Lattice invariant valuations on rational polytopes

By

P. McMullen

Abstract. Let Λ be a lattice in d-dimensional euclidean space \mathbb{E}^d , and $\overline{\Lambda}$ the rational vector space it generates. If φ is a valuation invariant under Λ , and P is a polytope with vertices in $\overline{\Lambda}$, then for non-negative integers n there is an expression $\varphi(nP) = \sum_{r=0}^{d} n^r \varphi_r(P, n)$, where the coefficient $\varphi_r(P, n)$ depends only on the congruence class of n modulo the smallest positive integer k such that the affine hull of each r-face of kP is spanned by points of Λ . Moreover, φ_r satisfies the Euler-type relation $\sum_{F} (-1)^{\dim F} \varphi_r(F, n) = (-1)^r \varphi_r(-P, -n)$, where the sum extends over all non-empty faces F of P. The proof involves a specific representation of simple such valuations, analogous to Hadwiger's representation of weakly continuous valuations on all d-polytopes. An example of particular interest is the lattice-point enumerator G, where $G(P) = \operatorname{card}(P \cap \Lambda)$; the results of this paper confirm conjectures of Ehrhart concerning G.

1. Introduction. In an earlier paper [4], we investigated the following situation. Let Λ be an additive subgroup of d-dimensional euclidean space \mathbb{E}^d , and let $\mathscr{P}(\Lambda)$ denote the class of (convex) polytopes whose vertices lie in Λ . A valuation on $\mathscr{P}(\Lambda)$ is a real valued function φ such that, if $P, Q, P \cup Q \in \mathscr{P}(\Lambda)$, then

$$\varphi(P \cup Q) + \varphi(P \cap Q) = \varphi(P) + \varphi(Q).$$

(The conditions imply that $(P \cup Q) + (P \cap Q) = P + Q$, and so ensure that $P \cap Q \in \mathcal{P}(\Lambda)$ also.) We call φ a Λ -valuation if $\varphi(P+t) = \varphi(P)$ whenever $P \in \mathcal{P}(\Lambda)$ and $t \in \Lambda$. Among other things, we proved that, under certain reasonable conditions on Λ or φ , if φ is a Λ -valuation on $\mathcal{P}(\Lambda)$, if $P_1, \ldots, P_k \in \mathcal{P}(\Lambda)$ and n_1, \ldots, n_k are non-negative integers, then $\varphi(n_1P_1 + \cdots + n_kP_k)$ is a polynomial in the n_i of total degree at most d. In particular, $\varphi(nP) = \sum_{r=0}^d n^r \varphi_r(P)$, and φ_r is a homogeneous Λ -valuation of degree r. Moreover, φ_r satisfies the Euler-type relation $\sum_F (-1)^{\dim F} \varphi_r(F) = (-1)^r \varphi_r(P)$, where the sum on the left extends over all non-empty faces F of P.

A particular example of such a valuation is the lattice-point enumerator G, where Λ is a lattice (discrete additive subgroup), and $G(P) = \operatorname{card}(P \cap \Lambda)$. Now, in several

papers Ehrhart has investigated G(P) in case $P \in \mathcal{P}(\overline{\Lambda})$, where $\overline{\Lambda}$ is the rational vector space generated by Λ (see [1]). In a more general context, we began investigating in [4] valuations on $\mathcal{P}(\overline{\Lambda})$ which are only invariant under Λ . We obtained an analogue of the polynomial expansion, and conjectured an Euler-type relation, these generalizing Ehrhart's results on G.

In this paper, we shall extend these results, strengthening that about the polynomial expansion (and, incidentally, establishing a conjecture of Ehrhart), and proving the Euler-type relation. In the course of the proofs, we generalize a characterization of [2] of certain simple valuations (which vanish on polytopes of smaller dimension than d).

Though the basic approach is quite different, many of our results, particularly in § 3, repeat those of [4]; we shall therefore omit most of their proofs, referring the reader to the earlier paper.

2. Simple valuations. We begin our account by discussing the behaviour of a simple valuation ψ ; that is, $\psi(P) = 0$ if dim P < d. More generally, if A is a $\overline{\Lambda}$ -flat, that is, if A is a flat (affine subspace) spanned by points of $\overline{\Lambda}$, we write $\mathscr{P}(A) = \mathscr{P}(A \cap \overline{\Lambda})$, and if \mathscr{A} is a translation class (under $\overline{\Lambda}$) of $\overline{\Lambda}$ -flats, we write $\mathscr{P}(\mathscr{A}) = \bigcup \{\mathscr{P}(A) \mid A \in \mathscr{A}\}$. We then say that a Λ -valuation ψ on $\mathscr{P}(\mathscr{A})$ is simple if $\psi(P) = 0$ whenever $P \in \mathscr{P}(\mathscr{A})$ with dim $P < \dim \mathscr{A}$ (= dim A for any $A \in \mathscr{A}$).

We say a function \varkappa of k variable (unit) vectors u_1, \ldots, u_k is odd if

$$\kappa(\varepsilon_1 u_1, \ldots, \varepsilon_k u_k) = \varepsilon_1 \ldots \varepsilon_k \kappa(u_1, \ldots, u_k)$$

for all $\varepsilon_i = \pm 1$ (i = 1, ..., k). If u is a unit vector, \mathscr{A}_u denotes the translation class (under $\overline{\Lambda}$) of $\overline{\Lambda}$ -hyperplanes with normal u (so that $\mathscr{A}_u = \mathscr{A}_{-u}$; observe that $\mathscr{A}_u = \emptyset$ unless u is normal to some linear Λ -hyperplane). If $P \in \mathscr{P}(\overline{\Lambda})$, we denote by P_u the face of P in direction u, that is, the intersection of P with its support hyperplane with outer normal u.

Our first two results generalize their analogues of [2].

Theorem 1. Let ψ be a simple Λ -valuation on $\mathscr{P}(\Lambda)$. Then for all $\mathscr{P} \in \mathscr{P}(\overline{\Lambda})$; there is an expression

$$\psi(P) = \mu V(P) + \sum_{u} \kappa(u) \psi_{u}(P_{u}),$$

where $\mu \in \mathbb{R}$, V is ordinary volume, \varkappa is an odd function, $\psi_u = \psi_{-u}$ is a simple Λ -valuation on $\mathscr{P}(\mathscr{A}_u)$, and the sum extends over all unit vectors u. Conversely, any such expression defines a simple Λ -valuation on $\mathscr{P}(\overline{\Lambda})$.

Theorem 2. Let $\{v_1, \ldots, v_d\}$ be a basis of Λ , let $H = \lim \{v_1, \ldots, v_{d-1}\}$, and write $I(\eta) = \operatorname{conv}\{0, \eta v_d\}$ for $0 \leq \eta \in \mathbb{Q}$. If $\tilde{\psi}$ is a simple Λ -valuation on $\mathscr{P}(H)$, then there is a simple Λ -valuation ψ' on $\mathscr{P}(\bar{\Lambda})$, such that

$$\psi'(Q+I(\eta))=\eta\,\tilde{\psi}(Q)$$
.

Before proceeding with the proofs, let us make a remark about valuations. If A is a $\overline{\Lambda}$ -flat, and φ is a Λ -valuation on $\mathscr{P}(A)$, we can define an associated Λ -valuation

Vol. 31, 1978

 $f \in \mathscr{P}(\overline{A})$, where \overline{A} is the rational general context, we began investi. invariant under 1. We obtained onjectured an Euler-type relation,

rengthening that about the poly. g a conjecture of Ehrhart), and the proofs, we generalize a characch vanish on polytopes of smaller

many of our results, particularly nit most of their proofs, referring

y discussing the behaviour of a d. More generally, if A is a $\overline{\Lambda}$ -flat, y points of $\overline{\Lambda}$, we write $\mathscr{P}(A) =$ $\overline{\Lambda}$) of $\overline{\Lambda}$ -flats, we write $\mathscr{P}(\mathscr{A}) =$ ψ on $\mathcal{P}(\mathcal{A})$ is simple if $\psi(P) = 0$ A for any $A \in \mathcal{A}$. u_1, \ldots, u_k is odd if

 u_k

etor, \mathcal{A}_u denotes the translation so that $\mathscr{A}_u = \mathscr{A}_{-u}$; observe that explane). If $P \in \mathcal{P}(\overline{\Lambda})$, we denote ntersection of P with its support

of [2].

A). Then for all $\mathscr{P} \in \mathscr{P}(\overline{A})$; there

nction, $\psi_u = \psi_{-u}$ is a simple Λ nit vectors u. Conversely, any such

 $H = \lim \{v_1, \ldots, v_{d-1}\},$ and write nple A-valuation on $\mathcal{P}(H)$, then

a remark about valuations. If A define an associated A-valuation $_{rac{a}{2}}$ on $\mathscr{P}(L)$, where L=A-a is the parallel linear subspace with $a\in A\cap\overline{A}$ any point, by $\vartheta(Q) = \varphi(Q + a)$ for $Q \in \mathscr{P}(L)$. Moreover, the appropriate group of translations in L is $L \cap \Lambda$, which is just the subgroup of Λ which preserves Λ . We note that L is spanned by $L \cap \Lambda$, so that L is a linear Λ -flat. (More generally, $_{\mathfrak{d}}$ $\overline{\Lambda}$ -flat A is a Λ -flat if and only if $A \cap \Lambda \neq \emptyset$.) Thus our results do not merely apply $_{
m to}$ linear Λ -flats, as might superficially appear.

We shall prove Theorems 1 and 2 in parallel; our proof closely follows that of [2], with appropriate modifications to take account of the fact that our valuations are only invariant under $\Lambda.$ We first observe that the converse statement in Theorem 1

is clear. The remainder of the proof proceeds by induction on d.

We begin with the case d=0. A (simple) Λ -valuation on the points of $\overline{\Lambda}$ (regarded as 0-polytopes) just assigns to each point a value, which depends (in general) only on its equivalence class modulo Λ . Theorem 1 is then clear (we conventionally take the 0-volume of a point to be 1), and μ is the appropriate value. Theorem 2 is, of course, vacuous.

So, let us now assume that $d \geq 1$, and that the theorems hold for d - 1 dimensions. The proof of Theorem 2 will be incorporated as a step in that of Theorem 1. We take $\{v_1,\ldots,v_d\}$ to be the given basis of Theorem 2, and use the notation of that theorem. We define a function $\tilde{\psi}$ on $\mathscr{P}(H)$ by $\tilde{\psi}(Q) = \psi(Q + I(1))$ for $Q \in \mathscr{P}(H)$. Clearly $\tilde{\psi}$ is a simple Λ -valuation. By Theorem 1 for d-1 dimensions, we have an expression

$$\tilde{\psi}(Q) = v V_{d-1}(Q) + \sum_{u}' \kappa(u) \tilde{\psi}_{u}(Q_{u}),$$

where the sum extends over all unit vectors u with $\langle u, v_d \rangle = 0$, and $\tilde{\psi}_u = \tilde{\psi}_{-u}$ is a simple Λ -valuation on $\mathscr{P}(\mathscr{A}_u(H))$, with $\mathscr{A}_u(H)$ the family of (d-2)-dimensional $\overline{\Lambda}$ -flats in H with normal u.

Now, firstly there is a constant μ such that μ $V(Q + I(1)) = \nu V_{d-1}(Q)$. Secondly, by Theorem 2 for d-1 dimensions, for each unit vector u with $\langle u, v_d \rangle = 0$, there is a simple Λ -valuation $\psi_u = \psi_{-u}$ on $\mathscr{P}(\mathscr{A}_u)$ such that $\psi_u(Q' + I(\eta)) = \tilde{\psi}_u(Q')$ for $Q' \in \mathscr{P}(\mathscr{A}_u(H))$ and $0 \leq \eta \in \mathbb{Q}$. Now define the function ψ' on $\mathscr{P}(\overline{\Lambda})$ by

$$\psi'(P) = \mu V(P) + \sum_{u}' \kappa(u) \psi_u(P_u).$$

Then ψ' clearly has the properties required in Theorem 2.

We now set $\psi'' = \psi - \hat{\psi'}$. Then $\hat{\psi''}$ is a simple Λ -valuation on $\mathscr{P}(\overline{\Lambda})$, such that $\psi''(Q+I(n))=0$ for $Q\in \mathscr{P}(H)$ and non-negative integers n. Let u be any unit vector normal to a Λ -hyperplane. Replacing u by -u if necessary, we may suppose that $\langle u, v_d \rangle > 0$ (the case $\langle u, v_d \rangle = 0$ will not be relevant). We now define a simple Λ -valuation $\psi_u = \psi_{-u}$ on $\mathscr{P}(\mathscr{A}_u)$. Let $F \in \mathscr{P}(\mathscr{A}_u)$. We may translate F under Λ so that it lies in the half-space H^+ bounded by H which contains v_d . Let F' be the image of F under projection on to H in direction v_d , and let $\overline{F} = \operatorname{conv}(F \cup F')$. We define $\psi_u = \psi_{-u}$ by $\psi_u(F) = \psi''(\overline{F})$.

Now ψ_u is clearly invariant under Λ . This is obvious for $t \in \Lambda$ of the form t = $\sum_{i=1}^{d-1} m_i v_i$, and follows for $t = m_d v_d$ (with $m_d \ge 0$) since

$$\overline{F + m_d v_d} = (\overline{F} + m_d v_d) \dot{\cup} (F' + I(m_d)),$$

where $\dot{\cup}$ denotes union with disjoint interiors (or relative interiors, as appropriate). This translation invariance clearly allows us to make a consistant definition of $\psi_u(F)$ if $F \in \mathscr{P}(\mathscr{A}_u)$ but $F \nsubseteq H^+$. That ψ_u is a simple valuation follows from $F \dot{\cup} G = F \dot{\cup} G$, if $F, G, F \cup G \in \bigcap(A)$ for some $A \in \mathscr{A}_u$, with $\dim(F \cap G) \leq d-2$. If we now translate P under A so that $P \subseteq H^+$, we see that

$$P \stackrel{.}{\cup} \stackrel{.}{\bigcup} \{ \bar{P}_u | \langle u, v_d \rangle < 0 \} = \stackrel{.}{\bigcup} \{ \bar{P}_u | \langle u, v_d \rangle > 0 \},$$

where the unions are over the facets P_u of P. Thus

$$\begin{array}{l} \psi^{\prime\prime}(P) = \sum\limits_{\langle u, v_a \rangle > 0} \psi^{\prime\prime}(\bar{P}_u) - \sum\limits_{\langle u, v_a \rangle < 0} \psi^{\prime\prime}(\bar{P}_u) \\ = \sum_{u}^{\prime\prime} \varkappa(u) \, \psi_u(P_u) \, , \end{array}$$

where $\varkappa(u)=1$ or -1 as $\langle u,v_d\rangle>0$ or <0, and the sum extends over all unit vectors u with $\langle u,v_d\rangle \neq 0$. Combining this with the expression for ψ , and using $\psi=\psi'+\psi''$, we have the required expression for ψ . This completes the proof of Theorems 1 and 2.

There is an immediate consequence of Theorem 1. Let \mathscr{U}_k denote the family of ordered orthogonal sets $U=(u_1,\ldots,u_k)$, and for a polytope P, define by induction $P_U=(P_{(u_1,\ldots,u_{k-1})})_{u_k}$. We denote by U^\perp the linear subspace of E^d completely orthogonal to U. Then we have:

Theorem 3. Let ψ be a simple Λ -valuation on $\mathscr{P}(\overline{\Lambda})$. Then there is an expression

$$\psi(P) = \sum_{\substack{U \in \mathscr{U}_{d-r} \\ r=0}}^{d} \varkappa(U, P_U) V_r(P_U),$$

where $\varkappa(U,F)$ is odd as a function of U, and depends only upon the translation class modulo Λ of the translate of U^{\perp} containing F, and V_r is r-dimensional volume.

We note that the sum is, in fact, finite, since we have cancellation of the terms involving $(\pm u_1, \ldots, \pm u_k)$, unless $P_{(\varepsilon_1 u_1, \ldots, \varepsilon_j u_j)}$ is a (d-j)-face for $j=1,\ldots,k$ and some $\varepsilon_i=\pm 1$ $(i=1,\ldots,k)$.

There follows in turn from Theorem 3 the analogue for simple valuations of the polynomial expansion formula of the introduction. We write $\operatorname{ind}_r(P)$, called the *r-index* of P, for the smallest positive integer m such that each r-face of m spans a Λ -flat. If $\dim P = d' < d$, we naturally take $\operatorname{ind}_r(P) = 1$ for $d' < r \le d$. Then:

Theorem 4. Let ψ be a simple Λ -valuation on $\mathscr{P}(\overline{\Lambda})$. Then for $P \in \mathscr{P}(\overline{\Lambda})$ and integer $n \geq 0$, there is an expression

$$\psi(nP) = \sum_{r=0}^{d} n^r \psi_r(P, n),$$

where $\psi_r(P, n)$ is a simple Λ -valuation in P on $\mathcal{P}(\Lambda)$ which depends only on the congruence class of n modulo $\operatorname{ind}_r(P)$.

For, if
$$F = P_U(U \in \mathcal{U}_{d-r})$$
 is an r-face of P, then

$$\varkappa(U, nF) V_r(nF) = n^r \varkappa(U, nF) V_r(F),$$

where we employ the notation of Theorem 3, and $\varkappa(U, nF)$ depends only on the congruence class of n modulo $\operatorname{ind}_r(P)$. This gives the desired expression, which we shall call a near-polynomial. If now $P, Q \in \mathscr{P}(\overline{\Lambda})$, with $P \cup Q$ convex and $\dim(P \cap Q) < d$, then $\psi(n(P \cup Q)) = \psi(nP) + \psi(nQ)$. Comparing coefficients of n in the near-polynomial expansion, for n in a fixed congruence class modulo the lowest common multiple of $\operatorname{ind}_r(P)$ and $\operatorname{ind}_r(Q)$, we see that $\psi_r(P \cup Q, n) = \psi_r(P, n) + \psi_r(Q, n)$, which is the simple valuation property. Since the invariance under Λ is obvious, we have proved the theorem.

In fact, these coefficients are near-homogeneous, in the sense that

$$\psi_r(m P, n) = m^r \psi_r(P, m n),$$

as may be seen by comparing the coefficients of n^r in

$$\sum_{r=0}^{d} n^{r} \psi_{r}(m P, n) = \psi(m n P) = \sum_{r=0}^{d} (m n)^{r} \psi_{r}(P, m n).$$

We note also that, since $\psi_r(P, n)$ depends only on the congruence class of n modulo $\operatorname{ind}_r(P)$, we may replace n by any other number in the same congruence class, and, in particular, by a negative integer, without confusion.

Theorem 5. Let ψ be a simple Λ -valuation on $\mathscr{P}(\overline{\Lambda})$, which is near-homogeneous of degree r. Then $\psi(-P, -n) = (-1)^{d-r}\psi(P, n)$.

For,

$$\psi(P) = \psi(P, 1) = \sum_{U \in \mathscr{Y}_{dar}} \varkappa(U, P_U) V_r(P_U).$$

If $ind_r(P) = k$, then for any (suitably large) integer s,

$$\varkappa(U,(sk-n)(-P_U))=\varkappa(U,nP_U).$$

Further, $-P_U=(-P)_{-U}$, and $\varkappa(-U,.)=(-1)^{d-r}\varkappa(U,.)$. Thus

$$\begin{split} (sk - n)^r \psi(-P, -n) &= \psi((sk - n)(-P)) \\ &= (sk - n)^r \sum_{U} (-1)^{d-r} \varkappa(U, nP_U) \, V_r(P_U) \,, \end{split}$$

and

$$n^r \psi(P, n) = \psi(n P) = n^r \sum_U \kappa(U, n P_U) V_r(P_U).$$

The result is now clear.

Theorem 5 is at the basis of the Euler-type relation of Theorem 8 below.

3. General valuations. A number of the arguments we use in this section are exactly the same as those of [4], so we shall refer the reader to that paper for the proofs.

We let $\beta(F, P)$ and $\gamma(F, P)$ be the normalized internal and external angles of the polytype P at its face F, always measured intrinsically. Then we have [3]:

Lemma 1. The relations

$$\begin{split} & \psi(P) = \sum_{F} (-1)^{\dim P - \dim F} \beta(F, P) \, \varphi(F) \\ & \varphi(P) = \sum_{F} \gamma(F, P) \, \psi(F) \end{split}$$

between functions φ and ψ defined on all polytypes are equivalent. The sums extend over all non-empty faces F of the polytope P.

Lemma 2. Let \mathscr{A} be a translation class of $\overline{\Lambda}$ -flats. If φ is a Λ -valuation on $\mathscr{P}(\overline{\Lambda})$, let ψ be defined as in Lemma 1, and define $\psi_{\mathscr{A}}(P) = \psi(P)$ if aff $P \in \mathscr{A}$ and 0 otherwise. Then $\psi_{\mathscr{A}}$ is a simple Λ -valuation on $\mathscr{P}(\mathscr{A})$.

Lemma 3. For each translation class $\mathscr A$ of $\overline{\Lambda}$ -flats, let $\psi_{\mathscr A}$ be a simple Λ -evaluation on $\mathscr P(\mathscr A)$. For $P\in\mathscr P(\overline{\Lambda})$, write $\psi(P)=\psi_{\mathscr A}(P)$ if aff $P\in\mathscr A$. If φ is defined as in Lemma 1, then φ is a Λ -valuation on $\mathscr P(\overline{\Lambda})$.

There immediately follows the analogue of Theorem 4.

Theorem 6. Let φ be a Λ -valuation on $\mathscr{P}(\overline{\Lambda})$. Then there is a near-polynomial expression $\varphi(nP) = \sum_{r=0}^d n^r \varphi_r(P,n)$ for $P \in \mathscr{P}(\overline{\Lambda})$ and non-negative integer n, where $\varphi_r(P,n)$ is a near-homogeneous Λ -valuation of degree r in P, which depends only on the congruence class of n modulo $\operatorname{ind}_r(P)$.

Concerning the proof of this theorem, we only remark that $\operatorname{ind}_r(F)$ is a divisor of $\operatorname{ind}_r(P)$, for each face F of P. We easily extend this result to combinations $n_1P_1+\cdots+n_kP_k$ by means of the following

Lemma 4. Let φ be a Λ -valuation on $\mathscr{P}(\overline{\Lambda})$, let $Q \in \mathscr{P}(\overline{\Lambda})$ be fixed, and define ϑ by $\vartheta(P) = \varphi(P+Q)$. Then ϑ is a Λ -valuation on $\mathscr{P}(\overline{\Lambda})$.

An easy induction argument on k now yields

Theorem 7. Let φ be a Λ -valuation on $\mathscr{P}(\overline{\Lambda})$. Then for $P_1, \ldots, P_k \in \mathscr{P}(\overline{\Lambda})$ and non-negative integers n_1, \ldots, n_k , $\varphi(n_1P_1 + \cdots + n_kP_k)$ is a near-polynomial in n_1, \ldots, n_k of total degree at most d, whose coefficient of $n_1^{r_1} \ldots n_k^{r_k}$ is a near-homogeneous Λ -valuation of degree r_i in P_i , which depends only on the congruence class of n_i modulo $\operatorname{ind}_{r_i}(P_i)$.

The assertion about the total degree follows from expanding

$$\varphi(mn_1P_1+\cdots+mn_kP_k)=\varphi(m(n_1P_1+\cdots+n_kP_k))$$

as near-polynomials in $mn_1, ..., mn_k$, and m and $n_1, ..., n_k$, and comparing coefficients. In analogy with the mixed volumes, we may call the coefficients *mixed* Λ -valuations. The rest of the proof is clear, on hand of Theorem 6 and Lemma 4.

Finally, we establish the appropriate Euler-type relations. If φ is a Λ -valuation, we write $\varphi^*(P) = \sum_{F} (-1)^{\dim F} \varphi(F)$.

Theorem 8. Let φ be a near-homogeneous Λ -valuation of degree r on $\mathscr{P}(\overline{\Lambda})$. Then for each $P \in \mathscr{P}(\overline{\Lambda})$ and integer n, $\varphi^*(P, n) = (-1)^r \varphi(-P, -n)$.

We shall just sketch the proof here; the complete proof is analogous to that of Theorems 11 and 12 of [4]. From [6], it follows that, for each face G of P,

$$\sum_{F \supseteq G} (-1)^{\dim F} \beta(F, P) = (-1)^{\dim P} \beta(G, P).$$

For each translation class $\mathscr A$ of $\overline A$ -flats, let $\psi_{\mathscr A}^*$ be the simple valuation corresponding to φ^* (that φ^* is, in fact, a valuation is a consequence of what follows). Then

$$\begin{split} \psi_{\mathscr{A}}^*(P) &= \sum_F (-1)^{\dim P - \dim F} \beta(F, P) \, \varphi^*(F) \\ &= \sum_F (-1)^{\dim P - \dim F} \beta(F, P) \sum_{G \subseteq F} (-1)^{\dim G} \varphi(G) \\ &= \sum_G (-1)^{\dim G} \beta(G, P) \, \varphi(G) \\ &= (-1)^{\dim \mathscr{A}} \, \psi_{\mathscr{A}}(P) \,, \end{split}$$

since $\dim \mathscr{A} = \dim P$. Hence, by Theorem 5,

$$\varphi^*(P, n) = \sum_{F} \gamma(F, P) \psi^*(F, n)
= \sum_{F} \gamma(F, P) (-1)^{\dim F} \psi(F, n)
= \sum_{F} \gamma(F, P) (-1)^{\dim F} (-1)^{\dim F - r} \psi(-F, -n)
= (-1)^r \varphi(-P, -n),$$

since $\gamma(-F, -P) = \gamma(F, P)$. This proves the theorem.

4. An application. The investigation of this paper was prompted by work of Ehrhart (see [1]) on the lattice point enumerator G, which is defined by $G(P) = \operatorname{card}(P \cap \Lambda)$. We shall consider a generalization G(.;t) of G, where $t \in \mathbb{E}^d$, which is defined by G(P;t) = G(P+t). We observe that G(.;t) is a Λ -valuation on $\mathscr{P}(\overline{\Lambda})$, so the results we have obtained above all apply.

So, we first note that we have near-polynomial expansions

$$G(n P; t) = \sum_{r=0}^{d} n^r G_r(P, n; l),$$

where $G_r(P, n; t)$ depends on the congruence class of n modulo $\operatorname{ind}_r(P)$. In particular, if $\operatorname{ind}_r(P) = 1$, so that the affine hull of each r-face of P is a Λ -flat, then $G_r(P, n; t) = G_r(P; t)$ is independent of n. In case t = o, this confirms a conjecture of Ehrhart. Further, we have the Euler-type relation

$$G_r^*(P, n; t) = (-1)^r G_r(-P, -n; t)$$

= $(-1)^r G_r(P, -n; -t)$,

the latter equation following from G(-Q) = G(Q). Now, the number of lattice points in relint P is

$$\begin{split} G^0(P) &= G(\operatorname{relint} P) \\ &= \sum_F (-1)^{\dim P - \dim F} G(F) \\ &= (-1)^{\dim P} G^*(P), \end{split}$$

by the Möbius inversion formula ([5]; see also [3]). Hence

$$\begin{split} G^{0}(n\,P;t) &= (-\,1)^{\dim P} G^{*}(n\,P;t) \\ &= (-\,1)^{\dim P} \sum_{r=0}^{d} n^{r} G^{*}_{r}(P,\,n;t) \\ &= (-\,1)^{\dim P} \sum_{r=0}^{d} (-\,n)^{r} G_{r}(P,\,-\,n;\,-\,t) \,. \end{split}$$

In the particular case t = o, this result is due to [1], though his proof seems not to be generalizable to other valuations. The result is known as the *reciprocity law*.

References

- E. Ehrhart, Polynomes arithmetiques et methode des polyèdres en combinatoire. Basel-Stuttgart 1976.
- [2] H. Hadwiger, Translationsinvariante, additive und schwachstetige Polyederfunktionale. Arch. Math. 3, 387—394 (1952).
- [3] P. McMullen, Non-linear angle-sum relations for polyhedral cones and polytopes. Math. Proc. Cambridge Phil. Soc. 78, 247—261 (1975).
- [4] P. McMullen, Valuations and Euler-type relations on certain classes of convex polytopes. Proc. London Math. Soc. (3) 35, 113—135 (1977).
- [5] G.-C. Rota, On the foundations of combinatorial theory, I: Theory of Möbius functions. Z. Wahrscheinlichkeitstheorie 2, 340-368 (1964).
- [6] D. M. Y. Sommerville, The relations connecting the anglesums and volume of a polytope in space of *n* dimensions. Proc. Roy. Soc. London Ser. A 115, 103-119 (1927).

Eingegangen am 14. 6. 1978

Anschrift des Autors:

P. McMullen
Department of Mathematics
University College
Gower Street
London, WC1E 6BT