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Abstract. The polytope algebra is the universal group for translation invariant
valuations on the family of polytopes in a finite dimensional vector space over an
ordered field. In an earlier paper, it was shown that the polytope algebra is, in
all but one trivial respect, a graded (commutative) algebra over the base field.
Also described was a family of separating (group) homomorphisms, called frame
functionals. However, various questions relating to the frame functionals were left
open, such as what syzygies exist between them, and what the image of a certain
closely related mapping is. Here, these questions are settled: essentially, the
only restrictions are imposed by the Minkowski relations. In doing this, simpler
proofs are also found of some results in that earlier paper. Finally, there are
consequences for expressing certain translation invariant valuations in terms of
mixed volumes.

MSC 1991: Primary 52B45; dissections and valuations.

1. Introduction

The polytope algebra II is the universal group for translation invariant valuations in a
finite dimensional vector space V over an ordered field F. In the earlier paper [10], it was
shown that, in all but one trivial respect, II is a graded (commutative) algebra over F (the
main structure theorem is given in §2).

Also described in that paper was a family of separating homomorphisms into F, called
the frame functionals. Now, it is known that the frame functionals are not independent;
linear relations between them (which may involve infinitely many terms) are known as
syzygies. However, a question which was left open asked whether the known syzygies are
the only ones. A closely connected question involves the determination of the image of a
mapping o related to the frame functionals. In this paper, these questions are settled. It
is shown that the only syzygies are those given in [10]; they are basically the Minkowski
relations. Further, the image of o is effectively determined by the Minkowski relations.

The method of proof actually yields more. One interpretation of the result is that a
weakly continuous translation invariant valuation on polytopes can be represented, on any
given finite set of polytopes, by mixed volumes involving only polytopes.
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2. The polytope algebra

Let F be an ordered field, and let V be a d-dimensional vector space over F. For con-
venience, we shall assume that V is endowed with a positive definite inner product (-,-).
This implies that we can define orthogonal projection on a linear subspace of V; note,
however, that many other features of euclidean space are absent, since we cannot generally
take square roots, and so cannot define norms.

We begin by giving a brief description of the polytope algebra II = II(V'). For the
general terminology and notation for convex polytopes, we refer to [3,13]. The polytope
algebra II is initially an abelian group, with a generator [P], called the class of P, for each
P € P, the family of convex polytopes in V; we define [0] := 0. These generators satisfy
the relations (V): [PUQ]+[PNQ] = [P]+[Q] whenever P,Q € P are such that PUQ € P
also (this corresponds to the valuation property), and (T): [P +t] = [P] when P € P and
t € V is a translation vector (this is translation invariance). Next, the multiplication on IT
is given by (M): [P].[Q] = [P + @], and extended to II by linearity. Finally, we have the
dilatation, defined on the generators by (D): A(A)[P] = [A\P] for P € P and A € F.

In this context, we recall that the vector (or Minkowsks) sum of subsets X, Y C V is
defined by

X+Y:={z+ylzeX,yeY}

we also write X +¢ := X + {t} when t € V for the translate of X by t. The scalar multiple
of X by A € F is similarly

AX :={)\z|z € X}.

The main structure theorem for II is the following (see [10]).

Theorem 2.1 The polytope algebra is almost ¢ graded (commutative) algebra, in the fol-

lowing sense:

(a) there 1s a direct sum decomposition II = @f:o =, such that 29 = Z, and =, 13 a real
vector space forr =1,...,d (with Z4 £ F);

(b) E,.Es = Erys for each r,s (with =, = {0} forr > d);

(c) if v,y € Zy := @le Zr and A € F, then (Az)y = z(Ay) = A(zy);

(d) ifc € E, and A > 0, then A(N)z = X"z (with \° =1).

We call =, the r-th weight space of II. The two extreme cases need special mention.
First, =y is generated by the class [o] = [t] of a point (we write [t] := [{t}] for t € V; o
denotes the zero vector); we actually write 1 := [o], and identify Zy with Z in the obvious
way. In some respects, it is inconvenient not to have the full algebra properties; however,
we can easily impose these, if we replace Z¢ = Z by the tensor product F ® 59 & F
(all tensor products are over Z, unless specified otherwise). While this is more satisfying
from the algebraic point of view (and it is the convention we shall henceforth adopt), it is
perhaps less so from the geometric.

Second, =4 is just volume. Moreover, if L is a linear subspace of V, then we can
define the subalgebra II(L) to be generated by the classes [P], such that P C L + ¢ for
some t € V (we only use this and related notation in this paragraph). If dim L = k, then
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Zx(L) = F is just k-dimensional volume (in translates of L), which we denote by volj, or
vol if no confusion about the dimension is likely. Note that a positive scaling factor is open
to choice in the definition of volume (this corresponds to a choice of basis — see [10]); we
shall have to face problems which this choice poses.

Let us also make some remarks about the other weight spaces; we first treat Z;,. The

abelian group Pr (actually, in an obvious way a vector space over F) consists of the pairs
(P, Q) with P,Q € P \ {0}, factored out by the equivalence relation

(P,Q) ~(P,Q)ifandonly if P+ Q' = P' + Q +t for some t € V,
with addition induced by Minkowski addition, and given by
(PQ)+(P,Q)=(P+P,Q+Q").

Note that the identity is ({0}, {o}), and the additive inverse of (P, Q) is (Q, P). We recall
that the property

Q={zeV|P+zCP+Q}
for P,Q € P\ {0} implies the cancellation law in the semigroup (P, +). Then we have

Lemma 2.2 =; = Prp.

If P is a non-empty polytope, we write [P] =: Ef:o [P),, with [P], € E, its r-
component. We always have [P]y = 1. Since Z; is nilpotent and [P] — 1 € Z;, it follows
that the logarithm log P := log[P] is well-defined, and that in fact the 1-component of [P]
is [P]; = log P. We shall therefore invariably use the notation log P for the 1-component
of the class of P. Observe further that the inverse ezponential exp z of an element z € Z;
is also well defined, and, if p :=log P, with P € P \ {0}, then expp = [P].

3. Separation

This paper is mainly concerned with separation in II. A k-frame is an orthogonal set
W = (w1,...,w) of non-zero vectors. (Note that, while we can talk about orthogonality
in V, and even orthogonal projection onto a subspace of V, we cannot generally normalize
vectors to be of unit length.) If we denote by Q,, the face of the polytope @ in direction
w, that is, the intersection of ) with its support hyperplane whose outer normal vector is
w, and define recursively

Qw = (Q(wlv--:wk—l))wk’

with W as above, then the mapping @ — Qw induces an algebra endomorphism z — zw
of II. A frame functional of type r is then a mapping fy defined by

fW(Q) = VOITQW’

where W is a (d — r)-frame; this induces a corresponding homomorphism (also denoted
fw) on II. Observe that only the directions of the vectors in a frame determine the frame
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functional. The natural convention is to take the frame functional of type d (with empty
frame) to be ordinary volume. We then have

Theorem 3.1 The frame functionals separate II.

That is, if € II is such that fiy(z) = 0 for every frame W, then z = 0.

It may be noted that a frame functional of type r will vanish on the weight space =,
unless s = r; thus, effectively, the frame functionals of type r separate =,.

The frame functionals are not independent; relationships between them are called
syzygees. There are two kinds of syzygy, of which one can be thought of as trivial; it just
says that, if two adjacent vectors in a frame are varied in a fixed (2-dimensional) plane

with a given orientation, then faces determined by the frames are encountered twice. That
1S

Lemma 3.2 Let (W', W") be a fized frame in V, and let L be a plane in V with L C
(W', W")*. Then
Z (f(W’,u,v,W”) - f(W’,u,—v,W“) — 0,

(u,0)CL

where the sum extends over all frames (u,v) in L of a given orientation.

In fact, as is clear, the sum is really only over u € L, since the orientation and
(u,v) = 0 determine the direction of v. The above sum is, despite appearances, finite,
since its terms vanish on any particular polytope for all but finitely many u.

The non-trivial syzygies arise from Minkowski’s theorem on facet areas. Let L, M be
two subspaces of V' of the same dimension, with corresponding volumes voly,, volys, and
let ®;, denote orthogonal projection onto L. Volume is unique up to scaling (see [5]), and
so there is a non-negative scalar J(L, M), such that

VOIL((DLP) = 19(L, M)VOIMP

for each P € P(M). If now W is a fixed frame, and u,v are vectors orthogonal to W,
write L, := (W,u)* (and similarly L,), and

(W, u,v) := sign(u,v)9(Ly, Ly).

By considering the areas of the projections of a polytope in P(W+) on L,, we obtain the
Minkowsk: relations

Lemma 3.3 For each frame W, and each fized u € W,

Z T(W,u,v)f(m,,) = 0.

veEWL

Again, the sum in Lemma 3.3 is not really infinite, since for a given polytope Q, only
finitely many of the terms in the sum will not vanish on Q. Our first question is then
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whether the syzygies of Lemmas 3.2 and 3.3 are (essentially) the only ones between frame
functionals.

When we employ the Minkowski relations, it is usually more convenient to think of
them in a slightly different way. It is enough to work in V itself. Let P be a d-polytope
in V, with n facets F; with outer normal vectors u; and corresponding (n — 1)-volumes
volg—1 Fj := aj (j = 1,...,n). Let v be another vector, and suppose P translated to
lie in the half-space H(v,0). Let F} := ®yxF; with H := H(v,0) (= v'), and let

Fj:=conv(FjUF])(j =1,...,n). Then we have

volP = Z sign(uj,v) vol F;.
=1

Now, if E := conv{o,v}, then there is a constant v > 0 such that, for each (d — 1)-
polytope G C H and A >0,

vol(G + AE) = Ayvolg—1G.

Thus, if we replace P by its translate P + Av in the above formula, we obtain

n
volP =Y~ sign(u;, v) vol(F; U (F} + AE))
j=1

= Z sign(u;, v) (vol Fj + Ayvoly_1 F})
=1
= Z sign(uj,v) (vol Fj + My9(H, H;)volg_, F}),

i=1

where H; := u]J' Subtracting the previous expression for volP from this yields the
Minkowski relation for P. In other words, the Minkowski relation is equivalent to the
translation invariance of volume in V. In §4 below, we shall appeal to this formulation to
express the Minkowski relations in a yet different way.

Closely related to the frame functionals is a certain homomorphism on II. We must
first define the cone groups. Let L be a subspace of V, and let C(L) denote the family
of all polyhedral cones in L with apex o. The cone group i(L) is the abelian group with
generators (K) for K € C(L), which satisfy the relations (V) (J U K}+(J N K) = (J)+(K)
whenever J, K,J UK € C(L) and (S) (K) =0 if K € C(L) satisfies dim K < dim L. The
group structure on f)(L) is thus somewhat exiguous.

The full cone group S is defined to be & := b, fl(L), the direct sum extending over
all subspaces L of V, including {o} and V itself. We also write S¥ := D 1=k S(L), so
that & = @4_, Sk

With a non-empty face F' of a polytope P is associated its outer (or normal) cone
N(F, P), which is the cone of all outer normal vectors to support hyperplanes of P which
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contain F' (we also take o € N(F, P). Its class is then written n(F, P) := (N(F, P)), the
class being taken intrinsically, that is, in L(lin N(F, P)).
Finally, the homomorphism ¢ : II - F ® X is defined on P by

o(P) = Z volF ® n(F, P),
F

the sum extending over all non-empty faces F' of P. Here, vol is that appropriate for F; it
was observed in [9] that a scaling of volume could be chosen simultaneously for all subspaces
of V. Since o is a translation invariant valuation on P, it induces a homomorphism, denoted
by the same symbol, on II.

The restriction of o to =, is denoted by ¢,. Thus, on P,

a.(P)= > volF @n(F,P)

dim F=r

It may help to think of o,.(P) as an abstract version of the r-th intrinsic volume of P (see
[6])-
Because the value of a frame functional on ¢ € II can be determined from o(z) (see

below), there follows (see [10])

Theorem 3.4 The homomorphism o : Il - F® S is injective.

The second question we shall address concerns the image of o, and asks whether this
is determined solely by the Minkowski relations. It was observed in [10] that the trivial
syzygies are automatically satisfied on F ® . R

In order to interpret the Minkowski relations on F ® X, we must describe how we
determine the values of the frame functionals on = € II from o(z). Let r be fixed. We say
that the (d — r)-cone K is adapted to the (d — r)-frame W = (wy,...,wq—r) if K C linW,
and K has a chain of faces {0} = Ky C K; C--- C K4—, = K, with

w; € relint (K; — K1)
fory=1,...,d—r. If £ € =, is such that

or(z) =) px ® (K),
K

where the sum extends over a finite set of (d — r)-cones K, then, for each (d — r)-frame
W, we have

fw(z) = Z{uK | K is adapted to W}

(see [10] for details). The injectivity of the o, is thus obvious.
The Minkowski relations then concern those (d — r)-cones K which contain a common

(d—r —1)-cone; we shall not write down any details explicitly, since we shall later describe
what is happening in yet a third way.
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4. Weights

In this section, we shall rework much of §5 of [11]. As we have already indicated, being
unable to take square roots in a general ordered field F prevents our having natural scal-
ings for volumes in subspaces. This means that we cannot avoid various scaling factors
appearing in our formula, with the attendant complications in expressing them. However,
a compensating advantage is that we can use this section to justify the claim in §15 of [11]
that the results of that paper remain valid over a general ordered field.

We shall approach our problems by means of certain finite dimensional subalgebras
of II. For the moment, our definitions will be completely general. Denote by F,.(P) the
family of r-faces of a polytope P. Then an r-weight on P is a mapping w : F.(P) —» F
which satisfies the Minkowski relations relative to each (r 4+ 1)-face G of P (we shall be
more explicit about these below). The vector space of r-weights on P is denoted by Q,(P).

We shall write II(P) for the subalgebra of II generated by the classes [Q] of the
summands Q of P, which are such that P = Q + Q' for some polytope @Q'. In fact, II(P) is
generated by the classes of polytopes which are strongly (combinatorially) isomorphic to
P, in the sense that parallel support hyperplanes determine faces of the same dimension;

such polytopes are clearly isomorphic to P in the usual sense. Indeed, an even stronger
result holds. '

Lemma 4.1 The subalgebra II(P) is generated by the classes of polytopes in a neighbour-
hood of any polytope in the strong isomorphism class of P.

We shall largely confine our attention in this section to simple d-polytopes P, by which
we mean as usual that each vertex of P belongs to exactly d facets of P. We shall assume
that P has n facets F,..., F,, with corresponding outer normal vectors u1,...,u,. Note
that P can then be expressed in the form

P={zeV|[(z,u;) <n; (j =1,...,n)}

when we think of the normal vectors u; as fixed, we shall call the numbers n; the support
parameters of P. It is important to note how the support parameters depend on the
uj; if we multiply u; by A; > 0, then we multiply the corresponding 7; by ); also. If
U := (u1,...,upn) (it is usual to take U to be an ordered set), we write P(U) for the family
of all polytopes which are representable in the form above; such a polytope need not in
general have n facets, or even be full-dimensional.

We need to begin with a remark. If F is an r-face of the simple d-polytope P, then
there is a (d — r)-frame W such that F' = Py. If z € TI(P), we then write z|r := zw; this
reflects the fact that zy depends on F, rather than on the particular frame W employed.
Since the face of a summand of P corresponding to F is a summand of F, it follows that
z|lp € II(F). We call ¢ — z|p the face map of II(P) to II(F). It should be noted that
we do not assert that every polytope strongly isomorphic to F will necessarily occur as
the corresponding face of a polytope strongly isomorphic to P. In view of the freedom to
apply arbitrary (sufficiently small) displacements to the facets of a simple polytope, we
deduce from Lemma 4.1.
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Theorem 4.2 Let P be a simple polytope, and let F' be a non-empty face of P. Then the
mapping * — x| maps II(P) onto II(F).

We write 2,.(P) := E, N II(P). While the arguments used in [11] do not depend on
working over the real field (the representation theory of [7,8] works equally well over any
ordered field), we need for other purposes a result from which we can calculate dim =, (P).
In view of the isomorphism Z; = Pr of Lemma 2.2, which clearly implies =; (P) & Pr(U)
with the obvious meaning of the latter notation, we can identify an element of =;(P) with
a vector y = (n1...,Nn) of parameters, which are differences of support parameters of
polytopes in P(U). (We thus have a linear extension of the cone of support parameter
vectors; observe that different simple polytopes in P(U) will have different such linear
extensions.) Because we identify by translations, we have

Lemma 4.3 Two parameter vectors (n1,...,0a) and (C1,...,Cn) represent the same ele-
ment of Z1(P) if and only if (; = n; + (t,u;) ( = 1,...,n) for some translation vector
teV.

It follows that dimZ,(P) = n — d, and from that we easily deduce that II(P) is
finite-dimensional.

The separation Theorem 3.1 associates each element z € Z,(P) with a unique r-
weight, so that there is a natural embedding =,(P) < ,(P). For this reason, we extend
the previous notation, and write w|r for the restriction of a weight w to a face F. (If w
is an r-weight, and F is an r-face, then w|p is the value of w on F.) We shall prove in
this section that, for a simple polytope P, this embedding is an isomorphism. Observe
that this will not remain true for a general polytope. For example, if P is a simplicial
d-polytope with n facets, then =,(P) is 1-dimensional for each r = 0, ..., d; however, we
clearly have dim Q4_1(P) =n —d > 1 (except when P is a simplex).

In [11], we described how multiplication of elements of II can be extended to multipli-
cation of weights. However, as there, we actually need rather less, and so we shall confine
our attention to what is necessary for our purposes.

Throughout the rest of this section, P will be a simple d-polytope in V. The main
result is then:

Theorem 4.4 For eachr = 0,...,d, the embedding of Z.(P) in Q.(P) is an 1somorphism.
As in [11], we shall prove this result by establishing

Theorem 4.5 For each r =0,...,d, the weight spaces =.(P) and Zq—.(P) are in duality
under the multiplication on II(P).

Of course, this implies that these spaces have the same dimension.
Our tool is a result which describes how to multiply by elements of =, (P).

Lemma 4.6 Multiplying an element of Q,.(P) by one of =1(P) yields an element of
Qr+1(P).
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We begin with the case r = d — 1. We have freedom to choose to scale the normal
vectors in U, or the weights on the corresponding facets; in fact, we shall do neither.
Instead, we take these scalings as given, so that, for each j, we have a constant A\; > 0,
such that if a € Qq_1(P) has weight a; on Fj, and y € =;(P) has parameter vector

(M, .--,Mn), then
n
ya= ) Ajmja;.
i=1

This formula generalizes the usual (asymmetric) one for mixed volumes, apart from the
omission of the constant factor 1/d (this is absent, because we are actually evaluating a
product); we shall call it the mized volume calculation. Except that o is a (d — 1)-weight,
rather than a (d — 1)-volume, this is just the familiar “volume = base x height”.

More generally, the product of y by an element of Q,(P) is calculated analogously,
except that the o; are replaced by weights on the r-faces of an (r + 1)-face, the n; by the
parameters of y induced on that (r 4 1)-face, and the A; by suitable scaling factors. The
problem is to show how these latter scaling factors are related. For this, it is enough to
consider the case r = d — 2. Let Gji := F; N Fy be a non-empty (d — 2)-face of P. One
normal vector to F}; at Gj; is the projection of ur on the orthogonal complement u]l of
uj, namely

,_ (ug,uz)
Vjk 1= Uk (a5, 05) uj. |
If the induced parameter of z € Z1(P) relative to v in Fj is (jk, and if b € Qg4—2(P) has
weight 3;r on G, then the scaling factors pjx > 0 are such that

(D)5, = ) mikCskBir,
k

where such a sum runs over those k for which G is non-empty.
We can now state the relationship between the scaling factors.

Lemma 4.7 If j # k and ij = Fj N Fy # (0, then /\jpjk = )\k,ukj.

We note that the usual calculation of the 0-volume of a point is 1, even though we

allow a point to carry any element of F as a weight (subject to the Minkowski relations,
which demand that each vertex of P carries the same weight).

We shall prove the lemma by, in a sense, choosing suitable parameters to correspond
to the normal vectors themselves. We thus define the following line segments:

U; := conv{o,u;},
Vik 1= conv{o,vjr},

for each j, k with (in the latter case) Gz # 0. We can then think of the term \jn;a; in
the product calculation as arising from the prism with upright

nj
(uj,uj)
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and base area «; in the (linear) hyperplane H; := u]l with normal uj. Let us choose y to

correspond to U; and z to U (in each case, the remaining parameters are set equal to 0).
Then we have

n; o= (uj, uj),

Cik += (Vjk, U5k )

(uj, ur)?

<u]"uj> ‘

We next observe that, if B is a polytope in the linear (d — 2)-space H; N Hy = {uj,ux}*+
parallel to G, then

= (uk, uk) —

vol(U; + Vjr + B) = vol(U; + Ui + B)
= VOl(Uk + Vk]' + B)

(this uses an elementary dissection argument, which does not depend on any scaling). Now
let b € Qq_2(P) have weight 3;x on Gji. There is no harm in supposing that Bix >0
(change the sign of b if necessary, since 3;x = 0 is of no interest). We now think of replacing
the weight B;r by a polytope B as above, with volq—2(B) = 8. Comparing the volume
and product calculations, noting that the latter consists of a single term, and substituting
from above, we have

vol(U; + Vi + B) = yzb
= Anj-pikCikBik
(uj, uk)?
= \juikBik (uj, u;) ((uk’uk> N1 TR
JHiEPE\UG, Uj (uj,u;)
= AjujeBin ((uju;)(ur, ue) = (uj,ur)?).
Performing the calculation in the opposite order, as
vol(Uy, + Vij + B) = zyb,
equating the two expressions, and using the fact that all the factors are positive (with

Bjx = Bkj), yields the result. 0

We now resume the proof of Lemma 4.6. As we noted in §3, the Minkowski relations
on 2,(P) reflect the translation invariance of volumes, and this ensures that multiplication
by an element of Z;(P) (using the mixed volume calculation) is well-defined. Thus, in case
r = d—1, since by Lemma 4.3 we can replace the parameter n; of y € Z1(P) by n; + (t,u;)
( =1,...,n) for any t € V, we deduce that we can write the Minkowski relation for
a € Q4_1(P) as the vector formula

n
E Ajoju; = o.
Jj=1

The notation (here and in what follows) is that used previously.
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In order to check that the Minkowski relations hold on products, it suffices to consider

the case r = d — 2, that is that yb € Qd_l(P) for each y € £1(P) and b € Q4_5(P). The
Minkowski relations on F} say that

> wikBikvik = 0.
k
The induced parameters of y in F} are

{uk,uj)

Cik = Nk —
! (u],u]')

nj-

Thus the weight of a := yb on Fj is
a; = Z 15kCik Bk

= Z 1k Bik (ﬂk _ fukug) 77]) :

( jr ;)

It follows that
- )Y — - )Y - (uk7u1> )
E Ajajuj = E : 70 § pikBik | e — g, u5) nj ) | uj
j=1 ; 7
Z 4 Z TRES  {ujug)
= 2 : Ajoim;j (E , ijﬂzk”1k>

as required. Note that the change of summation is justified because A; ik = Arprj by
Lemma 4.7.

If we now replace P in this argument by a typical (r + 1)-face, we see that we have
proved Lemma 4.6. O

The core of Theorem 4.5 (and hence Theorem 4.4) is the analogue of Theorem 11 of
[10] (or, rather, of its consequence), namely

Lemma 4.8 Let 0 < r < d, and let ¢ € Q,(P) be such that = # 0. Then there exists
y € Zq—r(P) such that zy # 0.

The extreme case r = d is trivial, since Z¢(P) = F. The crucial case isr = d — 1; we
shall prove that first. If a € Qq_1(P) with a # 0, then then there is some facet F} of P for
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which the restriction o := a|F; of a to F' does not vanish. Let e; € Z;(P) be the element
with parameters satisfying n; = 1 and nr = 0 if k¥ # j; such a choice is valid by Lemma
4.3. We saw above that eja = Ajaj, and thus eja # 0 as required.

Now suppose that r < d — 1; we proceed by induction on d. Since z # 0, we can
find some r-face G of P on which the weight z|¢ induced by = does not vanish. Let F be
any facet of P which contains G; then z|r # 0. By the inductive assumption, and using
Theorem 4.2 (which says that the face map z — z|r is onto), we can finda z € Z4_,_; (P),
such that (zz)|r = z|pz|r # 0. If F = F}, then with e; as above and y = ze;, we have
ry = zze; # 0, which completes the proof. O

Lemma 4.8 says that Z4_,(P) separates §,.(P). There follows at once
dimZ,(P) < dimQ,(P) < dim E4_,(P).

Interchanging the roles of r and d — r shows that we have equality throughout, and the
two theorems are immediate consequences. O

As we have noted, Theorem 4.5 shows that =.(P) and Z4—.(P) have the same dimen-
sion. We can use the method of [11] to find these dimensions, which have considerable
combinatorial interest, but we shall not pursue that line of enquiry here. The argument of
the first part of Lemma 4.8 can be extended to yield

Theorem 4.9 Let G be an r-face of P. If Fy,...,F4_, are the facets of P which contain
G, and if e1,...,eq—, are the corresponding elements of Z1(P), then there is a positive
constant vg such that

Tl = vgey ...eq—rt,

for each x € Z,.(P).

Thus, when we work in II(P) (for a fixed simple d-polytope P), we can mimic the
effect of frame functionals by multiplication within II(P).

5. Syzygies and the image of &

We shall next show that the only non-trivial syzygies between the frame functionals are
those induced by the Minkowski relations. This will also yield a description of the image
of the mapping o : I - F ® . In fact, the two results are effectively proved together.

It is reasonable to talk about an element of F® X4~ " satisfying the Minkowski relations,
in view of the way that the corresponding values taken by the frame functionals of type r
can be calculated using the same formula as in §3. Thatis, ifz := Y px®(K) € FQZ¢—T
with the sum extending over finitely many (d — r)-cones K, and if W is a (d — r)-frame,
then we define

fw(z) = Z{,ul{ | K is adapted to W}.

An element of F ® $4-7 which satisfies the Minkowski relations between frame functionals
of type r is called an r-weight; we write Q, for the set of all r-weights.
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Our key result can now be stated as
Theorem 5.1 The image of 0, : =, - F ® 54T s Q.

To prove this, let « as above be an r-weight. We can suppose, by subdividing them if
necessary, that the cones K which occur in the expression for z are pointed (have o as their
single apex). They have between them only finitely many edges, whose directions thus form
a finite set U;. By adding in (finitely many) more directions if necessary, we can suppose
that U, spans V positively. There are only finitely many different isomorphism classes of
polytopes in P(U;) (the combinatorial type of a polytope is determined by which of its
vertices are contained in which facets). Indeed, each polytope in P(U,) is easily seen to
be a limit of simple d-polytopes in P(U;), and thus in fact a summand of such a polytope.
Now let @ be the sum of one representative of each of the strong isomorphism classes
of simple d-polytopes in P(U;), and finally let P be a simple polytope of which Q is a
summand.

We claim that (in an obvious sense) ¢ € Q.(P). Indeed, suitable refinements of the
cones K are clearly unions of normal cone N(F,P) to r-faces F' of P, since such unions
contain all possible (d — r)-cones with edges in directions in U;. The Minkowski relations
are preserved by such refinements, and hence z is an r-weight on P. But Theorem 4.4 says
that Q,(P) = o.(E.(P)). The theorem is an immediate consequence. 0.

Since any syzygies between frame functionals which are not consequences of the
Minkowski relations would impose further restrictions on rmim o, we conclude that no
such syzygies can exist.

6. Translation invariant valuations
Let G be an abelian group. A mapping ¢ : P — G is called a valuation if

P(PUQ)+¢(PNQ)=p(P)+ ¢(Q),

whenever P, ) € P are such that P U Q € P also. We say that ¢ is translation invariant
if

(P +1) = o(P),
whenever P € P and t € V. There follows at once from the definition of II:

Theorem 6.1 A translation invariant valuation on P induces a group homomorphism on
II, and conversely.

However, in view of the structure Theorem 2.1 for II, homomorphisms of vector spaces
are more appropriate objects of study. The corresponding condition on a valuation ¢ is that
it be dilatation continuous, meaning that, when P € P is fixed, the mapping A — @(AP)
is continuous for A > 0. As pointed out in [9,12], this is actually equivalent to the formally
stronger condition of being weakly continuous, which says that, for each set U of normal
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vectors, the mapping P(y) — ¢(P(y)) on P(U) is continuous in the parameter vector y
(see also [4]). We thus have

Theorem 6.2 A dilatation continuous translation invariant veluation on P induces a
vector space homomorphism on II, and conversely.

In what follows, in talking about a dilatation continuous translation invariant valua-
tion ¢ on P, we shall equate it with the vector space homomorphism on IT which it induces.
Forr =0,...,d, we say that ¢ is homogeneous of degree r if p(AP) = A"p(P) for P € P
and A > 0, which means that ¢ has domain Z,.

The most interesting case is ¢ : 2, — F, to which we henceforth confine our attention.
We recall that the mized volume (compare [2,3]) of polytopes P,...,P; € P admits the
expression

1
V(P1,...,Pq) = Jibr--pa;
where p; :=log P; for i = 1,...,d (see [10]). We adopt the abbreviated notation
Ve(P,Q):=V(P,...,P,Q,...,Q).
N e’ N e’

r d—r

Then we have the following important result.

Theorem 6.3 Let ¢ : P — F be a dilatation continuous translation invariant valuation
which 1s homogeneous of degree v. If Py,..., Py are any finite number of polytopes, then
there are polytopes Qx and signs e = +1 (k=1,...,s), such that

o(P) = exVe(Pi, Qi)

k=1

for eachi=1,... ,m.

As we saw in §5, there exists some simple d-polytope P such that each P; is a summand
of P. Then we can think of ¢, or, rather, d!¢ (because of the scaling factor in the definition
of mixed volumes) as a linear functional on =,(P); in particular, we can write

e(Q) = »(q"),

for each summand @ of P, where ¢ := logQ. But Theorem 4.5 says that the dual of
Er(P) is Eq—r(P). Further, =4_,(P) is generated, as an abelian group, by the elements
of the form ¢¢~", with ¢ := log Q for some summand Q of P. It follows that there are

qr = log Qi (with Q4 a summand of P) and ¢ = £1 for k = 1,..., s, such that for each
z € Z.(P),

dlo(z) = Z ErzqiT.
k=1
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With p; :=log P; for ¢ = 1,...,m, this implies
d'p(Pi) = expiap
k=1

= d! Z €er(Pi, Qk),
k=1

as required. 0

Let us consider the special case F = R, with V = E? the euclidean space. In E?, the
usual concept of continuity on, for example, polytopes, is with respect to the Hausdorff
distance p(K1, K3) between non-empty compact sets K; and K5, defined by

p(K1,K3) :==min{p > 0|K; C K> + pB, K» C K; + pB},

where B = {z € E?|||z|| < 1} is the unit ball. Continuity clearly implies weak continuity.
Let ¢ be a translation invariant valuation on the space of convez bodies (that is, non-empty
compact convex sets) which is homogeneous of degree r and continuous with respect to
the Hausdorff metric. If (P, P,,...) is an infinite sequence of polytopes in E¢ whose
summands form a dense subset of the space of all convex bodies, then we can deduce from
the above that, for each m, there are polytopes Qi and signs e (k= 1,...,5(m)), such
that

s(m)

L,D(P) = Z 5mer(Pa ka)?

k=1

for P = Py,...,Py,. Since the ¢(P;) completely determine ¢, because of the density
properties of the sequence, there follows

Theorem 6.4 A continuous translation invariant valuation on convex bodies in E¢ is, in
some sense, a limit of a sum or difference of mized volumes.

The real problem here is the sense in which the limit is to be defined. This point proved
to be a stumbling block in the different, but analogous, approach to a characterization of
such valuations in [1].
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