d is trivial. The crucial case is r = d — 1; we shall
prove that first. If ¢ € Qu-;(P) with z # 0, then then there is some facet
F of P for which the restriction z|r of z to F does not vanish. If F = F;
and T := #; € Z,(P) corresponds to Fj (that is, we choose T with support
parameters n; = 1 and 7 = 0 if k # §), then, by direct calculation, z|p = z7
(thesc are both numbers). That is, 27 # 0, as required.
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Now suppose that r < d — 1; we proceed by induction on d. Since
z # 0, we can find some r-face G of P on which the weight z|¢ induced
by = does not vanish. Let F be any facet of P which contains G; then
z|r # 0. By the inductive assumption, and using Theorem 2.4 (which says
that = s z|r maps II(P) onto II(F)), we can find a z € Z4-,—4(P), such
that (zz)|r = z|rz|r # 0. With ¥ as above, and y = 27, we then have
zy = zzU # 0, and we have completed the proof.

Lemma 5.4 says that Z4_,(P) separates 2,{P). There follows at once
dimZ,(P) < dim®,(P) < dimZ4.,(P).

Interchanging the réles of r and d—r shows that we have equality throughout,
and the two theorems are immediate consequences.

We may note that Theorem 5.2 already shows that =,(P) and Za-(P)
have the same dimension; we shall identify this dimension in §6 below. The
argument of the first part of Lemma 5.4 can be extended to yield

THEOREM 5.5 Let z € Z,(P), and let G be an r-face of P. If Fy, ..., Fa,
are the facets of P which contain G, and if %y,..., %y, are the corresponding
elements of =,(P), then

zlg = detUzty ... Ty,

where detU := VdetUUT, end U is the (d — r) x d matriz whose rows

Uty. .., Ud—y are the unit normal veclors to P at Fy,..., Fy_,.

Actually, it is not necessary here to assume that the u; are unit vectors,
since scaling u; (and hence det U) by A; > 0 scales @; by ;.
6 The dimensions of the weight spaces

We now establish a basic result of the paper. As usual, P is our fixed simple
d-polytope with n facets,

THEOREM 6.1 If 0 < r < d, then dim=,(P) = A, (P).
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In fact, we shall use Theorem 5.1, and work with the spaces Q.(P). The
idea of the proof is to show that at each vertex of type r acquired by the
moving half-space of §4, we can freely assign an r-weight to the corresponding
r-face of P.

It is easy to see that we have no more freedom than this. Obviously, we
can make no new assignment of r-weight at a vertex of type s with s < r.
At a vertex of type s with s > =, we similarly have no freedom, because
the Minkowski relations completely determine the r-weights on the newly
acquired r-faces through the vertex.

The only problem is that of consistency, that is, that the assignment of
weights on the new r-faces determined by the Minkowski relations on the
(7 + 1)-faces through the vertex (in the latter case above) is independent of
the particular (r + 1)-faces from which they are calculated. There is nothing
to proveif s = r4 1, and it is clear that the general case s > r 42 will follow
from the case s = r + 2.

So, we change the notation, and write r = d — 2. Suppose that we have
assigned a weight w(F') to each (d ~ 2)-face F' of a simple d-polytope P
which does not contain a fixed vertex v of P, in such a way that the weights
satisly the Minkowski relations where appropriate. A (d — 2)-face F of P
which contains v also contains d — 2 of the d edges of P through v; let L be
the plane spanned by the remaining 2 edges, and fix an orientation of L. The
section of P by a general translate of L (which does not contain a vertex of
P) is a polygon, whose vertices correspond to (d — 2)-faces of P, and whose
edges correspond to facets. With respect to the orientation, the (d — 2)-faces
of a given facet G of P can be called lower or upper, according as they are
encountered first or second in going around such a polygonal section.

For each (d - 2)-face F', there is a constant ~(F’) > 0, which is the factor
by which (d — 2)-volume is multiplied under the projection on a (d — 2)-
space orthogonal to L; in fact, y(F') = 0 precisely when the affine hull of 7’
contains a translate of L. The Minkowski relations say that, for each facet

G of P,
> F(FY= Y A(FYu(FY.

lower Fice upper Fcc

If F C G, this then assigns w(F) (with respect to G), since F is the only
(d — 2)-face of P through v whose affine hull does not contain a translate of
L. Now, a (d — 2)-face which is upper for one facet is lower for the next in
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the orientation. Hence, if we sum up the above relations over all facets G,
the terms y(F')w(F") all cancel, except possibly for F/ = F. But then they
must cancel for ' = F also, and the assignment of w(F) is unique.

Finally, we remark that there are k,(P) vertices of P of type r, and this
proves the theorem.

There is an obvious way to construct a basis of Z¢(P) using Theorem 6.1.
A typical member of the basis is obtained by assigning the weight 1 to one
particular r-face acquired at a vertex of P of type r (we call this a basic
face), and 0 to all the other such r-faces. What results is the section basis of
Z¢(P), with respect to the given direction v.

7 The g-theorem

As stated in §1, the main aim of the present investigation is to present a
proof of what is called the g-theorem entirely within convexity. We shall now
describe this theorem.

The g-vector (go(P),..., gax1(P)) of the simple d-polytope P is given in
terms of (P, 7) := Y25 g.(P)7" by

g(Pr):=(1—7)h(P,7) = (1= 7)f(P, T — 1).

Thus g.(P) = h(P) — he—y(P) for each r. We can recover h.(P) from the
9-(P) by h(P,7) = (1 = 1) g(P, 1), or h(P) = Ti<r 9:(P). Note that the
Dehn-Sommerville equations for P are therefore equivalent to

9r(P) = —ga1-.(P)

for each r.
If a,r are positive integers, then the r-canonical representation of a is its
unique expression in the form

a, a, a;

a= + +o ),

with
e > a3 > - >a;>12> 1.
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If s is another positive integer, then the partial power aI”) is defined by

) . P.+..mI1 + Gy +S8—71 I n...+n|a.
8 s—1 1+s—r
with the usual conventions for binomial coefficients.(which are not needed if
3 > 1). We also define 00I") := 0 for all r and s. Finally, we call a sequence
(ho, hy,...) of integers an M-sequence if hp = 1, and 0 < hepr € RN for
r 2> 0 (the upper inequality has no force if r = 0).
It is well known (see [11, 21]) that we have

LEMMA 7.1 There is a graded (commutative) algebra R = @50 R, over a
field F generated by the finite dimensional Ry, with Ry = F, if and only if
the sequence given by h, := dimg(R,) 1s an M-sequence.

The inequalities k,11(P) < A, (P)+U) resulting from applying Theo-
rem 6.1 and Lemma 7.1 to the subalgebra II(P) yield Stanley's strong form
of the upper bound theorem in [20].

In [13] (in the dual formulation for simplicial polytopes), McMullen con-
jectured the following, which was proved by Billera and Lee [3] (sufficiency)
and Stanley [22] (necessity).

THEOREM 7.2 (g-theorem) For g = {(90,...,9441) to be the g-vector of
some simple d-polytope, it is necessary and sufficient that g satisfy

(a) 9 = —gasr-, for each r,

(%) (90,... y91d/2)) is an M-sequence,

The conditions of the g-theorem are often called McMullen’s conditions. The
sufficiency of the conditions will not concern us here. Bearing in mind
Lemma 7.1, we see that the necessity of the g-theorem for a simple d-
polytope P follows immediately if we can construct a polynomial algebra
R= ewm—m\: \ws with Q.Bqu = %..ANVV

The approach which we adopt here mimics (in a sense) that of Stanley,
except that it works within the polytope algebra, avoiding the need to use
deep techniques of algebraic geometry, namely the hard Lefschetz theorem
applied to the cohomology ring of the toric variety associated with a sim-
ple (or simplicial) polytope with rational vertices. However, although our
methods are quite different, the initial motivation for them came from (22).

The central result is
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e L= ¢ o
lea > ;,xch x‘,\,ﬁomoc.(:Wmn
foe < e su%,mc
~
THEOREM 7.3 Let P be a S.SESW.\%ES?. let pi=log P, and let 0 < r <
W.&. Then p?=2*Z,(P) = Z4.,(P). et

In other words, multiplication by p"" induces an isomorphism between
Z,(P) and Z4-,(P). In analogy to [22], the quotient algebra R := II(P)/(p)

{where (p) is the ideal of II(P) generated by p) is that which satisfies the
condition above, and so gives rise to Theorem 7.2(b). .

" Theorem 7.3 leads at once to the Lefschetz decomposition of TI{ P) (com-
pare [6, p.122]). For 0 < r < 1d, we define the r-th primitive space of TI{P)

to be

d—2r

Z,(P) 1= {z € ZP) | "1z = 0);
then s
E(P)= D r'"=A(P),
r=0
where we set Z,(P)=0ifr > [3d].

The results we shall prove are actually stronger than can be deduced
from algebraic geometry. For example, we can dispense with the artificial
assumption that P has rational vertices. Further, from later analysis of
Stanley’s proof, it appeared that some kind of genericity might be necessary

in the choice of hyperplane section (the analogue of p); however, we shall see
that this is not the case.

8 Quadratic inequalities

The approach we follow will use induction on the dimension d, and will
involve investigating certain quadratic forms on the weight spaces Z(P).

In view of the fact that Z,(P) separates =,_,(P), Theorem 7.3 has an
equivalent formulation.

THEOREM 8.1 Let P be a simple d-polytope, let p:=log P, and let 0 < r <

Ld. Then the quadratic form p?~*"z?, with z € Z.(P), is non-singular,

In fact, more than this is true. In analogy to the Hodge-Riemann bilinear
inequalities on the cohomology ring (compare [6, p.123]), we have
THEOREM 8.2 (Hodge-Riemann-Minkowski inequalities) Let0 < r <
id. %@n: the quadratic form (—1)"p*"* z? is positive definite on the primitive
space =, (P).

18
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These inequalities were named by Jonathan Fine, who also drew attention to
their counterparts in algebraic geometry (private comnmunication). The case
r =1 is essentially Minkowski’s second inequality for mixed volumes, which
completes the account of the nomenclature.

We first consider the relationship between Theorems 7.3 and 8.2; the poly-
tope P will remain fixed during the discussion. One step in the proof of the
theorems is inductive, so we shall write LD(d) to stand for the existence of the
Lefschetz decomposition, and HRM(d) to mean that the Hodge-Riemann-
Minkowski inequalities hold, in a given dimension d. We first show

LEMMA 8.3 Ifd > 1, then HRM(d — 1) implies LD(d).

Since dimZ,(P) = dimZ4_,(P) = h.(P), it suffices to prove that, if
z € Z,(P) is such that p* 2’z =0, thenz = 0. If r = 0, thenz = 0 is clear,
since p? > 0 is a number; this covers the cases d < 1. Further, for r = w&
there is nothing to prove. If 1 < r < Ld, let F be any facet of P, and write
f = p|r and y := z|p. Then f9 2y = (p*?'z)lr = 0. By HRM(d -1)
with F instead of P, and noting that f = log F, we have (1) fa-2r-1y2 > g,
with strict inequality unless y = 0. Multiplying by p (using the mixed volume
calculation, and noting that the support parameters of P are all positive after
a suitable translation), we deduce that (~1)7pd-2"z? = p.(=1)rpd=?r-12? > 0,
with strict inequality unless x|z = 0 for each facet F of P, that is, unless
z = 0. Since (~1)'p*?z? > 0 contradicts p?~"z = 0, we conclude that
z = 0, as required.

In the rest of this section, we shall assume that HRM(d — 1) holds, and
hence that we have the Lefschetz decomposition of II(P). We next recall
Theorem 5.2, which says that the vector spaces Z,(P) and Z4_,(P) arc in
duality. If0< s<d,and A is a subspace of Z,(P), we write

At = {y € 24, (P)|yA = 0},
which we call the aennshilator of A.
LEMMA 8.4 Jf0<r< d, then
2Py = (pTVE L (P

The proof is straightforward. If z ¢ Z.(P), so that z € Z,(P) satisfies
P+ = 0, then PP ¥y = 0 for all y € Z,-1(P), and hence z €

(p93 2=,y (P))L. The argument is reversible, and the lemma follows.
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For our purposes, there is an important consequence.

THEOREM 8.5 If1 <r < d, then Z,(P) = =1 (P) @ Z,(P). Moreover,
if £ € E,(P) is ezpressed as = py + z with y € Z,4(P) and z € = (P),

then
ﬁ&ln..au = %mlu1+n.._\u + ﬁllunNu.

Since we are assuming LD(d), we know that the subspaces P=r-1(P) of Z,(P)
and p?~2"+1Z,_(P) of Z4_,( P} both have dimension h,_;(P) = dim Z-1(P),
and so the subspaces of the theorem have complementary dimensions in
Z,(P). Suppose then that

T € P, (P) N (p*PHE, L (P))E

(here we are using Lemma 8.4). Since z = py for some y € Z,-1(P), it follows
that

P NYE A (P) = (py)(p* T E - (P)) = 2pt THE L (P) = 0,

so that y = 0, since p*?+?Z,_|(P) = Za-r41(P) separates Z,_;(P), and
hence x = 0. Thus the subspaces are indeed complementary. The decompo-
sition of the quadratic form s an immediate consequence.

Theorem 8.5 can be thought of as saying that the quadratic form pi-r+iy?
withy € Z,y(P) is a subform of p¥~27z% on Z.(P). Infact, it is usually more
convenient to state Theorem 8.2 in an equivalent form.

Ze(P) has T7_, AIHVm}‘I..ANV positive eigenvalues, and 725 (~1)'h, iy (P)
negative ones, relative to any positive definite form on =,(P).

THEOREM 8.8 If 0 < r < 3d, then the quadratic form (—~1)p?=?rz? on

It is clear that the statement of the theorem is implied by Theorem 8.2,
when we bear in mind the remark above, about the embedding of one form
in the other. For the converse, we again use the remark, and Theorem 8.1,
which states that the form is non-singular. The subform P72 *+24? accounts
for h,_1(P) of the eigenvalues with appropriate signs given by the theorem
with r — 1 in place of r (the initial case r = 0 is trivial). There remain
9:(P) = he(P)=h,-1(P) eigenvalues, which all have the sign of {(—1)". These
must be attached to the complementary form p*2 z? with z € =Z.(P), and
Theorem 8.2 thus follows.
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9 Continuity arguments

It is sometimes helpful to be able to prove a result in a somewhat spe-
cial case, and then use continuity arguments to establish it in general. We
shall discuss such continuity arguments in this section, Since, as before,
we are assuming an inductive framework, we shall suppose that the Hodge-
Riemann-Minkowski inequalities H RM(d — 1) hold, and hence that we have
the Lefschetz decomposition LD(d) (Lemma 8.3).

We shall prove a very general result.

THEOREM 8.1 If Theorem 8.6 holds for one choice of simple d-polytope P,
then it holds for all polytopes Q in the same connected component of its
isomorphism class.

This means that, if Theorem 8.6 holds (and hence Theorems 7.3 and 8.2
do also) for one particular polytope P, and we can obtain Q from P through
a continuous family of isomorphic polytopes, then the corollary holds for
Q as well. As a special case, we can thus vary P f{reely within its strong
isomorphism class (or, equivalently, vary p := log P freely within K(P)).

We prove the theorem as follows, There is a technical problem, because
we are changing the subalgebra II(P) with P, and so the subspace = (P)
also changes, particularly if we think of it as the h.{P)-dimensional subspace
of a real vector space of dimension f-(P) (with coordinates indexed by the
r-faces of P) determined by the Minkowski relations, since these relations
also vary as P varies, although obviously in a continuous way (and so the
subspace itself varies continuously as a coordinate subspace). However, it
will then follow that the primitive subspace nm.Aﬁv also varies continuously
with P,

We may, though, regard =,(P) as an h,(P)-dimensional space, coordina-
tized relative to a section basis constructed as in §6. If Q is combinatorially
isomorphic to P, and close enough to it in the Hausdorff metric, then the
basic r-faces of @ will be those corresponding to the basic r-faces of P, since
vertices of the two polytopes will be of the same type with respect to the
moving section. The induced weights on the remaining r-faces will clearly
change continuously with @, and thus so will the quadratic form ¢%%ry?
with ¢ 1= log Q, since we can regard y € Z.(Q) as a vector in a fixed space.
The form is always non-singular with a fixed rank (we use the induction
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HRM(d — 1) = LD{d) as before), and so has the same signature within
some neighbourhood of the original P, yielding Theorem 8.6 for Q.

We may remark that any simple d-polytope P can be approximated as
closely as we wish by isomorphic polytopes with rational vertices. Thus any
strictures apparently imposed by rationality can already be removed. We
may also tilt the facets of P slightly, and so approximate P by isomorphic
polytopes whose facet normals are in linearly general position.

10 Flips

We shall prove Theorem 7.3, which leads to the Lefschetz decomposition of
II(P) and hence to a proof of the g-theorem, through the stronger Riemann-
Hodge-Minkowski inequalities which imply it. We shall take the latter as
stated equivalently in Theorem 8.6, and study how the quadratic form p?-2"z?
on Z,(P) changes as the combinatorial type of P changes.

We shall once again take P to be a simple d-polytope with n facets, except
that now we shall assume that the (unit) normal vectors uy,...,u, to the
facets of P are in linearly general position (that is, no d of them lie in any
linear hyperplane of mJ. As we saw in §9, if we can prove our results for
such a polytope, then we can prove them for any simple polytope.

Our assumption implies that the corresponding linear transform U =
(T, ..., Tn) of U = (uy,...,u,) also has its points in linearly general position
in E™9 (see [14, 15]). We shall see what happens as p moves from the original
(full-dimensional) type cone K(P) to an adjacent one.

Let us first describe the way the combinatorial type of P changes. Sup-
pose that our labelling of the normal vectors is chosen so that initially K(P)
is bounded by (among others) the hyperplane H := lin{%y3,...,%,}, and
that @, ..., %q lie on the same side of H as the representative p of P (recall
that we identify this with log P), with Tny1,...,Tgy; on the other. If we
can pass from K(P) to K(Q) (where Q@ € P(U) is also a simple polytope)
across C := relint pos{%u4a,...,Un}, then we say that Q is obtained from
P by an m-flip. The inverse operation which yields P from Q is clearly a
(d - m + 1)-flip.

The cases m = 0 and 1 are somewhat special. A 0-flip just brings into
being a d-simplex (from nothing), and thus a (d + 1)-flip destroys one; we
shall usually ignore this case, since simplices are well understood (in our
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context; see §11 below). A 1-flip introduces a new facet, since U\ {f;} is not
a cofacial set for P. This causes a small notational problem, since in order
to keep to the above notation, we shall have to assume that here P only has
n—1 facets. In any discussion of the case m = 1, the appropriate notational
changes are tacitly assumed. ,

A straightforward calculation (compare [13, 18)) yields

LEMMA 10.1 If Q is obtained from P by en m-flip, then

Q~ﬁ©v = h..AWv + &.13 = Yrd-m+1-

Here, 6,m is the usual Kronecker delta.
An equivalent formulation of this result is

COROLLARY 10.2 If0 < m < w& and Q is obtained from P by an m-flip,
then dimZ,(Q) = dimZ,(P) + brm.

Note that a 1(d + 1)-flip changes the combinatorial type of P, but does not
change the dimension of any of the weight spaces.

Let us now describe the effect of an m-flip in direct combinatorial terms.
With the conventions above, the incidence relationships involving any facets
Fj of P (or G; of Q) with j > d + 2 are not affected by the flip. In P,
the intersection F' 1= Frpyy N -+ N Fyyy is an (m — 1)-simplex, bounded in
its affine hull by the facets Fy,..., F... After the flip, in Q the pattern is
reversed: the corresponding intersection G 1= Gy N --- N Gm is a (d — m)-
simplex, bounded in its affine hull by G i1, ... yGas1. We shall refer to these
faces F of P and G of Q as the special faces. At the transition between the
two combinatorial types, all these d + 1 facets meet in a single point; we
denote such a corresponding polytope by T, and call it a transition polytope.
When m = 1, the transition polytope is P itself. We may remark that, in the
dual context, the simplicial polytope Q" is obtained from P* by a bistellar
operation.

The line segment between p € K(P) and ¢ € K(Q) will always cross the
relatively open cone C defined above, and so some transition polytope T has
a representative of the form ¢t = (1 — A)p+ Ag with 0 < ) < 1. However, the
linear extensions of K(P) and K(Q)in Z; to E™? are different; they coincide
only on the hyperplane lin(clX(P) N clK(Q)). Thus, while t = log T in [1(P)
and TI{Q), it is not expressible as ¢t = (1 = A)p+ Ag in Z; (this would be
log{(1 — A)P + AQ), with the latter polytope strongly isomorphic to P + Q).
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An alternative picture is also helpful. Making a possibly different choice
of p € K(P) and ¢ € K(Q), we can suppose that ¢ — p is in a direction
W, in general position with respect to U, such that pos(U' U {To}) is still a
pointed cone. We now take (wy,...,w,) C E?*! to be a linear transform of
(To...,un). Then p and q represent different parallel sections perpendicular
to the direction wg of a simple (d+1)-polytope with facet normals wy, ..., w,;
these sections are (affinely equivalent to) P and Q. At the transition polytope
T, the section passes a vertex of type m.

We remark that we may clearly choose a vector Ty so that the ray from
P in direction —1; does not meet the intersection of any two hyperplanes
in E*"¢ which are spanned by vectors in U, and eventually leaves posU. If
we then proceed along this ray in the opposite direction 1, starting outside
posU, we see that P can be obtained (even in P(U)) from nothing (or a
simplex) by a sequence of flips.

Under an m-flip, the faces of P which do not meet the special face F
keep the same combinatorial type. On the other hand, the faces of P which
do meet F are themselves flipped. Let K be such a k-face. Then K is the
intersection of d — k facets of P. If, say, | of the normals to these facets
come from uy,...,um (and the rest from upqy,... ) Ud41), then we see from
the representation that the flip acts as an (m — {)-flip on K. In particular,
in the notation introduced above,

LEMMA 10.3 Let Q be obtained from P by an m-flip, with 1 <m < d. Then
a) ifj=1,...,m, then G; is obtained from F; by an (m — 1)-flip;
b) ifj=m+1,...,d+1, then G, is obtained from F; by an m-flip.

11 Everts

In the discussion in this section and the next, we shall suppose that Q is
obtained from P by an m-flip, and we henceforth make the blanket assump-
tion that 1 < m < Hd + 1) (we can clearly ignore the case m = 0). We
wish to compare the quadratic forms p?"?"z? and ¢%%"y? for z € Z.(P) and
y € 5, (Q), where 0 < r < }d. We shall show that the changes in the rank
and signature of the form depend only on the type of the flip, and not on
the polytope to which it is applied. That is, we shall show that the rank and
signature are preserved if 0 < r < m, and that the form has rank 1 greater,
with additional eigenvalue having the sign of (-1)™, whenm < r < 1d. We
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then obtain our given polytope from a simplex (or nothing) by a sequence of
flips, and the quadratic forms change in the correct way to yield Theorem 8.6.
We remark that, if P is a d-simplex, then A, (P) =1 for each r = 0,...,d,
and so the quadratic forms p?72"z? are all positive definite of rank 1.

We first consider the relationship between the spaces Z,(P) and Z,(Q).
As might be expected, there is a fairly close connexion between them. Of
course, we can regard them both as subspaces of Z,(P 4 Q), noting that
P+ Q is also a simple d-polytope; if m = 1 it is isomorphic to Q itself, while
if m > 2 it has n + 1 facets, the extra facet normal ug, say, being that to its
facet F + G, which is a direct sum of an (m — 1)- and a (d — m)-simplex.

We can show fairly directly that, if m < r < d, then Z(P)is (in a natural
way) a subspace of =,(Q). However, we shall set this result in a more general
context. The d + 1 hyperplanes H; := affG; (withj =1,...,d + 1) bound a
d-simplex 5, say. (Observe that 5 is on the same side of HutyoooyHyyyas P
and @, and on the opposite side of Hy, ..., H,n.) For future convenience, we
perform an affinity, if necessary, so that 5 is a regular simplex with unit edge-
lengths (this simplifies some numerical calculations). If we write ¥ := log 5,
then Z,(5) = lin3" is 1-dimensional for each r = 0,...,d. The r-volume
(or weight) of each r-face of T is then a constant, which we shall write as
(r)~o,. (Thus o, actually gives the weight on an r-face of 5

Now, we may observe that each face K of 5 corresponds to a parallel face
K of P+ Q, or even of P and Q, except for G and the opposite (m — 1)-
face, which is a scalar multiple of —F. Again, there is no loss of generality
in supposing that this scalar multiple is 1. We say that K is of kind k if
precisely k of the vertices of K lie outside G, and if K is an r-face, we give
to K the weight s,(K) := (—1)*o0,. We shall call s, the r-evert (of P and

Q); in some sense, we think of turning the simplex S inside out. Then
LEMMA 11.1 For each r, the evert s, lies in Z,(P + Q).

The calculation is straightforward, once it is noted that there are just k
hyperplanes H; containing K for which 5 is on the opposite side of H; to
Por Q. Then k induces a corresponding change of sign of the outer normal
vector at K to an (r + 1)-face of § which contains it.

We shall write s, =: s, if the number r can be understood from the

context (recall that m is always fixed). Then we have the following

25

THEOREM 11.2 Each element of =,(Q) differs from one of Z,(P) by a unique
scalar multiple of the r-evert,

To see this, we section P+ Q in a direction almost parallel to uo, so that the
vertices of F' 4 G are those which are encountered last. The elements of the
corresponding section bases of =,(P) and Z,(Q) clearly coincide on all r-faces
which do not meet F or G. Subtracting one from the other, and changing
signs as appropriate, gives an r-weight on S, which is just a multiple of 5".
The result now follows.

To avoid constant repetition, we introduce a convention we shall follow
hereafter. If y € =(Q), we shall write y = z + vs, withz € Z,(P) and v € R
specified uniquely by Theorem 11.2.

Theorem 11.2 now leads to our earlier claim, since if r > m, the r-evert
already belongs to =,(Q) (the evert can have no component in F, and so
is supported entirely by faces of Q). In fact, counting dimensions, we have
more.

THEOREM 11.3 a) If0 <r < m, then Z,(P) = Z,(Q);
b) ifm<r<d—m, then Z(P) is a subspace of Z,(Q) of codimension 1;
¢) ifd—m<r<d, then Z,(P) = Z,(Q).

It will help future calculations if we make the following observation. De-
fine

E(P+Q) = {z € I(P+Q)|z|; = 0if J is a face such that JN(F+G) = 8};

that is, regarded as weights, the elements of E(P + Q) are supported by the
faces of P + @ which do meet F + G.

THEOREM 11.4 E(P + Q) is an ideal in TI(P + Q).

The proof is easy: ife € E(P+ Q) and z € II(P + Q), then for each face
J of P + Q which does not meet F + G, we have

(ez)lsy = e|sz|y =0,

so that ez € E(P+Q) also. The remaining properties of an ideal are obvious.

We call E(P + Q) the evert ideal of II(P + Q), and write E. (P + Q) :=
E(P+Q)NE (P +Q). Clearly, each evert lies in E(P + Q); it is not hard to
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see that E(P+ Q) is actually generated by the everts. The advantage of The-
orem 11.4 is that it enables us to calculate its elements by their restrictions
to the hyperplanes normal to ug, ..., ug4.

Let us now make a further observation. Let z € E41(P + Q). Then
z|[r; = 0 for each j = d +2,...,n, so that the product of z by anything
in Z; depends only on its (generalized) support parameters in directions
Uo,...,Uay1. In particular, such a product by an element of 2P+ Q)
depends effectively on its support parameters in the restriction to F +G.

We can now set up an inductive scheme. As we saw in Lemma 10.3, if
Jj=1,...,m, then Fj is turned into G; by an (m — 1)-flip. Further, the réle
of F relative to F} is now played by one of its facets ((m~2)-faces), whereas
G C G; plays the same réle as it did before. Forj=m+1,...,d+1, of
course, the situation is reversed. We are now in the position to perform some
calculations.

LEMMA 11.5 Let s be the r-evert, and let p € K(P). If k > m, then p*s = 0.

To prove this, we bear in mind the observation above. Since our calcu-
lations depend on F rather than on P, and since the class [F} of F has no
k-component if k > m, the mixed volume calculations for p*s must yield 0,
as required,

If that proof seems too quick, we can proceed alternatively as follows.
Let z € E4_o(P + Q), with k > m as before. As usual, we are taking m > 1.
We can suppose that the origin o € F; thus the support function of P in
in any direction ug, U4y, ... yudy1 is 0, and in calculating p*z, we need only
evaluate ?T-N:ﬂ fory=1,...,m. Insuchan F;, we see that z restricts to
an element of an evert ideal of type m — 1. We can now appeal to induction
{we have lowered both k and m by 1), to say that (p*7'2)|p, = 0; if m = 1,
then the support function of P at F is identically 0. Thus E»N =0.

More generally, let z € E,(P+Q), withr < d—k. If p*2 # 0, then we can
find some w € Zg-k-e(P + @), such that p*2w #£0. But zw € Eq (P +Q),
contradicting what we have just shown. We conclude that we have proved

LEMMA 11.6 Letz € E(P + @), and let k > m. Then p*z = 0.

A similar argument would apply, to show that ¢*z = 0 whenever k >
d — m; however, we shall not need such a case. What we shall need to find
is ¢¥¥s? when s is the r-evert. We begin with s®>. We can perform this
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calculation as if we were working in =;,(5), except that we must change signs
as appropriate. Let X be a (2r)-face of S of kind k. However we perform
the volume calculation, we are taking the product of r-volumes of a face of
kind 1 and one of kind k — 1; that is, the weight on the corresponding face K
of P+ Q will be (—1)*0y,. In case d = 2r, when k = m is the only choice,
this shows that (~1)™s% > 0.

More generally, we again proceed by induction. If 2r < d, in evaluating
the restriction of ¢927~1s2 {0 a facet G, we need only consider j = m +
1,...,d+ 1. But now G; was obtained from F; by an m-flip; the obvious
inductive assumption AICEQ.T»TJJ_P. > 0 leads at once to

LEMMA 11.7 If s is the r-evert, with m < 2r < d, then (—1)™g%%s2 > 0.

The lower restriction on r ensures that the product is indeed non-zero, but
it will automatically be satisfied when we use the lemma.

12 Transition polytopes

The core of our proof consists in showing that a transition polytope 7" shares
all the properties of the simple polytope P itself, as far as multiplication of
elements of IT(P) by ¢ := log T are concerned. We set up an exactly analogous
inductive structure, which is given by the following results. For completeness
(and because at one point we need one part of the result), we also describe
some of its effects orn II(Q). The same conventions as before apply, namely
that Q is obtained from P by an m-flip, where 1 <m< wﬁm +1).

THEOREM 12.1 a) If0<r < 1d, then t47Z,(P) = Z,_,(P);
b) f0<r<m, orifr= d, then t77Z,(Q) = Za-.(Q).

THEOREM 12.2 a) If0<r< 3d, then the quadratic form (=1)td-%rz? 45
positive definite on {z € Z,(P)[td-¥+z = 0};
b) f0<r<m orifr=m= Ld, then the quadratic form (=1)ed=3ry? 4
positive definite on {y € Z,(Q)|t4"¥+1y = 0},

We begin by showing that Theorem 12.2 in dimension d — 1 implies The-

orem 12.1(a) (we shall leave part (b) until later). The proof is exactly anal-
ogous to that of Lemma 8.3, which showed that HRM(d — 1) = LD(d).
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First, we can suppose that m > 1 (and hence d > 3), since if m = 1 we
have T = P, and there is nothing new to prove. The cases r = 0, w& being
trivial, suppose that 1 < r < 1d, and that = € Z,(P) is such that t9 2z = 0;
we must show that z = 0. As before, we look at a facet K of P, and use
the fact that t}% 2" z|x = 0 implies that (1)t 2% > 0, with equality
if and only if z|x = 0. Then we deduce that (—1)7t%"%z? > 0 if z # 0,
contradicting ¢4~ 27z = 0.

The facets K are of two kinds. If X does not contain the special face
F, then t|x € K(X), and we can appeal to HRM(d — 1) for K. If, on the
other hand, K does contain F, then t{x € cIC(K) corresponds to a transition
polytope. There is now a split into two subcases.

If m < Yd+1), ther in fact m < 1(d — 1), and we can use Theo-
rem 12.2(a), since the flip leading from K to the corresponding facet of Q is
of typem—1orm. If m = 1(d+1) (with d odd), then for those facets K for
which the flip is of type m the réles of P and Q for K are reversed, since an
m-flip on X is the inverse of an (m — 1)-flip; now, however, we can employ
the last part of Theorem 12.2(b). This establishes the inductive step.

As a consequence, for each r the quadratic form 192 z? is non-singular
on Z,(P). If we now replace p by p, := (1 — Mt+Ap with0 < X <1, and
let A — 0, the forms p{™*"z? and ¢9~*z? are non-singular of the same rank,
and so have the same signature.

We now need to compare the form 1" 27 with ¢4-2ry?, with v € Z,(Q).
For this, the interaction between ¢ and the evert s := 3, is crucial. The
product ts is supported on the (r -+ 1)-faces of P + Q which meet F + G.
In any such face, since we can choose the special vertex of T to be o, the
induced support function of 7" is 0; thus ts = 0 (compare the calculations in
§11 above).

Our discussion now splits into two cases. Recall that, after Theorem 11.2,
each y € Z,(Q) can be written as y = z + vs, where = € Z(P)and v € R
are unique. If r < m (and hence with our assumption r < 1d), it follows that
142ry? o gd-2r g2, further, Z,(P) and Z,(Q) are isomorphic (Theorem 11.3).
Replacing g by g3 := (1 — M)t + Ag with 0 < ) < 1, and taking the limit as
A — 0, shows that the forms t4-2"y? and 95 *"y? on Z,(Q), being non-singular
of the same rank, have the same signature. That is,

LEMMA 12.3 If r < m, then the forms p*?"z? and q97?"y? have the same
rank and signature.
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Z.(P) is a subspace of Z,(Q) of codimension 1. Now p"s = 0 for all p € K(P)
by Lemma 11.5, and so we have Z,(P)s = {0}, since these elements P
generate Z,(P). Of course, the subspaces lins and Z,(P) are complementary
in Z,(Q). With y, z and v as in our convention, we thus have

There remains to consider the case m < r < 1d. By Theorem 11.3(b),

Q&Inqw\u - leuﬁAH + _\hv» — Amln-.uu» + -\uﬁmluﬂuu.
The form ¢~?"y? is non-singular, and since ¢%~2"s? # 0 by Lemma 11.7, the
form ¢?-%"z% must also be non-singular on Z,(P). Replacing q by g, as before
for 0 < X <1, and letting A — 0, we conclude that, since the forms t4-27z?
and ¢¢ %27 are non-singular with the same rank, they also have the same

signature. In other words, using Lemma 11.7 again, we have

LEMMA 124 Ifm<r < Ld, the form ¢#="y? has rank 1 greater than that
of p*~z?, with additional eigenvalue having the sign of (—1)™.

These two lemmas complete the argument, apart from tying up some
loose ends. Recalling the first paragraph of §11, our proof above shows that,
if Theorem 8.6 holds for P, then it holds for Q, and vice versa, We then
obtain our given polytope from a simplex by a sequence of m-flips (with no
restriction on m); since Theorem 8.6 is true for simplices, it holds generally.

However, we must also establish the remaining parts of Theorems 12.1
and 12.2. We have dealt with Theorem 12.1(a) above; note that it yields a
Lefschetz decomposition of II(P) under multiplication by ¢. We have also
shown that the forms t9-2rz? on E.(P) involving the transition polytope T
have the same ranks and signatures as the forms P42 22, Then Theorem 8.6
attaches the correct signs of the eigenvalues to the primitive subspaces of
II(P) under multiplication by ¢ instead of p, so that Theorem 12.2(a) holds.

Similarly, the assertions of Theorems 12.1 and 12.2 involving @ instead of
P are also straightforward—all that is needed is a calculation of dimensions,
with the additional fact that ts = 0, and the sign of any extra eigenvalue.
Note that the cases r < m of the theorems are trivial, First, 4727y = ¢4-27z
with our usual convention (because r < 1d), and hence we have

tE,(Q) = ¢, (P) = Zur, (P) = Z4,(Q),

using Theorem 11.3(c), which gives the first part of Theorem 12.1(b). We also
have 1427y = t9-2r22 and the first part of Theorem 12.2(b) follows using
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the analogue of Theorem 8.6. The only remaining case is r = (m =) id.
For Theorem 12.1(b), there is nothing to prove. For Theorem 12.2(b), since
ts = 0, we see that s gives an additional component in the “primitive” space
of Z,(Q). But {—1)"s? = (~1)™s? > 0, so that the extra eigenvalue has the
correct sign, and the required assertion follows.

In conclusion, we have established all the inductive arguments, and so
have shown the main Theorems 7.3 and 8.2. In particular, Theorem 7.2 has
been proved.

o

13 Further quadratic inequalities

Just as the Aleksandrov-Fenchel inequalities generalize the second Minkowski
inequality, so we have generalizations of Theorems 7.3 and 8.2. A monomial
is an element of II(P) of the form ¢ = p; ... py, for some P2 Px € K(P).

THEOREM 13.1 (Strong Lefschetz decomposition) Let0 < r < 1d, and
let ¢ € Z4_5,(P) be a monomial. Then cE (P) = Za-,(P).

The name employed here for this result is a convenient misnomer.

THEOREM 13.2 (Generalized Aleksandrov-Fenchel inequalities) Let
0<r<id letc€Zy.q(P) bea monomial, and let p € K(P). Then the
quadratic form (~1)"cz? is positive definite on {z € Z,(P)|pez = 0}.

We shall write SLD(d) to mean that there is a strong Lefschetz decom-
position as in Theorem 13.1, and GAF(d) to mean that the generalized
Aleksandrov-Fenchel inequalities of Theorem 13.2 hold. Then there is an ex-
actly analogous argument to that of Lemma 8.3 (which we shall leave to the
reader; compare the original proof of the Aleksandrov-Fenchel inequalities in

[1]), which shows
LEMMA 13.3 Ifd > 1, then GAF(d ~ 1) implies SLD(d).

We may now use continuity arguments to deduce the generalized Aleksan-
drov-Fenchel inequalities from the Hodge-Riemann-Minkowski inequalities.

THEOREM 13.4 HRM(d) (with GAF(d - 1)) implies GAF(d).
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We shall show that the analogue of Theorem 8.6 holds, in that the form
cz? on Z,(P) has the same number of positive and negative eigenvalues as
43"z, Let pryry. .., Par € K(P), and let ¢ := pr4y ... pa,. Our inductive
assumption GAF(d—1) implies SLD{d), and, as in Theorem 8.1, we can say
equivalently that the form cz? is non-singular on =,(P). If we now replace
Pibygii=(1=Xpi+Ap(i=r+1,...,d—r0< X <1), the same remains
true. Thus, as A varies, the form keeps the same rank and signature (relative
to any positive definite form on =,(P)), that is, the same numbers of positive
and negative eigenvalues, namely those given by Theorem 8.6.

We now need to obtain the decomposition of the form cz? which will yield
Theorem 13.2. With p € K(P) as in the statement of Theorem 13.2, we have
the analogue of Theorem 8.5, namely

E(P) = p=,1(P) ® {z € Z.(P) | pez = 0}

if r > 1, and, if z € Z,(P) is written as ¢ = py -+ z under this direct sum
decomposition, then cz® = cp’y? + cz?. We now appeal to induction on r,
the assertion being trivial if r = 0. Counting signs of eigenvalues of the form
cz? and of the subform cp’y? (which is also non-singular), we deduce that
the form (—1)cz? is indeed positive definite, as claimed.

It is worth ending this section with a remark. Theorem 13.2 was proved
using Theorem 8.2, and this, or rather its equivalent Theorem 8.6, was proved
by tracing how the quadratic forms changed with the combinatorial type.
In particular, the classical Brunn-Minkowski theorem for volumes of linear
combinations has not been employed. In fact, there is more. It is well-known
that the usual Aleksandrov-Fenchel inequalities (in effect, the case r = 1 of
Theorem 13.2; compare {1]) actually imply the Brunn-Minkowski theorem in
a purely algebraic way. One does, however, lose the characterization of the
cases of equality in the theorem.

The Aleksandrov-Fenchel inequalities apply to arbitrary convex bodies.
It would be interesting to know whether the generalized Aleksandrov-Fenchel
inequalities also have analogues for arbitrary convex bodies; probably, how-
ever, this is not the case.
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14 The face ring

In this section, we discuss the connexions between II(P) and the face ring
{or Stanley-Reisner ring) of the dual simplicial polytope P*. We shall also
tie Gale diagrams into the exposition. .

Traditionally (compare, among other references, [22, 19]) it is assumed
that the vertex-set V := {v,...,v,} of P* spans E¢ affinely, with each v; a
rational vector. However, we shall drop the assumption of rationality. With
each v; is associated an indeterminate z;. The face ring is then (for our pur-
poses) the quotient of the polynomial ring R[zy,..., ) by the homogeneous
ideal N := N(P*) generated by the non-faces of P*, that is, by the elements
Ty - Zj(r) such that conv{vjny,. .. »Uj(r)} is not a face of P*.

Actually, we are not so much interested in R[z;, ... Tn)/N itself, as in a
further quotient. We now assume that o € int convV; we then additionally
factor out by the ideal H := H(P*) generated by a suitable family of d ele-
ments 3o, A;z; (how we find them will be discussed later); these form a homo-
geneous system of parameters (h.s.o.p.). This new ring R[z;, ..., z,)/(N+H)
we shall call the reduced face ring of P*, and we shall denote it by R := R(P*)
(Oda [19] uses the term Chow ring).

We see that R is a polynomial ring, and so is graded by degree; if
we denote the grading by R := @wuo R., then Stanley [20]) showed that
dim R, = h,(P). A perspicuous proof of this result was given in [9].

We shall now prove

THEOREM 14.1 The ring R is isomorphic to T P).

By taking o € intP, and scaling the normal vectors u; appropriately, we
can write our polytope P in the form

wnﬁsmmm:H.fvMuaonu.uﬁ..iav.

Then the dual simplicial polytope P* has vertex-set U := {ur,...,u.}.
Now consider the r-volume of an r-face G of a general polytope Q which
is strongly isomorphic to P, with corresponding support parameter vector
¥ = (m,...,n.), say. By direct calculation, we can see that this volume
is a homogeneous polynomial of degree r in 71,...,7%,, which involves ex-
actly those 7; corresponding to facets G; of Q which meet G. Indeed, a
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monomial 1j)...7;) does not occur as a term in such a volume when
GimN--N Gy = 0.

These r-volumes do not change when G is translated, that is, when we
add to the support vector y a vector of the form ({a,u,),..., (a,un)) for some
a € E% It is these translations which give rise to the h.s.o.p.; we take

Aji=(a,u;)forj=1,...,n,

with a ranging over a linear basis of E? in the definition above. We are now
ready to describe the isomorphism. Each basis vector e; of E™, thought of as
a support vector, corresponds to an element of =;(P); actually, if we identify
Z3(P) with the representation space E"™% then e; corresponds to ;. We
therefore define ¢ : Rz, ...,z,] — II(P) by w(z;} =14, (j =1,...,n), and
extend by polynomiality. The image of ¢ is obviously II(P). Its kernel clearly
contains the h.s.0.p. and the non-faces, and so ¢ induces a homomorphism
on R(P*); counting dimensions now shows that this latter homomorphism
must be an isomorphism.

One curiosity which will not have escaped the reader’s notice is that the
minimal square-free monomials Mj1) - - M-y which are absent in r-volume
terms for r-faces of the polytopes Q correspond to missing (r — 1)-faces of
the dual P*, which under the duality correspond to empty (d — r)-faces of P
(or of Q), regarded as intersections of r facets. What this really appears to
mean is that the r-grade term R, of R is better identified with Z.(P) as the
dual space of Z4_,(P) (see Theorem 5.2).

Before considering the general case, let us first take r = 1. We can identify

an element 1%, n;z; € Ry with a support vector (m,-..,7n), or rather with
y = %, 745 € Z1(P), bearing in mind the fact that we have factored out
the h.s.o.p. The multiplication with an element a := (a1,...,a,) € 241 P),

thought of as a vector of (signed) facet areas, is then ay = 7., a;1;, as
expected.

The general case is only a little more complicated. An element w €
Za-+(P) can be identified with a (d—r)-weight w. Multiplying w by ¢, where
q := log @ with Q strongly isomorphic to P, yields a sum T r w(F)o(F),
where each term o(F) is a homogeneous polynomial in the support param-
eters n; of @ of degree r. We can replace ¢” by a general element of Z.(P)
by substituting real numbers for the monomials in the 7;. Monomials corre-
sponding to non-faces do not occur, of course, and the Minkowski relations
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on the weight w force the factoring out of the h.s.o.p.
Let us end by tying Gale diagrams into our discussion. A few years ago,
we informally conjectured the following

THEOREM 14.2 Let V = {%y,...,5,} C E*¥! be a Gale diagram of the
dual of a simple d-polytope with n facets. Define the polynomial ring R :=
@rpo Rr to be R[zy,...,z,], factored out by the ideal generated by all elements
of the form .
e} Tk, Ajzj, whenever Tia AT =0,

5) Tljes zj, whenever {U;]5 € J} = VN H for some open half space H in
E*?! bounded by a hyperplane through o.
Then dim R, = ¢,(P) for 0 < r < 1d.

We can see how this relates to what has gone before, when we observe
{after [14]) that we obtain a Gale diagram of the dual P* of P by letting v;
be the image of %; in the representation space under the linear mapping with
kernel lin{p}, where p is the representative of P. Together with the linear
relations on U, this gives (a), and (b) is just the condition for non-faces.

We may also observe that Theorem 14.2 has an alternative interpretation.
The ring R is equivalently obtained by adjoining to the h.s.0.p. ideal H the
extra element 37, z;, that is, taking Aj =1 for each j. This corresponds
to taking the values given by affine, rather than linear, functionals on U.

15 Final remarks

So far, we have confined our attention to simple polytopes. However, many
of the questions we have addressed can equally be directed at general (not
necessarily simple) polytopes. In particular, we can ask about the structure
of the subalgebra II(P) of Il generated by the classes of summands of an
arbitrary d-polytope P.

Let us consider some examples. If P is indecomposable with respect to
Minkowski summation, then its type cone £( P} in the representation space is
one-dimensional, and it follows that dimZ,(P) =1foreachr=0,...,d. We
should recall in this context that simplicial d-polytopes are indecomposable
when d > 3.

When P is decomposable, but non-simple, the situation changes dramat-
ically. For example, consider the polyhedron P obtained from the regular
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octahedron in E* (with 8 facets) by fixing one vertex, and moving the op-
posite vertex with the facets which contain it into general position. Now
dim =, (P) = dimK(P) = 3, but it is straightforward to see that dim Z(P) =
5(= 8—3), its maximal possible value. Indeed, it is easy to see that the strict
convexity of volume on type cones implies that dimZ;(P) < dim Za-1(P) in
all cases, and one should generally expect to have strict inequality.

Nevertheless, we may conjecture that Theorems 8.1 and 8.2 remain valid;
now, though, multiplication by p?~?" would only induce a monomorphism
from Z,(P) into Z4-,(P). We should observe that Minkowski’s second in-
equality leads to a proof of this when r = 1. However, even in the case of
the transition polytopes T, we know as yet little about the structure of the
subalgebra TI(T').

In a different direction, we may consider the extent to which the results of
this paper can be extended to the polytope algebra over a field F other than
R. Careful analysis of the arguments shows we have used no properties of R
which do not apply to a general ordered field (even the continuity arguments
are very mild). The only problem, as exemplified by [16], is expressing things
such as the Minkowski relations, when one cannot necessarily take square
roots, but this merely complicates the formulation of results, without affect-
ing their validity. Thus, in fact, everything we have said in the paper carries
over to general ordered fields; in particular, the Hodge-Riemann-Minkowski
inequalities and generalized Aleksandrov-Fenchel inequalities remain valid.

In a different direction, the techniques developed in this paper also lead
to settling questions left open in [16] about syzygies between the frame func-
tionals, and their ranges. However, since this would take us away from the
topic of simple polytopes, we shall present this material in a later paper {17].
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February 8, 1993

Persi, here is my knowledge as of today about 3-D tables ....

On the toric ideal of a 3-dimensional table

Fix integers 2 < a < b < ¢. We introduce abc+ab+ ac+ be indeterminates Tijk, Uij, Vik, Wik,
for 1 <i<4a,1<j<b,1<k<c, and we consider the following homomorphism from a

polynomial ring in abc variables to a polynomial ring in ab + ac + bc variables:
T : Klzgi] — Kluij,vig,wji],  @ije — uij - vik - Wik (1)
Here K is any field or Z. The kernel of T is denoted I ;. and called the toric ideal of the
a x b x c-table. We wish to study minimal generating sets and Grobner bases of I,p..
The set of monomials in K[z;;x] (resp. in K[uij, vk, wjk]) is identified with N@b¢
(resp. with Nebtactbe) We use the same symbol T for the restriction of T' to N%%¢ and

we write Tz and Tq for the induced maps of lattices and vector spaces.

Easy facts.

(a) The kernel of Tz is a lattice of rank (a — 1)(b— 1)(c — 1).

(b) The image of Tz, is a lattice of rank ab+ac+bc—a—b—c+ 1.

(c) The affine dimension of the ideal I3, equals ab+ ac+bc—a—b —c+ 1.

(d) A universal Grébner basis for I is given by all relations x™+ — x™~, m € ker(Tgz).

The support supp(m) of a table m € Z?%° is the set of indices (3, j, k) with mijk 7 0.
A relation x™+ — x™~ in I, is called a circust if m is primitive (i.e., its entries are
relatively prime), and supp(m) is minimal with respect to inclusion among all non-zero
tables in ker(Tz). We say that x™+ — x™- is srreducible if it cannot be expressed as a
linear combination of polynomials of lower degree in I p.. It is called irreducible of type
a' x b x ¢' if supp(m) lies in a subtable of size a' x b’ x ¢/, but not in any smaller subtable.
Note that each x™+ —x™~ € I3, is homogeneous. Its degree is the coordinate sum of m.,

and its order is the largest entry in my or m_.

Proposition 1.

(a) Up to sign, there is a unique irreducible relation of type 2 x 2 x 2:
Ry =  zin1Z122%212%221 — Z112Z121%211%222-

(b) Up to Sn x Sn-symmetry, there is a unique irreducible relation of type 2 x n X n:

Roypn = T1112122 ° " T1,n—1,n—-1Z1nnT212%223 * ' L2, n—1,nT2n1

— T1127123 *  T1,n—1,nT1n1T2112222 " T2, n—~1,n—1L2nn-

1



This relation of degree 2n and order 1 is also a circuit.

(c) Ifb # c then there are no irreducible relations of type 2 x b x c.

Proof: Let n = b < c. Every binomial relation in I ; . looks like
m m_ _ ok _Bik Bik ik
X7t —x = H‘”uk Tojk — H‘vl]‘kmuka (2)
Ik 5k

where o = (aj;) and § = (B ) are b X c-matrices with the same row sums and the same
column sums. Suppose that (2) is irreducible of type 2 x b x ¢. We need to show that
¢ = n, and that (2) is isomorphic to the relation Rq,,

Our irreducibility assumption implies that the supports of o and # are disjoint, and
that every row and every column of a (and hence of 3) has at least one non-zero entry. We
permute the ¢ columns so that a;; > 0for: = 1,...,n. Then there exists a fixed-point-free

permutation = € S, such that 8; »;y > 0 for ¢ = 1,...,n. The relation

n n

¢ 0

xt —x = Hl’:l,i,z' T24im(i) — H””Z,i,i TrinG) € Jase
1=1 i=1

is equal to Rg.n, up to a permutation of the n rows. We have the componentwise inequal-

ities {4 < m4 and € < m_, and therefore
XM+ — x™- — xl?+ . (xm+—-£+ _ xm_—l_.) 4 x™- —£_ (xl+ _ Xl_).

This representation is non-trivial, i.e., it expresses (2) as a linear combination of relations

of lower degree, unless {4+ =my, f_ =m_,and b=n. =

Let TR 3. denote the set of all irreducible relations in I,;.. Abbreviate r := ab+ ac + bc —
a—b—c+1, and let M4, denote the oriented matroid of rank r on the index set [a] x [b] x [c],
defined by the linear map Tq. The signed circuits of Mgy, are (supp(m.), supp(m—)),
where x™'+ — x™~ is a circuit in I4pc. (See [BLSWZ] for the basics on oriented matroids.)

We first concentrate on the case a = 2. Here Proposition 2 explicitly describes all
irreducible relations. They are all of the form Rs,,, for some 2 < n < b. Hence each
element in TRy, has order 1 and degree at most 2b. The cardinality of ZR2p. equals
ZZZQ (L——l,h,—"L' (:’l) (£). The factor (—% counts the number of unordered pairs of per-
mutations ¢,7 in S, such that 07! o 7 is an n-cycle. This is the number of distinct

relations Rony, in a 2 X n X n-table.



Lemma 2. The circuits of I, are precisely the elements of TRap..

Proof: The oriented matroid My, has 2bc elements and rank r = bc+ b+ c¢— 1. Consider
the directed bipartite graph Kj .. Its graphic oriented matroid M (Kb,c) has be elements
and rank b+ c—1. Tt is unimodular. The circuits of M(Kj ) are gotten from the relations
Ryny by setting z9;; = 1 for all 4, 5.

We apply the Lawrence construction [BLSWZ, §9.3] to M(Kj ). The resulting ori-
ented matroid A(M(K) .)) has 2bc elements and rank r = bc + b+ ¢ — 1, and it is also
unimodular. It follows from [BLSWZ, Lemma 9.3.1 (a)] that the circuits of A(M(K,,.))
are precisely the elements in TR ,;.. Moreover, the matrix representation for the Lawrence

construction given in [BLSWZ, Proposition 9.3.2 (d)] shows that A(M(K},.)) and Map,

are actually equal. m

Theorem 3. The set TRap. is both a minimal generating set and a universal Grébner

basis of Iy,.

Proof: 1t is clear that the ideal I3, is generated by its set of irreducible relations. To show
that TR, is a minimal generating set, it suffices to observe that none of the relations
Ryny is a K-linear combination of other relations Rapn,.

The fact that each circuit in Iy, has order 1 is equivalent to the fact that the corre-
sponding matroid Moy, is unimodular. By [St2, Theorem in §5], the set of circuits in Ippe

is a universal Grobner basis for Ipp.. Lemma 2 completes the proof. =

Let D(a,b, c) denote the maximum order of any circuit in I,3.. Equivalently, D(a,b,c)
is the largest absolute value of any r x r-minor of the integer matrix Tz. The crucial
property for Lemma 2 and Theorem 3 is that D(2,b,c¢) = 1. In what follows we will see

that these results are false for general a x b x c-tables, where 3 < a < b < c.

Example 4. (3 x 3 x 3-tables)
The following results were obtained by computations using MAPLE and MACAULAY:

(a) There exists a circuit of order 2 and degree 9 in I533:

2 .
L111%123%1322213723123122321T333 — T112%113121L131%233T311T323T332.

(b) All circuits in I333 have order 1 or 2, i.e., we have D(3,3,3) = 2.
(¢) The ideal I35 is minimally generated by its 27 relations Ry and its 54 relations Ryss
(I‘G‘Sp. R323, R332.)



Hence Proposition 1 remains valid for a = b = ¢ = 3, but Lemma 2 and Theorem 3 do not.

The best I can do at present for the general case is the following exponential upper bound.

Even if we ask only for a minimal generating set, I do not see how to improve this bound.

Theorem 5.

(a) A universal Grobner for I,y is given by all relations x™+ — x™-, m € ker(Tg), of
order at most D(a,b,c).

(b) We have min(a,b,c)—1 < D(a,b,c) < 3"/2, wherer =ab+ac+bc—a—b—c—1.

(c) The degree of any Grébner basis element is bounded above by 1 - 3r/2,

Proof: Part (a) and the implication (b) = (c) follow from [St1, Theorem 2.3]. To prove
the upper bound in part (b), note that the integer D(a, b, c) is the determinant of an r x r-
matrix which has exactly three 1’s and r — 3 zeros in each column. Hadamard’s inequality
implies that such a determinant has absolute value at most 37/2. The lower bound in part

(b) stems from the following relation which generalizes Example 4 (a):

n
H-’L'l,i,i
=1
n—1

n~1 n
— n—1 . L. ( oL . ).
Tpi,1 " T1,n,1 Z1,4,i+1 T4,1,541 T5,5,1 Tn,k,k
j=2 k=2

=1

n—

1 n
@200 [T@nakzaks)

3

This is a circuit of type n x n x n and order n — 1. m
Conjecture 6. D(a,b,c¢) = min(a,b,c) — 1.

This conjecture is based on “wishful thinking” and its validity for the special cases
2 x b x cand 3 x 3 x 3. The following example shows that the relations in Proposition 1

do not generate I, for large a, b, c.

Example 7.
(a) The following is an irreducible relation of type 4 X 4 x 6:

T131%24171427322%123%4332214%344T235T415Z316T426
— T14172317122734271337423L244%3147215T435T416T326-

(b) The following is an irreducible relation of type 3 x 6 x 9:

T1117361L132%3422153732371242214T225T335T356L266L147L257T318L248%169TL239

— T1617311214223327123%353%114L224T3257235T256T366L157L247L218L3482139L269

4



We briefly explain the derivation of the two relations in Example 7. First note that we
get zero after deleting the third subscript. This amounts to a non-trivial identity among six
(resp. nine) carefully chosen 2 x 2-minors of a 4 X 4-matrix (resp. 3 X 6-matrix). Identities of
this type are called biquadratic final polynomials in oriented matroid theory see [BLSWZ,
§8.5], [BR1],[BR2|. They encode projective incidence theorems, or non-realizability proofs
of (oriented) matroids. The relation (a) encodes the biquadratic final polynomial for the
Vamos matroid [BR1, Example 4.1, p. 29]. The relation (b) encodes the biquadratic final
polynomial for the Non-Pappus matroid [BR2, Example 2.3].

It was shown in {BR2, Remark 3.6] that there exist arbitrarily large biquadratic final

polynomials. ;From this we can derive the following result.

Corollary 8. For all 2 < a < b < ¢, there exists an irreducible relation of type a' x b' x ¢/,

for some integers a' > a,b' > b and c' > ¢.
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