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Let F be an ordered field, and let . denote the family of all convex polytopes in
the d-dimensional vector space V over F. The universal abelian group II corre-
sponding to the translation invariant valuations on & has generators [ P] for Pe #
(with [#]=0), satisfying the relations (V) [PuQ]+[PnQ]=([P]1+[0Q]
whenever P, Q, PuQe 2, and (T) [P+1]=[P] for Pe? and 1€ V. With multi-
plication induced by (M) [P]-[Q1= [P+ Q], /Tis almost a graded commutative
algebra over F, in that /T=@*_, Z,, with Z3=Z, =, a vector space over F (r> 1),
and £, -5,=E,,,{r,s20, E,= {0} for r>d). The dilatation (D) 4(A)[P]=[4P]
for Pe® and AeF is such that 4(A)x=A"x for xe =, and 1>0. Negative dilata-
tions arise from the Euler map (E) [P]— [P]*:=3,(—1)¥F[F] (the sum
extending over all faces F of P), since 4(A)x = A"x* for xe Z, and 1 <0. Scparaling
group homomorphisms for /7 are the frame functionals, which give the volumes of
the faces of polytopes determined by successive support hyperplanes in sequences of
directions. Two isomorphisms on /7 are described: one related to cones of outer
normal vectors, and the other to the polytope groups, obtained from /7 by discard-
ing polytopes of dimension less than d. Various applications of the polytope algebra
are given, including a theory of mixed polytopes, which has implications for mixed
valuations.  © 1989 Academic Press, Inc.
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1. INTRODUCTION

As we should always remember, the very word “geometry” suggests com-
parison of measurements such as arca and perimeter of different figures. An
old question, mentioned by Gauss and crystallized by Hilbert in his Third
Problem, is whether a satisfactory theory of volume of polytopes can be
formulated in terms of equidissectability (or equicomplementability). It has
been known from at least the time of Archimedes that the problem could
be dealt with by the “method of exhaustion.” (Here, as elsewhere, we shall
not give the original historical references, but instead refer the reader to the
works we do cite, and in particular to the survey article [9].) In the precise
terms in which Hilbert phrased it, Dehn had already found the required
counterexample before the problem had been published. Nevertheless, the
problem itself provoked investigations into equidissectability under various
groups of motions, which culminated in the complete solution of the trans-
lation case by Jessen and Thorup [4] and, independently, by Sah [12].
(When the full group of isometries is allowed, the problem remains open
in five or more dimensions.)

Volume, and functions such as surface area and the Euler characteristic,
are examples of valuations, and their investigation provides another strand
to the story. Indeed, the close connexion between valuations and dissec-
tions was already used by Dehn to provide his counterexample, although
the formal development of the theory undoubtedly owes most to Hadwiger
[3]. (Hadwiger, incidentally, showed that, in a somewhat different sense
from that of Hilbert and Dehn—in essence by imposing the weakest form
of the assumption made by Archimedes—valuations and dissectability can
lead to a satisfactory treatment of volume.)

Jessen and Thorup, and Sah, built on Hadwiger’s work by considering
the universal group corresponding to translation invariant simple valua-
tions (simple here refers to those valuations which vanish on polytopes of
less than the full dimension; we shall give precise definitions of the terms
we use in Section 2 below). They deal with polytopes in a finite dimen-
sional afline space over an arbitrary ordered field, and show (among other
things) that the corresponding polytope group is a vector space over that
field. A crucial feature of their treatments is that they also describe a family
of homomorphisms (into the base field) which separates the group.
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In this paper, we shall describe the corresponding universal group for the
translation invariant valuations which are not necessarily simple; in other
words, we no longer work strictly with disscctions, because we do not dis-
card lower dimensional polytopes. The name polytope algebra which we
give this group indicates that it has a richer structure than that of the
polytope group of the previous paragraph; indeed, it fails to be a genuine
graded commutative algebra over the base field in just one trivial respect.
The grading arises from scaling, or dilatation, by non-negative elements of
the field; negative dilatations involve Euler-type relations.

We shall construct two group isomorphisms between the polytope
algebra and other groups, one strongly reminiscent of the intrinsic volumes
(or quermassintegrals), and the other related to the polytope group. We
shall also discuss other groups connected with the polytope algebra, and
develop a theory of mixed polytopes, which generalize mixed valuations.

For convenience, we collect the statements of the basic definitions and
the five main theorems in Section 2. The numbering of these theorems
corresponds to an orderly description of the structure of the polytope
algebra, and bears little relationship to the order in which they are proved.

Some of the results are just universalized versions of theorems on valua-
tions which have been proved elsewhere, and so little purpose would be
served by reproducing their proofs with obvious changes of language. But
details of most of the proofs of the main theorems are given, even though
in a number of respects they strongly resemble the corresponding theory of
the polytope group. In part, this is because some of the differences are a
little subtle, and in pointing out how the earlier proofs can be modified we
find that not much can be omitted. Also, however, while largely following
[4], we have chosen in some places to follow [12]. Another distinguishing
feature is the presence of a genuine multiplication. This permits a different
line of attack, and also allows us to introduce at an carly stage the useful
concept of the logarithm of a polytope.

An early draft of this paper was written in 1984/1985; in that, the base
field was just the real field R, multiplication only appecared as an
afterthought, and the rest of Theorems 1 and 2 was established by means
of an inductive proof of Theorem 4. The present approach has enabled us
to mimic much of the corresponding parts of [4, 12], and so construct a
parallel theory from which most of the earlier results can be deduced.

2. Basic DEFRNITIONS AND MAIN THEOREMS

As we said above, in this section we shall state the basic definitions and
main theorems.
Let F be an ordered, but not necessarily archimedean, field, and let V be
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a d-dimensional vector space over [, which is, of course, isomorphic to the
coordinate vector space F¥. In many ways, though, it is the affine structure
of V which is of intcrest. The topology of ¥ is that induced by the order
topology of T.

Though it could be avoided, we shall find it convenient to endow V
with a (positive definite) inner product {-,-», and orthogonality will
always refer to this. In many cases, the orthogonality is only used to set
up an isomorphism between V' and its dual space. However, since the
Gram-Schmidt process will turn an arbitrary basis of a (linear) subspace
L of V into an orthogonal basis, orthogonal projection onto L can be
defined.

We shall mostly deal with convex subsets of ¥, where, as usual, C<V
is convex if (1 — 2)v+ Awe C whenever v, we C and 0< A< 1 (with AeF, of
course, but this will be a general assumption about scalars unless specified
otherwise). This purely algebraic definition ensures that all the standard
results about convex sets, which are usually established in R carry over
to convex sets in V.

Two families of convex sets are of importance here. A polytope is the
convex hull conv S of a finite set S in V. The empty set J is a particular
example of a polytope. The family of all polytopes in V is denoted
# =P(V). The dimension dim P of a polytope P is the (algebraic) dimen-
sion of its affine hull aff P; a k-dimensional polytope is called briefly a
k-polytope. (Here, and elsewhere when it is relevant, we follow the notation
and terminology of [2].)

A (polyhedral) cone is the positive hull pos S of a finite subset S of V,
so that the origin o of V is always an apex of a cone. The family of cones
in V is denoted € =%(V). .

Observe that a polytope is just a bounded intersection of finitely many
closed half-spaces, while a cone is an intersection of finitely many closed
half-spaces whose bounding hyperplanes contain o.

Let F =2 or 4. A function ¢ on F, taking values in some abelian
group, is called a valuation if $(P L Q)+ #(P Q)= ¢(P)+ ¢(Q) whenever
P,QeZ are such that PUQeF also (note that PnQe# always).
Further, ¢ is said to be translation invariant if §(P+1t)=¢(P) for each
PeZ and translation vector te V (this definition has no force if & =€,
but for convenience will be allowed to stand in definitions or results
which otherwise apply to both classes, as immediately below). Here, the
Minkowski or vector sum of two subsets S, T of V' is defined by

S+ T={v+w|veS, weT},

and S+ 1:=S+ {t}. By convention, §(J)=0 for every valuation ¢.
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If L is a (linear) subspace of V, we write
F(L)y={PeZF|P<L+1for some teV}.

A valuation ¢ on & (L) is called L-simple if ¢(P)=0 for all Pe % (L) with
dim P <dim L.

The polytope algebra IT=1TI(V) is (initially) the abelian group with a
generator [P] for each Pe 2 (and [(J]=0); these generators satisfy the
relations:

(V) [PUQI+I[PnQ]=[P]1+[Q], whenever P,QeZ are such
that Pu Qe also;

(T) [P+1]=[P], for cach Pe 2 and teV.
We shall refer to [P] as the class of P in I1.

We shall make the obvious connexion between the definition of a trans-
lation invariant valuation on & and the relations (V) and (T) explicit in
Lemma 1 (Section 3 below).

We immediately turn /7 into a ring. The multiplication is defined on the
generators of I7 by:

(M) [P]-[Q]=[P+Q], forall P,Qe2,

with the Minkowski sum P+ @ as above. Lemma 7 (Section 4) will show
that (M) indeed induces a multiplication on /7.
For AeF, the dilatation A(A) is defined on the generators of IT by:

(D) A(M)[P]=[AP], for Pe P,
where for S a subset of V
AS={Alv|ve S}

is the scalar multiple or dilatate of S by A. In Section 5 (Corollary 2 to
Theorem 6), we shall see that A(4) is a ring endomorphism of I7.
We can now state the main structure theorems.

THEOREM 1. The polytope algebra Il is almost a graded commutative
algebra over F, in the following sense:

(a) as an abelian group, IT admits a direct sum decomposition
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() Eo=Z, and for r=1,..,d, E, is a vector space over F (with
Z,xF);
(d) ifx,yeZ, =@ | E,, and LeF, then (Ax)y = x(dy) (= A(xy));
(e) the dilatations 4(A) are algebra endomorphisms of II, and for
r=0,.,d if xeZ, and 1 20, then
A(D)x=A"x,

where A°=1.
The Euler map * is defined on the generators of IT by:
(E) [P1*=3X,(—-1)"*[F], for Pe?, where the sum (here and

elsewhere) extends over all faces F of P.

THEOREM 2. The Euler map is an involutory automorphism of II.
Moreover, for r=0, ...d, if xe E, and A <0, then

A(A)x = A"x*.

We next describe the separating group homomorphisms on I7. If u is a
non-zero vector in ¥ and P e 2, then the face of P in direction u is defined

to be -
P,={veP|{v,ud =h(P, u)},

where

h(P, u) =max{{w,u)|we P}

is the support functional of P in direction u. Thus P, is the intersection of
P with its support hyperplane with outer normal u. If U= (u,, .., u;) is
a k-frame, that is, an ordered orthogonal set of k vectors, we define

recursively

\utﬂ :uc: ..... ET_LE.

starting with P = P (we allow (¥ as a frame). .
We shall identify the highest grade term =, in Theorem I with volume

(see Section 7). More generally, every subspace L of ¥ admits a (within
scaling) unique volume functional vol,: Z(L)—~F. If U is a (d—r)-frame,
we write voly, :=vol if

L=U":={veV|{v,u)=0 for each ue U}
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is the orthogonal complement of U in V, and we call the mapping
fu: P —F defined by

\QAEVH<O_Q~VQ

a frame functional of type r. Frame functionals induce homomorphisms on
IT (see Section 5, Theorem 7), and we have:

TheOREM 3. The frame functionals separate IT; that is, if xe Il is such
that f,(x)=0 for every frame U, then x=0.

Let & =2 or € as before, and let L be a subspace of V. The abelian
group with a generator (P for each Pe (L), satisfying the relations (V),
(T) (for # =2) and

(S) (P>=0, for PeF(L) with dim P <dim L,
is the polytope group TI(L) or the cone group (L), respectively. The full
polytope group IT and the full cone group X are defined by
=@ mL, I=0IL),
L L

the direct sums in each case extending over all subspaces L of V, including
{0} and V itsell.
The first isomorphism theorem for 7 is

THEOREM 4. IT=Il

For the second, we begin by defining the outer (or normal) cone N(F, P)
to a polytope or cone P at its non-empty face F by

N(F, P)={ue V|{v, ud=h(P, u) for every ve F}.

That is, N(F, P) is the set of outer normal vectors to support hyperplanes
of P which contain F (allowing o as such a vector also). The subspace L
of V parallel to aff F, written L|F, is the orthogonal complement of
N(F, P), and we write vol F:= vol, F. We denote by n(F, P):= {N(F, P)>
the intrinsic class of N(F, P), meaning its class in Z(lin N(F, P)). The
mapping a: 2 — F® £ defined by

o(P):=) vol FQn(F, P)
F
induces a homomorphism on /7 (see Section 12, Lemma 37), and we have

THEOREM 5. The mapping a: 11 - F ® L is injective.
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3. PRELIMINARY REMARKS

Before we embark on the main part of the proofs of the thcorems, we
make some general remarks about valuations and their extensions, and
about particular classes of polytopes.

We first make explicit the relationship between valuations and the
polytope algebra. A fact which we shall often use without much comment
is

LemMMA 1. Let % be an abelian group. A mapping ¢: P -9 is a transla-
tion invariant valuation if and only if ¢ induces a (group) homomorphism
from IT 10 9.

We shall invariably denote this homomorphism by the same symbol, and
not distinguish between it and the translation invariant valuation to which
it corresponds; that is, we write ¢([P]) = 4(P). Lemma 1 enables us to lift
known results about translation invariant valuatians to IT; observe, in
particular, that the mapping P— [P]is a translation invariant valuation.

Note that there is an exactly analogous relationship between L-simple
translation invariant valuations on (L) and homomorphisms on the
polytope group fI(L), and similarly for (L) and Z(L).

A useful variant of the idea of valuation is the following. We call a
mapping ¢ on # (into some abelian group) a weak valuation if
§3+§w3~.~v"§w3trv+§w3:J whenever Pe? and H is a
hyperplane in ¥ which bounds the two closed half-spaces H ™~ and H*. It
was shown by Sallec [14] that

LEMMA 2. A mapping on P is a valuation if and only if it is a weak
valuation.

This lemma implies that we can replace the condition (V) in the defini-
tion of 11 by

(W) [PJ+[PnH]= [PAH ]+[PnH"] for Pe# and H a
hyperplane bounding the closed half-spaces H = and H *.

A modification of an approach due to Groemer [1] yiclds many results
concerning extensions of valuations, or suitable restrictions of their domain
of definition. The characteristic function S t of a subset S of V is defined (in
the usual way) by

1, if ves,

MEMAP il 0éS.

The subgroup of functions on V taking values in Z which is generated by
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the functions P with Pe & is denoted by X(£). The crucial observation of
Groemer 1] is:

LEMMA 3. A mapping on & (into some abelian group) is a valuation if
and only if it induces a homomorphism on X(Z2).

Since a homomorphism on X(2) is defined uniquely on any charac-
teristic function (of some subset of V) which happens to lie in X(2), we
deduce certain important consequences. As in [9], we denote by U(2) the
family of finite unions of polytopes in Z; further, we write

U(#)={A\B| A, Be U(2)}.

LEMMA 4. A valuation on P admits a unique extension 10 a valuation
on U(2).

With T(2) replaced by U(#), this result is due to Volland [17]. It is of
interest to sketch a proof of this important lemma. First observe that, if
A, Bc V, then

(AnB)' = A'B.
Since the relationship for complements is
(V\S)I =1-5",
or, more generally,
(A\B) =4'(1- By=A4"— 4B,
that for unions is

1—(A4,9 - C;:ﬁﬂCl;U.:iI\_“v.

The proof of Lemma 4 is now straightforward. The formula for the charac-
teristic function of a general element of U(2) foliows at once from this last
expression for the union (note that 1= v, which, of course, is not in
X(£), occurs on both sides of the expression). The expansion of this
formula gives the familiar inclusion-exclusion principle for valuations (sec
[9, (1.2)1). :

For our purposes, we must note two consequences of Lemma 4. As men-
tioned above, a polytope is a bounded intersection of finitely many closed
half-spaces. On occasions, though, it is more convenient to work with
bounded intersections of finitely many half-spaces, which are cither closed
or open; we call these partly open polytopes, and denote the family of them
by P Recalling that a decomposition of a set is an expression of that set
as a disjoint union of subsets, our first consequence of Lemma 4 is:
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COROLLARY. A valuation ¢ on P admits a unique extension 10 Po-
Moreover, if @y - Qk € #,, decompose Qe P, then

k
HQ)= Y $(Q))
j=1

We shall discuss the even more special case of relatively open polytopes
in Section 19.

A simplex is the convex hull conv{vg, - Vx} Of a0 affinely independent
set {vgs s v} in V; more specifically, this is a k-simplex, since it has
dimension k. A result admitting many proofs (see, for example, [9, Sect. 61,
which uses [187; for a nice proof, scc [16]) is:

LEMMA S. If Pe2P, then there is a simplicial complex in V whose
underlying point-set is P.

Combining this with Lemma 4, we have:

COROLLARY. The group I1 is generated by the classes of the simplices
in 2. ,

4. MULTIPLICATION

An important role in our treatment is played by the multiplication on n
induced by Minkowski addition. In [4, 12] a product structure is also
introduced, but it only gives a product mapping from [(LY® II(M) to
[I(L+ M), when L and M are supplementary (linear) subspaces of V. (The
product discussed in [1], however, does correspond to ours.) Initially, we
shall use our multiplication in a very similar way, but we shall soon see
examples of its greater power and generality.

Of course, we must first establish that our definition does lead to a mul-
tiplication on IT; we do that here.

LEMMA 6. With addition satisfying (V) and (T), and mudtiplication
defined by (M) and extended by linearity, 1 is a commutative ring with
unity.

All the properties of a commutative ring with unity are easily verified
except those which we now discuss. We first observe that (M) is compatible
with the translation invariance (T). Next, note that g+P= for ever)
Pe#, from which we conclude that 0-[P]= [(&]1-[P]= [(F+P]=
[@1=0, and hence 0.x=0 for cvery xell. (By the way, this is wha
would oblige us to adopt the convention [&]1=0, if it were not otherwis
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obvious.) Then we define 1 := [0] to be the class of a point (we write [7]
for [{t}]if te V; from (T), [t]=[o] for each re V), which gives the unity
of I1.

The only real problem is caused by the extension of multiplication to /1
by linearity, so that the distributive law x(y + z)=xy + xz holds for all
x, y, z€ IT. In other words, we must check that (M) is compatible with the
valuation property (V). Now, if P, @, Q,e?, then

P+(Q,uQy)=(P+Q)u(P+Q)
while if @, U Q,€ 2 also, then, as shown in [3, 1.2.2],
P+(Q,nQ)=(P+Q)n(P+Qy)
In this latter case,
[P1-[Q,vQ:1+[P1-[Q1n Q]
=[P+(Q,u Q)1+ [P+(Q:in Q)]
~[(P+0)U(P+0)]1+[(P+Q)Nn (P+Q5)]
=[P+ Q1+ [P+Q:]
=[P]-[Q,1+[P]-[Q:2),
as required. This completes the proof of the lemma.
In view om Lemma 6, the multiplication on IT extends to classes of
clements of U(#), and, in particular, to classes of partly open polytopes.

However, while in general this extension does not correspond in a natural
way to the geometric Minkowski sum, there is one important exception.

LEMMA 7. Let L and M be supplementary subspaces of V, let
A, Be U(2) be such that A= L and BS M, and let a, b be their classes in
I1. Then the class of A+ B is ab.

The important observation herc is that, if AcL and B,CcM satisfy
BAC=(, then (A+B)n(4+ C)= & (this is clearly not generally true
for arbitrary subsets A, B, C of V). The proof of Lemma 4 will now easily
show that the extension from Z to U(#) and Minkowski addition are
compatible in this special casc, and Lemma 7 then follows.

We end this section with a remark. In view of the existence of multiplica-
tion, the condition (T) for translation invariance can be expressed as

[(PUL]—-D=0
for all Pe# and te V. It follows that we can replace (T) by
(T")y [11=1[0], for every te V.
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5. HOMOMORPHISMS AND ENDOMORPHISMS

We recall that, if 4, B are two algebras over the same field F, then a

mapping ¥: A - Bis called a homomorphism if it satisfies

(Al) P(x+y)=¥x+ ¥y,

(A2) W(xy)=(¥x)(¥y)

(A3) W(ix)=A(¥x),
whenever x, ye A and AeF. In our case, we shall have A =1II(V) and
B=I1(W) for two finite dimensional vector spaces V, W over F, and then
(A3) only applies for x e Z,(V). Further, then, if ¥ only satisfies (A1), it is
a group homomorphism, while if it satisfies (A1) and (A2), it is a ring
homomorphism. If 4= 8 (or V= W), we refer to ¥ as an endomorphism,
and an invertible endomorphism is an automorphism.

Two kinds of endomorphism of IT are of particular importance. Since we
have yet to introduce the full algebra structure of /1, in the following two
theorems we only prove the ring endomorphism (or homomorphism)
properties; the remainder of the proofs will be postponed to the end of
Section 11.

THEOREM 6. Let V. W be vector spaces over F. and let &:V — W be an
affine mapping. Then @ induces a homomorphism from I1(V) to (w),
which is also denoted &, by @[ P]=[PP] for Pe®?. Moreover, P
commutes with the dilatations.

Since an affine mapping is just a linear mapping followed by a transla-
tion, in view of (T) we can suppos¢ @ to be linear. In addition, since
&P+ t)=DP+ &1 for Pe® and 1€V, the action of @ is compatible
with (T). For compatibility with (V), if P,Qe?, then trivially
P(PuQ)=DPPUPQ, while if PU Qe also, then (PN Q)=PPnPQ
(consider the intersection of P and Q with @ 'w, for we W). Thus @
preserves (V), and so extends by linearity to /1. Finally, if P, Q €%, then
D(P+Q)=PP+ PO, and hence @ respects (M) also, and thus prescrves
products, by the way (M) extends to I1.

For the last part, since @(LP) = A(®P) for Pe® and Aef, @ commutes
(in the obvious sense) with dilatations.

For our purposes, lwo consequences of Theorem 6 are usually more
important.

COROLLARY 1. An affine mapping &: V — V induces an endomorphism
@: 1I(V) = TI(V), which commutes with the dilatations.

COROLLARY 2. The dilatations 4 (1) induce endomorphisms of 1.

The other kind of endomorphism arises in quite a different way.
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TueoreM 7. Let U be a frame in V. Then the mapping P+— Py on 2
induces an endomorphism x— Xy of I, defined on the generators by
[Py := [Py}, which commutes with non-negative dilatations.

Let us remark here that the mapping P+ Py only depends on the direc-
tions of the vectors in U, so that, if U=(u,, .., 4), then we can replace U
by (i1 Uys s Bili) with ;>0 (i=1, .., k), to obtain the same mapping.

It is clear that we need only prove Theorem 7 for the special case
P— P, withu#oa single vector. The translation invariance (T) is trivial,
since (P + 1), = P,+ 1 For (V), let P, Qe? be such that PU Qe 2 also.
There are two possibilities. If the support hyperplane H to PUQ with
outer normal u meets both P and 0, then

(PUQ)=P,UQ. (PNQ)=P,nQu
If, say, H meets P alone, then
(PUQ@)=P. (PnQ)=0u
In either case, (V) is preserved. Further (see [2, 15.1.13),
(P+Q)=P,+Q,  (APL=4P,

for P,Qe? and 120. Arguments exactly analogous to those used
to prove Theorem 6 now show that [P1—[P]l. induces a ring
endomorphism of I7 which commutes with non-negative dilatations. Thus
we have Theorem 7 (again, except for the algebra property).

Observe that we cannot allow negative dilatations in Theorem 7. Indeed,
we have

(A(=1)x), = A(=1)(x ).

6. THE RATIONAL STRUCTURE

In this section, we begin the proof of Theorem 1 by establishing a weaker
version, with our given field F replaced by the rational field @ in various
places.

It is clear from the statement of Theorem 1 that the subgroup (actually
subring) =, of 17T generated by the class 1 of a point plays a somewhat
anomalous role. We could get around the problem by replacing Zo=Z (the
integers) by the tensor product F® Z, = F (tensor products are always over
Z). Although we should then obtain a genuinc algebra over F, the
geometric meaning of =, would be blurred. So, we shall pursue an alter-
native course, and begin by hiving off Z.
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As our notation 1 for [o] suggests, we shall identify =, with Z by writing

_ P4 - +1 (n times), n >0,
=) _(14 ---+1)  (—ntimes), n<0,

where, in these expressions, 1= [0].
Let Z, denote the subgroup of IT generated by all elements of the form
[P]—1, with PeA\{T}.

LEMMA 8. As an abelian group, IT has a direct sum &mne:ﬁeh.:,.c:
n=:2,®2Z,.

The projection from IT onto =, is the dilatation A(0). Further, Z, is an ideal
in I, and ze Z, if and only if 4(0)z=0.

A general element of IT can be expressed as a sum
) k
x=3 gLP)
j=1
where ¢;= + 1 and pie\{D} (=1 k). Writing this as

w »
HMM&+M&;$”_|:
j=1 j=1
expresses x as a member of Zo+Z,. Further, xeZ, if and only if
k_,¢,=0, and so the sum is direct.

It is almost obvious that 4(0)[P]1=1 for every Pe P\{J}- To confirm
this, we argue as follows. Since every two k-simplices are affinely
equivalent, we see from Theorem 6 that the value of 4(0)[T*] for a
k-simplex T* depends only on the dimension k. But for k> 1, a k-simplex
T* can be split into two k-simplices by a hyperplane H which separates
two vertices of T* and contains the remaining k — 1. Since T* ' :=Hn T*
is a (k—1)simplex, the weak valuation property (W) shows that
A(0)[TX]=4(0)[T*']. We conclude that 4(0)[ T} = 4(0)1 =1 for every
non-empty simplex 7. Then the mapping [P1—1, which clearly induces
an endomorphism of /I, coincides with [P]— 4(0)[P] on the generators
of IT (see Lemma 5}, and so is given by 4(0).

The characterization of Z; follows immediately. Finally, if ze Z, and
xell, then N:oxanvHEQ.«.ESNHP so that xze Z,, and hence Z, is
an ideal (this can be seen in several other ways as well). This completes the
proof of the lemma.

Care does nced to be taken over the behavior of 4(0). Just because
0-S={o) for every non-empty subset S of V, it does not mean that
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A4(0)[S]=1 for every non-empty S in U(#) (the proof of Lemma 8 makes
this very clear). Various other ways of seeing that 4(0)[P]=1 for
Pe#\{Z} will become clear below (in Lemmas 10 and 11, for instance);
we may observe that A4(0)[P]1=4(0)[2P]= 4(0)[P1? = (4(0)[P])?
already implies that 4(0)[P]=0or I.

A pivotal role in our treatment is played by the analogues of the canoni-
cal simplex dissections of [3]. The presence of these analogues enables us
to mimic many of the proofs of [4] or [12], after a suitable change of
language.

Suppose that ag,ay, .., a,€V are such that {a,, .., a,} is linearly
independent. We write

T(ay, ., ax) =CONV{ag, Qg+ a1, r Ao+ =+ + A}

which is a k-simplex, and define
s(ay, . ap)=[T(ay, )] —[T(ay, r k1)1

with s(¢¥) = 1. This is the class of a partly open simplex (lacking one facet),
and plays the role of [a,, .., a;] in [4] or Ja,/---/a/ in [12]. Of course,

condition (T) ensures that s(a,, .., a,) does not depend on a,, which
justifies our not mentioning it. Indeed, it is usually convenient to assume
”—amﬂ QO = 0.

An obvious first remark is:

LEMMA 9. The various classes s(ay, .., a;) (with {a,, .., a,} €V linearly
independent) generate IT; the classes with k 2 1 generate Z,.

By the corollary to Lemma 5, the classes of the simplices generate II.
But, from the definition,

»
[Tay, ..a))]= Y sla,,..aq),
i=0

and this and Lemma 8 yield the lemma.
The first canonical simplex dissection is

LemMMma 10. For 4, u =20,

AL+ u)stay, .., a,)= M (A(A)s(ay, o aNAR)S(a; 1y s Qi)

;=0

The discussion of Section 3 helps us to visualize what is happening here.

e 2
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The jth term of the sum is just the class of the partly open polytope

k
AM m..a.._»‘*.th_W Wm\,V»WmT«_W Wm»VoM.

i=1

and Em disjoint union of these is the original partly open simplex
k
WM m.ﬁm_»+th_W WN»VOW.
i=1

whose class is 4(4 + p)s(ay, .., a;). Lemmas 4 and 7 then apply.
Lemma 10 and an induction argument yield the analogue of the second

canonical simplex dissection.

LEmMMA 11. For k> 1 and integer n=0,

An)s(ay, i)=Y, A:v z,,

where
&= M E S(@ji- 1y 15 aiy)
0=j0)<ji)< - <jlry=k i=1
is independent of n.

An alternative proof applies the corollary to Lemma 4 to the decomposi-
tion of the partly open simplex

WM»“ Ealn=z8,2 - WM»VOW
i=1

by the half-open strips

k
WM Ea;lm—1 A@MSW

for j=1,..kand m=1,..,n
As a consequence of Lemma 11, we have

LeEMMA 12. Let xe 1. Then there are unique Vo€ Zg and yy, s Ya€ Z,
such that, for all integers nz 0,

d
Ad(n)x = M A:v y,.

r=0
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The existence of the expression follows from Lemma 11, and the fact
that, by Lemma 9, the classes s(a,, ., a;) generate I1. For uniqueness, we
note that the y, can be calculated from various dilatates of x. Indeed, for
any integer n>0, the (n+1)x(n+1) matrix with (i, j)-entry &v, for
i=0,..,nand j=0,..,n is invertible over Z, since it is triangular with
diagonal entries 1. The inverse matrix is easily calculated, and we then
obtain

y=3 T:IG Am)x,
n=90 n

which is the required expression for y,. This proves the lemma.
We can put y, =0 for r>d in the expression of Lemma 12, and deduce

CoROLLARY. For r>d,
Now let Pe#\{}. If we compare the expression
API=[nP] = [P =(1+ (LI =1 + 3 (1) @e-vr

with Lemma 12 and its proof (compare the corollary), we deduce

LemMa 13. If Pe P\{D}, then ([P1-1) =0 forr>d.

Let Z, be .:5 subgroup of Z, generated by all elements of the form
([P]— 1Y, with PeP\{D} and j=r. Writing Zo= 11, from the definition
we have the filtration

NOMN_M kaka.f_“ AOW
Because A(A)([P]—1Y=([AP]—1Y, we conclude

LemMa 14. If A€F, then MA)Z, = Z,.

If we rewrite the expression above as

d

n
soer1-n= 3 () e
k=1
take jth powers of both sides, and again use the fact that A(n) is a ring
endomorphism, we obtain

LemMa 15, If xeZ,, then An)x—n'xeZ, ;.
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This holds for the generators ([P1-1Y U=n) of Z,, and so it holds
generally.

We are now in a position to show that Z, is a vector space over Q. Since
Z, is an abelian group, it suffices to prove that Z, is uniquely divisible,
meaning that, given any X€ Z, and any integer m = 2, there exists a unique
ye Z,, such that x=my.

LeMMA 16. Z, is torsion free.

Let xe Z, be a torsion element, say nx =0 with n>2 an integer. We
show by induction that xe Z, for all r. Indeed, if xeZ,, then

Eix"mc&xlil HX€Z,i1s

by Lemma 15. Thus xed(n=")Z,,1=Z,,1, by Lemma 14, and since
Z,.,=1{0}, the lemma follows.

LEMMA 17. Z, is divisible.

Let xe Z, and m >2 an integer. If xe Z,, then by Lemmas 14 and 15,
.«HEEKAE’JRHE.ET, A(m")x,

so that m~'x exists (and is unique by Lemma 16). We now use backward
induction on r. If xe Z,, then

EMRIS.S-LES\JmeI:
so that m~'ye Z,,, exists, and thus
m-lx=mtAm )x+m 'yeZ,

exists also. The lemma follows at once.

At this stage, we could now follow [4] or [12] in expanding the
binomial coefficients (7) in Lemma 12 as polynomials in n with rational
coefficients, and collecting together the terms in n" for each r=0,..,d.
However, an alternative approach using the rational algebra structure is
quicker and yields more information.

From Lemma8, Z, is closed under multiplication; further, if x, yeZ,
and A=m/neQ, then (Ax)y= A(xy), since both sides are the unique solu-
tion z to the equation nz = (mx) y=m(xy). Since Z, is generated by the

nilpotent elements [P]—1 (with Pe P\{J}), every clement of Z; is
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nilpotent; that is, Z, is a nil ideal of II. It follows that we can define the
logarithm and exponential mappings in the usual way by

A|_V»J_Nk
\ﬂ b

log(l+2)= 3,

k=21

1
expz= 9, N_N»

k=0

(with z°=1), for every z€ Z,. The ordinary properties of log and exp carry
over, namely

LEMMA 18. The mappings log and exp are inverse mappings, and satisfy
(a) log(x,x,)=1logx,+logxy, when 4(0)x,=4(0)x,=1;
(b) nxnﬁn_+uwvnnxvm_.e@wv when z,,2,€Z,.

In particular, log[P] is defined for every Pe Z\{J}; for brevity (but
see also Section 8 below), we write log P :=log[ P]. Putting z= [P]—-1,
we recognize log P as the coefficient of n in the expansion of [nP)}=[P]"
given by Lemma 12.

Indeed, since log[nP]l= log[ P]"=nlog[P], and 4(1)log P =log(4P)
for 4eQ, we deduce at once

LemMMA 19. For Pe P\{&} and rational 120, A(A)log P=Alog P.

We now invert this relation. If Pe\(@), let p=log PeZ,, and
suppose that >0 is rational. Since A4(4) is a ring endomorphism of IT, we
have

[AP]=A4()[P]=A(2) exp p=exp(4(4) p)

ol 1
HQGQEHM»?I‘
\“O

nt

The sum terminates at r=d, because the expression for p=log P and
([P]-1)*"=0 imply p**'=0 also.

For r=1, .., d, we define the rth weight space Z, to be the subgroup of
[T generated by all the elements p” (or (1/r!) p"), with p =log P for some
PePA\{D}. Then

LEmMa 20. IT=@¢_, E,. Moreover, x€ =, if and only if, for any single
rational 2> 0 with A#1, 4(A)x=A"x.

From the definition, if xe %, and 430 is rational, we have AA)x=21x
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Again from the definition, I7 is the sum of the Z,. If x, € £, (r=0, .., d) are
such that Y¢_, x, =0, then

o o
0=d4(1) Y x,=Y ¥x,
r=0 r=0

for every rational number 420, and so, since IT=Z,@® Z, is the sum ofa
copy of Z and a rational vector space, x,=0 for each r; that is, the sum
is direct.

If xelIl and A=m/n>0 (m#n) are such that 4(A)x = 1"x, then express
xas x=Y9_, X, with x, € 5 (k=0, .., d). Applying 4(1), we have

d
Vx=d4(A)x=Y, Ax.
k=0

Multiply the first expression by m” and the second by n", and subtract one
from the other, to obtain

Y (m = AF) x, =0.

k#r

But m’ —n"A* #0 for k #r, so that x, =0 for k #r, and hence x=x,€Z,,
as claimed. This proves the lemma.

In fact, in the notation introduced above, we can easily see that
Z.=@®‘_,E, for each s=0,..,d If xell, let x=Y9_yx, with x,eZ,
(r=0, .., d); we call x, the r-component of x.

Ifr,s=0,.,d and xe =, ye Z,, then taking 1 =2 (say) in Lemma 20,
we see that

4(2)(xy) = (4(2)x)(4(2) ) Sy 2y =2" 5y,

so that xyeZ,,,. Since Z,,; is generated by the elements prte, with
peP\{P), and p'eE,, p'eZ,, it follows that &,-5,=Z, ;-

Thus we have now established all of Theorem 1, with the scalars or
dilatations restricted to rationals, except for the characterization of Zy,
which will be considered in Section 7.

We end this section by remarking on some implications of these results
for valuations. We say that a valuation ¢ on P is homogeneous of degree
r if ¢(nP)=n"¢(P) for all Pe® and all integers n>0. Then we have (com-

pare Section 6):

THEOREM 8. Let ¢ be a translation invariant valuation on #. Then ¢
admits a unique decomposition ¢=39 0@, where ¢, is a translation
invariant valuation on P which is homogeneous of degree r.
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The proof is immediate; we just define @, to be the restriction of ¢ to Z,,
so that ¢,(P)=¢([P],), where [ P] is the r-component of [P] for Pe 2.
(The usual conventions of Lemma 1 apply.) Then for integer n>0,

¢.(nP)=¢([nP],)=¢(n'[P],)=n"¢([P],) =n"¢.(P),

as claimed.

Note, in fact, that we actually have ¢,(AP)=A"¢,(P) for all rational
A=20, with the implication that the image of IT under ¢, is a divisible
subgroup of the target group for r > 1.

The uniqueness part of Theorem 8 has a useful consequence.

COROLLARY. Let ¢ be a translation invariant valuation on P which is
homogeneous of degree r. If s #r, then ¢ vanishes on =,.

We shall particularly want to apply this corollary to the frame func-
tionals. As is clear, and will be made even clearer after the discussion of
volume in Section 7, a frame functional of type r is homogeneous of
degree r.

7. VOLUME

In this section, we shall verify the isomorphism =,=F of Theorem 1(c).
The isomorphism is given by volume; this important notion turns up as
well as in the main Theorems 3 and 5.

LEMMA 21. As an abelian group, =,

The definition of =, as the set of d-components of elements of /7, the fact
that these d-components are the coefficients of n“ in the polynomial expan-
sions of the 4(n)x for xe I, and the second canonical simplex dissection
Lemma 11, show that the only generators s(a,, ..., a,) of IT which can con-
tribute to =, are those for which & =d. The corresponding d-component is

1

5@ s,

Now s(a,)---s(a,) is the class of the half-open parallelotope

d
WM Ea]0< &, <1 (14, ., &VM,

i=1

The order of the terms s(a;) is immaterial, and we can clearly replace any
a; by —a,, since s(a;) = s( —a,) from the translation invariance (T). Finally,
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if i#jand AeF, we can replace a; by a;+ 1a,. To see this, note that the
previous remark shows that we can assume that 1> 0. If g is the class of

{Ea,+&a,]0< &<, 0<E ST+ AL},
the decompositions of the latter by the two open half-planes

(.0, +&a,1E> 1),
{Eia;+ &a,1E,> AL}
yield the equations
g =s(a;)s(a;) + s(a;, Aa;)
= s(a;, Aa;) + s(a; + Aa;)s(a)).

whence s(a,)s(a;) = s(a; + Aa;)s(a;).

If a fixed basis {e,, .., e,} of V is now chosen, then the theory of elemen-
tary row operations on matrices shows that the above operations suffice to
transform s(a,)---s(a,) into s(ue,)---s(e,), where u=|det(a,, .., a,)l, the
determinant being relative to the given basis. Since s((u+v)e;)=
s(ue,)+s(vey) for u,v=0, we conclude immediately that the corre-
spondence

s{a,)---s(ay)— |det(ay, ..., al)l

induces an isomorphism between the abelian groups Z, and F.

This isomorphism on Z,, the homomorphism it induces on /T, and the
corresponding translation invariant valuation on P are all called volume,
which is denoted vol.

There is clearly a scaling factor involved in the definition of volume,
arising from the choice of basis of ¥. However, apart from this, volume is
unique. The characterization of volume by Hadwiger [3, Sect. 2.1.3], is
only available if F is archimedean, but we can modify it as follows.

LEMMA 22. Let ¢: P —F be a translation invariant valuation, which is
homogencous of degree d, and is such that §(P) =0 for all Pe P. Then ¢ is
a non-negative multiple of volume.

If L is a linear subspace of V, of dimension k = 1, then Theorem 6 shows
that the subring IT(L) of IT is isomorphic to IT(F*), with F* the usual coor-
dinate vector space. Thus =, (L)=F also, and the isomorphism yields a
volume vol, on JT(L) or (L), which is an L-simple translation invariant
valuation, homogeneous of degree k. If L= {o} is the trivial subspace, we
scale naturally by defining vol,,, 1 = 1.
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We sometimes wish to have a volume vol, for each subspace L of V. To
avoid needing to appeal to the axiom of choice, to specify a particular
scaling of vol, for each L, we can proceed as follows. Let Q be a fixed
polytope in ¥ with oeint Q, for example, Q =conv{e,, e, ..., e,}, where
{e|,..,e,} is any basis of V, and eq= —(e;+ --- +e¢,). Then QN L is a
polytope of dimension dim L for every subspace L of V, and so we can
choose the scaling so that vol, (QnL)=1 for every L. We call this the
scaling induced by Q.

8. THE FIRST WEIGHT SPACE

While it is not necessary at this stage, it is helpful to give an alternative
description of the first weight space =,. By definition, =, is generated by
the elements log P, with Pe #\{F}. Since log P is just the 1-component
of P, we deduce :

LEMMA 23. The mapping log induces a translation invariant valuation
on 2.

However, we shall not define log (¥, allowing the conflict between
writing log ¢J =0 on the basis of Lemma 23 and the “natural” definition
log & =log0= —oo0 (whatever this might mean!) to remain unresolved.
We note that the property log(P + Q) =log P+ log Q (obtained by setting
x,=[P], x,=[Q] in Lemma 18) and the valuation property (V) ensure
that, if P, Qe #\{} are such that Pu Qe also, then ’

log((Pu Q)+ (PN Q))=log(P+ Q)

In fact, this is also a consequence of a resuit of Sallee [13]:

LEMMA 24. Let P, Qe 2 satisfy Pu Qe P also. Then
(PUQY+(PAQ)=P+Q.

Compare also with Section 15 below, whose results do not depend on
those of this section.
We next have (compare [2, Sect. 15.1]):

LEMMA 25. Let P, Q,, Q,e P\{J} be such that P+ Q, =P+ Q,. Then
Q=0

In fact, we observe that

Q,={veV|P+rsP+0Q;}.
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Now let £, denote the equivalence classes of pairs (P, Q), with
P, Qe 2\{}, under the relation

(P,O)~ (P, Q)P+ Q' =P + Q0+t
for some translation vector te V. Then

LEMMA 26. 2, is an abelian group, under the a&&.:.a:
(P, Q)+ (P, Q) =(P+ P, Q0+ Q)

The cancellation law of Lemma 25 ensures that ~ is an equivalence
relation. The identity in 2. is ({0}, {0}), and the inverse is given by

We now have the following isomorphism thcorcm.
THEOREM 9. The mapping log: P\{J} — =, induces an isomorphism
between %y and Z,.

We extend log to %, by defining
momﬁw' mv = _OW Wlmcm m¢

for (P, Q)€ #;. The extension is well defined, because if (P, @)~ (P, @),
say P+ Q' =P + Q-+t with te V, then
log P+log Q' =log(P+ Q')
= log(P' + Q)
=log P’ +log Q,
so that log P—log Q =log P’ —log Q’, as required.
On the other hand, in view of Lemma 24 and the definition of addition

in #,, the mapping ¢: P\ {@} - &, defined by ¢(P)= (P, {0}) is a transla-
tion invariant valuation, and so induces a homomorphism ¢: I —» %,. But

#(nP)=(nP, {o})=n(P, {0o})=ne(P)

for integral »n =0, so that ¢ is homogeneous of degree 1, and hence, by the
corollary to Theorem 8, acts effectively on =,. Therefore, on the generators
[P] (Pe?\{Z}) of I, we have

(P, {o})=4([P])=4(log P).

It follows that log and ¢ are inverse homomorphisms, and this is the
theorem.
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9. THE ALGEBRA STRUCTURE I

We now embark on the process of extending the range of the scalars
occurring in Theorem 1 from Q to F. This will be done over the next three
sections; Section 10 will contain the proof of the separation Theorem 3.

Our first step is straightforward.

LemMMA 27. E, is a vector space over F.

We present two proofs. The first employs Theorem 9. There is a natural
scalar multiplication on the group %, namely

_ [(AP, 2Q), if 1>0,
:w,@uﬁlm]»? :»Ao.

With the given (vector) addition on %, the axioms of a vector space are
easily checked. In fact, the only problem is caused by scalar multiplication
by A+pu when Au<O. If A+ p>0 (the other case is similar), with, say,
A>0, u<0, then

AP, Q)+ u(P, @)= (AP, Q)+ (—nQ, —pP)
=(AP—pQ, AQ —pP)
=((A+u)P—pu(P+Q), (A+1)Q —u(P+Q))
=((A+u)P, (A+4)Q)
=(A+p)P, Q),

where we have cancelled the terms — u(P + Q) using the definition of %,
(note that —u>0). We now appeal to Theorem 9.

Alternatively, we can start from the first canonical simplex dissection
Lemma 10. In that, all the terms for j=1, .., k — 1 (k = 1; that is, excepting
the first and last) lie in Z,, since each class s(b,, .., b;) (j=1) of a partly
open simplex lies in Z,=@Y_, =,. Writing s,=s,(a,,..,a,) for the
1-component of s(a,, ..., a;), we therefore deduce that, for 4, 1 =0,

A(A+p)s, = A(A)s, + A(u)s,.
Clearly also,
A(Ap)s, = 4(4) 4(w)s,

for all 4, ueF. Since the classes s, generate =, we conclude that the same
relations hold, with a general x € =, replacing s,.
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The scalar muitiplication on =, is now defined by

e 4()x, if 1>0,
T =dA(=N)x, if A<0,

for xe £, and AeF. Again, all the axioms of a vector space over [ are
easily verified, with scalar multiplication by 1+ u with Ay <0 causing the
only problem. We have to approach this indirectly. This time, let us take
A+ u<0, with <0, u>0. Then for all xe =,

Ax=—dA(—A)x
=—d4(—(A+p)+ux
= —4(—(A+p))x—d(u)x
= (A+p)x — px,

or (A+ p)x=Ax+ pux, as we require.

We may observe that the isomorphism of Theorem 9 is compatible with
the definition of scalar multiplication in £ and =, and so becomes one of
vector spaces over F.

As we shall remark in Section 11, it is the case (d) of Theorem 1 with
x, y € Z, which enables us to impose the full vector space structure on Z,
(or on each =, with r>2). To prove this case, we shall need to adapt
the geometric construction of Thorup in [4]. A somewhat paradoxical
situation arises. The argument of [4] directly applied would only
prove (ix)y = x(4y) for ieF, in case xe Z,(L) and ye = (M) for some
supplementary subspaces L and M of V¥, which is insufficient (but see
Section 10 below). We shall get around this problem, as we have hinted
earlier, by proving the separation Theorem 3 before we have completed the
proof of Theorem 1. Curiously, we shall En: find that we need an even less
general case of (d) than that just mentioned; it is enough to take L and M
a hyperplane and complementary line.

So, let H be a hyperplane in V (passing through the origin o), and let
E be a line segment in a line complementary to H. We write

e=log E=[E]}—- 1

LemMA 28. If xe E(H) and 1> 0, then (Ae)x = e(ix).

The idea of the proof of this lemma is to establish it first for (the 1-com-
ponents of classes of) certain special polytopes x, and then to show that

these x generate the simplex classes in =,(H).
We can appeal to induction on k, and so remark that we need only

prove the lemma for the x =s,(ay, .., a;) in =,(H) with k =d — 1. (The case
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k =1 is particularly easy, because this is a consequence of the discussion of
area ( = volume) when d=2; see Section 7.)

The construction which we generalize from [4] is perhaps clarified by a
little extra notation. Let {b,,..,b,} be a fixed basis of V, and for
j=1,.,d—1 and v a positive rational number, let Q;(v) be the
endomorphism of /7 induced by the linear mapping

4 P
P.T.WF, q i<,
vh;, if i>j.
Further, define
D, (vy=1—v"'Q,(v),
Y;(v)=1—2;(v),
where I is the identity endomorphism. These @;(v) and ¥,(v), for different
values of j and v, are mutually commuting group endomorphisms of /7.

For k=1,.,d-1, let L=lin{b,,.,b,}, M=lin{b,,,,.. b,}, and
yeZ (L), ze E,(M). Then we can easily see that

A-N\.\A«;v\vhﬁ :. .\A\ﬂu
&,(v)(y2) =10, it j=k,
»(P;(v)z), if j>k

If y,ze Z,, we write

L y*z=(Ay)z— yliz),

so that we must show that x * e =0. Choosing, as we may, {b,, .., b,_}
as a basis of H and E=conv{o, b,}, and applying Lemma 10 to the
2-component of

A(A+ p)s5(Byy o bg)— A+ A)s(by, oy by) =0

with u=1, we see that

d—1

M Sy(byy s D) E 5By i qy oy by)=0.

k=1

Letting v,,..,Vvs,_», be any positive rationals, applying @,(v,), ..,
@, ,(v,_,) to this relation, and using the remarks above, we deduce that

(Pi(vy)- Py vy )si(by, by ) xe=0,
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since e =s,(b,). Thus Lemma 28 holds for the special classes of the form ‘
x=(vi) - Pa_2(va_2)si(by, s by ).

In fact, we shall only need to consider the cases where v,=n; ', with n; a

positive integer for i=1,..,d—2.

We must now show how to recover a general class s,(a, .., 4,_) (With
{a,, ,a,_,} S H linearly independent) from these special classes. Once
again, we generalize the ideas of [4]. If L is a subspace of ¥V, Q<L a
partly open polytope, v¢ L a point, and n>2 an integer, then

{(1—-ppw+pw|weQ, l/n<p<1}

is called a stump with base Q, or over Q. A k-fold stump is a stump over
a (k — 1)-fold stump. A stump over a point is a half-open line segment; then
x (as above) is the 1-component of the class of a pyramid (with missing
apex), whose base is a (d—1)-fold stump over a point.

To avoid constant repetition, let us take the phrase “the 1-component of
the class of” as read in what follows. Moreover, a simplex will always lack
a facet (so that its class is an s(a,, ..., 4;)). The construction of a simplex
from stumps proceeds by induction, in the following way: if we have all
stumps over (k — 1)-simplices, then we have all (stumps over) k-simplices.
We thus work backwards, “unstumping” the last stumped base.

The argument of [4] is easily modified, if we replace the dissections
which occur there by decompositions into partly open polytopes. The class -
s(cy, .., ¢;) of a k-simplex is represented by

MMWM L1128 282 - w?v&.

i=1

We now define, for m=0, .., k,
k
VU_:HWM Eicilézé2 - 28>0, EAN_M§+_W,
i=1
and, for n=2, .., k,
k
MFHWM ﬁ_.h_..mrwn.:i.f___m:!_Amznl—W.

i=1

Effectively, we have here m+n<k + 1. We further write
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for n=1, .., k. We can easily check the decompositions

n_=+_”A.m.=~=+N=vC»W“.+_

for n <k, while

.sz+—"_m.wx+~».

Now each union S|y --- U S} is a stump over a (k— 1)-simplex, and so
we can construct each individual S} (m > 1) from stumps. We then obtain
successively all the S7, with m > 1. But for n =k, we therefore have Mm, and
reversing all the steps with m =0, we eventually obtain S;=S. This, and
the induction argument outlined above, complete the proof of Lemma 28.

In stating the following consequence of Lemma 28, we make the induc-
tive assumption that Theorem 1 has been established for I7(H). Implicit
also is a forward reference to Section 11, for the details of extending the
vector space structure to =, for r > 2.

COROLLARY. With e, H as above, if yeZ,(H) and A€eF, then
(Ae)y =e(dy).

10. SEPARATION

We now depart more radically from the pattern of proof of {4]. In order
to complete the proof of the structure Theorem I, we shall first prove the
separation Theorem 3. However, the method of proof of Theorem 3 still
follows quite closely the corresponding part of [4].

Let H be a hyperplane and L the orthogonal line in V, both containing
the origin o, let E be a line segment in L, and let ¢ = log E. We denote by
A the subgroup of /T generated by all elements of the form (4e)y, with AeF
and y e II(H). The first step in proving Theorem 3 is to show that, if xe I7
is such that f,(x) =0 for all frame functionals f,,, then xe A.

Let u be any non-zero vector in V, and let H, be the (linear) hyperplane
orthogonal to u. The mapping x+ x, is a ring endomorphism of 77
(Theorem 7). Using frames U= (u,..,u;) with u; =u, the inductive
assumption that Theorem 3 holds in I7{H,) shows that, if f,,(x) =0 for all
frames U, then x,=0.

The quotient map /7 — IT/A has the {ollowing description. Suppose that
L =1lin{b}, and let H* be that half-space bounded by H which contains 5.
H u¢ H and Qe #(H,), then suppose Q translated so that Q= H ™, let
0, be the image of Q under orthogonal projection on to H, and write
O =conv(QuU Q,). Then [Q] is determined by Q up to an element of A,
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and so the class [(0], of @ in IT/A depends only upon [Q], and deter-
mines a homomorphism y+— y, of IT(H,) into II/A.

Now let Pe 2. From P, we obtain two elements of U(#), namely, its
upper and lower boundaries P, and P_, defined by

P, ={vePlo+pub¢Pforall p>0},
P_={vePlv+ub¢P for all p<0}.

Using Lemma 4 (or the inclusion-exclusion principle), we see that the three
classes [P, ], [P_], and [P_] are all well defined (assuming P translated
so that P H*), and :

[(P1=[P,1-[P_1+[P_]

We now factor out by 4. We decompose x € IT into three terms X, , X _,
and x_, corresponding to the decomposition of [P] above, so that
x=%,—%_4x_.1f x,=0 for each u¢ H, then x_ =0 anyway. Modulo
A, we must also have x, =0=3%_, so that x,=0, or x€ A, as required.
This completes the first step.

We can thus express x in the form

x=Age+ Y (4;€)y;,
j=1
where 1y, .., 4,€F and y,, .., y.€Z,(H). The coroliary to Lemma 26
shows that we can write this in the form x=J1,e+ey, where
y= Mm:u_ N\.Sm Z,(H).

We now apply the frame functionals fy,, with U< H. From Su(x)=0 for
any single such f,, of type 1 follows 1o =0. Now let £, be such a functional
of type r> 2. We can always rescale volumes, if necessary, so that, for each
subspace M of H,

vol, , y(E+ Q)=voly Q

for Qe #(M). The frame U also gives rise to a frame functional f;, on
T1(H), this time of type r — 1, and our choice of scaling shows that

fuley)=fu(y)

for cach y e [T(H). But now, if x=ey is such that f,(x) =0 for each such
frame U< H, we have f%,(y)=0, and again the inductive assumption that
Theorem 3 holds in IT(H) yields y =0, and hence x =0, as claimed. This
completes the proof of Theorem 3.

In view of the fact that, by the corollary to Theorem 8 (and the following
remark ), frame functionals of type r vanish identically on = unless r =5,
we deduce
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COROLLARY. For ecach r=0,..,d, the frame functionals of type r
separate =,.

The separating frame functionals f,, are not, in fact, independent. A
syzygy is a non-trivial linear relationship Y, a, f, =0 between them. We
do not insist on such syzygies involving only finitely many terms; indeed,
in all but one trivial case, we shall see that they generally do not.

We can obviously confine our attention to syzygies between frame func-
tionals of the same type. If U is a d-frame, then f,(x)=4(0)x is actually
independent of U, and hence v

LEMMA 29. For every two d-frames U, U', fy,= fi.

Since f = vol is the only frame functional of type d, we henceforth con-
sider frame functionals of some type r, with 1 <r<d— 1. We know of two
further kinds of syzygy, which correspond naturally to syzygies between the
Hadwiger functionals 4, (see [12, Chap. 5] and Section 17 below).

The next kind derives from the analogue of Minkowski’s theorem
relating the areas and normal vectors of facets of polytopes (see {2,
Sect. 15.3]). Let L, M be two subspaces of V' of the same dimension, with
corresponding volumes vol,, vol,,, and let @, denote orthogonal projec-
tion on to L. By the essential uniqueness of volume (Lemma 22), there is
a non-negative scalar (L, M), such that

vol, (@, P)=6(L, M) vol,, P

for each Pe 2(M). If U is a fixed frame, and v, w are vectors orthogonal
to U, write L,= (U, v)* and

(U, v, w)=sign{v,w)O(L,, L,).

By considering the areas of the projections of the facets of a polytope in
P(U+) on to L,, we obtain

LemMa 30. For each frame U and fixed ve U

Y (U, 0,w) fu=0.

we U

We observe that the sum in Lemma 30 is infinite (if we exclude (d—1)-
frames U, according to our remarks above). Now general infinite linear
combinations of frame functionals are not permitted, in contrast to the
situation for Hadwiger functionals /,,; the latter vanish on polytopes of less
than full dimension anyway, and if Pe # is d-dimensional, then fi,(P)#0
for only finitely many frames U. However, if U is a fixed frame as in
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Lemma 30, then again for a given polytope P, we have Sw.m(P)#0 for
only finitely many we U.

Similar considerations must be borne in mind in constructing the third
kind of syzygy. If Pe 2, then for only finitely many frames (v, w) spanning
a fixed plane L is it true that P, ,,# Py, ., (consider the onromo:u._
projection &, P, which is a polygon, line segment, or point). Moreover, if
we choose a fixed orientation (v, w) in L, and rotate v according to this
orientation, then for two successive values v, v, of v for which inequality
does prevail, we have P, ) =Py —wy- Applying this to polytopes P
with L<(U’)*, and looking at faces in direction a further frame
U”< (U, L)*, we obtain

LemMA 31. Let (U', U") be a frame in V, and let L be a plane in V with
L< (U, U")*. Then

M A\.c,.c.x., Uy I\E..s —w, c..L =0,

(e,w)e L
where the sum extends over all frames (v, w) in L of a given orientation.

Note, by the way, that the summation above is really only over ve L,
since the orientation and (v, w) =0 determine w (and, as usual in talking
about frames, only the directions of the vectors are significant).

We refer to the syzygies of Lemmas 29, 30, and 31 as syzygies of the first,
second, and third kind, respectively. We wish to propose:

Conjecture 1. Every syzygy between frame functionals is a consequence
of syzygies of these three kinds.

The syzygies of the first kind need no further comment. For the rest, we
have:

THeOREM 10.  The only syzygies between frame Sfunctionals fy of type
r<d—1, where U= U(v) depends on a single vector v, are those of the
second and third kind.

We sketch the proof. If U depends just on v, it is of the form
U= (U,, Uy(v), Us), with U,, U, fixed [rames, and U,(v) varying over
frames in some fixed subspace LS Ut n Us. We clearly lose no generality
if we take U,= (alternatively, we work in II(U{)). We consider
separately the cases dim L=1,2 or dim L > 3. Fordim L=1and d>2, for
suitable Pe 2 there is no relationship between P, and P _,, which thus
excludes this case. For dim L =2, we necessarily have the relationships
P =P (with w,ev} for i=1,2) as above, when the general

(ryomwg) (v, — w2}
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equation P, ., =P _,, fails (see also Section 13 below), but again
suitable choices of P show that we have no others; this yields the third kind
of syzygy. Finally, if dim L >3, suitable simplices yield Minkowski’s
theorem (that is, Lemma 30), but deny other relationships. The theorem
follows.

11. THE ALGEBRA STRUCTURE II

We are now in a position to complete the proof of Theorgm 1. We first
need a special case of Theorem 1(d). ’

LEMMA 32. Ifd=2, and x, ye =, A€F, then (Ax)y = x{Ay).

Let P, Q be two fixed polygons or line segments in the plane, and let
A, 1 =0 be variable scalars. An application of the lifting theorem of Walkup
and Wets [18] shows that AP + uQ admits a dissection (up to translation)
into AP, pQ and sets of the form AE + uF, where E is an edge of P and F
an edge of Q. Considering the 2-component of

[AP+uQ]=(1+2p+3 4() p’)1 + g+ 35 4(n) ¢°),

where p=log P, g=log @, using Lemma4 (or the inclusion—exclusion
principle), and noting that the 2-components (areas) of points and line
segments vanish, we deduce that

(Ap)uq) =Y (Ae)(f),

EF

where E, F are as above, and e=log E, f=1log F. But the analysis in
Section 7 shows that the area term (ie)(uf’) depends only on (e, fand) the
product Au. The same is therefore true of (ip)(uq).

In particular, (1p)q = p(Aq) for all A= 0. But the definition of scalar mul-
tiplication in =, shows that we need only consider this case (this remark
holds good below as well). Thus the lemma holds for the generators of =,
and so it holds for all x, ye =, which proves the lemma.

Theorem 1{d) for general dimension d and x, ye =, now follows. As
above, it is enough to prove that (/Ap)g= p(lg), whenever p=Ilog P,
g=log Q for some P,QeP\{F} and 21>=0. In turn, the corollary to
the separation Theorem 3 shows that we need only show that
((Ap)qg — p{iq)), =0 for each (d—2)-frame U. But recalling that the map-
ping x> x, is a ring endomorphism of /7 which commutes with non-
negative dilatations (by those parts of Theorem 7 which we have proved so
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far), and that, by definition, Ap=4(4)p since pe E; (and similarly for g),

we have

((4p)9) v = (AP)vqu = (APu)qu
= pul(Aqu) = pulAg)u=(P(A9))y.

Thus (4p)g = p(Aq), and consequently we have this more general case of

Theorem 1(d). .
All that remains of Theorem 1 is the rest of (d), and the extensions of the

scalar multiplication of (c) and the dilatation of (e) from Q to F. We do

all these together.

A typical generator of =, (r >2) is of the form x, ---x,, where x; € =, for
i=1, .., r. (In fact, we could take it to be of the form p’, where p=Ilog P
for some Pe?\{J}, but this is needlessly specialized.) We define the

scalar multiplication by
NAR- - ...K\v” Am...xnv.xw s X,

for Ael. :&._oaoa on r, starting with the case r=2 (that part of
Theorem 1(d) proved above), shows that it is irrelevant to which factor x;
the scalar A is attached. This remark, applied to the generators of Z,, also

establishes (d) in full generality. . .
Now, all the properties of a vector space over [ are easily verified, except

for the distributivity property
AMy+z)=4iy+1z

for i€ F and y, ze Z,, in other words, that scalar multiplication by Aisa
group endomorphism of Z,. But for our generator x, ---x, and 120, we
have

AA)(xy---x,) = (4(D)x,) - (4(A)x,)
= (4x,) -~ (4x,)
=A"(x; - x,)

This, then, is Theorem 1(e). o
Finally, we can write A>0 as a rational linear combination

i=Y o (A+k)
k=0
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for some «ay, ..., 2, €@ (valid for all 2). Since each 4(A+k) is a group
endomorphism of the rational vector space =,, so is 2 ; o, 4(4+ k). But

A M % mitav (xy - x,)
k

=0

=( L m+hr) ()

k=0

=Axy---x,),

and this yields Theorem 1(c), and completes the proof.

Note that we must now have Z,~F as a vector space over F, in a
natural way that was perhaps already apparent in Section 7.

Let us make one final remark about the corollary to Lemma 28. There,
we can now assume that ye Z,(H) for some r> 1, say a basic y=y,--- y,,

with y,e Z,(H) for i=1, .., r. Then for A >0 (as usual sufficient), we have

(Ae)y=(Ae)y,..y,=e(Ay,)ys-. ¥, = e(4p),

by the definition of scalar multiplication in Z,(H).

We left the proofs of Theorems 6 and 7 incomplete, in that we could not,
in Section 5, prove that the two kinds of homomorphism occurring there
were full algebra homomorphisms. As an obvious first remark:

LeMMA 33. The homomorphisms of Theorems6 and T act as group
homomorphisms on each weight space Z,.

This follows directly from Lemma 20 (with, say, A=2), and the fact that
these homomorphisms commute with non-negative dilatations.
The full algebra properties

P(Ix)=Adx; (Ax), = Axy

now follow at once, if we bear in mind the definition of scalar multiplica-
tion in =, for r > 1, and the proof of the last parts of Theorem 1 just above.
We conclude the discussion of Theorem 1 with an observation.

THEOREM 11. Let 0<r<d—1, and let xe =, with x 0. Then there is a
ye E,|, such that xy #0.

The case r=0 is trivial, since any y e =, with y 50 will do (bear in mind
Lemma 16); we may thus suppose that r > 1, and hence that d>2. We first
consider the case r=d—1. For each direction u, x, is a pure (d—1)-
volume term, and since x #0, there is at least one, and at most finitely
many directions u;, such that «,:=x, #0 (we take a,eF here). There are
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constants k;>0, such that, if PeZ has support function h(P,u)=
max{<v, u)|ve P}, as in Section 2, then for p=Ilog P, we have

px =Y kP, u)a;

(this is the usual calculation of mixed volume, with the constant k;
depending on the normalization of the (d—1)-volume a;; see also
Section 15 below).

We now pick any a, beV with a#b, such that {a,uy=<b,u) for
exactly one u=u, (among those u; above). For i>0, write ¥, =
conv{o, a, b}, and let y,=log Y. By direct calculation, for A sufficiently
near 1, we have
0, if

YR
k(A=) a, u)a, if Az1

]
»

VA

xy;—xy;=y¢(1)+ W

where (A) is some linear function, and x =k;, x=a;. Thus xy; cannot be

constant, and so for some y=y,, we have xy #0. .
Now let r<d—1. If xeZ, with x#0, then from the separation

Theorem 3, we can find a vector u5 o such that x,#0. Since x,€=,(H,),
with H, as usual the hyperplane orthogonal to u, by induction on d we can
find a ve =,(H,) such that x,y#0. But we have (xy),=x,y.,=X,), and
consequently xy 0, as we wished to show.

12. THE CoNE GROUP

The definitions of the cone groups S(L) and X were given in Section 2,
but for convenience we repeat them here.

Let L be a subspace of ¥, and let €(L) denote the family of all cones
(that is, polyhedral cones with apex o) in L. The cone group X(L) is the
abelian group with generators (K for Ke €(L), which satisfy the relations

(V) (K UKD+ (K nKyy=(K,)+<Kp), whenever K;,K,e%(L)
are such that K, u K,e%¢(L) also;
(S) (K)>=0, il Ke¥(L) satisfies dim K < dim L.

The full cone group X is defined to be 2=, (L), the direct sum
extending over all subspaces L of ¥, including {0} and V/ itself. We also
write £X= @ 14 2(L), so that £= @i _, 2~

Two cones are associated with a polyhedral set P (in our case, a member
of # or ) and a non-empty face F of P. The first is the inner (or angle)
cone

A(F, P)=pos(P —F),
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which is, after translation of its apex to o, the cone generated by P from
any relatively interior point of F. The other is the outer (or normal) cone
N(F, P), which is (as defined in Section 2) the cone of outer normal vectors
to support hyperplanes of P which contain F.

If the polar cone K° of a cone K is defined (in the usual way) by

K°={ueV|{u,v)<0 for all ve K},

so that K°° = K again, then we have:

LeMMA 34. If P is a polyhedral set and F a non-empty face of P, then
N(F, P)= A(F, P); A(F, P)= N(F, P)".

In all that follows, the class of a cone K€% is taken intrinsically; in
other words, (K is the class of K in £(L), where L =lin K is the smallest
subspace containing K. Thus, (K)> #0.

The classes of A(F, P) and N(F, P) in X are denoted a(F, P) and n(F, P),
respectively. In [8], we proved the following result (with F =R, but the
proof carries over directly):

Lemma 35. (a) Let Ke¥. Then

MA|~V4.:5.HQAN.M Nﬂv”Aol—vQ:.:s»AlNﬂv

I

(b) Let Pe? with dim P> 0. Then

Y (— D)%™ F a(F, P)=0.

s

Such sums always extend over all non-empty faces F (of K or P). These
relations are abstract versions of theorems of Sommerville and Brianchon
and Gram, respectively. Note the occurrence of the opposite cone —K on
the right side of the first relation.

One case of Lemma 35(a) is of particular importance (see Section 14).
Bearing in mind Lemma 34, we easily see that, if G is a face of P which
contains F, then the inner cone of N(F, P) at its face N(G, P) is just
N(F, G). We therefore deduce

LEMMA 36. Let P be a polyhedral set in V, and let F be a non-empty face
of P. Then

Y (=) n(F, G)= (-1 n(—F, —P).

rFeGepP
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We next repeat more results from [87] (which were actually proved in
a concrete form in [5] with F=R, but again the essential geometry
translates). As before, if Q is a polyhedral set and L a subspace of V, we
write Q|| L to mean that aff Q is a translate of L.

LemMA 37. Let % be an abelian group, and for each subspace L of V, let
Y, F (L)% be an L-simple translation invariant valuation, where & = 2
or €. If : F > 9 is defined by y(P)=y ,(P) if P|L, then the mapping
¢ F -4 ® 2 given by

¢(P)

Y Y(F)®n(F, P)

F

is a translation invariant valuation.

Of course, here and in the next lemma, translation invariance is
irrelevant if # =¢.

LEMMA 38. Let % be an abelian group, and let §: ¥ — 9 be a translation
invariant valuation, where F=2P or €. Then for each subspace L of V, the
mapping .. F(L) > % ® 2 defined by

SrHF)®(—1)4mP-dmb g(F, P), if P|L,
0, otherwise,

.\;Euw

is an L-simple translation invariant valuation.

We shall use more concrete versions of these lemmas in Sections 16
and 17.

13. THE SECOND ISOMORPHISM THEOREM

In this section, we shall establish the second isomorphism Theorem 5.
For convenience, and bearing in mind Theorem 8, we shall restate the
result in a rather stronger form. We suppose, as in Section 7, that we have
picked a volume vol, for ecach subspace L of V, and that, as usual,
vol P=vol, P, where P| L. :

LeMMA 39, For each r=0, ... d, the mapping o,: ? —» F® £ defined by

a,(P)=Y vol F*®n(F’, P),

Fr

where the sum extends over the r-faces F™ of P, induces an injective (vector
space) homomorphism from Z, into F@ 247",



114 PETER MCMULLEN

F®Z inherits its structure as a vector space over [ from its first
component. Of course, Z,=Z, and so lacks a vector space structure. It is
convenient to treat this case first. Each vertex F° of P is a point, with
volume vol F° = 1. The outer cones N(F°, P) to P at these vertices form a

dissection of ¥, and hence
go(P)=1® V>

for each Pe 2\ {}. The isomorphism k+—k® V> shows that &, is an
injection.

In general, by Lemma 37, g, is a translation invariant valuation, and
since o, is homogeneous of degree r (since each volume occurring is also),
we see that ¢, maps =, into F®X4-". The case r=4d is also easy, since
50 =7 is generated by the class of the subspace {0}, so that every element
of F® X is uniquely representable in the form A® ({0}, for some ieF.

So, now let us suppose that 1<r<d—1. We shall show how o,.(P)
determines f, (P) for each frame functional f,, of type r, and the separating
property of these f, will show that o, is injective. If U= (uy, ., uy_,) is @
(d = r)-frame, and if we write Fo=P and F;=P, 4 for j=1,..,d—r,
then f,(P)=vol F,_,, where L= U+ is the r-dimensional subspace
orthogonal to U. Now the condition F;=(F; ), says that

u;erelint N(F;, F;_,)
= relint(N(F;, P)— N(F;_,, P)),
the latter relation holding since N(F, G)= N(F, P)— N(G, P) is the inner

cone to N(F, P) at its face N(G, P), as mentioned in Section 12 above.
Conversely, if these conditions hold for some chain

Nv“m.owm.—w wm.&l\“m‘

of faces of P, then F=P,.

This motivates the following definition. We say that the (d-—r)-
dimensional cone K is adapted to the (d—r)frame U= (u, .., u; ) if
K<clin U, and K has a chain of faces {o} =K, =K, < --- < K,_,, with
u erelint(K;,— K, _,) for j=1, .., d—r. Suppose now that xe = is such that

7,(x)= L 1k ® <K,

where the sum extends over a finite set of (d—r)-dimensional cones K.
Then the above discussion shows that, for each (d—r)-frame U,

fulx)=Y {uxl K is adapted to U}.

|
i
M
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In particular, if ¢,(x)=0, then fu(x)=0 for every frame functional f; of
type r, and hence, by the corollary to Theorem 3, x=0. That is, o, is
injective, as claimed.

The o,(P) are, in some sense, the abstract analogues of the intrinsic
r-volumes V,(P) (or (d—r)th quermassintegrals W,_.(P); see [5] or [9,
Sect. 3]). Theorem 5 itself can also be regarded as an abstract version of
the main Theorem 2 of [7], since the identity map from IT into itself is
obviously dilatation continuous in the sense of that paper.

We conclude this section with a few remarks about the image of the
mapping ¢. We observe first that the range of definition of the frame func-
tionals can be extended to F®Z, as the concept of “adapted” shows.
Indeed, if we denote by G the vector space over generated by the frame
functionals (of course, only finite linear combinations are allowed here),
then F® £ and G are easily seen to be dual vector spaces.

The image space im ¢ and the syzygies between the frame functionals are
clearly closely related. On im g, the syzygies of the first kind are trivial, but
on F® X they are not. Neither, naturally, are the syzygies of the second
kind trivial. However, it is not hard to see that the syzygies of the third
kind also hold on the whole of F® Z. It is therefore natural to pose:

Conjecture 2. (a) imo,=7® (V) and is determined by the syzygies
of the first kind, and the conditions Ju(x)el.
(b) Forr=1,.,d—1,imo,is determined solely by the syzygies of
the second kind.

(c) ima,=F®{o}> (=F).

In fact, (a) and (c) are true, as we know.

14. THE EULER MAP AND NEGATIVE DILATATIONS

We recall from Section 2 that the Euler map *: IT1— 11 is defined on the
generators [ P] of IT (Pe ) by:
(E) [PI*=X,(=1)"""[F]
The first stage in proving Theorem 2 is a universalized form of a result of
Sallee [14]:

LEMMA 40. The Euler map induces a group endomorphism of 11, and,
indeed, of each weight space =,.

The first assertion is proved using Lemma 2; we shall not reproduce the
details. The second then foliows easily from Lemma 20.
If we apply the Euler map to 1= [0], we obtain 1*=1. But, by
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Lemma 8, the O-component of [P] is also 1, for every Pe 2\{JJ}.
Lemma 40 thus yields:

LEMMA 41. Each Pe P\{ D} satisfies the Euler relation
MAlmvmwiﬂ” ~
F

It should be noted that this is not the most straightforward proof of
Euler’s theorem.

The connexion between Euler-type relations and negative dilatations was
first observed by Sallee [ 14]; subsequently, many Euler-type relations were
discovered (see [6, Sect. 6] or [9, Sect. 12] for details), and the general
relationship was elucidated in [6].

If x e 1, we write for brevity in what follows % = 4(—1)x. The mapping
X+ % is obviously involutory, and, by the corollary to Theorem 6, is an
algebra automorphism of /7. The core of Theorem 2 is contained in:

LEMMA 42. Let r=0, ... d If xe Z,, then x=(—1)" x*

It is enough to verify this for the r-component of a generator [P] of I1.
We employ the injection o,: =, — F® X9~ (see Lemma 39). Then, with F”
in the sums below running over the r-faces of P, and using Lemma 36, we
have

o ([PI1N)= % (=)0 ([G])

Ge P

- T:eamw v <o_m,®=:ﬁ9w
P

Ge Fre G

HM <o:.4®m M Al:&ami%nmvw
Fag=y o FreGe P

= Y vol(~F)®{(—1) n(—F", —P)}

Frep

=o((=1) [-P))

Thus [ — P],=(—1) [P]}, as we wished to show.
More generally, for A<0, write A=(—A)(—1); if xeZ,, there then
follows, using Lemma 42 and Theorem 1(e), that 4(4)x=A"x*, as required.
The rest of Theorem2 follows easily as well. Since the mapping
x> (—1)x for xeZ, (r=0, .., d) trivially induces an involutory algebra
automorphism of [1, Lemma 42 and the remark before it show that x— x*
is also an involutory algebra automorphism.

THE POLYTOPE ALGEBRA 117

The relationships of Lemma 42 can be stated in a more picturesque way.
The invertible elements of T are clearly just those of the form =+ (1 +z),
with ze Z,. In particular, if Pe Z\{@}, then [P] is invertible. Now, if
p=log P, then obviously [P] '=exp(—p). But Lemma42 for r=1
implies that —p= j*, in the notation used there. Exponentiating, and
using the fact that x+— % and x> x* are algebra automorphisms, we
deduce:

THEOREM 12. Let Pe P\{B}. Then [P]1'=[—-P]*

Theorems 2 and 6 also immediately yield:

THEOREM 13. The homomorphism &: II(V) — II(W) induced by an affine
mapping ®: V ~ W commutes with the Euler map.

From a geometric point of view this is curious, since if rank @ <dim V,
then for Pe 2, the facial structures of P and @P are not particularly
closely related.

We sometimes write the 0-component 4(0)x of xeIT as x(x)= x(x)1,
and call y(x) the Euler characteristic of x. Then yx can be characterized in
the following way:

THEOREM 14. Let R be any ring without nilpotent elements ( for example,
an integral domain), and let ¢: IT - R be a non-trivial ring homomorphism.
Then there is an idempotent i€ R, such that ¢(x)=y(x)i for all yell.

If xeZ,, then x“*'=0, and hence 0=¢(x?*")=¢(x)?*', so that
$(x)=0 also. Thus i=¢(1)#0, and i>=¢(1)*>=¢(1%)=¢(1) =1, so that i
is an idempotent. There follows at once ¢(x)= x(x)i, as claimed.

15. MIXED POLYTOPES

If 4 is a rational vector space, and ¢: # - Z a translation invariant
valuation, then it is known (see [6] and the Appendix to {9]) that, for
P,, .., P,e2 and rationals 4,, .., A, >0, there is a polynomial expansion

S P+ o+ A Py)

ri+ ---+r r r
“M A~ »VL.__‘..L.»\.QANV_.\_W...ww\:\kw«

"0 \— \.».
where

A:+ +;v|¢_+ ce !

ry e Iy rit-oor!
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is the multinomial coefficient. The coefficient ¢(P,, ry; ..; Py, ri) is a trans-
lation invariant valuation which is homogeneous in P, of degree r;
(i=1, .., k); it is called a mixed valuation. If P,= --- = P, = P, say, and
r=r;+ --- +r., then, in the notation of Theorem 8, #(Py, r;...; Py, 1) =
¢.(P) is the rth homogeneous component of ¢(P).

We shall shortly see that this result is a consequence of our general
theory. One approach to it has been to develop a corresponding theory of
mixed polytopes; this was attempted by Meier [10], though his argument
appears at one point to be flawed. In [9], an alternative approach was out-
lined, though there only within the context of the polytope group ).

However, working with the polytope algebra makes it clear what we
must do. The general mixed valuation is of the form ¢(P,, ..., P,), where we
suppress the mention of r; =1, since .

&Aw—«‘—w.-.ww»uﬂ»vnﬁﬁw_u:.u w_u..i wku...o vaVu

where P, is repeated r; times (and omitted if r,=0). If 2<r<d, let
P, ..,P,eP\{} (but not necessarily distinct), and let p,=logP;
(i=1, .., r). Then the mixed polytope (class) of P, .., P, is defined to be

1
m(P,, .., wLHU P D,

In particular, if P, = --- = P,= P, then m(P, .., P)=[P], is the r-compo-
nent of P.

Expanding [A, P+ --- + L, P ]=exp(A;pi+ -+ +4cpi) as a polyno-
mial in the rational numbers 4, >0, and applying the valuation ¢: # - Z,
then yiclds the result above. Of course, the general mixed valuation is
HP,, .., P)=g(m(P,, ..., P)).

This approach to mixed valuations (and, in particular, in case r=d to
mixed volumes) clarifies a number of previously known results. We give a
few examples.

The first concerns an observation made originally about mixed volumes
by Groemer [1]; there it was stated for convex bodies in case F = R, but
its essence is algebraic. A neater proof was given in [9], and what follows
is an abstract version of this.

THEOREM 15. Let P, Qe P\{ I} be such that X=Pu Qe dlso, let
Y=PnQ, and write p=1log P, and so on. Then pg = xy.
Equating r-components of the valuation property equation (V) and

multiplying by r! yiclds

pPAg=x+y (r=0,..d).
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Hence
pa=%(p+q)Y—(p>+4%)
=H(x+ )= (2 + y)) = x,

as we wished to show.

Observe also that the cquations p+qg=x+y and pg=xy imply that
p +q =x"+y" for each r=0,..,d Exponentiating p+g=x+y also
yields [P+ Q] =[X+ Y], which is a weaker version of Lemma 24.

Another example involves summands of polytopes (see [2, Chapt. 15].
Let P,QeA\{J} be such that there exists a rational 1> 0, with the
property that, for each (rational) A satisfying 0< A</, thereis a P,e?
with P=P,+AQ (it is enough, in fact, to take i=2 here). Writing
p=log P, and so on, we have p=p; +4q, or p,=p— Aq. The r-component
of [P;] is thus

Now let 2 be a rational vector space, as before. We conclude from our
discussion the following

THEOREM 16. Let ¢: P — & be a translation invariant valuation which is
homogeneous of degree r. With the above notation, for rational A with
0<A<A d(P)=2 o (A) (DB(P, r—5;0,5).

The traditional proof of this involves expressing P, as P;=P;+ (A—-A4)0,
expanding ¢(P;) as a polynomial in 1 — A, and comparing coeflicients with
those of ¢(P+ uQ) for u=>0 and 1<0.

These two results admitted proofs within existing valuation theory. The
last, in contrast, uses the multiplicative structure in an essential way.

THEOREM 17. Let ¢ be a translation invariant valuation on & which is
homogeneous of degree r. Then for fixed P, .., P, e ?\{&} and variable
Ayy o A, 20, the value of the mixed valuation ¢(4, P,, ..., A, P,) depends only
on the product A, ---4,.

The rcason is simple: the corresponding mixed polytope is
. [P ,
\:A\w_ Nv_q e \(\Nuxv = u A\A._ P w ot A\r‘ﬁwv

; .
HT:...\,L.I_E_...EI
r!

where p,=log P, (i=1, .., r), and the theorem follows at once.
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16. INNER AND OUTER ANGLES

In preparation for discussing the isomorphism between IT and the full
polytope group 11, we must return to the topic of cones. A homomorphism
w on the full cone group £ is identified with a family of L-simple valua-
tions w, on (L), one for each subspace L of V (including {o} and V
itself). We call w an angle ( functional) if w takes values in F, with w(L)
(=w, (L)) =1 for each subspace L.

As has been pointed out by Betke (private communication):

~

LeMMA 43. Angle functionals on X' exist.

We refer back to Section 7, where we chose a volume vol, in each
subspace L, whose scaling was induced by a polytope Q with oeint Q. We
now define the angle w, on $(L) by

o (K)=vol (KN Q)

for Ke%(L). This clearly gives an L-simple valuation, with w (L)=1,
since the scaling of vol, is induced by Q.

It should be noted, however, that angles do not necessarily arise in this
way. As a variant on this construction, any polytope Q, in L with
dim Q, =dim L will give risc to an angle on (L) as above, even if
o ¢ relint Q. Our choice of @ in Section 7 shows that angles need not be
centrally symmetric. There is no reason for them to be non-negative either;
for example, pick Q,, @, in L which are strictly separated by a hyperplane
through o, whose positive volumes satisfy vol, Q, # vol, Q,, and define

w,(K) = (vol (K" @) — Vol (KN @,))/(vol, @ —vol, @2).

Denoting by a(F, G) and n(F, G) the classes of the inner and outer cones
to a polyhedral set G at its face F, we define inner and outer angles to G

at F by
a(F, G) = wla(F, G)),
v(F, G)=w(n(F, G}),

where  is some angle functional, not necessarily the same at each
occurrence. We call inner and outer angles « and v inverse if

MAI:&aT&an;ﬁ:i\,Qvnu:ﬁmy
J

where

1, if F=G,

oF, G)= MS, it F#G.
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It is convenient here to adopt the language of the incidence algebra of
functions on the faces of polyhedral sets (see [11]). The incidence algebra
consists of functions k on ordered pairs (F, G) of faces, taking values in
some ring (in our case, F). These are such that k(F, G)=0 unless Fis a face

- of G. Addition and multiplication of such functions are defined by

(k + A)(F, G) = k(F, G) + MF, G),
(kA)(F, G) =Y. k(F, J)MJ, G).

J

The values x(F, G) can be thought of as entries in a triangular matrix, and
the defining condition then implies:

LeMMA 44. If o and v are inverse inner and outer angles, then

MAl:&aqLi\ v(F, J) a(J, G) =0(F, G).

J

An obvious result to which we shall often wish to appeal when we pass
from Lemmas 37 and 38, involving inner and outer cone classes, to their
concrete versions involving inner and outer angles, is:

LEMMA 45. Let X be a vector space over F, and let w be an angle on z.
Then the mapping n: ¥ ® £ —» & defined by n(x® c) = w(c)x (xeZ, cel)
is a homomorphism.

The crucial result of this section is:

LEMMA 46. If v is an outer angle, then there exists an inverse inner angle
o, and conversely.

The inverse a of v certainly exists in the incidence algebra, since v
corresponds to a triangular matrix with diagonal entries v(F, F)=1.
However, this does not immediately ensure that « is an inner angle.

We therefore proceed as follows. We first construct an auxiliary inner
angle &, which will be such that &(F, G)=a(—F, —G), and to do this, we
need to find a corresponding angle functional w. We do this by induction
on the dimension of the subspace L of V, beginning with w({o})= 1.

So, suppose that we have constructed @ (and the corresponding inner
angle &) in such a way that, whenever K is a cone with dim K < dim L, then

Y w(F)v(F, K)=1

¥
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(here, w(F)=a(A, F), where A is the face of apices of K). We now define
w, on ¥(L) by

wK)=1— Y  o(F)¥F,K).

dim F<dim L

The mapping K+ 1 is certainly a valuation on % (though not simple;
bear in mind that all cones are non-empty and convex), and so is the

mapping

K Y w(F)v(F, K),

dim F<dim L

by Lemmas 37 and 45, since the condition dim F < dim L ensures that w(F)
is already defined. Thus w, is a valuation on %(L); it is simple by the
inductive assumption made above, and w,(L)=1 since L is the only face
of itself.

We next set a(F, G)=d&(—F, —G) (=w(—A(F, ())). From the Euler
relation for cones (see [5] or [8]), and Lemma 35(a) (with a replacing a),
we deduce

oF, G)= M (— 1 )dimK - dimF

FeKsG

— M Al._v&::ﬂ.ln::;. WM QA|NA. |.\V<A,\w va
FS K G J ;

”MW M AI‘~V&B>.\&5~.‘QA|~AN ‘l.\vw <A.\'Qv

"M A|~VEE.\!&EWRANN .\V«A.\v QY
J

as required.
The proof with « and v interchanged is similar, or can be deduced from

the first case by polarity.

17. THE PoLYTOPE GROUPS

The polytope group TI(L) is derived from the subalgebra [T(L) of II by
imposing the extra conditions (S) which correspond to simple valuations;
in other words, as a group, /7(L) is a quotient of [7(L). Before we prove
the first isomorphism Theorem 4, we shall derive the structure theorem for
JI(L) of [4] or [12] from that of /T in Theorem I.
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We begin by recalling that, up to isomorphism, II(L) only amﬁozam on
dim L, because of Theorem 6. So, we need only consider 17¢= (V) itself.
We have:

THEOREM 18. (a) [1°2Z.
(b) For d=1, 119 admits a direct sum decomposition

[I])

d
into vector spaces .m,.m over F (r=1, ..., d). Moreover, dilatations act on e by

A i20
&» ” $ ] b}
:a WT:SQ, »Ao.

for xe .mi.

Part (a) is obvious, since /7° is generated by the class 1 of a point ({o})
In fact, we can (and shall) identify /7° with IT({o}) in the natural way.

So, now suppose that d>1. Let I7° be the additive subgroup of /7
generated by the polytope classes [P] with Pe 2 and dim P <d. Then the
dilatations clearly act as group endomorphisms of /7%, and so IT° also
admits a direct sum decomposition

i:nno ES=Z,2 7, and =% is a vector subspace of Z, for r=1, .., d. In fact,
= {0}, since volume vanishes on Z°, Taking nso:n_:m So_am the direct
mca decomposition for I1% note that Uum £, again gives us volume.
The action of the dilatation 4(1) on Z¢ for 4> 0 is directly inherited
from its action on =,. For 4 <0, the action involves the Euler map. But in
ITY, we have (F)>=0if Fis a face of P with 95 F<d In other words,
(PY*=(—1)? (P for all Pe 2, and so if xe £/ and 1 <0, then

AQ)x=Ax*=(—1)1x,

as claimed. This proves the theorem.

Let us remark that, although the assumption { —P)=(—1)/{P) was
made in [4], it can be seen here to be unnecessary (contrast [12, Proposi-
tion 2.5.51).

While we are considering polytope groups, we shall establish a repre-
sentation theorem analogous to Theorem 5. We must first quote the
separation theorem for 1
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U U=(uy,.,u) is a k-frame, and E=(g,..,&) With &==*1
(i=1,..,k), we write EU=(g,u,, .., ext;) and sgn E=g¢,..¢,. Then a
Hadwiger functional of type r is a mapping of the form

b:HM sgn E-fry,
E
where U is a (d—r)-frame and f, is the corresponding frame functional.
The case U= (J just gives volume.
The Hadwiger functionals are simple translation invariant valuations,
and so induce homomorphisms on 11 (we shall say more about this
below). In fact, we have (see [4] or [12]):

LEMMA 47. The Hadwiger functionals separate IT°.

" It is convenient, and not too confusing, to identify a homomorphism on
179 with the corresponding homomorphism on /7 which vanishes on /T S (so
that we suppress the quotient map from I to I1/I15 = [19). Hence, in
particular, the Hadwiger functionals are regarded indiscriminately as
homomorphisms on I or on 17

Let I~ denote the subgroup of X generated by the classes of cones in €
which contain a line, and so have faces of apices of positive dimension. The
important step in our discussion is:

LEmMA 48. Let o:IT->FQ®Z be the injection of Theorem S, and let
xell. Then xeII® if and only if 6(x)eF® .

Since the face of apices of the outer cone N(F, P) has dimension
d—dim P, we see that n(F, P)e " whenever dim P<d, and so xell®
implies a(x)e F® I

For the converse, we consider in more detail the effect of a Hadwiger
functional. The volume term in I7 corresponds to the subgroup F® £°, so
that o(x)e F® I implies that vol x=0. So, let /, be a Hadwiger functional
of type r<d, and consider h(P) for Pe P\{F}. Now h,(P)=0 anyway
unless dim P, =r for some E=(¢,,..¢,). On the other hand, if (for
simplicity) dim P, =r but dim P <d, then the decreasing sequence

(yj=0,.,d—r)

of faces of P is such that, for some minimal j, F, ,=F, With
E= (&, ... &4 ,) such that g;= —1 and ¢,= | for i # j, the terms f,,(P) and
Jwu(P) of hy(P) cancel. We conclude that /,(P)=0 if dim P <d. But con-
versely, referring back to the proof of Theorem 5, we can see that if Uis
adapted to a cone K whose class lies in I, then so is EU for some such E

of the kind just mentioned, with j minimal such that K;=K; , (in the
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notation of that theorem). We conclude that, if o(x) e F® I, then A, (x)=0
for every Hadwiger functional h,, and so, by Lemma 47, xeIT%. This
proves the lemma.

If we write ¢ for the image of ¢ under the quotient map from 2o LT,
then there immediately follows from Lemma 48 the promised isomorphism
theorem for J7°.

THEOREM 19. The map 6: @ - F® (£/I), given by

G(P)=Y vol F®n(F, P),

induces an injective homomorphism on IT°.

First, & induces a homomorphism on 77, using Theorem 5 and the fact
that 1 ® ¢ — u® ¢ is a homomorphism from F®2Z onto F® AM,\D. Second,
Lemma 48 shows that, if x e /7, then 6(x) =0 if and only if xe IT5. Thus &
indeed induces an injective homomorphism on I7%, as claimed.

We end this section with a remark. In [12] (see p.40), Sah uses
logarithms and exponentials as an accounting device to investigate the
relationship between £¢ and I7%. We can now see these as the shadows of
the genuine log and exp, under the projection from 7 on to 1.

18. THE FIRST ISOMORPHISM THEOREM

As in Section 2, the full polytope group is defined to be =@ 1(L)
To prove the isomorphism 17 =~ IT of Theorem 4, we employ any pair of
inverse inner and outer angles « and v of Lemma46. We construct
homomorphisms ¢: [T — I and y: IT - IT as follows.

First, we define the mapping ¢: Z — 1T by

$(P)= ) v(F, P){F),

7
where { F) is now the intrinsic class of F (in [I(L), with L such that F|| L).
It might appear that we run into trouble with the vertices F° of P, sincc
Z2x7 is not a vector space over F, but note that 3,0 v(F°, P) = 1, because
the outer cones to the vertices of P dissect V, and v is an outer angle. By
Lemmas 37 and 45, ¢ is a translation invariant valuation on 2, and so

induces a homomorphism ¢: [T — I1.
Next, for each subspace L of V, we define the mapping ¥, : #(L) — IT by

T (=P dmEa(F P)F], if P|L,
0, otherwise.

.\\LENW
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Again, we might appear to have problems with the O-components of the
classes [F), but we observe that Lemmas 35(b) and 45 ensure that the
corresponding contribution is 1 if dim P=0, and 0 otherwise. Then
Lemmas 38 and 45 show that ¥, is an L-simple valuation for each L, and
so these ¥, induce a homomorphism : -1 .

The definition of inverse inner and outer angles and Lemma 44 easily
show that ¢ and ¢ are inverse homomorphisms. Thus, 7= 1, which is
Theorem 4.

This proof closely parallels the proof in [6] of the relationship between
general and simple valuations. However, there it had to be assumed
that the valuations were real-valued (in the case considered, F=R); this
treatment removes that special assumption. Note that the isomorphism
constructed above is obviously compatible with dilatations.

19. RELATIVELY OPEN POLYTOPES

In [15], Schneider has shown how to obtain a theory of translation
equidecomposability of unions of polytopes in R, based on relatively open
polytopes. The analogous theory is valid over any archimedean field F,
although Schneider’s argument will still need real-valued functionals.
However, for non-archimedean ficlds, standard examples show that here we
must allow complementation. We shall briefly outline Schneider’s theory,
and provide a simpler scparation theorem.

With £ having its usual meaning, let IT be the abelian group, with a
generator [P] for each Pe#? (and [J] =0), and with relations

(V) [P)=[PnH*]+[PnH 1+[Pn H], whenever Pe # and H
is a hyperplane bounding the closed half-spaces H * and H ~, which cuts
P properly (so that P £ H* and P £ H7),

and the translation invariance property (T).

The intuitive picture is that [P] is the class of relint P, the relative
interior of P. Thus, in fact, (V) is really the analogue of the weak valuation
property (W).

The basis of our discussion is a remark made in [9] in the context of
Euler-type relations for valuations. Recall that in Section 3 we defined the
family 2,, of partly open polytopes, and obscrved that valuations on #
extend to #,,. Then we have:

LEMMA 49. For Pe#, [relint P]1=(—1)""" [P]*

Since P is the disjoint union of the relative interiors of its faces, we have

[P]=Y [relint F].
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Mobius inversion (see [11]) then leads to

[relint P] HM (-1 v&amx&am [F]
”A| _ vn::;. h&uu_*,

since the Mobius function on the lattice of faces of a polytope (or of a
cone) is u(F, G) = (—1)¥™¢~ 4™ This is the lemma.

Now, the condition (V) (and our intuitive picture) gives an isomorphism
between 17 and 17, namely [P] < (—1)*™* [P]*. In view of Theorem 2, a
less natural, but more convenient formulation is:

THEOREM 20. i1 and I are isomorphic, under the correspondence
[P] & (—1)%™P [P] between their generators.

In hindsight, we can also see this by comparing (V) and (W).

The separation criterion is now easily obtained. The modified frame
functional f, is defined by Ju(P)=(—1)""" fy(P). These induce
homomorphisms on {7, and from Theorem 3 we deduce:

THEOREM 21. The modified frame functionals separate ir.

We refer to [15] for the details of the cquidccomposability over an
archimedean field.

20. INVARIANCE WITH RESPECT TO OTHER GROUPS

Let G be any group of affinities of ¥ which contains the group T of
translations (7= V, as abelian groups). We can define a new group
I;=M(V;G) by taking, as before, a generator [P]; for each Pe?
({31 =0), with these generators satisfying the relations (V) and

(G) [®P];=[P]ls whenever PeZ? and ®eG.

Thus [T=11,.

If G # T, we now only have an abelian group structure, since Minkowski
addition will not be compatible with the group operations in G. However,
as an abelian group: )

THEOREM 22. [ is a quotient group of II, and admits a direct sum
decomposition

d
:Q” @ m:
r=0
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—

such that Ey=12Z, and for r=1, .., d, =, Iis a vector space over F. Moreover,
the dilatations act on =, by

A'x, Jor 120,

A =
(4)x w»‘x*, for A<O,

if xe =, where x> x* is the Euler map.
r

We obtain the direct sum decomposition by virtue of Theorem 6, whose
Corollary 1 says that endomorphisms of IT induced by affinities commute
with dilatations.

For most groups G, we can at present say no more than this about /1.
However, there are two special cases.

s 270

THEOREM 23. Let G contain a dilatation by some A# +1. Then 1= Z.

If A <0, we replace A by A% thus we can assume that A>0. The action
of the dilatations implies that, if xe Z, with r>0, then A'x=4(A)x=x,
and so, since 1 # 1, we have x=0. Thus =, = {0} for r>0, and the theorem s
follows.

Let A denote the group of all affinities of ¥, and EA the subgroup of
equiaffinities, that is, the mappings of the form v dv+ ¢, where @ is a
linear mapping with det @ = £ 1. First, as a consequence of Theorem 23,
we have:

COROLLARY. [T, =Z.

Then we have:

THEOREM 24. Fordz= 1, I, =Z®F.

On each proper subspace L of V, EA induces a dilatation by some 4> 1,
and we conclude at once that the subgroup 75, of I7,, generated by the
polytopes of dimension lower than d is isomorphic to Z, generated by 1.
Since two d-simplices are EA-equivalent if and only if they have the same
volume, we see that the corresponding polytope group 114, is such that
M /115, = 1%, ~F. Thus the only terms of the direct sum decomposition
of IT,., which survive are Z,=Z and Z,=F, and the theorem follows at
once.

If G contains a lincar mapping @ with det@# +1, then certainly
Z,=1{0}, since =, possesses the automorphism x— |det @] x. However,
this does not necessarily mean that Z,=1{0} for each r=1,., d. For
example, if G consists of all mappings of the form

(8 0gy oy 00) = (A0, 2y e %) L,
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with >0 and re V =F% then IT;~n(F’~"), under the projection induced
by (ag, @y e Ag) > (X2 oy Xg)-

The most interesting special cases are when F=R and G is a group of
isometries (with respect to the metric derived from some inner product).
Then G,=G/T is a group of orthogonal mappings, and G is a subdirect
product of G, and T. We confine our attention to such cases for the rest
of the section.

We write £ for the quotient group of £, obtained by imposing on X the
additional relations

(Go) (PKDg=<(K)gforall Ke¥ and @€ G,.

Writing ng(F, P) for the class of N(F, P) in £, we see that, if vol is now
a G-invariant volume (for example, ordinary volume of the appropriate
dimension), then the mapping 65: Z - R® 2, defined by

og(P)=Y vol F®ng(F, P),
w

is a G-invariant valuation, and so induces a homomorphism on I;. In

view of the fact that the action of G, on X is compatible with the action
of G on 11, the following is very plausible.

Conjecture 3. The mapping o, Is an injection.

The groups I7% have received much attention in recent years, because of
their connexion with Hilbert’s Third Problem (particularly when G is the
full group of isometries). We denote by I the subgroup of 2 ; generated
by the classes of cones which contain a line, and write ¢ for the image
of ¢ under the quotient mapping from £, to X4/ ;. The mapping

Gg: P — R® (/) is defined by

Gs(P)=Y vol F@ng(F, P).
p

As a natural generalization of Theorem 19, we pose:

Conjecture 4. The mapping 6 induces an injection from I, into
R®(2a/l6)

Of course, G, is a G-invariant simple valuation. Equivalently (compare
Lemma 48), one would conjecture that, for xe /1, ifo{x)eR® I;, then
x e IT3, the subgroup of 71, generated by the classes of polytopes of dimen-
sion less than d.

The mapping 6 differs from the (classical total) Dehn invariant, as
defined in [12], only in that it is defined in terms of outer cone classes
rather than (intrinsic) inner cone classes. But the existence of the antipodal
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map on X2/l ¢, which is an involutory automorphism closely related to
polarity (sec [12]), shows that our formulation is actually equivalent.
However, our approach perhaps suggests that the usc of outer rather than
inner cone classes may be more natural.

10.
11

12.

13.
14.

15.

1e.
17.

18.
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