THE STRUCTURE OF THE POLYTOPE ALGEBRA

Michel BRION

Abstract. We construct an isomorphism from McMullen’s polytope algebra, onto the
quotient of the algebra of continuous, piecewise polynomial functions with integral value
at 0, by its ideal generated by coordinate functions. This explains the non-trivial grading
of the polytope algebra, by the obvious grading of piecewise polynomial functions. In the
process of the proof, we make explicit many connections between convex polytopes and
plecewise polynomials.

Introduction

In the study of valuations (or finitely additive measures) on convex polytopes in a finite-
dimensional real vector space, a fundamental role is played by the polytope algebra: the
universal group for translation-invariant valuations. This group is endowed with a multi-
plication, via Minkowski sum of polytopes, and with many other structures, discovered by
McMullen, Morelli, Khovanskii-Pukhlikov and others. In particular, the polytope algebra
is almost a graded algebra over R; its grading is defined by diagonalizing the action of the
group of dilatations (see [Mcl]). The proof of existence of this grading uses the logarithm
of a polytope P, defined by log(P) = 3> (=1)" (P — 1)"/n (this makes sense in the
polytope algebra, because P — 1 is nilpotent there).

In this paper, we recover some of the most important properties of the polytope
algebra, as corollaries of a structure theorem for this algebra. To state our main result, we
need some notation.

Let V' be a vector space over R of finite dimension d > 2, and let V* be its dual.
To any convex polytope P in V* is associated its support function Hp on V; then Hp
is continuous, and piecewise linear with respect to some subdivision of V into polyhedral
cones having the origin as their common vertex. We denote by R the algebra of all
continuous functions on V' that are piecewise polynomial (in the same sense). Then R is a
eraded algebra over R for the operations of pointwise addition and multiplication; it turns
out that R is generated by support functions of polytopes. We denote by R the quotient
of R by its graded ideal generated by all (globally) linear functions on V.

Theorem. (i) The graded algebra R = &2, R,, vanishes in all | degrees n > d. Moreover,
the vector space Ry is one-dimensional, and multiplication in R induces non-degenerate
palrings Rl,- X Rd-] — Ry for1 <j<d-1.

(ii) The map P — exp(Hp) = > o, Hp/n! extends to an isomorphism of the polytope
alegebra. onto the subalgebra Emt —Z3R &R, D DRy of R.

This statement explains the grading of the polytope algebra, and the role of the
logarithin as well: namely, log(P) is identified with the support function of P.
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In fact. our structure theorem is proved here when R is replaced by any subfield (it can
he proved for arbitrary ordered fields). In the case of the field of rational numbers, a versio.1
of this theorem was obtained in [Br}, motivated by previous work of Fulton and Sturmfels
[Fu-St]; there the algebra R was studied in relation to cohomology of toric varieties, using
(and adding to) the dictionary between convex polytopes over Q and projective toric
varieties with an ample Q-divisor class. The approach of the present paper is direct and
essentially self-contained; connections to toric geometry are indicated at the end of each
of the first three sections.

We now sumuinarize the contents of this paper, and its relation to earlier work of Billera,
IKhovanskii-Pukhlikov, McMullen, Morelli and Oda. We rely on the classical correspon-
dence between convex polytopes in V* with prescribed directions of faces, and convex,
piecewise linear functions on a fixed complete fan in V', that is, on a subdivision of V' by
polyhedral. convex cones having the origin as their common vertex.

In Section 1, we introduce and study the Hodge spaces of a fan, an analog in combina-
torial geometry of Hodge spaces of an algebraic variety. Both notions are compatible in the
case of a rational fan associated with a smooth, complete toric variety; a related, but some-
what more complicated definition appears in [Od2], as a combinatorial version of Ishida’s
complexes in toric geometry. For any d-dimensional fan ¥, we obtain finite-dimensional
vector spaces HU7(S) indexed by pairs of integers between 0 and d. If ¥ is the normal
fan of a convex polytope P, then each diagonal Hodge space H’7(Y) is identified with the
space of Minkowski j-weights on P (see 1.5 below). If moreover P is simple, then all non-
diagonal Hodge spaces vanish, and the dimension of H?/(T) is the j-th component of the
hi-vector of P (1.2, 1.4). For an arbitrary complete fan ¥, all upper diagonal Hodge spaces
vanish, whereas the lower diagonal spaces are rather mysterious combinatorial invariants
of ©: an interpretation of H*! is proposed in 1.3.

In Section 2, we study the space Ry of continuous, piecewise polynomial functions on
a complete, simplicial fan ¥; then Ry is a subalgebra of R, and it contains the algebra S
of (globally) polynomial functions on V. As a special case of results of Billera [Bil], [Bi2],
the graded S-module Ry is free of finite rank: the number of maximal cones in ¥. We
prove that each diagonal Hodge space H’7 (%) is identified with the space of generators of
degree j of this module (2.1). We define a canonical homogeneous S-linear map 7 : R — S
of degree —d, and we prove that the S-bilinear map Ry, x Ry — S : (f,g) — 7(fg) is a
perfect pairing. This induces a duality between Hodge spaces H77(%) and H4=/471(%).
Remembering the connections between diagonal Hodge spaces and h-vectors, we may see
this duality as an algebraic version of the Dehn-Sommerville equations (2.4).

In Section 3, we turn to the ring Fy of continuous, piecewise exponential functions on
a complete, simplicial fan ¥. This ring appears under a different disguise in [Mol], [Mo2]
and [IKh-Pu]. as the space of piecewise linear functions from V to Z[R]. Our approach
to 1t is naive. but new; it leads in 3.3 to a short proof of a refinement of the main result
i [IKh-Pu]. Then, in Section 4, we prove that both algebras Es, and Ry have the same
completion: the algebra of compatible, formal power series on ¥. Moreover, we obtain our
key technical result in 4.3: the quotient of E by its ideal generated by functions e — 1 (z
a globally linear function) is isomorphic to R. Here E is the ring of continuous, piecewise
expounential functions (with respect to no specified fan).
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In Section 5, we prove that the polytope algebra is isomorphic to the quotient of E
defined above. This latter result was known in slightly different formulations; see [Kh-Pu]
and [Mol]. Then our main theorem follows by putting everything together. Moreover, our
map 7 : R — S turns out to be related to volume by 7(H%) = d! vol(P) (more generally,
7 is related to Fourier transform, see 5.3) and this fact implies a separation result for the
polytope algebra, originally due to McMullen (see 5.4).

1. The Hodge spaces of fans

1.1. Let A be a subfield of R, and let V' be a K-vector space of finite dimension d. Let
TR := V 2 R be the associated R-vector space.

A (polyhedral, convex) cone o in V is an intersection of finitely many closed half-
spaces of V. We denote by or the associated cone in Vg, and by L(o) the linear span of
ocm V. A fan in V is a finite set ¥ of cones, such that:

(1) If ¢ € ¥ and 7 1s a face of o, then 7 € ¥.
(111 If 0.7 € ¥ then o N 7 is a face of 0.
(111) If & € ¥ then o contains no line.

For 0 < i < d. the set of i-dimensional cones of ¥ is denoted by (7). The support
¥ of T is the union of its cones; ¥ is complete if || = V.

A sheaf F on a fan ¥ is a collection of abelian groups (F,)s,ex and of maps pyr :
For— Fr (0 € 8, 7 aface of ¢) such that:

(1) popo : Fo = Fy is the identity map for any o € 2.
(11) Po,os = Pogos O Poyo, Whenever o3 C o9 C 01 € 2.
There are obvious notions of morphisms of sheaves on ¥, and of exact sequences.

Any abelian group F defines a sheaf on ¥ with value F' at all cones of ¥, each map
ps- being the identity. We denote this constant sheaf by F'.

To any sheaf F on ¥ we associate cohomology groups H*(F) (¢ > 0) as follows. Choose
all orientation on each og € Lr. For ¢ € ¥ and a face 7 C o of codimension 1, set g5 = 1
if the orientations of ¢ and 7 agree, and £, = —1 otherwise. Set

CF)= P F

oceX(d—1)

and let 6 : CY(F) — C*F(F) be the direct sum of the maps

Zearpar:fa"% @ Fr.

TCo T€X(d—i—1),7Co

It ix easily checked that 67! o 8% = 0, i.e., (C*(F),6) is a complex; let H'(F) be the i-th
cohomology group of this complex. If ¥ is complete, then HY(F) consists of all elements
in i, ev(y) Fo that agree on (d — 1)-dimensional cones.

In our study of the cohomology groups of certain sheaves, we will use the following

observations.



Lemma. (1) Any exact sequence of sheaves on %:

0 F - F—=F' =0
induces a long exact sequence of cohomology groups
o HTYF"Y - HY(F') - H(F) - H(F") = HTYF) - -

(ii) If F' is a constant sheaf, then H*(F) = 0. Moreover, for 0 < i < d, the group H'(F)
is identified with the (d — i — 1)-th homology group of |Z|gr N S¢~1 with coefficients in F,
where S?" is a sphere centered at 0.

Proof. (1) The exact sequence

0->F 5 F—=>F">0

mduces an exact sequence of complexes
0= CHF') = C*F)—=C(F"Y =0

and hence a long exact sequence of cohomology groups.
(ii) The vanishing of H¢(F) is immediate. Intersecting each cone in g with S¢71, we
obtain a polyhedral decomposition of |Z|g N S%~1. Moreover, the complex

(C N F))o<i<d—1

1s 1dentified with the usual chain complex associated to this polyhedral decomposition.

Finally. observe that the tensor product over K of any two sheaves of K-vector spaces
is a sheaf. Tt follows that for any sheaf F of K-vector spaces, and for any integer n > 0,
we have svinmetric powers S™F and exterior powers A" F.

1.2. Let ¥ be a fan in V., and let V* be the dual space of V over K. For any 0 € ¥ we
denote by o the set of all f € V* that vanish identically on o. The assignment ¢ — o+
defines a sheaf F of K-vector spaces on ¥, the maps p,r : F» — F, being the inclusions
gt - Tt

For any non-negative integer j, we have the j-th exterior power A7 F. We set:

HY(S) = H(NF) |

The spaces (H*/(Z)); ; will be called the Hodge spaces of &. A related construction can
be found in [Od2] for complete, simplicial fans.

Proposition. With the notation above, we have:

(i) H(S) =0 for i < j.

(ii) If |Z| is not contained in any hyperplane, then H*(2) = 0 for j < d, and H44(Z) is
isomorphic to K.



(iii) If ¥ is complete, and if e Is a positive integer such that ¥(e) consists of simplicial
cones. then H"(X) =0 for1—j>d—e.

Proof. (i) Observe that the dimension of F, is the codimension of ¢, and hence NFy=0
for all ¢ € ©(d — j). By the definition of cohomology groups, we have H*(A/F) = 0 for
1<,

(ii) The group H%7 () is the cokernel of the map

§: Boeny N ot — NV*

the direct sum of the inclusion maps Aot — AIV*. We check that § is surjective for
J << d. Because |Z| is not contained in any hyperplane, we can choose linearly independent
vectors ¢, ..., eq in Vo such that each e; generates an edge of o; call this edge o;. Then
a Dasis of Alod consists of the wedge products of any j vectors among the e, (n # ). It
follows that the map

el Not 5 NV

is surjective. and this proves our assertion.

(i11) The proof of this statement is somewhat technical, and hence we begin with the
simplest case, where ¥ is simplicial (that is, ¢ = d). Then, for any ¢ € X, we have an
exact sequence of K -vector spaces

0= ot = V* = Greoq) L(T)* =0,

where L(7) denotes the line generated by the edge 7 of o; the map on the right is the
direct sum of the restriction maps from V* to the duals of the L(7)’s. For any 7 € (1)
and any o € ¥, we set

. K ifrCo
I o = { .
v 0 otherwise.

Then I'(7) is a sheaf: the constant sheaf on the star of 7. We set
G =®renm) K(7) .
Then we have an exact sequence of sheaves
0—+F—=V"-G—0
and hence a long exact sequence (the Koszul complex)
0= ANF s NVE a3 NIV QG o - 5 NV S"G — - = 57G = 0.

We claim that each sheaf AV™"V* © S™G is acyclic, that is, H{(AV""V* ® §*G) = 0 for all
1 > 1. Cutting the Koszul complex into short exact sequences and repeatedly using Lemma
1.1 (i). we see that the claim implies the vanishing of H'(AJF) for i > j, as required.

To prove the claim, observe that Hi(Aj_”V* @ S"G) ~ AN~V * @ Hi(S"Q). Ifn=0,
then the vanishing of H'(AJV*) follows from Lemma 1.1 (ii). If n > 1, we have

Sng - @rl,...,rnez(l) g(T17 ceey TTl)
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where the sheaf G(m,...,7,) is defined by

5 ~ K if o contains 7,...,7,
9(717 "77—71)0': :
0 otherwise.

Denote by St(7y,...,7,) the union of cones in g that contain 71,...,7,, and denote by
St(ry..... 7, ) its closure. Then, as in the proof of Lemma 1.1 (ii), we obtain the vanishing
of HYG(7(..... 7, )) and isomorphisms

H"’(g(rl....,rn)‘) = Hq_i—1(St(r1,...,m) N Sd_l,a§(ﬁ,...,7n) N Sd"l,K),

where the latter are homology groups of the pair consisting of St(7y, ..., 7,)NS™! and in its
boundary. But these groups vanish, because the space St(7y,...,7,)N.S?! is contractible.
This ends the proof of the claim.

Now we turn to the general case, where e is arbitrary. Then the sequence

0= 0t = V* = GreoyL(r)* =0

1s left exact; this sequence is exact if and only if ¢ is simplicial. Defining K(7) (for

7€ Y(1)) and G as before, we obtain a left exact sequence of sheaves

0>F >V >5G—0.
We complete it to an exact sequence
O0=+F->V"2G>H—=0

for some sheaf H on T, such that H, = 0 if and only if o is simplicial. Now, using [Le] or
[Ni]. we obtain a long exact sequence of sheaves

0= NF = Fijo—=Fjn == Fjn— =,

where F;,, denotes the sheaf

& AV* @ SG @ AH. .
at+btec=j,b42c=n

In particular, Fj , contains A77"V* @ S"G as a direct factor, for n < j. Moreover, for a
simplicial cone o, we have

. [ ANTTYVEQSTG ifn <
(f“’)"_{o ifn> 7.

Therefore we have a long exact sequence of sheaves
0= NF NV 5 NV @G == (NTV R 5"G) e F),

- SIGDF o Fio =0
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with sheaves F7 (2 < n < j + 1) that vanish on any simplicial cone, in particular

on any cone of dimension at most e¢. By the definition of cohomology groups, we have
then HY(F! ) = 0 for 7 > d — e, and for arbitrary n. On the other hand, the sheaves

J,n . .
AT SUG are ayclic by the first part of the proof. It follows that H*(AJF) = 0 for

=g > d =
As a special case, we obtain the following result, a version of which appears in [0d2].

Corollary. For anv complete, simplicial fan ¥, we have H"/(X) = 0 if i # j, and
H' ) ~ I

1.3. For any cone o, we denote by rel(o) the kernel of the (surjective) summation map
@760(1) L(T) - L(U)

(vecall that L{o) denotes the linear span of o). Then rel(o) is the space of linear relations
among the edges of o. If 7 is any face of o, then rel(7) is identified with a subspace of
rel(o).

Similarly, for any fan ¥, denote by rel(¥) the kernel of the summation map

Then the dimension of rel(2) is the number of edges of ¥, minus the dimension of the
linear span of |X].
Finally, denote by Rel(Z) the cokernel of the map

H rel(r) — H rel(o)
res(d—1) sEX(d)

defined in a way dual to 1.1. Then Rel(¥) is a ”globalization” of the spaces of linear
relations among the edges of d-dimensional cones in 3. The compatible injective maps
rel() — rel(¥) induce a linear map u : Rel(¥) — rel(¥). The following statement
deseribes the first non-trivial Hodge spaces H1'1(Z) and H*!(X) in terms of the map u.
Another interpretation of H1(X) will be given in 2.1 below.

Proposition. With the notation above, the transpose map u* : rel($)* — Rel(X)* fits
into an exact sequernce

0 — H'(T) = rel(S)* — Rel(E)" — H*'(S) - 0.

Proof. We use the notation of the proof of Proposition 1.2: there is an exact sequence
0—>F—->V"-G—->H—>0
with § = @revqy) (7). Moreover, each H, is the cokernel of the map
V* = @rexqy L)
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Therefore. ‘H, is identified with rel(c)*, and H(H) is identified with Rel(2)*. On the
other hand. there is an exact sequence

0= V*— H%G) > rel()* =0 .
Denote by F| the cokernel of the map F - V*. Then, from the exact sequences
0 F >V " F =20, 0-F, -G—+H—=0
and from the vanishing of H°(H), H'(V*), H*(V*) and H*(G), we obtain exact sequences
0— V*— H°(F) = HYF) =0,

0— HYF) = H*(G) —» H°(H) = H' (F;) = 0

and an isomorphism H'(Fy) ~ H*(F). Therefore, we have an exact sequence
0— HY(F)— H°(G)/V* = H°(H) = H*(F) =0 .

Moreover. the map H(G)/V* — HO(H) is identified with u* : rel(Z)* — Rel()*.

Corollary. Let ¥ be a complete fan such that any two non-simplicial cones in Y intersect
only at the origin. Then Hz'l(z) =0,

Proof. The assumption implies that any (d — 1)-dimensional cone in ¥ is simplicial. Then
Rel(T) is the direct sum of the rel(c) (¢ a non-simplicial, d-dimensional cone in ). Any
two such cones have no common edge, and hence the map Rel(X) — rel(X) is injective.

1.4. Counsider a d-dimensional convex polytope P in V*. To each face F' of P, we associate
the dual cone o5 of the convex cone generated by the vectors f —p with f € F and p € P.
Observe that the dimension of o is the codimension of F. The set (05 )pcp is a complete
fan: the outer normal fan of P. We denote this fan by ¥ p. The assignement F + o sets
up a bijective, order-reversing correspondence between faces of P and cones in Yp.

For 0 <1 < d, denote by f;(P) the number of i-dimensional faces of P. Recall that
the li-vector (ho(P),h1(P),..., hqa(P)) is defined by

hj(P) = i (-1 C)fi(P) :

=7

Proposition. For any convex d-polytope P, we have

d
hi(P) =) (1) dim(H"(Sp)) .

=]



Proof. The Buler-Poincaré characteristic of the complex C*(A?F) is equal to

d .
S > dmvet) =3 (v () AP

i sELp(d—i) i=j

on one hand, and to

d
> (-1 dim(HY (M F)) = (-1)' dim(H" (Sp))

i 1=j
on the other hand.

Corollary. For any d-dimensional convex polytope P such that each edge of P lies in
exactly d — 1 facets, we have

h;(P) < dim(H7 (Sp))

with equality if P is simple.

Proof. The assumption on P means that any (d — 1)-dimensional cone in X p is simplicial.
Then, by Proposition 1.2 (iii), we have H*/(Zp) =0 for ¢ > j + 1. It follows that

hj(P) = dim(H? (Sp)) — dim(H/ ™1 (Sp)) .

1.5. We maintain the notation of 1.4. In the case where K = R, we have the notion of
a Minkowski weight on P, defined as follows (see [Mcl, §5], [Mc2]). For any faces F' and
G of P such that F is a facet of GG, denote by np g the outer unit normal vector to F' in
G (for some fixed Euclidean norm on V*). Then a j-weight on P is the assignement to
each j-dimensional face F, of a real number ap such that ZFCG apnpg = 0 for each
(j + 1)-dimensional face G. The set Q;(P) of all j-weights on P is a real vector space; it
turns out to be independant of the Euclidean norm. In fact, €;(P) only depends on Xp,
as shown by the following:

Proposition. For 0 < j <d, the space Q;(P) is isomorphic to H7(Sp).

Proof. The complex C*(A?F) is zero in degree < j. Therefore, by definition, H7(Sp) is
the kernel of the differential

0: @UEEP(d—j) /\] UJ_ — @TEEP(d—j—l) /\] TJ_ .

We identify (d — j)-dimensional cones in ¥ p and j-dimensional faces of P. For such a face
F. the space o3 is identified with lin(F') (the direction of the affine space generated by F).
The Euclidean structure on V defines a volume form on lin( F') and hence an identification
of AMlin(F) to R. Therefore, the space Doesp(d—j) A ot is identified with the space of
real-valued functions on the set of j-dimensional faces of P. On the other hand, for any
(; + 1)-dimensional face G, we have an isomorphism A7lin(G) — lin(G) that sends the
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canounical generator of /\ﬂin(F) (where F' is any facet of G) to er,gnr,g. Therefore, § is
identified with the map

(ar)p — (Z agnNrG)e -

FCG
But the kernel of this map is Q;(P).

This isomorphism, combined with Corollary 1.4, implies the following refinement of

Theorem 6.1 in [Mecl].

Corollary. For any d-dimensional convex polytope P, such that each edge of P lies in
exactly d — 1 facets, we have

dim Q;(P) > hj(P) .
Moreover, equality holds if P is simple.

Remark. To a fan ¥ in a vector space V over Q, and to a lattice in V, is associated a
complex toric variety X = Xy, see [0d1]. Denoting by ¥ the sheaf of differential j-forms
on X (in the sense of Zariski-Steenbrink), we have isomorphisms

HY (X, Q) ~ HY(Z) @q C,

see [Da, 12.4.1]. In this setting, the statements (i) and (i) in proposition 1.2, and its
corollary as well, are due to Danilov, see [Da, §10].

If morcover ¥ is complete, then the group HV''(L) is identified with the rational
Picard group of X; the presentation

0— HY(D) — rel(L)* — Rel(%)*

15 equivalent to Eikelberg’s determination of the rank of the Picard group, see [Eil] and
[Ei2].

Finally. the notion of a Minkowski weight can be adapted to a rational, complete fan:
for such a fan ¥. the space of all Minkowski j-weights is isomorphic to the j-th Chow
cohomology group of Xy, with rational coefficients, see [Fu-St, Theorem 1].

2. The algebra of continuous, piecewise polynomial functions

2.1. We denote by S the algebra of K-valued polynomial functions on V. Given a fan &
and a cone o € X, we denote by R, the space of K-valued polynomial functions on the
linear span of o; then R, is the quotient of S by its ideal generated by ¢+. For r C o,
we have the restriction map R, — R., f — f|., and this defines a sheaf of S-algebras
R = (R;)sex on ¥. Moreover, S, R, and R carry a natural grading.
We set
Ry :={(fs)oex | fo € Ro, folr = -,V T C o}

Then Ry is a graded algebra over S: the algebra of continuous, piecewise polynomial
functions on ¥. If || is purely d-dimensional, then Ry is the space of global sections of

R.
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For any non-negative integer n, we denote by Ry , the homogeneous component of

degree n in Ry. In particular, Ry i consists of all continuous, piecewise linear functions

on ©. If ¥ is complete, then Ry ; contains the space V* of globally linear functions, and

the quotient Ry 1 /V* is identified with HY!(Z). Namely, the exact sequence
0=>F—=>V"=2Rg1 —0
iduces a long exact sequence of cohomology groups, beginning with
0—>V*—=Rgy —»HY (F)—=0.

The components of higher degree in Ry are related to higher Hodge spaces in a more
complicated way, by the following statement.

Theorem. Let ¥ be a complete fan.
(i) The graded S-module Ry, has a canonical increasing filtration such that

d
grRy C S@ H HY(T)
1=0
where or Ry, is the associated graded module, and where each space H“*(Z) occurs in
degree 1.

(ii) If moreover H'T1{(S) =0 for 1 <1 < d — 2, then equality holds in (i).
(iii) Finally. it H"(S) =0 for i # j, then H(R) =0 for all 1 > 1.

Proot. We have an exact sequence
02y =5 +Rs =0

where T, denotes the ideal of S generated by o+. Therefore, we have an exact sequence
(the Koszul complex)

0= SNt S SagaAt ot 5. 5 S®@ct 3SR, =0

and this defines a resolution of the sheaf R by sheaves S ® A/F; the differentials are
homogencous of degree —1. We cut this resolution into short exact sequences

05 SONF3SoNTITF5E_1—0
051 =>SOANTT2F 5 E1_550

0=& > SF—=& —0
0-& 2S5 —>R—=0.
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Because (&), is a quotient of Not, we have (&), = 0 for dim(o) > d — j, whence
H'(&;) =0 for i < j. The same holds for H*(A?F) by 1.2. Therefore, we have long exact

sequerces

0— S HTYATIE) - HITYEy) = S @ HYNF) - S @ HYALF)
0— S©HTHATEF) - HEHE ) —» HY7 1 (E1) = S @ HUTY (A2 F)

0= S®H(AN*F) = H* (&) = H*(&) = S@ H*(A*F)
0= SQHY(F)— H (&) — H* (&) = S® HA(F)
0—>S— HYR)— H' (&)= Se H(K) .

But H!(R') vanishes by Lemma 1.1 (ii). It follows that the quotient RS) = Ry /S contains
an S-submodule isomorphic to S ® H'!(Z). Moreover, the quotient

Ry = Ry/(S® S @ HY(T))
is an S-submodule of H?*(&,), with equality if H?1(Z) = 0. Further, the exact sequence
0 S@H»(Z) = H* (&) —» HY (&) —» S@ HYA(Y)

presents R(\j) as an extension of a submodule of S @ H*?(T), by a submodule of H?(&3).
Continuing this way, we construct the filtration of Ry, and this proves (i) and (ii).

If mmoreover Hl(/\]f) = 0 for 7 # j, then one obtains by descending induction over j:
H'(&;) =0 fori # j. In particular, H'(&;) = 0 for > 2, and this implies the vanishing of
H'Y(R) for: > 1.

Corollary. Let ¥ be a complete, simplicial fan. Then the graded S-module Ry, is free
of finite rank. with generators in degrees 0,1,...,d. Moreover, the space of generators of
degree | is isomorphic with H"'(%); in particular, the space of generators of degree d is
one-dimensional. Finally, the complex

0— Ry — @UEE(d) R, — @UEE(d—l) R, — -
18 exact.

The last statement answers a question of Bernstein and Lunts; [Be-Lu, p. 128]. Observe
that the results of the corollary hold for certain non-simplicial fans too, for example for
thiree-climensional fans ¥ such that any two non-simplicial cones in ¥ intersect only at the
origin. Then the spaces H*!(Z) and H*?(Z) vanish in this case, by 1.3 and 1.2 (ii).

The methods of this section can be used to study the algebra of piecewise polynomial
functions which are continuously differentiable of a fixed order (such algebras are considered
in [Bil} and [Bi-Ro], as modules over the algebra of polynomial functions). This will be
developed elsewhere.

2.2. For cach simplicial, d-dimensional cone o, we denote by @, the product of the
cquations of the facets of 0. Then &, € S is uniquely defined up to scalar multiplication.

12



We normalize @, as follows: we choose a non-zero element in AV, and we impose that
the equations of facets of o are non-negative on o, and that the absolute value of their
wedge product is 1. We denote by ¢, the function on V such that

polv) = {Cba(v) fveo

0 otherwise.

Theu 2, 1s a continuous, piecewise polynomial function that vanishes outside the interior
of o.

Theorem. Let ¥ be a complete, simplicial fan. Then there exists a non-zero linear map
v Ry — S such that
(1) my is S-linear,
(11) wv 1s homogeneous of degree —d.
Moreover. (1) and (i1} define my, uniquely up to scalar multiplication, and a choice of 7y, is

given by
Z fa

aEE(d)
for any f = (fs) € Ry. Then mx(p,) =1 for any o € X(d).

Proof. If mv exists, then it vanishes on any element of Ry of degree 0,1,...,d — 1, by
assumption (it). Now (i) and Corollary 2.1 imply that 7y is unique up to scalar multipli-
cation.

By Corollary 2.1 again, the quotient of Ry by its S-submodule generated by elements
of degree at most d — 1, is isomorphic to S. The resulting map Ry — S satisfies the
conditions (1) and (ii), and hence it can be taken as 7y.

For f = (fs) in Ry, set
- 5

UGE(d)

Then ¢ is a rational function on V, and the denominator for ¢ is the product of the
cquations of (d — 1)-dimensional cones of ¥. We claim that g is a polynomial function
on V75 for this, it is enough to check that no ¢ € ¥(d — 1) is a pole set of g. Denote
by o’ and ¢’ the cones in ¥(d) having o as their common face. We can find generators

€1 €q—1.€! (resp. €]) of edges of o’ (resp. o) such that e; A---Aeg_ 1 /\ed = 1 and that
LA NG /\(Jd = —1. Then there exist ay,...,aq4—1 in K such that Z 1 a;e; = e tel.
Let oot vq in V* form the dual basis of e;,...,eq_1, €. Then we have
d—1
Qor =21 Tg, Por = —4 H (xz + a; $d> :
=1

It follows that

f d d—1 d—1
(I)ﬂ + Jo =y’ H @ 4 ageg) " (for H(xz + ajxg) — for H ;)
o’ U” =1 i=1 =1

13



has no pole along vq4 = 0, because f,1 — fon is divisible by z4. Therefore, g has no pole
along o. and this proves our claim.

Now the map py : f — g sends Ry, to S, and py satisfies the conditions (i) and (ii).
Moreover, we have pyx(p,) = 1 for all o € T(d), and hence py is non-zero. By the first
step of the proof, py is proportional to my.

Example. Choose affinely independant points zg,z1...,xq in V*. Let P be the simplex
with vertices xg,21,...,1q; let ¥ be the normal fan to P. Then the function

fo VvV = K
v — max({zg,v),...,(x4,v))

(the support function of P) is piecewise linear on X, and we can normalize ns so that, for
any integer n > 1:
d
.
(") =) :
= wlei — )

Denote by h, the complete symmetric function of degree n, i.e. the sum of all monomials
of degree n. Then

o (f™) = {hn—d(xoyxl,...,xd) ifn>d

0 otherwise.

Namely. this follows from the identity

< ‘o 1
z];([)l—txi:iz:;(l—t:cin 1 )

j;éil—:ci T

by expanding both sides into power series in t.
2.3. We keep the notation of 2.1 and 2.2.

Theorem. Let © be a complete, simplicial fan; let &' be a simplicial subdivision of 3.
Then there exists a unique map 7y 5 : Ry — Ry, such that
(i) =x

woe(l) =1,
(1) 7xr v 1s Ry-linear,
(1i1) mw v 1s homogeneous of degree zero.

Moreover, we have for any 0 € & and f = (fy) € Ry :

fa’

o

WE’,E(.f)U = (I)o' Z

o' Co,0’ €L/ (d)

Proof. Let 7 : Ryvs — Ry satisfy (i), (ii) and (iii). Then the map 7z o7 : Ryr — S is
S-linear and homogeneous of degree —d. Moreover, by (i) and (ii), the restriction of this
map to Ry is the (non-zero) map my. Therefore, by 2.2, we have 7s o 7 = 7y

14



Now choose o € ¥(d), whence ¢, € Ry,. Then we have for all f € Rxy:

WE'(f‘Po) = TFE(T"(fSOU)) = 772(99077(f)) = W(f)d

(the last equality follows from the formula for 7y given in 2.2, because @, m(f) vanishes
ourside o). Using 2.2 again, we obtain

Tr(f)cr - (I)a Z fo’

!
o' Co,0€XL/(d) 7

This proves the uniqueness of @ = 7y n. For the existence, we define 7 by the formula
above. Then (ii) and (iil) are obvious, whereas (i) and the fact that = has values in Ry
can bhe checked as in the proof of 2.2,

Corollary. (1) For any f € Ry C Ry, we have ns/(f) = mx(f).
(11) For any simplicial subdivision L' of ¥', we have my/ v o mgn 51 = Tgn 3.

The first assertion follows from (i) and (ii), and the second one from the uniqueness of

TN N

Denoting by R the algebra of all continuous, piecewise polynomial functions on V
(with respect to no specified fan), we conclude that there is a canonical map = : R — §
that is S-linear and homogeneous of degree —d. Moreover, for any complete, simplicial fan
Y. there is a canonical, Ry-linear projection R — Ry that is compatible with .

Remark. Let V' be a K-vector space, and let v : V' — V' be a K-linear map. Then
composition by u induces an algebra homomorphism u* : R' — R where R’ denotes the
algebra of continuous, piecewise polynomial functions on V'. We claim that © vanishes
on the mmage of «*. whenever u is not an isomorphism. To check this claim, we may
replace V7 by the image of u, and hence assume that u is surjective. Now the composition
mou*: RN — S is a homogeneous, S'-linear map of degree —d. But the S’-module R’ is
generated in degree at most dim(V') < d, and this implies our assertion.
In other words, 7 vanishes on functions that do not depend on all variables.

2.4. We keep the notation of 2.1 and 2.2.
Theorem. Let 3 be a complete, simplicial fan. Then the S-bilinear symmetric map

RSXRE —r S
(frg) — m=(fg)

1s a perfect pairing, 1.e., it induces an isomorphism Ry — Homg(Rx, S).

Proof. We first check that the map Ry — Homgs(Rsx,S) is injective. Let f € Ry such
that #x(fg) = 0 for all ¢ € Ry. For any o € ¥(d), choose h, € S. Then the functions
Polie glue together into a continuous piecewise polynomial function g on ¥, because these
tunerions vanish on every (d — 1)-dimensional cone. Therefore, we have:

0= Efg Z faa

oc€X(d)

15



This holds for an arbitrary family of h,’s, whence f = 0.

Now we check that the map Ry — Homg(Rx,S) is surjective. Let u : Ry — S be
a S-linear map. Define a function g, on each o € X(d) by g, = u(p,). We check that
these function glue together into ¢ in Ry. Namely, let o € 3(d — 1) separate two maximal
cones 0’ and ¢”. Then ¢ — @eu = fohe ov where f, is an equation of o, and where
i o € Ry. Therefore, gor — gov = fou(hgr 51), i€, gy and g, agree on o.

Denote by @y the product of the equations of all (d — 1)-dimensional cones of ¥. Then
for any f € Ryx. we claim that

f(I)E — Z @UfUCI)E/(I)U .

o€X(d)

Indeed, both sides agree on any given o € X(d), because ¢,lc = ®, and ¢.|loc = 0 for
7 # 0. Moreover, because f,®x/®, € S, we have

u(fCI)S): Z 1L(990').f0'(1)0'/(1)2 = Z gafo'(I)E/(I)o'

o€X(d) cen(d)

and hence

u(f): Z gofa/(pa:ﬂ'ﬁ(fg)-

sEX(d)
This concludes the proof.

Let Ry be the quotient of the algebra Ry by its ideal generated by homogeneous, globally
polynomial functions (i.e. by V*); for f € Ry, let f be its image in Ry. By Corollary 2.1,
we have an isomorphism of graded vector spaces

Using Nakayama’s lemma, we derive easily the following:

Corollary. For any complete, simplicial fan ¥, the K-bilinear, symmetric map

Ry X Ry — K

(f.9)  — m=(f9)(0)
15 well-defined, and it induces non-degenerate pairings
H3(S) x H79471(8) - K .
In particular, the spaces H’7 (%) and H477?77() have the same dimension. This state-
ment implies the Dehn-Sommerville equations, by Corollary 1.4: for any simple polytope

P of dimension d. we have h;(P) = hq_;(P).
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Remark. Let S be a complete, simplicial fan in a vector space V' over Q; choose a lattice
in 7. These data define a toric variety Xy ; the algebraic objects of this section have the
following interpretations in terms of the geometry of Xy, see [Br] for details.

The algebra Ry is isomorphic to the equivariant cohomology ring of Xy with rational
cocfficients. Moreover, for any simplicial subdivision ¥/ of ¥, the map 75 v : Ry — Ry
is identified with the push-forward map defined by the morphism Xy — Xy. Finally, the
nap 7y Ry — S is the push-forward defined by the constant morphism Xy — point. It
follows that the (ordinary) cohomology ring of Xy with rational coefficients, is isomorphic
to Ry: recall that this ring coincides with the Chow ring with rational coefficients, see [Da,
610]. In this identification, the bilinear symmetric map in the corollary above, becomes
the intersection product.

So the algebra R is the direct limit of rational Chow rings of smooth, complete toric
varieties. In turn, by work of Fulton and Sturmfels, this direct limit is isomorphic with
the rational polytope algebra, see [Fu-St, Theorem 4.2]. The latter result was one of the
motivations for [Mcd], [Br] and the present paper.

3. The ring of continuous, piecewise exponential functions

3.1. We denote by Z[V*] the group ring over Z of the abelian group V*. Then Z[V*] is
a free abelian group over the symbols ¢*, x € V*. The multiplication in Z[V*] is defined
by ¢ e¥ = ¢"t¥. The subgroup of Z[V*] generated by the e* — 1 (z € V*) is an ideal; we
denote 1t by 1.

We will need the following description of the quotients I™/I"*! where I"™ denotes the
r-th power of the ideal [.

Proposition. The map V* — I/I*, z + ¢ — 1 (mod I?) is a group isomorphism.
Furthermore, this map induces a ring isomorphism

Sy(V*) — P 1/t
n=0

where S7 (V™) denotes the symmetric algebra over Z of the abelian group V*.

Observe that, since the additive group V'* is divisible, the canonical map
SHV") = S5(V")
1s a1l isomorphismi.

Proof. Denote by (2) the image of ¢* —1in I/I?. Then (z—y) = (z) — (y) by the following
refation:

eV —l=(e"-1)+ (e =-1)+(e"=1)(e7¥ —1).

Therefore. the map V* — I/I?, x — () is a group homomorphism. Observe that any
w & I/I* can be representated in I by some 22:1 a;(e’* —1) with a; € Z and z; € V*. So
() =71, a;(x;) = (O.i-, aiz;) and our map is surjective. On the other hand, if (z) = 0

1= 1
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then e — 1 is in I?, and hence the Taylor expansion at the origin of exp(z) — 1 has order
at least two: then @ = 0. So our map is injective, and the first assertion is proved.

For the second assertion, observe that the map 2 — (z) extends uniquely to a homo-
morphism of graded rings

Sy(vy - 1y
n=0

by the universal property of the symmetric algebra. This homomorphism is surjective, by
the first assertion. To check the injectivity, we may replace V* by a finitely generated
subgroup GG. Then G is a free abelian group, and hence its group ring Z[G] is identified
with the ring of Laurent polynomials in r variables zi,...,z, with integral coeflicients;
here r is the rank of G. Moreover, the ideal I is generated by z; — 1,...,2z, — 1, and these
elements form a regular sequence in Z[G]. But our statement is well-known in this case.

3.2. Let ¥ be a fan. For any cone o, let E, be the group ring over Z of the abelian
group L(o)* (the dual of the linear span of ¢). For any ¢ € ¥, and for any face 7 of o,
the inclusion L(7) C L(o) induces a surjective map L(c)* — L(7)*
homomorphism E, — E-, f — f|,. We set

and hence a surjective

Ey, = {(fa)oEE \fa € Ecm foir - f‘r V1 C U} :

Then Ey 1s the ring of continuous, piecewise exponential functions on ¥; there is an obvious
structure of Z[V*]-module on Ffy.

In contrast to the algebra of continuous, piecewise polynomial functions as a module
over the algebra of polynomial functions, the Z[V*]-module Ey, is not finitely generated in
general. Indeed. consider the case where V = K is one-dimensional, and where ¥ consists
of the two half-lines KT and K ™, together with the origin. Then elements of Ey are pairs
(f7.f7) in Z[K] such that f7(0) = f=(0). Therefore, the map

Es = Z[K] < I, f = (f",(f7 = f)IET

15 a ring 1somorphism. Using 3.1, it follows that
ES/IEE ~7Z x K .

Iu particular, the abelian group Eyx/IEy is not finitely generated, and hence the Z[L]-
module Ey 1s not finitely generated. Observe that this module is not free either.

So it would be difficult to study Ex, by using the homological methods of the previous
sections. We will use a different approach, by induction on the number of cones in X. This
approach was used in [Br] for the algebra of continuous, piecewise polynomial functions.

For any maximal cone ¢ € 3, we denote by E,o the set of all f € Eyx such that
f vaunishes identically outside 0. Then E,o is an ideal of Ex. In the case where ¥ is
simplicial, we construct elements of E,o as follows. Let 7 be an edge of . Then there
eXIsts a non-zero continuous, plecewise linear function ¢, that vanishes at all edges of T,
except for 7. Moreover, ¢, is uniquely defined up to scalar multiplication; it is called a
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Courant function in [Bi2]. Observe that ¢ — 1 is in Ey, and vanishes outside the star of
7. Therefore, HTEU(I) (e¥7 — 1) is in E 0 whenever o is a maximal cone in X.

Proposition. Let ¥ be a simplicial fan; let ¢ be a maximal cone in ¥.
(1) The sequence
0 — Ey0o — Ey, — EE\{U} — 0

I8 exact.
(11) The Z[V*|-module E,o is generated by all [l o) (€77 — 1) where ¢, is a Courant
funiction associated with 7.

Proof. (1) Clearly, the sequence is left exact. To prove the surjectivity of the restriction
E\. — Ev\ {4y, it 1s enough to check that any continuous, piecewise exponential function on
the boundary of o extends to an exponential function on o. Choose coordinates zy,..., 24
on V such that

T d
o= (ﬂ(xl > O)) ﬂ( ﬂ (z; :O))
=1 Jj=r+1
For any subset J of {1,..., r}, set
oji=00N (ﬂ (z; =0)) .
igJ

This sets up a bijection between subsets J of {1,...,r} and faces o of 0. By assumption,
for any proper subset J C {1,...,7}, we have an exponential function f(z;);es on oy,
and these functions are compatible on the boundary of o. Now set

flag,... zq) = Z (=)t =eardD) £ )i

JC{1,...,r}

(sum over all proper subsets of {1,...,r}). Then f is the desired extension.
(ii) For J C {1,...,r}, denote by z; the r-tuple whose j-th coordinate is x; if j ¢ J,
and 0 otherwise. Define a map p, : E, — E, by

pa(f)(l‘) — Z (_1)r—1—card(J) f(:EJ)

JC{1,...,r}

(sum over all subsets of {1,...,r}). Then p, is a projection of F, onto Ejo. Moreover,

we have
r

» (€a1171+"'+ad1'd) — lr+1Zr41ttaazy H (e%® — 1)
3 _ .

i=1
This implies our statement, because we have
T
[T -n- II @ -1
=1 TEO(1)



for a suitable normalization of the ¢, ’s.

Corollary. For any simplicial fan ¥, the abelian group Ey is generated by exponentials
of piecewise linear functions on L.

Proof. Choose a maximal cone ¢ € 3, and let f € Fy. By induction on the number of

cones in Y. we may assume that

7

flsvoy = ) ajek

=1

with a; € Z and f; continuous and piecewise linear on ¥ \ {¢}. Then by the argument of
the proof of 3.2, each f; extends to a continuous, piecewise linear function on X. Therefore,
we may assume that f|y\ (o) = 0, i.e. that f € E,o. Now we conclude the argument by
statement (i1) above.

3.3. Let ¥ be a fan, let Exy be the ring of piecewise exponential functions on ¥, and let
Jv C Ex be the kernel of the evaluation at 0. Clearly, we have [ Fy C Jg and hence
I"FEx. C J¢ for all integers n > 1.

Theorem. For any simplicial d-dimensional fan ¥, and for any integer n > 1, we have
Jotd c [ Ey
J [" Ex-.

Proof. We prove this theorem by induction over the number of cones in ¥. The first
step of the induction is trivial. Choose a maximal cone ¢ € X, and let f € J£+d. Then
fleviey € .fg’QL{‘i}. Using the induction hypothesis and the surjectivity of the restriction

Esx — Ly\(s), we may assume that f|g\(sy = 0. Then f € FE,o N J£+d, re. f, €
E,onI"E, . Tt is enough to prove that f, € I"E 0. For this, we use the notation of
the proof of Proposition 3.2. Then f, = py(fs) € po(I"T?E,). Therefore, it is enough to
check that

Pa(1n+dEo) C [nPU(ch) .

We obscrve that p, = py---p, where p;(f) = f — flei=0. Moreover, the p;’s commute
pairwise. For any f,¢ in E,, we have
(+) pi(f9) = pi(f)g + flei=opi(g) -

It follows that p;(I*E,) C Ip;(E,) (observe that f € I implies f
induction on n. that

ri=0 € I) and, by

(%) pi(I" Ey) C I"pi(Es) -
To end the proof, it suffices to check by induction on ¢ that

pi"‘pl(lrl+iEU) C[n]%Pl(EU) .
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This statement holds for ¢ = 1; if it holds for 7 — 1, then we have (using () for the second
inclusion, and (**) for the third one)

pi- pi(I"MEy) CpiI" ' picq - p1(Ey))
CpilI"™ N pict - pi(Be) + I" pi -+ pr(Eo)
CI"pi(Es)pi—1- p1(Es)+1"pi - p1(Es)
CI"pi---pi(Es) -

Remark. Corollary 3.2 can also be deduced from [Mol, §5], whereas Theorem 3.3 is a
sharpening of the main result of [IKKh-Pul; see 5.1 below. In the case where K = Q, there
arc close connections between the algebra of piecewise exponential functions on a fan, and
the cquivariant K -theory of the corresponding toric variety, see [Mo2].

4. Piecewise polynomials and piecewise exponentials

4.1. Recall that Ry denotes the graded algebra of continuous, piecewise polynomial func-
tions on the fan 3, and that S denotes the graded algebra of polynomial functions on V.
We denote by Ry >, (resp. S>n) the sum of the homogeneous components of degree at
least nin Ry (rvesp. S). For any maximal cone o € 3, let R 0 be the ideal of Ry consisting
of functions that vanish identically outside the relative interior of o.

Proposition. Let ¥ be a simplicial fan, and let o be a maximal cone in X..
(1) The sequence

0 = R,o = Ry — Ryp\(s} = 0

15 exact.

(11) The S-module R,o is generated by the function Hrea(l) ©r where ¢, i1s a Courant
function associated with T (see 3.2).

(111) For any n > 0, we have Ry >ntq C S>nRy C Ry >n.

(1v) For any n > 0, we have Ryo NS>, Ry = S>,Rqo.

Proof. The statements (1) and (ii) (resp. (iii)) are checked as in 3.2 (resp. 3.3). For (iv),
it 15 enough to prove that Ry0 NS>, R 1s contained in S»nR,0. For this, we may replace o
by its linear span, and hence we may assume that o is d-dimensional. Then the S-module

R Lo 18 generated by
vo=II o

TEG(1)

with the notation of 2.2 and 2.3. Moreover, there is an S-linear map 7 : R — S such that
(o) = 1 (see 2.2). Therefore, the S-module R o is a direct factor of R, and this implies
our statement.

As in 3.2, we deduce the following:

Corollary. The K -algebra Ry is generated by the continuous, piecewise linear functions

o1 L.



4.2. Let ¥ be a simplicial fan. The algebra Ry, is endowed with two filtrations, by powers
of the ideals Ry >1 and S>1Ryx. It follows from Corollary 4.1 that (Rg »1)" = Rz >n, and
from Proposition 4.1 (iii) that both filtrations define the same topology on Ryx. We denote
by Ry the completion of Ry with respect to this topology. Then Ry is an algebra over
the ring S of formal power series on V.

We will need the following variant of Ry: Define RIl' as the subset of Ry consisting
of all functions f such that f(0) is an integer. Then Rl is a graded subring of Ry, with
Ri\.}."(] =7 and Rizn’tn = Ry , for all n > 1.

Proposition. (i) The algebra Ry, consists of all compatible piecewise formal power series
on Y.: 11 other words,

RZ = {(fo')er l fa € Rmfcr|7' = fT v - U} .

(ii) The map Ex, — Ry, that sends any continuous, piecewise exponential function (fs) to
the collection of the Taylor expansions of each f,, is injective. Moreover, the closure of its
image consists of R\,

Proof. (i) is checked by induction on the number of cones in I, the case of one cone being
trivial. Choose a maximal cone o in X.. Observe that the S-module Ry is finitely generated
(this follows, e.g.. from 4.1 (1) and (ii)). Therefore, the sequence

0—)]%00 —)Rz %RE\{U} — 0

~ ~

1s exact. Moreover, because Ry0 = .5, we can identify R, o with ¢, S.

On the other hand, denote by Cy the algebra of compatible piecewise power serics

ou ©. Then Cy is complete, as a closed subalgebra of the product of all R,’s. Therefore,
Ry; maps to C'x, and this map induces a morphism from the exact sequence above, to the
analogous exact sequence satisfied by Cy. By the induction hypothesis, this morphism is
aln 1somorphism.
(ii) Observe that the map Z[V*] — S, ¢* — Yoo o @ /n! is well-defined and injective.
Therefore. the map Fy — Ry is injective, too; clearly, its image is contained in R‘E“t We
identify Ey. with its image, and we check that Ey, is dense in R‘gt In more concrete terms,
given f = (f,) € Rir‘ft and N > 0, we must find g = (¢g,) € Ex. such that g, — f, € RL";N
for all ¢ € ¥. We may assume that f is homogeneous. If the degree of f is zero, then
f = f(0) € Z and we simply take ¢ = f(0). Otherwise, we may assume that f = cl™ for
some ¢ € IV, some continuous, piecewise linear function / on ¥, and some integer n > 1;
namely, the abelian group Ri‘ffn = Ry , is generated by such functions (see Corollary 4.1).
Now there exists a formal power series u(t) =t 4+ Y., u;t* such that u(exp(t) — 1) =t as
formal power series. Then

N

Tn(l) = (' = 1)+ Y wile! — 1)

=2

is in Ev. and Tn(l) is an approximation of | at the order N. Now the function ¢ :=
Tn ()T ()™~ is continuous and piecewise exponential, and ¢ approximates f = ¢l™ at
the order N
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4.3. Denote by E the ring of continuous, piecewise exponential functions on V (with
respect to no specified fan). Then E injects into R as a dense subring of Rint: we will
identify E with its image.

Theorem. We have IE = EN 521}?,

Proof.  Clearly, IE is contained in E N 521}?. Therefore, it is enough to prove that
Ev 0 521]'? is contained in IE for any complete, simplicial fan 3. But this statement
makes sense for any (non-complete) fan X, if we replace IE by its restriction to |Z|. Now
we can use induction on the number of cones in ¥, because of Proposition 3.2; then we
reduce to checking that E,o N Ss1 R is contained in IE for any simplicial cone o. We may
asswne further that o is d-dimensional.

First we consider the case where d = 1. Choose the coordinate x on V such that
o = (x> 0). By Proposition 3.2, the Z[V*]-module E,o is generated by functions f, such
that w1 e 0

e —1 ifz

fal@) = {0 otherwise,

where « € . The identity

(677 = 1)+ (e — 1) = (elo#D2 — 1) = (e — 1)(cb* 1)
nuplies that fo, + fo = fags — (€* — 1) fp, and hence that
(] fo+ fo = faps € IE .

Given f € E,o, we can write f = Y._| u;fq, where u; € Z[V*| and a; € K. Moreover,
there exist integers n; such that f; —n; € [ for 1 <1 < r, and hence f = ELI nifa; +9
where ¢ € IE. Using (*), we can even write f = f. + h where ¢ € K and h € IE. If
moreover f & 521R7 then f. € 521]%. But the Taylor expansion of f. at the origin begins
with ca, hence ¢ =0 and f € IE as required.

Now we consider the more involved case where d = 2. Choose coordinates z1,z2 on
17 such that 0 = (@1 > 0,22 > 0). Then, as before, the Z[V*]-module E,o is generated by
functions fq, ., such that

(e o p(e ) i (o) €0
fal,az(l’lle) = {0 otherwise,

where ay. a, are in . For any a € K, define a function g, on V by

e ifgy <Qand z; + 29 <0

1 ifz; >0and 22 > 0
g (wlaxZ) {
e %% ifzy <0and xy + 24 > 0.

Then g, is continuous and piecewise exponential. Moreover, it is easy to check that

) - 6a1x1+agx2 alxlgm(xl?a:?) aznga2($17$2) +1.

fal,ag(\'il’lwl"Z 9a1+a2(3«’17$2)
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It follows that f,, 4 — fas,a, € IE. Replacing (z1,22) by (byx1,b2xs) for arbitrary by and

by, we deduce that fo b, a06, — fasby.arb, € [E. In particular, we have for arbitrary a, b in
I
(**) fa,b_fl,abEIE-

It follows that anv f € E, o can be written as

r

f = Z uifl,ai +g;

=1

where u; € Z[V*]. «; € K and g € IE. We can further assume that u; € Z. Now we have
as in the first step of the proof:

fiat+ fip—fiass €IE .

It follows that f = fi .+ h for some ¢ € K and h € IE. In particular, h € 521]35.

Now assume further that f is in 521R- Then fi . is in 521R, too. We have to check
that ¢ = 0. Otherwise, expanding f; . into a power series, we obtain ¢, € 521R and hence
Yo € S1R1 + S5 by homogeneity. But 7(¢,) = 1 with the notation of 2.2 and 2.3, while
(SR + 52) =0, a contradiction.

In the general case of a d-dimensional cone o, we can write o as ﬂle(:pi > 0). Then
the Z[V*]-module E,o is generated by functions fg, a,.....a, such that

d s .
f(Ll.(IQ...,(Ld(xlv . ,ZEd) = {HiZI (eazIz - 1) lf (.Il,fEQ, o 7Id) co

0 otherwise.
We obscrve that
fa] ,ag,...,ad(xl s L2y ,xd) = .f(l1,(12(x1 5 372) fag,...,ad(x37 . 737d)
with the obvious notation. Now repeatedly use equation (#%) to obtain
far,am,aqa — f11,. 1,010 €IE

aund conclude as before.

Corollary. The maps R'™ — R'™ « E induce isomorphisms

Ri”t‘/521Ri“t N éint/521fzint — E/IE ]

Proof. The map R"/S5, R" — ]:?i“t/SE Ri" is an isomorphism, because R™ is graded.
On the other hand, the map E/IE — Ri“t/521Ri“‘ is injective by 4.3, and surjective by
4.2.
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4.4. We keep the notation and conventions of 4.3.
Proposition. (i) If K # Q, then I"E is strictly contained in E N SZnR for any integer
o2,

(ij;lf’ I = Q. then ["Ey = Ex N Sanz for any integer n > 1, and for any simplicial fan
-

Proof. (i) We argue by contradiction, and we first handle the case where n > 3. If
I"E = E NS>, R, then, considering globally exponential functions, we deduce that I" =

ZV N gz,,. Therefore, the map
In—l/[n — SZn—l/g}_n

(induced by the inclusions I™ C S’Zm) is injective. But this map is identified with the
canonical map between (n — 1)-st symmetric powers

Sz (V") = SETH(V)
by using 3.1 and the isomorphisms
‘§271—1/§2n >~ SZn—l/SZn ~ SZ_I(V*) :

Now choose t € IV \ Q, and choose two linearly independant vectors z, y in V*. Then
w(ty) — (ta)y is non-zero in SZ(V*) and therefore, 2™ 2(ty) — " ~*(tz)y is non-zero in
S, '(V*). But the image of this element in Sﬁy_l(V*) vanishes, a contradiction.

Now we consider the case where n = 2. Choose t € K\ Q as before, and set u = 1/t.
Choose coordinates & = 21,22,...,x4 on V. We claim that the function f such that

et =D (e*r—-1) - (e* = 1)* ifz>0
f(l,lg,...,ld)——{o ifr<0
isin BN Szgf? but not in I*E.
Clearly, f is in E and moreover z72f(x,22,...,2q4) vanishes along v = 0, whence
£ ENa?R. Assume that f € I*E; then we can find a complete fan ¥ such that

—

f < I*Ex and that the hyperplane (z = 0) is a common wall to at least two cones o™,
o~ in S(d). Writing explicitly that f € I?Ey and making 2o = --- 24 = 0, we obtain the

cxistence of two families of functions f, and f, in Z[Kz] (indexed by a, b in K) such
that fF,(0) = f;,(0) and

a,b

(e = 1)(e = 1) = (" = 1)2 = Y (" = 1)(e™ — 1)fS,

a,b

= Z (e*® — 1)(e? — Dfoy -

a,b
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Subtracting. we have

(€ = (e = 1) = (" = 1)” = 3 (** = 1)(e” = 1)fu

a,b

with f, s in Z[Kz] such that f, 5(0) = 0. Then each f, 5 is in I, (the augmentation ideal
of Z[Kz]) and hence
(e —1)(e™ —1)— (" = 1)2 e I .

But this contradicts Proposition 3.1 applied to Kz, because tu — 1 is non-zero in S5(K).

(11) Using 3.2, we are reduced to checking that E o N SZnRE is contained in ["FEy;,
where ¢ is a maximal cone in ¥. We may assume that ¢ is d-dimensional; we use the
notation of the proof of 4.3. Let f be in E o N SZnRE- Write

f - 5 fal,,..,adgal,..‘,ad
al,...,a4

where the ¢,, . ., are in Z[V*]. Let ¢ be a denominator common to all the rational
numbers aq....,aq such that g4, .. ., # 0. Replacing the coordinates z;,2,...,2q4 by
¢ ey, .. ¢ 'vq, we may assume that ay,...,aq are integers. Then each f,, ., is the
product of fi 1,1 by some element of Z[V*], and hence we can write f = f; . 1g for some
g € Z[V*]. Because f € R.on SZnR, we have g € S’Zn (this follows from 4.1 (iv) and from

the fact that fy

in Z[V*n Szn, but this space coincides with I™ by reversing the argument of the proof of
(1). Therefore, g € I™ as required.

1 is the product of ¢, by a power series with constant term 1). So ¢ is

~~~~~

5. The polytope algebra

5.1. Let P be the set of all convex polytopes in V*. Let II be the abelian group generated
by P, subject to the relations

[PUQI+[PNQ]—[P] -],

whenever P, Q and P U Q are in P. The group II is endowed with a ring structure, the
multiplication being defined by [P][Q] = [P + Q] (see [Mcl, p. 86]). Moreover, the group
V* of translations acts on II by ring automorphisms. In other words, II is an algebra over
Z[V*]. Furthermore, II is equipped with a ring homomorphism deg : II — Z which sends
the class of any convex polytope to 1.

To any convex polytope P in V*, we associate its support function Hp : V — K
defined by

Hp(v) = maxzep (z,v) .

Then Hp is a continuous, piecewise linear function on the outer normal fan of /°; moreover,
Hp is strictly convex with respect to this fan.

For any complete fan ¥ in V', we denote by Py the set of all P € P whose support
function Hp is linear on each cone of £. Then Py is closed under Minkowski sum; if
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moreover ¥ is the outer normal fan to some convex polytope P, then Pyx consists of all

\inkowski summands of a multiple of P. We denote by IIy the subgroup of II generated
by the classes of polytopes in Pg; then Ilg is a Z[V*]-subalgebra of I1.

Proposition. For any complete fan ¥, the map

~: Py — Eg, P — ef?
induces an injective homomorphism of Z[V*]-algebras ~ : Iy — Ex,. If moreover ¥ is the
normal fan of a simple convex polytope, then this homomorphism is surjective.

Proof. For P and @ in P, we have Hpug = max(Hp, Hg). If moreover P U Q is in P,
then (PUQ)+ (PNQ) =P+ Q and hence Hpug + Hpng = Hp + Hg. It follows that
Hpng =min(Hp, Hg), and therefore that

eflrve yeflroe = efle g o je y(PUQ)+9(PNQ) =+(P)++(Q) .

Thercfore, ~ extends uniquely to a group homomorphism + : Il — E. Clearly, v maps Iy
to E\. Moreover, we have

Y(P+ Q) = effrre = eflrtflo = clirello = 4(P)y(Q),

i.e. ~ is a ring homomorphism. Finally, we have v(z) = e® for any point-polytope z, and
hence y(uv) = uy(v) for any v € Z[V*] and v € I
We check that ~ is injective. Let u € II be such that y(u) = 0. We can write

m

u :Z ai [H]—Z b; (@]

with P; and @; in P and with positive integral coefficients a;, b;. Then

m

Zal Hp; —Zb eHes

This equality holds in Z[V*] and hence we have for all v € V:

m

() Zaiepop Zb eXpHQ]( v),

=1 7=1

where exp : R = R is the usual exponential function. Now observe that, for x € V*:

infyev(Hp(v) — (2,0)) = {0 ifzeP

—oo otherwise
In other words. the function
x — infyev exp(Hp(v) — (z,v))
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1s the characteristic function of P; denote it by 1p. Therefore, () implies

m n
St =Y h1g
=1 7=1
and this i turn implies
Z a; [P] = b; (@]
=1 j=1

in 11, see e.g. [Mol, p. 11].

To check the surjectivity of ~ : IIs; - Es in the case where ¥ is the normal fan of a
simple polytope A, recall that the abelian group Fy is generated by the e/ where f is a
piecewise linear function on ¥. For such a function f and for large ¢+ € K, the function
f+tHA = f + Hya is strictly convex on ¥, and hence f + Hia = Hp for some P € Pa.
Now e/ = eflP¢=Hea i5 in the image of 7; indeed, [tA] is invertible in IIx (see, e.g., [Mol,
§5]) and moreover y([tA]71) = e Hia,

It follows that ~ induces an isomorphism of Z[V*]-algebras, from II onto E. Through
this 1somorphism, the degree on II is identified with the evaluation at the origin on E. So
Proposition 3.2 implies the following statement, which is the main result of [Kh-Pu].

Corollary. Let .J be the kernel of deg : Il — Z. Then J"*% is contained in I"II for any
iteger n > 1.

5.2. Recall that I denotes the ideal of Z[V*] generated by all e — 1 (z € V*). The
polytope algebra II is the quotient of II by its ideal ITI. More concretely, II is generated
by classes of convex polytopes [P], with relations [PUQ] + [P N Q] — [P] — [@] whenever P,
() and P U (Q are convex polytopes, and [z + P] — [P] whenever x € V* and P is a convex
polyvtope.

Theorem. The polvtope algebra is isomorphic to the quotient of the algebra of continuous,
piecewise polvnomial functions with integral value at 0, by its ideal generated by (globally)
linear functions. The isomorphism sends the class of any polytope [P] to the image in the

qrotient Of‘zz:o H} /n!, where Hp is the support function of P.

Proof. By 5.1, the map v : P + e/'P induces an isomorphism II — E/IE. Then we
conclude the argument by Corollary 4.3 and Corollary 2.1, the latter impliying that any
element in R /S5 R™ has a representative in R'™* of degree at most d.

Using Corollary 2.1 and 2.4, we derive the following statement, one of the main results
in [Mel].

Corollary. There exists a unique abelian group decomposition

=0y @I &-- - dIly,

where [ly >~ Z via deg, and 11y, ...1l; are K-vector spaces, such that [tP] = 2?20

for any [P] = Z_(j[:o [P]; with [P]; € I1,. and for any t € K~q. Moreover, we have

t1[P);
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(1) ILIL; C 104 for all © and j.
(it} The K -vector space I14 Is one-dimensional, and multiplication induces non-degenerate
pairings II; x IIy_; = g for 1 <j <d— 1.

Remark. The polytope algebrais the universal group for translation-invariant valuations on
couvex polytopes. More generally, the universal group for valuations which are polynomial
of degree at most 1 (with respect to translations) is the quotient II/I™t1. Tt follows from
4.2 that I/I"t! maps onto R/S>p41R. But this map is not injective for n > 1, except
when I = Q; see 4.4.

I other words, our structure theorem for II has a natural extension to its higher
versions II /I in the only case of rational polytopes. This explains the complications of
the theory of polynomial valuations, and the role played there by continuity assumptions.

5.3. In this section, we assume that K is the field of real numbers. Recall the S-linear
map 7 : B - 5 introduced in 2.2; because 7 is homogeneous (of degree —d), it extends
nniquely to 7 1 R — § with the notation of 4.2. In particular, m(exp(Hp)) makes sense
for any convex polytope P. In fact, 7 is defined up to a multiplicative constant, and a
normalization of 7= depends on the choice of a non-zero element in A?V. Such a choice
normalizes the voluie element on V*,

Proposition. For any convex polytope P in V*, and for any v € V, the formal power
series w(exp(H p)) represents an entire function, and we have for all v € V:

m(exp(Hp))(v) = /Pexp<a:,v>dx .

Proot. Recall that
exp(Hpug) + exp(Hpng) = exp(Hp) +exp(Hg),
whenever P, () and P U @ are in P. It follows that the map
P — S5, P n(exp(Hp))

extends to a map I — S. The same holds for the map

P—)SA'?PH(UF——)Z/wd
=0 P TL.

But the abelian group II is generated by the classes of simplices (see [Mcl, p.85]) and
therefore, it 1s enough to check our statement when P is a simplex. Further, we may
assune that the volume of P is 1/d!.

Observe that the support function of P factors through the quotient map v : V — V'
where V" is the vector space dual to the direction of the affine span of P. Using the remark
at the end of 2.3, 1t follows that m(exp(Hp)) = 0 whenever P is not d-dimensional. On
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the other hand, for a d-dimensional simplex P with vertices g, 21,..., x4, we have by the
example at the end of 2.2:

0 otherwise,

(Hp)o) = { prodllro e o)) a2 ¢

where h,, denotes the complete symmetric function of degree n. But it is easily checked

that
nq . ha((zo,v),. . (za,v))
f e = e

and this implies our formula.

Corollary. For any d convex polytopes Py, P,,...,P; in V*, we have

W(HPIHPQ"'HPd> :d!V(PhPQ,...,Pd),

where V' dcnotes the mixed volume.

Proof. The statement makes sense, because the left-hand side is a constant, = being
homogeneous of degree —d. To prove it, we consider the constant term in the identity of
the proposition above:

Hp
d!
for any convex polytope P. Then we take P = t; P, + 2Py + -+ - +t4 Py where t1,ta,...,14
are arbitrary positive numbers, and we consider the coefficient of ¢1t; - - - t4 in the resulting

polynomial expansion of the left-hand side.

7( ) = vol(P)

Remark. In fact, the existence of mixed volumes for convex polytopes follows from the
proof above (of course, it can be checked in a more straightforward way!).

5.4. We still assume that K is the field of real numbers. Using 5.3, we obtain the following
scparation theorem, first proved in [Me3].

Theorem. For any convex polytopes Py, P,,..., P, and for any integers a1, as, ..., ar,
the following conditions are equivalent:

(1) ar [Py} + aa[P2] 4 -+ - + a,[P,] is zero in TI.

(i) ayvol( Py 4+ Q) 4 agvol(P2 + Q) + - - + a,vol(P, + Q) = 0 for any convex polytope Q.

Proof. The map (P, Q) — vol(P + Q) extends to a bilinear map p : II X II — R. Moreover,

the identity
Vol(P + Q) = m(exp(Hp) exp(Hg))(0)

(a consequence of 5.3) means that p is identified with the bilinear form (f,g) — 7(fg)(0)
through the identification of II with Ri"' /S5 Ri". Now our statement follows from 2.4.

Remark. For Py, P,,...,P. as above, let ¥ be a complete, simplicial fan such that
Hp Hp,,...,Hp, are piecewise linear on ¥, and that 3 is the normal fan to some con-
vex polytope A. Then in the statement of the theorem above, it is enough to consider
polytopes @ that are Minkowski summands of A.
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