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Lattice invariant valuations on rational polytopes

By
P. McMULLEN

Abstraet. Let A be a lattice in d-dimensional euclidean space E¢, and A the rational
vector space it generates. If ¢ is a valuation invariant under A, and P is a polytope
with vertices in /1, then for non-negative integers n there is an expression ¢ (n P) =

d
an @r (P, n), where the coefficient @, (P, n) depends only on the congruence class
7=0

of » modulo the smallest positive integer k such that the affine hull of each r-face
of kP is spanned by points of A. Moreover, gy satisfies the Euler-type relation
Z(— NUnF e (F ) = (— 1) ¢ (— P, —n), where the sum extends over all non-
F

empty faces F of P. The proof involves a specific representation of simple such
valuations, analogous to Hadwiger’s representation of weakly continuous valuations
on all d-polytopes. An example of particular interest is the lattice-point enumerator
@, where G(P) = card(P N A); the results of this paper confirm conjectures of
Ehrhart concerning G.

1. Introduetion. In an earlier paper [4], we investigated the following situation.
Let A be an additive subgroup of d-dimensional euclidean space E¢, and let #(A)
denote the class of (convex) polytopes whose vertices lie in A. A valuation on Z(A)
is a real valued function @ such that, if P, @, P U Qe P (A), then

P(PUQ) -+ P NnQ)=gP)+¢@).
(The conditions imply that (PU @)+ (PN Q) =P+ @, and so ensure that
PnQeP(A) also.) We call ¢ a A-valuation if (P +t) = ¢(P) whenever
PeP(A) and t € A. Among other things, we proved that, under certain reasonable
conditions on A or ¢, if ¢ is a A-valuation on #(A), if Py, ..., Pre#(A) and
n1, ..., ng are non-negative integers, then @(ny P1 + -+ + ng Py) is a polynomial

d
in the n; of total degree at most d. In particular, p(nP) = > n"gr(P), and g is
r=0

a homogeneous A-valuation of degree r. Moreover, ¢y satisfies the Euler-type relation
Z(—— 1)dimF g (F) = (— 1)r g, (P), where the sum on the left extends over all non-
F

empty faces F of P.
A particular example of such a valuation is the lattice-point enumerator &, where
A is a lattice (discrete additive subgroup), and G(P) = card(P N A). Now, in several
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papers Ehrhart has investigated G(P) in case P e & (A), where A is the rationg]
vector space generated by A (see [1]). In a more general context, we began invest;.
gating in [4] valuations on P (A) which are only invariant under A. We obtaineq

an analogue of the polynomial expansion, and conjectured an Euler-type relation,
these generalizing Ehrhart’s results on G.

In this paper, we shall extend these results,
nomial expansion (and, incidentally, establishing a conjecture of Ehrhart), ang
proving the Euler-type relation. In the course of the proofs, we generalize a charae.
terization of [2] of certain simple valuations (which vanish on polytopes of smalley
dimension than d).

Though the basic approach is quite different, many of our result

in §3, repeat those of [4]; we shall therefore omit most of their p
the reader to the earlier paper.

strengthening that about the poly.

S, particularly
roofs, referring

2. Simple valuations. We begin our account by discussing the behaviour of a
simple valuation yp; that is, Y(P) = 0if dim P < d. More generally, if 4 is a A-flat,
that is, if 4 is a flat (affine subspace) spanned by points of A, we write P4) =
Z(A N A), and if o is a translation class (under A) of A-flats, we write P(A) =
U{Z(4)| 4 € o}. We then say that a A-valuation y o P (L) is simple if p(P) = 0
whenever P e 2(o/) with dim P < dim &/ (=dim 4 for any 4 € ).

We say a function  of & variable (unit) vectors wy, ..., uy is odd if

x(e1u1, ..., ExUg) = €1 ... exa (U1, ..., ug)

for all g, = 4 1 (t=1,..., k). If wis a unit vector, </, denotes the translation
class (under A) of A-hyperplanes with normal « (so that o7y = o/_,; observe that
/4y = 0 unless % is normal to some linear A-hyperplane). If P e P(A), we denote
by P, the face of P in direction u, that is, the intersection of P with its support
hyperplane with outer normal .

Our first two results generalize their analogues of [2].

Theorem 1. Let y be a simple A-valuation on P(A). Then for all # P(A); there
is an expression

Y(P)=puV(P)+ Zu”(u)wu(Pu),

where peR, V is ordinary volume, » is an odd function, y, = P
valuation on P (ol y), and the sum extends over all unit vectors u. Co
expression defines a simple A-valuation on 2 (1)

u S @ simple A-
nversely, any such

Theorem 2. Let {v1, ..., vq} be a basis of A, let H —= lin{yy, ..., va-1}, and write
I(n) = conv {0, v} for 0 < neQ. If y is a simple A-valuation on P (H), then
there is a simple A-valuation v on P(A), such that

Y@+ I(m)=np(Q).

Before proceeding with the proofs, let us make a remark about valuations. If 4
is a A-flat, and @ is a A-valuation on 2(4), we can define an associated A-valuation
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gon P(L), where I — A — g is the parallel linear subspace with a & AN A any
sint, by (@) = @@ +a) for Q€ #(L). Moreover, the appropriate group of
yanslations in L is L A A, which is just the subgroup of /A which preserves 4.
fe note that L is spanned by L N A4, so that L is a linear /A-flat. (More generally,
pAflat 418 a A-flat if and only if A N 4 == 0.) Thus our results do not merely apply
o linear A-flats, as might superficially appear.

We shall prove Theorems 1 and 2 in parallel; our proof closely follows that of
odifications to take account of the fact that our valuations
are only invariant under A. We first observe that the converse statement in Theorem 1
s clear. The remainder of the proof proceeds by induction on d.

We begin with the case d = 0. A (simple) /-valuation on the points of A (re-
garded as 0-polytopes) just assigns to each point a value, which depends (in general)
only on its equivalence class modulo /. Theorem 1 is then clear (we conventionally
, and u is the appropriate value. Theorem 2 is,

So, let us now assume that d = 1, and that the theorems hold for dﬁ— 1 dimensions.
The proof of Theorem 2 will be incorporated as a step in that of Theorem 1. We
take {v1, ---, vq} to be the given basis of Theorem 2, and use the notation of that
theorem. We define a function p on Z(H) by P(Q) = (€@ + I(1)) for Qe Z(H).
Clearly % is a simple A-valuation. By Theorem 1 for d — 1 dimensions, we have

an expression

Q) = Va1 (Q) + 2u(W) PulQu),
where the sum extends over all unit vectors u with <(u,vg) = 0, and Pu = P-u
isa simple A-valuation on P (oA y(H)), with oLy (H) the family of (d — 2)-dimensional
A-flats in H with normal .

Now, firstly there is a constant u such that u V(@ + I(1)) =7 Va-1(Q). Secondly,
by Theorem 2 for d — 1 dimensions, for each unit vector % with (u, vg) = 0, there
is a simple A-valuation yu = ¥-u OB P (A y) such that yu (@ + I(n) = Pul(@)
for ¢ € P(ALu(H)) and 0 =€ Q. Now define the function ¢’ on #(A) by

¥ (P) = p V(P)+ 2ur(w) pulPu)-

Then ' clearly has the properties required in Theorem 2.

We now set 3’ =y — ¢'. Then y'" is a simple A-valuation on #(A), such that
¥(Q+ I(n) =0 for Q€ P (H) and non-negative integers n. Let u be any unit
vector normal to a /A-hyperplane. Replacing by — u if necessary, we may suppose
that (u, vg) > O (the case {u, va) = 0 will not be relevant). We now define a simple
A-valuation yy = Y-y O0 P (s y). Let F € P (sl y). We may translate F under 4
% that it lies in the half-space H+ bounded by H which contains vg. Let F' be the
image of F under projection on to H in direction vg, and let F = conv(F U F').
We define yy = y—u DY pu(F) =" (F).

, li\Tow py is clearly invariant under A. This is obvious for t € A of the form t =
.zmwi, and follows for t = Mmgvq (with mg = 0) since
i=1

F L mgvg = (F + mava) U (F' + I(ma)),
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where U denotes union with disjoint interiors (

or relative interiors, as appropriate).
This translation invariance clearly allows us to make a consistant definition of

yu(F)Yif F e P(oAy,) but F ¢ H+. That v, is a simple valuation follows from 7 UG =
FUG I F,G FuGen(d) for some 4 €y, with dm(F N @) < d — 2.
If we now translate P under A so that P € H+, we see that

POUPY| <, va> < 0) =\ J{Pu] <, va> > 0},
where the unions are over the facets P, of P. Thus
YI(Py= 3 v"(Py)— 2 v (Py)
{u,va)>0 {u, wa) <0

= Z;;%(u) Yu(Pu),

where »x(u) =1 or —1 as {u,vg> >0 or <0, and the sum extends over all unit
vectors u with (u, vg)> = 0. Combining this with the expression for p, and using
Y =19 + 9", we have the required expression for y. This completes the proof
of Theorems 1 and 2. ‘

There is an immediate consequence of Theorem 1. Let % denote the family of
ordered orthogonal sets [/ = (%1, ..., ug), and for a polytope P, define by induction

Py = (P, ... ui-0))ug - We denote by U~ the linear subspace of E¢ completely ortho-
gonal to U. Then we have:

Theorem 3. Let vy be a simple A-valuation on P(A). Then there is an exPression

d
w(P):zx(U3PU)VT(PU)5 *

UeYar
r=0

where (U, F) is odd as a function o

f U, and depends only wpon the translation class
modulo A of the translate of U+

contasning F, and V, is r-dimensional volume.

We note that the sum is, in fact, finite, since we have cancellation of the terms
involving (Lu, ..., T ug), unless P, suy 18 & (d — j)-face for i=1,....,k%
and some ¢; = +1(4 = 1, v k).

There follows in turn from Theorem 3 the analogue for simple valuations of the
polynomial expansion formula of the introduction. We write ind,(P), called the
r-index of P, for the smallest positive integer m such that each r-face of m P spans
a A-flat. If dimP = d' < d, we naturally take ind,(P) =1 for d’ < r < d. Then:

Theorem 4. Let y be a simple A-valuation on P(A). Then for P e Z(A) and integer
n = 0, there is an expression

d
w(nP) = Zonfzp,(l), n),

where . (P, n) is a simple A-valuation in P on P(A) which depends only on the con-
gruence class of n modulo ind, (P).
For, if 7 = Py(UeUs—,) is an r-face of P, then

#(U,nF) V(0 F) = w2 (U, nF) V,(F),
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where we employ the notation of Theorem 3, and % (U, nF) depends only on the
congruence class of 7 modulo ind, (P). This gives the desired expression, which we
chall call a near-polynomial. If now P, Qe#(A), with PUQ convex and
dim (P N Q) < d, then p(n(P VU Q) = p(nP) + y(n Q). Comparing coefficients of
a7 in the near-polynomial expansion, for n in a fixed congruence class modulo the
lowest common multiple of ind,(P) and ind,(Q), we see that (P U@, n)=
wr( P, n) + pr(@, ), which is the simple valuation property. Since the invariance
under A is obvious, we have proved the theorem.
In fact, these coefficients are near-homogeneous, in the sense that

wpr{m P, n) = m” (P, mn),

as may be seen by comparing the coefficients of n' in

d d
Z'nf pr(m P, m) = p(mnP) = Z(mn)"zp,(P, mn).

r=0 =0

We note also that, since y, (P, n) depends only on the congruence class of » modulo
ind, (P), we may replace n by any other number in the same congruence class, and,
in particular, by a negative integer, without confusion.

Theorem 5. Let v be a simple A-valuation on P (A), which is near-homogeneous
of degree r. Then p(— P, —n) = (— 1)a-ryp(P, n).

For,

p(P)=v(P, 1) = % % (U, Py) V+(Puv).

If ind, (P) = k, then for any (suitably large) integer s,
%(U, (sk — n)(— Py)) = =(U, n Py).
Further, — Py = (— P)-y, and x(— U, .) = (— 1)@-r3 (U, .). Thus
(& — nyrp(— P, —n) = p((sk — n) (— P))
= (sk —n)r > u(— 1) 7"%(U, n Py) V+(Pv),
and
nr (P, n) = p(aP)=n" Jyx(U,nPu) Vr(Pv).

The result is now clear.
Theorem 5 is at the basis of the Euler-type relation of Theorem 8 below,

3. General valuations. A number of the arguments we use in this section are
exactly the same as those of [4], so we shall refer the reader to that paper for the
proofs.

We let g(F, P) and y(F, P) be the normalized internal and external angles of
the polytype P at its face F, always measured intrinsically. Then we have [3]:

Ardiiv der Mathematik 31 3
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Lemma 1. The relations

P(P) = p(— 1)dimP-dimF 8(F P) o (F)
@(P) =2 ry(F, P)y(F)

between functions @ and v defined on all polytypes are equivalent. The sums extend
over all non-empty faces ' of the polytope P.

Lemma 2. Let o7 be a translation class of A-flats. If @ is & A-valuation on 2(4),

let v be defined as in Lemma 1, and define 4 (P) = Y(P)ifaff Pe o and 0 otherwige.
Then v,y is a simple A-valuation on P(A).

Lemma 3. For each translation class 7 of A-flats, let Y be a simple A-evaluation
on P(of). For Pe P(A), write Y(P) =y (P) if aff Pe . If @ is defined as in
Lemma 1, then ¢ is a A-valuation on P ().

There immediately follows the analogue of Theorem 4.

Theorem 6. Let @ be a A-valuation on P(A). Then there is a near-polynomial
d

expression @(nP) = > nrg,(P,n) for PeP(A) and non-negative integer n, where
r=0

or(P,n) is a near-homogeneous A-valuation of degree r in P, which de

pends only
on the congruence class of n modulo ind,(P). .

Concerning the proof of this theorem, we only remark that ind,(F) is a divisor
of ind,(P), for each face F of P. We easily extend this result to combinations
n Py 4- o Lo Py by means of the following

Lemma 4. Let ¢ be a A-valuation on P(A), let Qe P(A) be fized, and define 9
by (P) = @(P + Q). Then & is a A-valuation on P ().

An easy induction argument on k now yields

Theorem 7. Let ¢ be a A-valuation on P(A). Then for Pi,..., Pre P(A) and
non-negative integers ny, s Ny @R Py A - oy Pyg) is a near-polynomial in
71, ..., g of total degree at most d, whose coefficient of nf* ... nE* 18 a near-homogeneous

A-valuation of degree r; in Py, which depends only on the congruence class of n; modulo
ind,, (Py).

The assertion about the total degree follows from expanding
@(mny Py 4« + mny Py) = @(m(ni Py + -+ 4 ny Py))

as near-polynomials in muL, ..., mng, and m and ny, ..., ng, and comparing coef-
ficients. In analogy with the mixed volumes, we may call the coefficients mixed
A-valuations. The rest of the proof is clear, on hand of Theorem 6 and Lemma 4.

Finally, we establish the appropriate Euler-type relations. If @ is a A-valuation,
we write @* (P) = > p(— 1)dimF g (F).
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Theorem 8. Let @ be a near-homogeneous A-valuation of degree r on 7 (A). Then
for each P € Z (1) and integer n, ¢* (P, n) = (—1)yrp(—P, —n)
We shall just sketch the proof here; the complete proof is analogous to that of
Theorems 11 and 12 of [4]. From [6], it follows that, for each face G of P,
S (= nERF g(F, P) = (— )UmP (G, P).
¥26

For each translation class =7 of /A-flats, let y* be the simple valuation corresponding
to ¢* (that ¢* is, in fact, a valuation is a consequence of what follows). Then

Y (P) =3 p(— NamP-anF g(F, P)g* (F)
:zp(_ 1)dimP—dimF/3(F, P)GgF(_ l)dimG(p(G)

=De(—)mB(G, P)p(@)
= (— I)dim“ytp‘%;(P) ,

since dim ./ = dim P. Hence, by Theorem 5,

g*(P,n) = > ry(F, P)y*(F,n)
=S py(F, P)(—1)4mFy(F, n)
:ZFV(F’ P)(— 1)timF(— ()imF-r g(—F, —n)
= (=1 (- P, —n),

since y (— F, — P) =y (I, P). This proves the theorem.

4. An application. The investigation of this paper was prompted by work of Ehr-
hart (see [1]) on the lattice point enumerator G, which is defined by G(P) =
card (P N A). We shall consider a generalization G (. ;?) of @, where t € E4, which is
defined by G(P;t) = G(P +¢). We observe that G(.;1) is a /-valuation on P (),
50 the results we have obtained above all apply.

So, we first note that we have near-polynomial expansions

d
GnP;t)= > nrGr(P,n;l),

=0

where G (P, n; t) depends on the congruence class of n modulo ind, (P). In particular,
if ind, (P) = 1, so that the affine hull of each r-face of P is a /A-flat, then G (P, n; )=
G, (P;t) is independent of n. In case t = 0, this confirms a conjecture of Ehrhart.
Turther. we have the Euler-type relation
GH(P,n;t) = (— 1) Gr(— P, —n; 1)
= (—1)rGp (P, —n; —1),

the latter equation following from G (—@) = G (Q). Now, the number of lattice points
in relint P is

GO(P) = G (relint P)

___zp(_ l)dimP——dimFG(F)

= (— )EmPEH(P),

33%
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by the Mébius inversion formula, (I5]; see also [3]). Hence

GO(nP;t) = (— 1)HmP Gk (g P 1)

= (— l)dimPi " GF (P, n; f)
r=0
d «
= (— l)disz (—n)r G (P, —n; —t).
r=0

In the particular case ¢ = o, this result Is due to 1],

though his proof seems not to be
generalizable to other valuations. The result is kno

wn as the reciprocity law.
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