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A GENERALIZED LOWER-BOUND CONJECTURE FOR
SIMPLICIAL POLYTOPES

P. McMULLEN anp D, W. WALKUP

Abstract. Let P be a simplicial d-polytope, and, for —1 < < d, let f(P)
denote the number of j-faces of P (with f_,(P) = 1). For k =0,..., [4d] - |,
we define

j=-1

R r
s = 3 0§70 e,
; d—k
and conjecture that
&“*(P) = 0,

with equality in the k-th relation if and only if P can be subdivided into a simplicial
complex, all of whose simplices of dimension at most d —k — 1 are faces of P,
This conjecture is compared with the usual lower-bound conjecture, evidence in
support of the conjecture is given, and it is proved that any linear inequality satisfied
by the numbers f;(P) is a consequence of the linear inequalities given above.

L. Introduction. Of considerable interest in the combinatorial theory of convex
polytopes are the problems of determining the maximum and minimum possible
numbers of faces of a polytope of a given dimension with a given number of vertices.
Motzkin [1957] put forward the Upper-bound Conjecture (actually in categorical
terms) for the answer to the maximal problem, and research into this conjecture
culminated recently in its proof by the first author of this paper [McMullen, 1970].
The corresponding minimal problem has proved less tractable, however, and even
now reasonable conjectures as to the form of the answer have been proposed in only
a few cases (see Griinbaum [1967, §10.2], McMullen [1971a]).

If we restrict our attention to simplicial polytopes, the minimal problem seems
more likely of solution. Following Griinbaum [1967] (as we shall largely doin matters
of terminology and notation), we let Sfi(P) denote the number of j-faces of a d-
polytope P, forj = 0, ...,d ~ 1. Oflong standing is the

Lower-BOUND CONJECTURE. Let P be a simplicial d-polytope. Then for
i=1..,d-1,
d+1

58> ()5 = ($71)i- Goem - a - s,

Moreover, if d > 4 then equadlity holds if and only if P is the union of d-simplices,
each (d — 2)-face of which is a face of P.

The polytopes described in the statement of the conjecture have been called
stacked polytopes. The class of stacked polytopes may be defined alternatively as
containing every d-simplex and each simplicial polytope obtained from a stacked
polytope with one fewer vertex by adding a pyramid over some facet (ie.,(d— 1)-face).
This inductive definition suggests the possibility of proving the Lower-bound
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Conjecture by some inductive argument on the number of vertices; :oioxah no
such proof has yet been found. Recently, Barnette [1971] has proved the ooE.noES
for the case j = d — 1 (in the dual formulation for simple polytopes). It is also
reported by Griinbaum [1970, p. 1154] that M. A. Perles has a proof mo.n the cases
Jo(P) < d + 11, but no details of his proof have been published. Relatives o.m the
Lower-bound Conjecture for triangulated 3- and 4-manifolds have been established
by Walkup [1970]. o ‘

g The principal object of this paper is to formulate a mgn_,»_.ﬂw:oz of the Lower-
bound Conjecture for simplicial polytopes. Let P be a simplicial d-polytope, and,
for integers k > —lande > d, let

k afe—j—1
(e) = ~1)kd A v (P),
GRS CS e S 10
where we adopt the conventions f_,(P) = 1 and f;(P) = 0 if j < I._ orj= &
(We will adhere to these conventions throughout the paper. They indicate Smr in
many respects, we are more interested in the boundary oomzv_nx of .w. ﬁ.rg. in P
itself.) We shall say that P is a k-stacked polytope if P admits a subdivision into a
simplicial complex, every (d — k — 1)-face of which is a face of P. (Thus a stacked
polytope is just a 1-stacked polytope.) We propose
GENERALIZED LowEeRr-BoUND CONJECTURE. Let P be a simplicial d-polytope.
=0,..[3d -1,
Then, for k [34] 24D > 0,
Moreover if d = 4 then equality holds in the k-th relation if and only if P is a k-stacked

polytope.

In the sections which follow we shall discuss this ooE.ooE.a and present some
evidence in its favour. In §2 we obtain a class of particularly mEGmn. nnwo—.wé_unonm
of the well-known Dehn-Sommerville equations using the quantities g,"’(P) and
develop some useful relationships involving applications of 2.9(.) to more general
simplicial complexes, including triangulations of open and closed &.oo__w and (d = -
spheres. In §3 we introduce classes 0, of simplicial d-polytopes which are simul-
taneously k-neighbourly and k-stacked. In §4 we observe Emm the closed oo=<nw
hull of the f-vectors (fo(P),...,fa—1(P)) of the vo_ﬁ.ovom in the o._»mwnm .m.w A
1 < k < [4d], is the closed convex conme C v.mono_.::u& by the ) inequalities
g¥*D(P) > 0 and the Dehn-Sommerville equations. If the Generalized Lower-
bound Conjecture is true, then C is in fact the closed convex hull of the f-vectors of all
simplicial d-polytopes. §5 contains some ?55« remarks on. the lower-bound
conjectures and some possible methods of mzm&c:m. them, It is shown that the
generalized conjecture implies the usual one and is strictly stronger no... & > 6. >_mo
sketched is a proof of the generalized conjecture for polytopes admitting a certain
type of shellable triangulation.

2. Reformulations of the Dehn-Sommerville equations. Let P do a simplicial
d-polytope. The numbers f;(P) of its faces satisfy a number of linear equations, known as

THE DEHN-SOMMERVILLE EQUATIONS. Fork = —1,...,d - 1,

LNTEAR = (=1L £ (P).
\M,A :A»ivb:& (=D (P
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Since we rm<m defined f;(P) = Oforj < —2 andj > d, it is actually unnecessary
to put any restrictions on the range of k; the additional equations are all trivial
For proofs of these equations, see Dehn [1905] (in case d = 4 or 5) moBEo_.i:m
{1927], or more recently, Klee [1964], Griinbaum [1967, §9.2), or &&Sc:n: and
Shephard [1971]. It is known that these equations aﬂo_ﬂainw flat of dimension
ﬁw& and this flat is spanned by the f-vectors of simplicial d-polytopes. It has E_wo:
variously observed (Vaccaro [1956], Klee [1964], Griinbaum [1967, p. .GN_ Walkuy;
H.G.\ow muw that the Dehn—Sommerville equations actually hold ».o.n a Enmm class ow.
simplicial complexes which include, in order of increasing generality: bounda
M@Bv_nwam. of simplicial d-polytopes, triangulations of topological (d - G-mvrnanm
m”w”%ﬂo MEMW.W_ MM. homology (d ~ 1)-spheres, and the Eulerian (d — 1)-spheres

) Zo.ao generally, let M be any finite simplicial complex
dimension at mostd — 1, and let f;(M) be the ::w:cmn of .\.-mmwﬁmowm_mnmonﬁ o.MMNWoMm
put f. (M) =1, (M) =0if j < -2 or j >d. We introduce the vo_vﬁoemmm

generating function .
M, 1) = 3 (=1 00 041,

It is nom&_.w seen, by multiplying the k-th Dehn—-Sommerville Equation by (—£)**?
and summing, that these equations are equivalent to the single relation ,

AP, 1~ = (=1)YHP,¢).
Now for any integer e > & we introduce a new function
89040 = (- 077 (M, 15).
It can be verified by &33 w=gm8mon that the reciprocal relation has the same form,
s, = (1= 075(M, 5.
It is readily seen that £“(M, 1) is a polynomial of degree at most e, specifically,

£, 1) = Tg oM+,
k

suunﬂGWkn&AS =0ifk < —2ork > e. The remaini .
= €., mainin, Sii] ()
determined by noting that g coeflicients g,“(M) may be

gOM, 1) = (1 ~ 1) AE. ..lul_v

= 3 fi(M( — )yt grL

-1
whence,

500N = 3 TciA Nl.-_vbos.

I==1 e—k—
The reciprocal formula

L= %

k=—~1

J e—k-1 ©
(52021 ) s,
may be derived in similar fashion.
The Dehn-Sommerville equations now have the following reformulation.

e — .
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Tucorem 1. Ler P be a simplicial d-polytope, and let e 2 d be any integer. Then,
fork =—1,.., el — 1,
&(P) = (17?8l 2(P).
In fact, we shall show that these equations are equivalent to the Dehn-Sommerville
equations, in the following way. We have

a-r1rf Aﬂ wwl%‘ (definition of g)

g9P, 1)

]

a- 3,?,_ |.H._|||~V

(Dehn-Sommerville Equations)

I

(- o0 (Py )

It

-1
(=1reet -y (P
(=D 1P, )

Comparing coefficients, we at once deduce the statement of the theorem. (Note that
the equations of the theorem are each given twice, except in the case k=[e]l-1,

e even, in which case the equation is trivial if e — d is even.)
Conversely, if the statement of the theorem holds, then

gOP, 1) = (1)1 g (P17,

teg@ A P, W.Hﬂ«v

:Tclﬁ H ﬂv.wsAw. MIMJV
(-1 - rg2(Pr )
(-DfP, 1),

which impties the Dehn-Sommerville equations.
In case e = d, the equations of Theorem 1 are (apart from a change of signs)
just the reformulated Dehn—-Sommerville Equations of Sommerville [1927]. (See

also Griinbaum {1967, §9.2.2].)
An obvious consequence of the definition of the numbers 2{2(M) and the simple

relation

(definition of g).

and so

I

\.AW‘~|NV

i

I

w?+ :QSw D = Q — QNSQS“ Q.
is
Lemma 1. Ler M be a simplicial complex of dimension at most d — 1, and let
e=d Then, fork =—1,..¢
w_,?:vQSv = g (M) - g2 (M),
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(where, of course, g,V (M) = 0), and, fork = —1, ...,e — 1,

k
£OM) = 3 £ OM).

. Now let K be a triangulation of a closed d-cell, let 6K denote the induced
triangulation of the boundary of K, and let K° denote the open complex K — 9K.
With respect to K° only we will adopt the convention f_,(K° = 0, so that
J(K) = £,0K) +£,(K°) holds for all j. “

LemMA 2. Let K be a triangulation of a closed d-cell, and let e > d + 1. Then
subject to the above convention, '

UK, 1) = g“0K, 1) + UK, 1).
This is an immediate consequence of f;(K) = Si(0K) + f(KO).

THEOREM 2. Let K be a triangulation of a closed d-cell, and let e > d + 1.
Then, subject to the above convention, for k = —1, ..., e,

&0K) = g(K) — (-1t e-2(K)
- &K% + (-1t wmnuvwlnﬁmcv.

For, let L be the triangulated d-sphere consisting of K, the joins of the &Bu:onm
of 0K to a new vertex v, and v itself. Then, forj = —1,...,d,

J(L) = fi(K) + £;-1(9K),

JL, 1) = K, 1) - f(3K, ©).

Now L is a triangulation of a d-sphere, and 9K a triangulat'on of a (d — 1)-sphere
for which the Dehn-Sommerville Equations apply. Thus ’

JK1—8) = (=11 - 0)f@K,t) = K, 1 =) — (1 - @K, 1— 1)
= f(L,1~1)

(=D)AL, 1)

= (=D"Yf(K, 1) - f(0K, 1)},

and so

or, rearranging terms,
J@K, 1) = fK, ) + (=1)*f(K,1 —1).
Replacing ¢ by #/(+ — 1) and multiplying through by (1 — ¢)%, we obtain
90K, 1) = gK, 1) — (1) 1 g9K, 7Y,
which leads to the first statement of the theorem. Using Lemma 2 to eliminate the
terms g“)(K, .) in this expression and cancelling the Dehn-Sommerville equations

gP0K, 1) = (=D gk, 1),
we obtain
90K, 1) = (= 1)1 g (KO, 1 TT) — gO(KO, 1),
from which the second statement of the theorem follows.

>=om3:~o&w8 consequence of the second part of the theorem and the convention
f-i(K®) = 0is

et — e
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COROLLARY. Let 0 € k < [4(d — 1)}, and let P be a k-stacked d-polytope.
Then g*"(P) = 0.

Of course, the case k = [4(d — 1)] (4 odd) is a trivial consequence of Theorem 1.

3. Neighbourly stacked polytopes. For any d and k satisfying d = 2 and
1 < k < [4d}, let Q¢ denote the class of simplicial d-polytopes P with the following
two properties: ‘ )

(a) P is k-neighbourly (that is, any subset of k vertices of P is the set of vertices
of a (k — 1)-face of P).

* (b) Pis a k-stacked polytope.

Observe that Q,% is just the class of stacked polytopes, since every polytope is 1-
neighbourly. At the end of this section we shall see that the definition of Q)¢ is as
restrictive as possible in the sense that the only d-polytopes which are simultaneously
k'-neighbourly and k-stacked for k < k' are d-simplices. .

We shall demonstrate the existence of a member P of 0, with v vertices for any d,
k, and v satisfying 2 < 2k < d < v. Letd, k, and v be such numbers and let Q be
any k-neighbourly 2k-polytope with v—d + 2k vertices. (For a discussion of
neighbourly polytopes, including a proof of the existence of k-neighbourly 2k-
polytopes with any number of vertices greater than 2k and a proof that such polytopes
must be simplicial, see Griinbaum [1967, §4.7 and §7].) We can construct a simplicial
subdivision L of Q as follows. Let x be any vertex of Q. Then the 2k-simplices of
L are the convex hulls of x and the facets of @ which do not contain x. Because Q0
is k-neighbourly every (k Z 1)-simplex of L is necessarily a face of 0, and so Q is a
k-stacked polytope. ) .

Now we may suppose that Q lies in d-dimensional space E° Let T beany (d — 2k)-
simplex in E* whose relative interior meets aff Q (the affine hull of Q) in the point x
alone. Then P = conv(Q U T) is a simplicial d-polytope with v vertices. The faces
of P are of two types: the convex hull of T and a face of @ which contains x, and the
convex hull of a face of T and a face of Q which does not contain x. We see at once
that P is k-neighbourly.

The simplicial subdivision L of Q induces a simplicial subdivision K of P whose
d-simplices are the convex hulls of T and the 2k-simplices of L. From this it follows
that P is a k-stacked polytope. For let R be any (d — k — 1)-simplex of K. From the
description of K, R is the convex hull of a face of T (possibly T itself) and a face G
of O which does not contain x. In case the face of T is proper, R is clearly a face
of P from the classification of the faces of P given above. In case R = conv (T v G),
the face G of @ has at mostd — k — (d — 2k + 1) = k — 1 vertices, and since Q is
k-neighbourly, this implies that conv ({x} U G) is a face of Q, so that again R is a
face of P. This completes the proof that P is k-stacked and hence is a member of
(o)

Of course since P is k-neighbourly

s =40 )
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for -1 < i < k. Consequently

Q:::¢n.w_¢;xiAMuMVAMH_V

_ A v+j—~d—1 v
Jj+1
for —1 < j < k. Moreover, since P is k-stacked, it is also j-stacked for j > k,
and it follows from the final corollary of the previous section that
5:+:Q... ) =0,

for k < j < [4d]. These calculations, among other things, establish the remark
made at the beginning of this section. For, if & < k' and P is simultaneously k’-
neighbourly and k-stacked, then

A e+w|&l~| o
k+1 e
But this is impossible unless » = d + 1, i.e., unless P is a d-simplex.

4. The f-vectors of simplicial polytopes. Let P be a simplicial d-polytope. The
sequence S(P) = (fo(P), /y(P), ..., fa—1(P)) is known as the f-vector of P. In this
section we shall investigate the closed convex hull of the f-vectors of all simplicial

polytopes. "
- The Dehn-Sommerville equations
ha::.:A%v = — g@r L (Pp),

and the inequalities

-1 <k < B@d~-D}

W»A.:.:Amv WO» 0< k < Hw.&u - Hu

with the usual convention f_,(P) = 1, determine a simplicial cone C of dimension

[3d] in the space of all sequences (fy, ...,f;—,). The Generalized Lower-bound
Conjecture would imply that the f-vector of every simplicial d-polytope lay in C.

We shall now show that the conjecture, if true, is the strongest possible conjecture
involving linear inequalities. Specifically, we shall prove

THEOREM 3. The closed convex hull of the f-vectors f(P), P€ 0,5, 1 < k < [3d]
is the cone C. v

We first observe that the d-simplex T is in each class Q,% and that g+ (T4 = 0
for 0 < k < [4d], so that f(T*) is the apex of C. From the last section we also see
that each f(P), Pe Q.4 1 < k < [4d], lies in C. Finally, if we denote by P,%(v) a
member of @,¢ with v vertices, it is easily computed that

lim N%wn:@d - m\".
v A v+k—-d-1 v
k+1

foreachj, k = 0, ..., [3d] — 1, and so C is contained in the closed convex hull of the
f(P). This proves the theorem.
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5. Further remarks. We first justify an assertion made in the introduction.

THEOREM 4. The Generalized Lower-bound Conjecture implies the Lower-bound
Conjecture for d > 2. Moreover, for d > 6 the lower-bound inequalities and the
Dehn-Sommerville equations together fail 1o imply the generalized lower-bound
inequalities.

Let P be a simplicial d-polytope, d > 2. Combining the expressions for the
f;(P) in terms of the g“*V(P) with the Dehn-Sommerville equations of Theorem 1,

we obtain
f(P) = A; + By,
for1 <j <d-—1, where

4= 2 ((50)) - (G2)) e

0= ((30) - (52

K=1
The term for k = 3(d — 1) (d odd) is automatically zero, and so can be omitted.
Resubstituting g_,4*V(P) = 1 and g@*?(P) = fo(P) —d — 1 into the expression
for A; and rearranging, we obtain
d d+1
4= (3)ner= (571~ Gemr —a =03,

which is just the right-hand side of the inequality in the Lower-bound Conjecture.
Finally, we note that each of the bracketed factors in the expression for B; is
non-negative.

From the above observations it follows immediately that the generalized lower-
bound inequalities g+ (P) > 0 imply the usual inequalities f;(P) > A4;. Moreover,
if equality holds in the usual inequality with 1 <j <d -1, then B; = 0. And if
d > 4 the first term of By is present and the coefficient of 2,4*Y(P) is non-zero.
Thus g,@*"(P) = 0, and by the Generalized Lower-bound Conjecture P is 1-stacked.
This establishes the first part of the theorem, o o

For the second part of the theorem consider the set of integers g%y, ..., gt
d > 6, given by

1, if k=-1, v
o, if 0<k<Bdl-3,
&a* = I, if k=pd]-2,

-1, if k=1[H4d]~-1,

g If Bdl<k<d-1,
and let f* = (f*,, ..., /i) be the f-vector derived from the g,* by the formulae
of §2. By Theorem 1 and the definition of the g,*, the f;* satisfy the Dehn—Sommerville
equations. Now write f;* = A;* + B;* as above. Since d > 6, it follows that
[3d] ~ 2 = 1, and hence ;

(72 - () - () + ()

() e

B*

f)
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Thus f;* > A;*, i.e., f* satisfies the lower-bound inequalities. But by construction
J* does not satisfy the generalized lower-bound inequalities g,* > 0. This completes
the proof of the theorem.

We also mention here the following interesting fact, the independent discovery
of which originally prompted our collaboration on this paper. The inequalities of
the Lower-bound Conjecture include the inequality

d+1
2

Assuming this inequality for alld < d*, observing that the vertex figure of a simplicial
polytope is again a simplicial polytope, and applying an inductive argument, it is
possible to derive the complete set of inequalities of the Lower-bound Conjecture
for polytopes of dimension d*. We omit the details of the proof since we have not
seen how to apply the same kind of arguments in the setting of the Generalized
Lower-bound Conjecture.

The first author of this paper has proved the Generalized Lower-bound Conjecture
in case fo(P) < d + 3 in the wider context of the complete classification of the
J-vectors of simplicial d-polytopes with at most d + 3 vertices (McMullen :3:5.
The proof of the most interesting case of exactly d + 3 vertices uses the technique of
Gale diagrams (Griinbaum [1967, §5.4 and §6.3], McMullen—-Shephard {1970, §3.4]).

If P has a triangulation K which is shellable, that is, if the d-simplices of K can be
labelled S|, ..., S,, in such a way that, for j = 2, ..., m,

-1
B =S;n AC mmv.
i=1

is topologically a (d — 1)-ball, then arguments analogous to those of McMullen
[1970] show that, for —1 < k < d,

&K 2 0.

In fact, g“*P(K) is just the number of j for which B, is the union of the k + 1
facets of S, which contain some (d — k — 1)-face. This face must, of course, be an
interior face of K. Using Theorem 2 (with e = d + 1), we see that if k¥ < [3d] — 1
and K has no interior k-faces, then g%V, (K) = 0, and so '

&4t (P = V(K 2 0.

) Now an application of the theorem of Tverberg [1966] to the Gale diagram of a
simplicial d-polytope P with

g4 I(P) = £,(P) — dfo(P) + A V >0,

k+1)d-1
e M 1{ ’
vertices (which may be assumed to be in sufficiently general position) shows that P
has a shellable triangulation with no interior k-faces, so that, for0 < j < k,

WNA.:.:ANUV W O
It should be noted that this range of possible values of v is not large. In case
k = [4d] — 1, we see that we must have v < d + 2, when the conjecture is already

known to hold. In the case k¥ = 1 we obtain the usual lower-bound inequality for
f1(P) provided v < 2d — 1. By the inductive argument using vertex figures mentioned
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above it can be shown that the usual lower-bound inequality for f(P) holds provided
v € 2d — j. We again omit the details of the proof.

We have remarked that the Dehn-Sommerville Equations apply to triangulations
of (d — 1)-spheres and more general complexes as well as boundary complexes of
simplicial d-polytopes. With at most minor adaptations in the proofs, all the positive
results of this paper hold equally well for triangulated (d — 1)-spheres. The one
possible exception occurs in the paragraph immediately above, which relies on the
use of Gale diagrams. Mani [1972] has shown that any triangulation of a (d — 1)-
sphere with at most d + 3 vertices is isomorphic to the boundary complex of some
d-polytope; hence the reliance on Gale diagrams three paragraphs above is only a
matter of convenience. Nevertheless, there are real differences as well as deep
theoretical questions to be met with in extending results on simplicial polytopes to
triangulated spheres (see Griinbaum [1970}). We have therefore satisfied ourselves
with venturing the Generalized Lower-bound Conjecture for polytopes only.

References

D. W. Bamnette, 1971, “ The minimum number of vertices of a simple polytope *, Israel J. Math., 9
(1971), 121-125.

M. Dehn, 1905, ** Die Eulersche Formel in Zusammenhang mit dem Inhalt in der nicht-Euklidischen
Geometrie ’, Math. Ann., 61 (1905), 561-586.

B. Griinbaum, 1967, Convex Polytopes (Wiley & Sons, London-New York-Sydney, 1967).

— -, 1970, * Polytopes, graphs and complexes **, Bull. Amer. Math. Soc., 16 (1970), 1131-1201.

V. L. Klee, 1964, “A combinatorial analogue of Poincaré’s duality theorem , Canad. J. Math., 16
(1964), 517-531. .

P. Mani, 1972, * Spheres with few vertices ”, J. Combinatorial Theory (to appear).

P. McMullen, 1970, “ The maximum numbers of faces of a convex polytope ’, Mathematika, 17
(1970), 179-184. -

— ., 1971a, “ The minimum number of facets of a convex polytope ”’, J. London Math. Soc.
(2), 3 (1971), 350-354.

————, 1971b, ** The numbers of faces of simplicial polytopes ", Israel J. Math., 9 (1971), 559-570.

—— and G. C. Shephard, 1971, Convex polytopes and the upper-bound conjecture. London Math.

~ Soc. Lecture Notes Series, Vol. 3 (1971).

T. S. Motzkin, 1957, * Comonotone curves and polyhedra ”, Abstract 111, Bidll. Amev. Math. Soc.,
63(1957), 35. .

D. M. Y. Sommerville, 1927, ‘* The relations connecting the angle-sums and volume of a polytope in
space of n dimensions ”, Proc. Roy. Soc. London, A, 115 (1927), 103-119.

H. Tverberg, 1961, « Ageneralization of Radon’s theorem » J. London Math. Soc. (1), 41
(1966), 123-128.

M. Vaccaro, 1956, “ Sulla caratteristica dei complessi simpliciali x-omogenei >, Ann. Mat. Pura
Appl. (4), 41 (1956), 1-20.

D. W. Walkup, 1970, < The lower bound conjecture for 3- and 4-manifolds >, Acta. Math., 125
(1970), 75-107.

University College London.
Washington University, St. Louis.

52A25: Convex sets, Convex polyhedra.

(Received on the 12th of July, 1971.)



120 3. Combinatorial Theory of Convex Polytopes

We next prove that for 0 < j < d we have

d=i g N .

ST -0 o
The validity of (3) is proved using identities from Appendix 3 as E&oﬁa.ﬂ
difd—N\fp—d+i—1\g o —J-1 —d+i-1
DI QR S S P

ddf(—-p+d\f —-j—1
- ﬂld.?ﬁMe A vm ,VAQ .Wb - -.v

(U] I.I.U..T&I..\.lnm
74

af P
d—jl
as desired.

Using (3) we can now rewrite the second sum in (2):

md—i vl&+~.lmv .

0 |
aJfd—i m|u+....~v ) Aml.xuluf.t_v
NMQA j X i FW,: j i

(W)= 2000

Hence, we have the two remaining terms in the desired expression.

~—{(c) Although we already know that the statement is true, we-would like to---—
give a direct proof. For j > n + 1, each term in the first sum in (2) has the
value 0. In the second sum, all terms corresponding to values of i that are

> d — j also have the value 0. Therefore,

EI& l'- — -IH
o/d,p) = 3 A&._Xm dri v

i=0 J 4

Combining with (3) above, we then get
p

®d,p) = A& I\.v.
When m = n, this completes the proof. When m = n — 1, it remains to
consider the value j = m + 1 = n. However, this is easily handled by
returning to the expression for @(d, p) in case (b). The details are left to the
reader. O
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By duality, we also have an Upper Bound Theorem for the simplicial
d-polytopes. It may be stated as follows:

Corollary 18.3. For any simplicial d-polytope P with p vertices we have

SRS Oy fdp)  j=1,....d— 1
If P is neighbourly, then
P)=@,_;_d,p, j=1...,d-1

If P is not neighbourly, then

J{P) < ®y_1_{d, p),
(and possibly also for smaller values of j).

j=n-—1...,d -1,
Finally, it is interesting to note that (f) and (h) in the proof of Theorem
18.1 show that
d R d s
p) TQ.A\.V\S =Y (- cE.A ! .v%g i=0,....4,
j=0 i j=o. d—i

ie. (fo(P), - - ., fa-1(P)) satisfies the Dehn-Sommerville System of Theorem
17.5. Hence, we have an independent proof of the Dehn-Sommerville
Relations which does not rely on Euler’s Relation. v

§19. The Lower Bound Theorem

In the preceding section we determined the largest number of vertices, edges,

___etc. of a simple d-polytape, d > 3, with a given number of facets. In thissection.

we shall find the smallest number of vertices, edges, etc. The resuit which is
known as the Lower Bound Theorem was proved by Barnette in 1971-73.
Like the Upper Bound Theorem, it is a main achievement in the modern
theory of convex polytopes. .

As we saw at the beginning of Section 18, all simple 3-polytopes with a
given number of facets have the same number of vertices and the same
number of edges. So, as in the case of the Upper Bound Theorem, the problem
is only of significance for d > 4.

We define

d—Dp—(d+1)d-2),

e?s,n&l&i .c
i+ 1)P T:a b=j j=L...,d-2

N”Ou B
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Note that
d+1
®a-2(d, p) = dp — A& _ _v

=dp — (@* + dy2.

With this notation the Lower Bound Theorem may be stated as follows:

Theorem 19.1. For any simple d-polytope P with p facets we have
fAP) =z ofd, p), j=0,...,d -2
Moreover, there are simple d-polytopes P with p facets such that

C P =ofdp), i=0....d-2

Since o3, p) = 2p — 4 and ¢,(3, p) = 3p — 6, we see immediately as in
the case of the Upper Bound Theorem that the theorem is true for d = 3, in
fact, with equality for all simple polytopes.

Before proving Theorem 19.1 we need some notation and some pre-
paratory lemmas. .

We remind the reader that a facetsystem in a polytope P is a non-empty set
& of facets of P. When & is a facet system in P, we denote by %(%) the union
of the subgraphs %(F), F € &, of 4(P), and we say that & is connected if

_ %(%) is a connected graph. These concepts were introduced in Section 15,
where we also proved some important results about connectedness prop-
erties of ¥(¥).

When & is a facet system in P and G is a face of P, then we shall say that
Gisin & or G is a face of &, if G is a face of some facet F belonging to .
In particular, the vertices of & are the vertices of the facets in .

In the following, we shall restrict our attention to-facet systems-in-simple
polytopes. Let & be a facet system in a simple d-polytope P, and let x be a
vertex of &. Then x is a vertex of at least one member F of &. Therefore, the
d — 1 edges of F incident to x are edges of . If the remaining edge of P
incident to x is also in &, we shall say that x is internal in & or that x is
an internal vertex of . If, on the other hand, the remaining edge of P
incident to x is not in &, we shall say that x is external in & or that x is an
external vertex of &. In other words, a vertex x of & is external if and only if
it is a vertex of only one member of &.

The first lemma ensures the existence of external vertices under an obvious
condition. (In the following, we actually need only the existence of just one
external vertex.)

Lemma 19.2. Let & be a facet system in a simple d-polytope P such that at
least one vertex of P is not in &. Then & has at least d external vertices.

" "Now, Tet (x;, F,) and &, be @S
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Prook. If all vertices of & are evirnsh then each member of ‘Q .oo:ﬁcﬁnm
at least d external vertices. Sups\= that some vertex z of & is internal. By
the assumption we also have a waiet ¥ ROt 1 & We then use the d-con-
nectedness of %(P), cf. Theoren: 13610 get d independent paths joining y
and z. Traversing the ith path from ¥ 10 = let x; be the first vertex which is in

&.Then the preceding edge is not 2 '«_and therefore x;is external in &. Since

the x,'s are distinct, we have the desired conclusion. =

During the proof of Theorem {5.7 it was shown that if .Q. is a connected
facet system in P and & has at leat 1W0 members, then there is 2 member Fo
of & such that #\{F,} is again connected. When P is simple, we have the

following much stronger result:

& i i d-polytope P.
Lemma 19.3. Let & be a connected facet system i a simple d-p
Assume that at least one vertex o P i not it &, and that & has at least two

members. Then there is a pair (Xe- Fo) formed by an external vertex Xo s
and the unique member Fo of ¥ contéining Xo such that the facet system
S \{Fo} is again connected. .
122 that & has external vertices. Let (x1, F1)
. . d the unique member F,
be a pair formed by an external ver€X X1 of  an
of & containing x,. Suppose that #\{F,) is not connected. Let &, be a
maximal connected subsystem of NIF1) ia.mgz prove that then there is
another pair (x, F;) such that guiF,}isa connected subsystem of

#\{F,}. In other words: if F\{IF1} is not connected, :51 we can replace
(x;, Fy) by some (x,, F,) in such a manner Em.ﬁ the maximum n:n:.xs. of
members of a connected subsystem of S\{F 2} is larger than the maximum
number of members of a connected subsystem of $\{F,}. Continuing this
procedure eventually leads to a pair (Xo» Fo) with the property that #\{Fo}

is connected.

Proor. We know from Lemma

explained above. We first_prove that

i &, note that y # x, since F,

&, v {F,} is connected. Let y be any vertex of &'y ;

is the .uEw~ member of & contaiming X1 and .“... 1#7 wvhhvn owﬂﬂooaom:wwm of
i i . ooy and x;. Traversing this patn from y X1,

& there s a path in 95 join e the first edge of the path not in .

let F be a member of & containing e ‘
(Since x, is not in &,, such an edg¢ certainly exists.) Then n_anm_w .QWC W, }
is connected. By the maximality property of .m\“ y we must have I = T,
whence &, U {F,} is connected, a8 desired. Let & = S\ Y {F,})- Then

" is non-empty, possibly disconnected. By Lemma 19.2, &, has external

vertices. Not every external vertex of ' can be in F,. For then every path
joining a vertex of &} and a verteX of Pnotin &7 would have to pass through
a vertex of F,, whence the subgraph of %(P) spanned by ext Ph\ext F, would
be disconnected, contradicting Theorem 15.5. Let x, Uw an mﬁ.ﬂ.:& vertex of
& not in F,, and let F, be the unique member of &, containing x,. Then
actually x, is external in &. For if not, then x, would have to be a vertex of
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some member F of &,, since F, is the only member of & containing x,,
and x, is not in F,; but then &, U {F,} would be connected, contradicting
the maximality property of &,. Hence, x, is external in &, the facet F, is the
unique member of & containing x,,and &, U {F,}isa connected subsystem
of #\{F,}, as desired. 0

Lemma 19.4. Let & be a connected facet system in a simple d-polytope P.
Assume that at least one vertex of P is not in &, and that & has at least two
members. Let (Xo, Fo) be as in Lemma 19.3. Then at least d — 1 vertices of P
are internal in & but external in #\{Fo}.

PROOF. By the cunnectedness of &, there is a member F of & with F # Fg and
F A Fy # &. Then by Theorem 12.14, the face F 1 F,, has dimensiond — 2,
whence F and F, have at least d — 1 vertices in common. Being vertices of
two members of &, such d — 1 vertices are all internal in &. So, if they are
all external in #\{F,}, we have the desired conclusion. If they are not all
external in #\{F,}, one of the vertices, say y, is internal in S\{F o). In
particular, y # xo. Then by Theorem 15.7 there ared — 1 independent paths
in 9(%) joining x¢ and y. Traversing the ith path from x, to y, let x; be the
first vertex which is in %\ {Fo}. Then the preceding edge [x;, x;] is not in
P\{F,}, and therefore x, is external in \{F,}. In particular, x; # xo and
x; # y. Moreover, since [i;, x;] is not in &\ {Fo}, it must be in Fy, whence x;
is a vertex of F,. Since x; is also a vertex of &\ {F}, we see that x; belongs to
at least two members of &, showing that x; is internal in . In conclusion,
the d — 1 vertices x,, . .., Xq_; are internal in & but external in #\{F}.

: O

Lemma 19.5. Let & be a facet system.in a simple d-polytope P such that at
least one vertex of P is not in &. Then there are at least d facets G, ..., Gyof

P such that Gy, . ..., Gy are not in & but each contains a (d — 2)-face which

isimns. T T

PROOCF. Let x be a vertex of P not in . Let Q be a dual of P in R?, and let y
be an anti-isomorphism from (#(P), <) onto (#(Q), <). Writing

.Q"ANM‘—...;NH:.?

x is not a vertex of any of the F;’s, whence the facet Y({x}) of Q does not con-
tain any of the vertices Y(F,) of Q, cf. Theorem 9.8. Let z be a point of R4
outside @ but “close” to Y({x}) such that every vertex of Q is also a vertex
of Q' == conv(Q U {z}); then the vertices of Q' are the vertices of Q plus the
vertex z and the edges of Q' are the edges of Q plus the edges [z, u], where
ueext y({x}). (Supposing that o € int P, one may take 0’ to be the polar of a
polytope obtained by truncating the vertex x of P, cf. Section 11.) By Theorem
15.6 there are d independent paths in 9(Q’) joining the vertices z and Yy(F,).
Traversing the ith path from z to ¥(F,), let y; be the vertex preceding the
first of any of the vertices Y(F,), ..., $(F,) on the path. Then by duality,
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YA, - s W ({ya)) are d facets of P not in &, each having a (d — 2)-
face in common with some member of &. O

We are now in position to prove the Lower Bound Theorem:

ProoF (Theorem 19.1). We divide the proof into four parts. In Part A we
prove the inequality for j = 0, and in Part B we prove the inequality for
j = d — 2;here the lemmas above are used. In Part C we cover the remaining
values of j; the proof is by induction. Finally, in Part D we exhibit polytopes
for which we have equality.

A. We choose a vertex x of P and let
S ={FeF, (P)ix¢F}.

Then %(&) is the subgraph of ¥(P) spanned by ext P\{x}, whence, by
Theorem 15.5, & is a connected facet system. The number of members of &
isp—d.

Only one vertex of P is not in ¥, namely, the vertex x. The d vertices of P
adjacent to x are external vertices of &, and they are the only external vertices
of &. Hence, the number of internal vertices of & is fo(P) — (d + 1).

Ifp = d + 1, then P is a d-simplex and the inequality holds with equality.
K p > d + 2, we remove facets from & one by one by successive applications
of Lemma 19.3. At each removal, at least d — 1 vertices change their status
from internal to external by Lemma 19.4. After p — d — 1 removals, we end
up with a one-membered facet system. The total number of vertices which
during the removal process have changed their status is therefore at least

@—d-1d-1).
Since the number of internal vertices equals fo(P) — (d + 1), it follows that
fotP) = @+ Dz = d = M~ 1 o =
whence
foP)z(@d—1p—d+1)d-2),

as desired.

B. This part is divided into two steps. We first prove that if there is a
constant K depending on d only such that

Ja-2(P) 2 dfy_1(P) - K 1¢Y)
for all simple d-polytopes P, then the desired inequality .
JaeoP) 2 dfy—1(P) — (& + d)2 )]

must hold. Then, in the second step, we show that (1) holds with K = d? + d.
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Nuppose that the inequality (2) does not hold in general. Then there isa
ple d-polytope P in R such that

JieaP) =dfu (P)— (@ + D2
mer > 0. Let @ beadual of Pin R°. Then Q is a simplicial d-polytope

"

R

i
Wb
! F(Q) = dfo(Q) - (@ + d)2 — .

. Theorem 11.10 we may assume that there is a facet F of Q such that the
,s_ __omoaw_ projection of R onto the hyperplane aff F maps Q\F into ri F.
,.,.__ Q' denote the polytope obtained by reflecting @ in aff F. Then @, =
’: , Q' is again a d-polytope by the property of F. It is clear that Q, is
4,._:.&&&. Since F has d vertices, we have

w 1Q) = 2o(@) — d,

G since F has
, d
va =@ - a2

,;_wnm_ we have .
£1(@y) = U Q) — (d* — d)2.
We then get
1@ = 2dfo(@) — (@ + d)y2 — 1) — (@ — D2
= dfe(Qy) — (@ + d)f2 — 2r.
be a dual of Q. Then P, js a simple d-polytope with
fooa(Py) = dfy_y(P) — (@ + D)2 = 2r

’oﬂw_

\h . - . . .
pntinuing this construction we conclude that no inequality of the form (1)

W__.. hold for all simple d-polytopes. This completes the first step.
To carry out the second step, let P be any simple d-polytope, and let
(P). Let xand SbeasinPart A.If p=d + 1,then Pisa d-simplex,

A.I._v

d—1

ad + 1) — @ + 2
=dp — (d* + d)/2

> dp — (d* + d),

desired. For p 2 d + 2, we shall remove the facets in % one by one by
ccessive applications of Lemma 19.3 as we did in Part A. Let F; denote the

[ Lled .\. é-1
W hence

I

Jaa(P)

[

a
sy

is mroimmrﬁ P, fails to satisfy (2) by at least 2r faces of dimension d S R
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ith member of & to be removed, let x; denote a corresponding external vertex
of P \{Fis---» Fic1} contained in F;, and let

Fy={F;nFFinF;#@,j=1+ 4,....p}, i=L..,p—d-1

Then &; is a facet system in F;, cf. Theorem 12.14. )

Now, let us say that a (d — 2)-face G of F; is of type 1in F,if G is not in
&, but some (d — 3)-ace of G is in ;. Lemma 19.5 can be applied to the
facet system & in Fy, for x; is a vertex of F;notin &;. Asa result we getd — 1
(d — 2)-faces of F; of type 1. Note that a (d — 2)-face of type 1 in F;isnota
face of any F; with j > i.

Fori=1,...,p—d—1llet

g; = max{jli <J, FinF;# Y-

Then G; = F; " Fgisa(d — 2)-face of F; which we shall cali a (d — 2)-face of
type 2 in F;. Note that F; and F,, are the only facets of P containing G;,
of. Theorem 12.14, that G, is not at the same time of type 1 in F;, and that G;
is neither of type 1 nor type 2 in Fg,.

The discussion above now shows that for i=1, ..., p—d — 1, the
number of (d — 2)-faces contributed by F, is at least d, namely, d — 1 of
type 1 and one of type 2. Therefore, the total number of (d — 2)-faces of P

is at least .
p-d-Dd=dp— @ +d),
as desired.

C. Using induction on d we shall prove that the inequality holds for the
remaining values of j, namely, j = 1,...,d — 3. We first note that ford =3
there are no such remaining values; this ensures the start of the induction.
So, let d > 4 and assume that the inequality holds for dimension d ~ 1 and
j=1..,(d —_1).— 3. Let P be a simple d-polytope with p facets, and let j
have any of the values 1,...,d — 3. By a j-incidence we shall mean a pair
(F, G) where F is a facet of P and G is a j-face of F. (This notion of incidence
differs from the one used in the proof of the Upper Bound Theorem.) It is
clear that the number of j-incidences equals

DI ()
FeFa-1(P)
Moreover, since each j-face of P is contained in precisely d — j facets, the
number of j-incidences also equals (d ~ j)J{P). Hence,
d-DfPy =Y JLP): - 3

FeFa-1(P)

We next note that for any facet F of P we have

&\—
HE) z A\. + _vb-NAE - A\M ﬂvg |N1? 3
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in fact, for j=1, ..., d — 4 this follows from the induction hypothesis
applied to F, and for j = d ~ 3 it follows from the result of Part B applied to
F. Combining (3) and (4) we obtain

a-ppz, £ (0 )aaer- (1 )e-2-»

FeF4q-1(P)

d—-1\
B A\ + HVMM.\M.QJ.\.&INAWV B A.\ + HVA& -2 |.—.vﬁm.\M .Aam

d-1 d .
= A\. + _v:nM.Sb-NQV - A\. + Hva - 2= jp
Here

Y Ja-oF) = 2so(P)

FeFq-u(P)
since each (d — 2)-face of P is contained in precisely two facets. Hence,

- DB = oivﬁ ) AI _va 2~ p

We next apply the result of Part B to P, obtaining

d—1 . d+1
d- = - - —2_
@ —DIP) = A\. N va dp o N _v A\ N Hve 2—jp.
An easy calculation shows that the right-hand side of this inequality may be

rewritten as
d+1
d~ -1-H)1
( boiv otve »

___ Cancelling the factor d — j, we obtain the desired inequality.

D. It is easy to see that we have equality for all j when P is a d-simplex.
Truncation of one vertex of a simple d-polytope P with p facets produces a
simple d-polytope P’ with p + 1 facets, with

()

more j-faces than P for 1 < j < d — 2, and with d — 1 more vertices than P,
of. Theorem 12.18. It is easy to see that if we have equality for P, then we also
have equality for P". Hence, the desired polytopes may be obtained from a
d-simplex by repeated truncation of vertices. This completes the proof of
Theorem 19.1. |

It would be desirable to have a more direct proof of the Lower Bound
Inequalities than the one given in Parts A, Band C above. As a beginning, one
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could think of a direct proof of the inequality for j = d — 2, replacing the
two-step proof of Part B. In the second step we proved that (1) holds with
K = d* + d. Compared to the desired inequality, the deficit amounts to
(d* + d)/2. However, when counting the (d — 2)-faces we did not count
those containing x; the number of such (d — 2)-faces equals

d
@LTQF%

This improvement does not yield the desired inequality, but it reduces the
deficit to d.

In Part D of the proof of Theorem 19.1, we showed that we have equality
for the truncation polytopes, i.e. the polytopes obtained from simplices by
successive truncations of vertices. Ford > 4itisknown thatif f(P) = ¢{d, p)
for just one value of j, then P must be a truncation polytope. For d = 3 the
situation is different. As we know, all simple 3-polytopes yield equality.
On the other hand, there are simple 3-polytopes which are not truncation
polytopes, for example, the parallellotopes.

In Section 18 it was indicated that the upper bound ®«(d, p) is also valid
for non-simple polytopes. In contrast to this, little scems to be known about
lower bounds for non-simple polytopes.

In its dual form, the Lower Bound Theorem may be stated as follows:

Corollary 19.6. For any simplicial d-polytope P with p vertices we have
.\,%NJNS&|~I\A&¢EV' \."Mu....&|_..
Moreover, there are simplicial d-polytopes P with p vertices such that

.\..%Tv"ﬁaluluA&.ﬁvu .\."_J..‘wkalm.

Equality in Corollary 19.7 is attained by the duals of the truncation

polytopes; and, ford = 4, only by these: They are the polytopes obtained from’

simplices by successive addition of pyramids over facets; they are called
stacked polytopes.

It is interesting to note that the hoiﬂ Bound Inequalities are closely
related to inequalities between the numbers g{P) introduced in Section 18.
For details, see Section 20.

§20. McMullen’s Conditions

At the beginning of Section 16 it was indicated that it is not kiiown how to
characterize the f-vectors of d-polytopes among all d-tuples of positive
integers. However, the more restricted problem of characterizing the f-
vectors of simple (or simplicial) d-polytopes has recently been solved. It was



