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Valuations on convex bodies

The investigation of functions on convex bodies which are valuations, or additive
in Hadwiger’s sense, has always been of interest in particular parts of geometric
convexity, and it has seen some progress in recent years. The occurrence of
valuations in the theory of convex bodics can be traced back to the notion of
volume in two essentially different ways. Firstly, the volume of convex bodies,
being the restriction of a measure, is itself a valuation. This valuation property
carries over to the functions which are deduced from volume in the Brunn-
Minkowski theory, namely to mixed volumes, quermassintegrals, surface area
functions, and others. Hadwiger’s celebrated characterizations of the quermass-
integrals by the valuation and other properties were the culmination of a series
of papers on valuations and at the same time the starting point for various
subsequent investigations of functionals with similar properties.

A different way from volume to more general valuations was opened by
Hilbert’s third problem and the solution given to it by Dehn. Motivated by the
problem whether the notion of volume for three-dimensional polytopes can be
introduced, in analogy to the plane case, by elementary dissection and con-
gruence arguments, without the use of limit processes, Hilbert asked whether two
three-dimensional polytopes of equal volume are necessarily equivalent by
dissection. Dehn’s negative answer was essentially achieved by constructing
special valuations which must attain the same value on equidissectable polytopes,
and by exhibiting pairs of convex polytopes with equal volume but different
values of these functionals. Dehn’s set of necessary conditions for equidissecta-
bility was proved to be also sufficient only many years later, and in the course of
the investigation centring around this and related questions, much information
on valuations was gained. Thus the dissection theory of polytopes (which still has
to offer some deep open problems) is intimately tied up with valuation theory,
and every dissection result has implications on valuations.

A third range for applications of valuations in convexity is seen in questions of
combinatorial geometry, where the Euler characteristic on unions of convex
sodies is a useful device. The Euler characteristic also plays a role in certain
extension procedures for quermassintegrals and other functionals to non-convex
sets.

Still another class of valuations arises from the counting of lattice points in
convex bodies.

The following survey collects and describes the various examples of valuations
on convex bodies that have been treated in the literature, and it presents the
known results, mostly without proofs. The emphasis is, first, on the interrelations
between simple valuations and dissections, which requires a fairly far-going
description of the algebraic arguments on which the progress in equidissecta-
bility relies, and second, on characterization theorems for special valuations of
geometric interest. Some open problems will also be mentioned at appropriate
places.
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§1. Preliminaries

By a valuation, or an additive functional, on a class & of sets we understand a
function ¢ on & satisfying

(1L.1)  o(KuLl)+ o(KnL)= oK)+ ¢(L)

whenever K,L,K U L and K n L are elements of . Here we assume that ¢ takes
its values in an abelian group, and we always suppose that () = 0. Often the
class & will be intersectional, which means that K,L € ¥ impliesK nL € &.If ¥
is an intersectional class, we let U(5) denote the lattice consisting of all finite
unions of elements of &.

For the classes & occurring most frequently in the following, we introduce
special notation. Let E¢ be d-dimensional euclidean vector space, with scalar
product {-,"> and norm [|-||, and let @ = Q*~!: = {x € E4: |x|| = 1} be its unit
sphere. By "¢ we denote the class of compact convex subsets of %, The elements
of o"? will be called convex bodies, which differs slightly from common usage (in
particular, the empty set & is a convex body, which is convenient when
valuations are considered). On X %\{(F} we have the vector or Minkowski
addition +, defined by

K+L:={x+yxeKyel},
and the usual Hausdorfl metric p, defined by

p(K.L): =min{p=20:K =L +pB, L<K+pB},
with B the unit ball.
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The important class U(¢"%) is Hadwiger’s convex-ring. By ¢ = X ¢ we denote
the class of convex polytopes, and the elements of U(#¢) are the polyhedra. We
write #"$ = "¢ {or the subset of d-dimensional convex bodies, and the elements
of 2§: = o4~ 2 will also be called d-polytopes. .

Sometimes it will be convenient to consider also relatively open convex bodies.
By a relatively open convex body we understand the relative interior, relint (i.c.,
the interior with respect to the affine hull) of a convex body. Let X4 denote the
set of all relatively open convex bodies in E¢ and 24, the subset of relatively open
polytopes, and observe that 2¢ < U(#4).

For other types of sets to be considered we shall introduce special notation
when it seems appropriate. A polytope is called rational if its vertices have
rational coordinates (with respect to the standard basis of E9), and it is a lattice
polytope if its vertices belong to the integer lattice Z* consisting of all points in E¢
with integer coordinates. A polyhedral cone with apex 0 is the intersection of
finitely many closed halfspaces each having 0 in its boundary. The intersection of
such a cone with the unit sphere Q¢ ~! is called a spherical polytope. Some time we
will also mention polytopes in hyperbolic spaces.

If @ is a valuation on & and % is a lattice, that is, closed under finite unions and
finite intersections, then (1.1) and an easy induction argument yield

(12 oK,u-UKd= 3 (1" T K, nK,)

r=1 iy <+ <iy
for K,,....K,, € &. In general, the function ¢ defined on an arbitrary class &
is said to satisfy the inclusion-exclusion principle if (1.2) holds whenever
KooK Ky U - UK, K, 1 - n K, € #. Clearly any valuation on & which
can be extended, as a valuation, to the lattice generated by &, satisfies the
inclusion-exclusion principle. We shall consider such extensions in §5.

In the former literature, in particular in the work of Hadwiger (see [1957]),
valuations are usually called additive functionals. This should not be confused
with the notion of Minkowski additivity. A function ¢ on "¢ or 2¢ (with values
in an abelian group) is called Minkowski additive if (&) = 0 and

oK +L)= oK)+ o(L) for & #K,Lexresp. £
Every Minkowski additive function is also a valuation, since
(13) (KuL)+(KnL)=K +L

if K,.L and K UL are non-empty convex bodies. This fundamental relation,
which appears surprisingly late in the literature (apparently not before Sallee
[1966], p. 77; sce also Hadwiger [1971]), can also be interpreted as saying that the
identical mapping of ¢ ¢ into itself is a valuation. (Here we admit a commutative
semigroup with cancellation law, namely "¢ with Minkowski addition, as the
range of a valuation. This is not an essential differcnce, since any such semi-group
can be embedded in an abelian group.) Since the mapping ¢:K+— h(K,-), where

h{K,u): = max{{x,ud:xe K} for ue (o

defines the support function of K # & (restricted to Q¢ '), is Minkowski additive,

it is also a valuation, with values in the space of real continuous functions on
QL
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Let C be a fixed convex body. If K,L € 2%, then
(Kul)+C=(K +Cu(L+C),
and if K u L is convex, then also
KAL) +C=K+On(L+0

(see Hadwiger [1957], p. 144). Hence, if ¢ is a valuation on o 4, then the functio
¢c defined by

oK)= @K +C) for Kex*

is also a valuation on "%, Thus the interplay between convexity and Zwswoimr
addition yields new valuations from old ones, a remark which will be c
importance in §§3 and 10. )

The above passage from ¢ to ¢ is an example of the following obvious resul

(1.4) Lemma. Let ¢ be a valuation on X%, and let f:0¢ — A * be a map whic
satisfies f(K U L) = f((K) U (L) and f(K n L) = f(K) ~ (L) if K.LKul
€ X8, Then ¢ - is a valuation.

In the above example, f(K) = K + C. Another example is given by f(K)
K A C, where C is a fixed closed convex set. A third one is given by f(K) = a(K
where a:E¢ — 4 is an affine map.

The following notion is useful in the investigation of valuations on polytope
For a hyperplane H c Elet H* and H ™ be the two closed halfspaces bounded t
H. A function ¢ on 2¢ or "¢ is called a weak valuation if ¢() = 0 and

oK)+ oK nH)=9pKnH")+ ¢KnH)

for every hyperplane H and every K in the domain of ¢. mm:oo.m_oomu mwo.c
(among related and more general results) that every weak valuation on 2 is
valuation; see also Groemer [1978] for the case where ¢ takes its values in a re
vector space. The following example (duc to Groemer, private communicatio
shows that a weak valuation on "¢ need not be a valuation. For K € o 2, defis
@(K) = 1if 0 (the origin of E?) lies in the boundary of K andisa o:a-m.aoa,.g
not a two-sided, limit of singular points of K, let ¢(K) = 2if Oisa :zo-maom_ lim
of singular points of K, and ¢(K) = 0 otherwise. Clearly ¢ is a weak valuation ¢
X2, But it is not a valuation, since one easily finds K, K, € #°* with o(K,)
o(K;) = (K, nK,) = 1and ¢(K, UK;) = 0. Wedo not know an example of
rigid motion invariant weak valuation which is not a valuation.

A different view on valuations is often useful. It is motivated by the inz-rz.os
procedure of integration theory which transposes additivity (of set functior
into linearity (on vector spaces). Let & be a class of subsets of some set .m. T}
characteristic function of an element K € & will be denoted by K*, that is,

1 if xeK
0 if xeS\K.

By V(&) we denote the real vector space which is generated by the functio

K*(x) =
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K*¥Ke¥ IfKLKuLandKnLe %, then
(KuLl)* +(KnL)*=K* + L*,
thus the map K +— K* is a valuation. In particular, if & is intersectional, then (1.2)

shows that K* e V(&) for all K e U(&).
Now suppose that @ is a map from V() into an abelian group which satisfies

(L.3)  @(K* + L*) = G(K*) + @(L*).

Defining ¢(K): = @(K*) for those K = S for which K* e V(&), we get
P(KuL)+ o(KnL)=@((KuUL)*) + ¢((Kn L)*)

B((KUL)* + (KAL) = ¢(K* + L*)

#(K*) + 3(L*) = ¢(K) + o(L),

provided that @ is defined in each case. Thus ¢ is a valuation. In particular, if & is
intersectional, then this yiclds a valuation on U(%).

Vice versa, if a valuation ¢ on % with values in some real vector space is given,
one might try to define

(1.6) @(f): =2 o9(K;) for =Y aK¥e V(¥) (x,eR)

as itf integration theory (where usually ¢ is a measure defined on a ring of
subsets). If this is possible, then @ thus defined clearly satisfies (1.5). But, in
general, the right-hand side of (1.6) does not only depend on the function f,buton
its special representation. We shall return to these questions in §§2 and 5.

We conclude these preliminaries with a most important definition. A valuation
¢ on a class of convex subsets of either E¢ or Q¢ is called simple if p(K)=0
whenever dim K < d.

L Classical examples and general results
§2.  The Euler characteristic

Before treating valuations from a general point of view, it seems appropriate to
review the more familiar classical examples occurring in the theory of convex
bodies. The simplest (non-zero) valuation on ¢ 9is clearly the function y defined

by 1 if K#g
1
@D =4y T

While this function is of no interest when restricted to convex bodies, it is a
non-trivial question whether y can be extended, as a valuation, to the convex-ring
U(o"9). The answer is in the affirmative, since the Euler characteristic as defined,
for example, in singular homology theory, is a valuation satisfying (2.1). In a well-
known and influential paper, Hadwiger [1955a] gave an ecntirely elementary
existence proof which is independent of topology (the uniqueness is trivial by
(1.2)). His construction proceeds by induction with respect to the dimension. The
existence for d = 0 being trivial, suppose that the existence of  has been proved

for Kexd
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in dimension d — 1. For a unit vector u e Q4" ! and for AeR, let
(22) Hy;i={xel<{xu) =4
be the hyperplane through lu orthogonal to u. Then put

3) xK)=Y [xKn H,;)) - limy(KnH,,| for Ke U(ord),

ieR wla

where on the right-hand side y denotes the (unique) Euler characteristic which b
the inductive assumption exists in (d — 1)-dimensional affine spaces. The sum i
finite, and y thus defined turns out to be a valuation,

By an easy argument, Hadwiger [1955a] also deduced the existence of :
valuation y on the finite unions of closed spherically convex subsets of Q¢- wit]
X(A) = 1 if A is spherically convex and contained in an open hemisphere.

The above existence proof for the Euler characteristic on U(x?)is reproducec
in Hadwiger [1957]. Different variants of the construction are found in Hadwigei
[1959], [1968b], [1969c], Hadwiger-Mani [1972].

Wealso mentionan article of Hadwiger [1974a] which contains an elementary
treatment of the Euler characteristic for polygons in the plane.

Once the existence of the Euler characteristic on the convex-ring is known, it is
mainly through exploitation of the inclusion-exclusion principle (1.2), a usefu
tool in combinatorial geometry, see Hadwiger [1947], [1955a], [1968b], Klee
[1963]. Klee’s paper put the Euler characteristic in a lattice-theoretic setting. This
general treatment of valuations and the Euler characteristic in combinatorial and
algebraic terms has been further developed by Rota [1971], see also [1964]. Rota
[1971], p. 231, makes a very interesting (though somewhat vague and perhaps too
optimistic) remark on a conceivable connexion between valuations on U(#¢)and
the problem of finding necessary and sufficient conditions for a lattice to be
isomorphic to the face lattice of a convex polytope.

If an element K of the convex-ring U("Y) is represented as the union of k
convex sets, then (1.2) gives trivial lower and upper bounds for the value y(K) of
the Euler characteristic in terms of d and k alone. The problem of finding sharp
bounds has been posed by Hadwiger-Mani [1974], and they have treated a
related problem. A complete solution was given by EckhofT [1980].

The recursive definition (2.3) works equally well for relatively open convex
bodies, and this is often convenient, especially when polyhedra are considered. If
we use (2.3) for K € U(2%), then this yields a valuation x on the unions of
relatively open convex polytopes which evidently satisfies

(24) x(P)=(-1)y4mF for pegd.

This extended Euler characteristic was considered by Lenz [1970] and Groemer
[1972], and in special cases also by Hadwiger [1969c], [1973], who, however,
preferred to use a different sign for odd-dimensional P, so that he did not get a
valuation on U(#4). It appears that the insistence on prescribing ¥(P) = 1 for
every relatively open, non-empty polytope P, slightly complicates the in-
vestigation in Hadwiger [1973] and also in Hadwiger-Mani [1972].

Since every polytope is the disjoint union of the relative interiors of its faces,
(2.4) and the additivity of y immediately yield the well-known Euler relation.
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Variants of the recursion formula (2.3) can also be used to extend the Euler
characteristic to a linear functional on a vector space, as described in §1. Let us
first consider the real vector space V(2?) consisting of the finite linear
combinations of indicator functions of convex polytopes. We are to show the
existence of a real lincar functional ¥ on V(29) such that F(#*) = 1 for (J #
P e 24 (the uniqueness is clear). Ford = 1, such a linear functional f, is evidently
given by
@25 =Y [ ) —lmf( | feV(Z')

ieR nli
Let d > 2, suppose that the existence has already been proved in dimension
d — 1, and call this functional 7, _ ;. Consider ¢ ! as a linear subspace of E%, and
let u € E¢ be a unit vector not in 471, Let f € V(#°) be given and define

f(x2):=f(x + Au) for xeE* ! 1eR
Two types of induction are possible:
(a) Define the projection n,f of f on to E*~* by
(m, H)x): = 7,(fx,”)) for xeE,
and then put
Talf): = Xa-(my 1)
(b) Define
(o)A = Fo_.(f(-,1)) for ieR
and put

Ta(f): = X1 (o).

In each case it is easy to sce that ¥, thus defined has the desired properties.

A procedure equivalent to method (a) was employed by Imaimmo.q [19607] and
also by Groemer [1972], who apparently did not know Hadwiger's paper.
Method (b), again in a different but equivalent form, was used by Lenz m_o.\ou‘ He
geinralized it as follows. By the basis theorem of linear algebra, the linear
functional 7, on V(P') has a linear extension, also called ¥, to the vector space
R® of all real functions on R. Choose a basis ¢, ,...,64 of E¢ and then identify E*
with the subspace spanned by ¢,,....¢,. If now method (b) is mvv:oa,. one gets a
linear functional 7, on the vector space of all real functions on &9 which satisfies
7 K*) =1 for & # Ke X% Thus the definition x(A): = 74(A*) for A < o
extends the Euler characteristic, as a valuation, from ¢ to the system of all
subsets of 4. This extension, of course, which depends on the extension of 7, and
the choice of the basis, is highly arbitrary and therefore of little geometric
interest, the more so since, as Lenz shows, it cannot be translation invariant.

The essential point of Groemer’s [1972] paper is the introducticn o.ﬂ a vector
space A of real functions on E¢ with a pseudonorm such that Al contains V(£49)
asa proper dense subspace, and 7 has a unique continuous linear extension to A°,
The elements of A? are called “approximable” functions. The system &, of
subsets of E¢ whose characteristic functions are approximable contains the
convex-ring U("?), and, for instance, the relative interiors of convex bodies and
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thus also the boundaries of convex bodies. Unfortunately, &, is not inter-
sectional. Some properties of the extended Euler characteristic on A¢ are proved
in Groemer [1972}, and further invariance properties in Groemer [1973].

The fact that the Euler characteristic has a unique linear extension to the vector
space gencrated by the characteristic functions of convex bodies and of their
relative interiors, has been utilized by Groemer [1975] to show the existence and
some properties of an Euler characteristic on certain systems of subsets of convex
surfaces. This generalizes earlier work of Hadwiger-Mani [1972] which is
concerned with spherical polyhedra.

More general results on Euler characteristics for subsets of convex surfaces
could also be deduced, as Groemer remarks, from the following elegant result of
Groemer [1974]. Let & be a system of subsets of a set S. The class & is called
separable if to any two disjoint sets A,B € & there exists a pair X,Y < Ssuch that:
XnCeSLandYnCeF foreveryCe S AcX, AnY=, BcY,BnX
= XuY=5,andZnX #F,ZnY # JforZe Fonlyf ZnXnY # J.
Then Groemer shows:

(2.6) Theorem. Let S be a set and let & be a separable intersectional class of
subsets of S. There exists exactly one linear functional on the vector space
V(&) such that y(C*) = 1 for every nonempty set C of .

An example of a class & satisfying the assumptions of the theorem is the
system of compact convex subsets of a locally convex topological vector space.
But it should be noted that Groemer’s theorem and its proof are purely
combinatorial.

§3.  Volume and valuations derived from it

Any measure on a ring of subsets of E¢ containing 2#"¢ which is finite on "¢ yields
areal valued valuation on "%, In particular, restriction of the Lebesgue measure
gives the volume V, the most familiar example of a simple valuation. In an
axiomatic treatment of euclidean (or noncuclidean) geometry one might prefer,
instead of taking Lebesgue measure for granted, to introduce the notion of
volume for simple geometric figures, like polytopes, in an elementary geometric
way. (For the plane case, compare Hilbert {18997, chap. IV.) As mentioned in the
introduction, the attempts to do this have initiated a deeper study of simple
valuations in general. For a description of these geometric approaches to volume
and the difficulties involved, we refer the reader to the books by Hadwiger [1957],
Boltianskii [1978], B6hm-Hertel [1980].

We first fix some more notation. By B = B* we denote the unit ball {x
e E%: x| < 1} of E* and by x(d) its volume. The ordinary spherical Lebesgue
measure on the unit sphere Q = Q4! is denoted by g, thus a(Q9 ') = dsx(d).

In the theory of convex bodies, the valuation property of volume carries over
to a series of other functions which are derived from volume in a natural way. The
source of this is the fact, a special case of lemma (1.4), that for any fixed convex
body C, the function K — V(K + C)is also a valuation on ¢4, This leads at once
to a valuation property of mixed volumes. As is well known, the volume of a
linear combination 4, K, + --- + 4K, of convex bodies K;,....K, € #™¢ with
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real cocflicients 4,,...,4, > 0 can be cxpressed as a polynomial
Aw.nv <AN-A# + b + L.rxrv = M N: e x.m.. <A~A:n...v~ﬂm&v

with V(K;,,...,K;,) symmetric in the indices and depending only on K; ,....K;,. It
is often convenient to write (3.1) in the form

Q 11 bR § . .
(32 VALK, + -+ 4K)=) S A AR VK ;.. 0K L),
where
d! e &
d —if Y =d, 1,20,
HERT SRS W i1
il 0, otherwise.

Here, as in other cases, we use the abbreviation

(3.3) (K rpaKen): = (K, Ky K Ky

r, times r, times
with r, + --- 4+ r, = m for any function f of m variables, and we also write

(34) f(K,,...K,,8): = (K, .. K,L 4150 Ln)
where € stands for the (m — p)-tuple (L, y,...,Ly). With this notation, (3.2)
implies

P
(3.5 V4L,K; + - + 4LK,p6) =Y, -

Nowif pe {1,....d} and a(d — p)-tuple € = (K, +,,...,.K,) of convex bodies is
fixed, then the function ¢ defined by

(3.6) @(K): = VEK,p;¥) for Kex
is a valuation. This follows immediately from the fact that the function
WI<AM~A+ME+—HA§+» +...+L..dwnv

is a valuation on X9, and that (d!/p})e is .En cocfficient of APA,,, -+ 44 in the
olynomial expansion of the latter expression. S
P uw particular, this applies to the quermassintegrals W,,,..., W, or the intrinsic
volumes V,,...,V,, respectively, defined by
x(r)
(3.7 W.(K):=V(K,d-rBr= N V,_(K).
r

_— ) = »(d) if K # &, this gives Vo(K) = (= x(K)). .
m:mmomw\hwvm :_mm v:_o <E=mmo= property o.s the n:ﬂ:uunmm_:»omnw_m %mm mﬁg
pointed out by Blaschke [1937], §43. Later it played an important role :..w "rn
work of Hadwiger, to be reviewed later. Oc:o.cm_vc the valuation property of the
general mixed volume (3.6) is not mentioned in the standard textbooks treating
nw- . . - .
B_Momamﬁhwmw_ consequence of the foregoing, we mention an identity mﬁa B.xnm
volumes. Let € be a (d — 2)-tuple of convex bodies, and let K,L € o suc

A AR VK 1y K0 6)
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that K UL is convex. Writing V(K,K,%) = :v(K) and V(K,L,%) = :v(K
for the moment and using the valuation property of v, the expansion (3
the identity (1.3) and again the expansion (3.5), we get

viK) + v(L) + 2v(KULK n L) = v(K U L)+ v(KnL)
+2v(KULKAL)
viKul)+(Kn L))=v(K + L)
v(K) + v(L) + 2v(K,L),

I

It

thus
(3.8) V(K,L¢)=V(KULKn L,%).

Identity (3.8) was first observed by Groemer [1977a] p. 160, who proved it i
more indirect way.

Above, the quermassintegrals were defined as specialized mixed volumes
equivalently, by means of the so-called Steiner Jormula

4 /d
(39 VK, =Y

=0 \J

d
PWK) = .Mo ®(d — i) p? " IV(K),

where K, = K + pBis the outer parallel body of K at distance p > 0. A differe
approach comes from integral geometry. Let SOy denote the rotation group of
and v its invariant measure, suitably normalized. For givenr e {0,...,d}, choo
an r-dimensional linear subspace F, of E¢, and let JF, denote its image under t
rotation é € SO,. Further, let &¢ be the space of r-flats in ¢ with rigid motic
invariant measure y,, also suitably normalized. Then for K e ¢ the formula
(B.10) W,_(K)=a,, [ V.KI|SF,)dv(9),

S0
where K|0F, denotes the image of K under orthogonal projection on to §F,. ar

G-I Wi(K) = by, | Vo(KNE,)dp(E,)
&g

are valid. Here a,, and by, are positive constants depending only ond and r. F
proofs and generalizations of (3.10), (3.11) (and for explicit values of tt
constants) the reader may consult Hadwiger [1957], chap. 6, or Santal6 [1976
§§13, 14. Note that V, in (3.10) is just r-dimensional volume, while Voin(3.11)
the Euler characteristic. Thusin either formula the quermassintegrals are derive
from a more elementary valuation. Hadwiger [1957] uses formulac similar t
(3.10) to give a recursive definition for the quermassintegrals and later prove
(3.9).

We remark that any measure 7 on 5O, and any valuation ¢ on . for whic!
each function 8 (K |0F,) is «-integrable (K € .#™Y), yields a new valuation /
by means of the definition

(3.12) ¥ (K): = | @(K|OF,)di(8)., Ke.x

504

The valuation property carries over because of Lemma (1.4) (sce the thir
example given there). Similarly. a measure 4.on &% and a valuation ¢ on ¥4 fo



180 Peter McMullen and Rolf Schoeider

which each function E,+— ¢(K N E,) is A -integrable (K € %), gives the new
valuation ¢, defined by

(3.13) @K): = a..“. o(KNE)dA(E) Kexd.

For 4, = p, and for continuous valuations ¢, these associated valuations ¢,
play an important role in Hadwiger’s generalization of the principal kinematic
formula of integral geometry, sce Hadwiger [1956], [1957], p. 241. o

Let us return to mixed volumes. Using their properties (Minkowski maa:EQ
and uniform continuity in each argument), one easily deduces from the Riesz
representation theorem that, for given convex bodies K,,...,.K,_, € o9, there
exists a unique (positive) measure S(K,,...,K4_,:*) on the Borel sets of the unit
sphere Q of E° such that

1
(3.14) Sx,x:....x._-;nm%Ex,sam%:...,w._,_é for Kex®

where h(K,-) denotes the support function of K. This measure, which is called the
mixed area function of K,,....K,_,, was introduced independently by ﬂa.:o:&-
Jessen [1938] and Aleksandrov [1937], see also Busemann [1958]. In particular,
one writes (with the same notation as in (3.3))

Sp(Ksr):=S(K,p;Bd — | — p;°)
forp =0,...,d — I and calls this the p-th order area function of K. Clearly we have
(3.15) SK;Q) = dW,_(K).

Sq- 1(K;*) has a simple geometric meaning: For a Borel set w < Q, S, ,(K;w)
is the surface area ((d — 1)-dimensional Hausdorff measure) of the set of bound-
ary points of K at which there exists an outer unit :o::.m_ vector ?:.:m in w.
From this special measure, one gets back the general mixed area function by
means of the polynomial expansion

(3.16) Sy (A K  + o+ Ay Ky 5) =3 4 Ay, S(KG K, ).

Either from this representation (and the obvious <m_:m:o=._oqonn:< of S4_;),
or from (3.14) and the valuation property of mixed volumes, it is clear that each
function

K S(KpiKp i g5 0Ky - 17),

and in particular each S, is a valuation on "¢ (with values in the vector space of
signed Borel measures on Q). Apparently the valuation property of the S, was

first pointed out and used by Schneider Tod&.. .

The area functions of order p can also be obtained from a local version of Em
Steiner formula (3.9). For Ke . x? let p(K,'): F*— K denote the metric
projection, that is, p(K,x) is the point in K nearest to x. Then for a Borel set w < Q
and for p > 0 consider the “local parallel set”

x — p(K;x)
fix — ptKx)j

(3.17) B(K,w): = <{x¢e 90 < |x - p(Kx)|| <p and € w
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If V denotes Lebesgue measure, then

— d-1 Q i
(3.18) V(B,(K.w)) = i y m P2 TIS(K ).
i=0
In particular, the map K V(B,(K,")) is a valuation.
Similarly, if one defines, for a Borel sct $in E¢ and for p > 0,

(3.19) A(KB):={xeE%0 < |x ~ p(K.x)| <p and p(K,x) e 8},
then V(A (K, ) is a measure and one has a polynomial expansion

1420 7d\
(3.20) <A>‘%,§um,wo )oK

If 1,(K,B,) denotes the characteristic function (on E%) of the set A, (K,p), th
the map K —1,(K,p, ) is a valuation (see Schneider [1978], p. 106). It follows tt
K+ V(A,(K,}) and hence each function K — Ci(K,) is a valuation with valu
in the vector space of signed Borel measures (with compact support) on F¢, T
measures Cy(K,*),...,Cyq_,(K,") are Federer’s curvature measures. They we
introduced (for more general sets than convex bodies) by Federer [1959]. For
unified treatment of the measures S, and C, on "% along the lines sketched aboy
see Schneider [1978); further references are contained in the survey artic
Schneider [1979]. Far-reaching gencralizations of the curvature measures at
the area functions, in the form of measures on the Borel subsets of 49, ha
recently been proposed and investigated by Wieacker [1982].

In much the same way as the notion of volume, combined with Minkows
addition, leads to mixed volumes, the notion of centroid is the source of a seri
of vector valued functionals. For K € & 9 let

z(K): = { xdV(x),
K
so that, for dim K = d, the point z(K)/V(K) is the centre of gravity of K. T}
vector z(K) will be called the moment vector of K. We have a polynomi:
expansion

(321) 24K, + -+ BK) =Y &, Ay, 2Ky KL ),

where the vector valued coefficients are assumed symmetric in their indices. Thes
coefficients will be called mixed moment vectors. The expansion (3.21) was (fc
d = 3) already noticed by Minkowski [1911], §23. A more thorough study ¢
mixed moment vectors was undertaken by Schneider [1972a,b]. In the sam
way as for mixed volumes, one shows that each function

K — z(K,p:%)

(pe{l,...d + 1} and the (d + ! — p)-tuple % of convex bodies fixed) is
valuation on #'“. Also the other properties of mixed moment vectors ar
analogous to those of mixed volumes, but observe that, while the mixed volume i
invariant under translation of any of its arguments, one has

1

(322) z(K, + tK,, . Kyo ) = 2(K,. Ky Kys ) + 7 VK Kot

id+1
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Specialization of mixed moment vectors yields the so-called quermassvectors
defined by

(3.23) q(K): = %_rlwlq 2Kd + 1 —r;Byr)
forr = 0,...,d. Note that (3.22) implies

(3.24) q/(K + t) = q(K) + W (K)t,

and that a Steiner formula,

d /d\ .
(3:25) 2K +pB) = 3 (| )oaK),
is
is valid. Using Federer’s curvature measures defined above, one has an integral
representation

|
(326) q(K) =~ | xdC,_(Kx), r=1,..d

d s
i : ich shows that
Schneider [1972a], p. 123 and the RBE‘_A on p. 129), whic
Mw&wﬁo:«.v is the monzoa of the mass distribution on dK .aam:aa by the
Q-.ZEE_.M measure C, _,(K;-) In particular, q, is the area centroid, and

(K — qu(K)
(3.27) s(K): = “d)
is the so-called Steiner point of K. It can also be represented by
1
= —— | h(K,u)uda(u).
(3.28) s(K) = oo | h(K.)

i isa Mi iadditi i 4. References concerning
This shows that s is a Minkowski additive ?:.o:oz on.X . .
this remarkable point can be found in Schneider [1972a] p. 128-129; others will
be given in §13. . .

,—m:n gquermassvectors satisfy integral gcometric relations w:w_nmo:m to (3.11).
Vice versa, this yiclds an alternative approach to these valuations: One may
define s directly by (3.28) and then q,, 0 < r < d, by means of

(3.29) q.(K) = by, b s(K N E,)du (E,)
a
(with by, as in (3.11)). The valuation property of g, is then ocSo.Cw ?MB Bmwwv,
(3.29) and Lemma (1.4). In this way, the quermassvectors were introduced by
adwiger-Schncider [19717. .
I\“w_ﬁ_mwcwﬂw &mnc%ﬁ_.c: OW classical vatuations we have m:ammoa.:,o existence om
polynomial expansions, since this will be an essential pointin the investigation o_
general valuations in later chapters. We have also mentioned a few more gencra
constructions for valuations with a view to :_n.?oc_oa of representing general,
and characterizing special, valuations which will be the topic of chapter _<”
We conclude this section with a look at mmrnzom_ space. Valuations on
spherical polytopes, besides being intercsting in themselves, also enter the
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investigation of valuations on euclidean polytopes. The spherical volurr
Q°~1, which we denote by g, yields a simple valuation on the spherically co
polytopes, say. It gives rise to the angle functions, which will play an impo
role in later discussions. For a (convex) polyhedral set P in E* and non-c
faces F = G of P, we denote by B(F,G) and y(F,G) the internal and ext
angles, respectively, of G at its face F , measured in aff G and normalized so
the total angle is 1 (see, ¢.g., Griinbaum [1967], p. 297 and p. 308, for definiti
We also define S(F,F) =1 = y(F,F)and B(F,G) = 0 = y(F,G)if F € G.
The Steiner formula (3.9), applied to a polytope P e ¢, yields an ex;
representation of the quermassintegrals involving external angles, namely

d
r
k(d —r)

forr = 0,1,...,d, where the sum extends over the r-dimensional faces F of P;
that V(F") is just the r-dimensional volume of F*. Similar formulae exist for
r-th order area functions and for the curvature measures (see Schne
[1978], (4.9) and (3.7)), as well as for the quermassvectors (Schneider [197
p- 125).

Now let us consider a spherically convex polytope P <« = Q%! [t is
intersection of Q with a convex polyhedrat cone C with apex 0. We define

(3.30) Wa-o(P) = V(P) = M.imn P)V(F)

B30 @P) = ,(C): = ME?EE.AQ

forr = 0,...,d, where the sum extends over all r-faces F" of C and A denotes
face of apices of C. By definition of the angles, @4(P) is the normalized spher
volume of P, while @, (P) is the normalized spherical volume of the polar set c
(the intersection of Q with the polar cone of C). If A = {0} (so that P lies in
open hemisphere) and r > 1, then B(AFT) = B(0,F") is the normalized (r -
dimensional spherical volume of the (r — 1)-face QN F* of P. Thus ¢, is

spherical analogue of the intrinsic (r — 1)-volume V,_, for a cuclidean polyt
in E*7!. In fact, the functions P1,...,¢04 can also be obtained from a Stei
formula in Q*~! analogous to (3.9) (but with the powers of p replaced by ot
functions, see Allendoerfer [ 1948] in the smooth case). This approach can also
used to extend the definition of the @, to general spherically convex sets and
prove some of their properties. In particular, one gets rotation invari;
continuous valuations. For polytopes, the valuation property can also

deduced directly from (3.31). The local Steiner formula (3.20) and the definiti
of the curvature measures also carry over. One could proceed similarly
hyperbolic space.

However, the analogy to euclidean space breaks down in several respe
While the euclidean quermassintegrals are monotonically increasing with resp
to set inclusion, this is not generally true for the spherical ¢,. Clearly ¢,
increasing, and it can be shown that @4 is increasing (e.g., Shephard [ 1968
(32)). By duality (considering polar sets) it follows that ¢¢ and @, are decreasir
For2<r<d-2 @, is neither increasing nor decreasing. To sce this, let .
denote a half j-space. f 2 < r < d — 2, we can arrange that D,_, = D, D,
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< D, ., and ¢, successively takes the values 0, 1/2, 1/2, 0. Then we approximate
the halfspaces by pointed d-dimensional polyhedral cones obeying the corre-
sponding inclusion relations. The result follows by continuity. .

Another difference to the euclidean case occurs when we consider the integral
geometric approach (3.11). The spherical analogue to that formula is

(332 {x(PnL)dL, =2 Mo Pa+1-r+2m(P) = 20(P)
m2

forr = 1,...,d and spherically convex polytopes P (this can be generalized); y is the
Euler characteristic, and the integral is over the Grassmannian of all r-flats r..
through 0, with the invariant measure normalized to total measure 1 (see mm_:.m_o
[1976], p. 310, with different terminology). Thus the ¢, are aiso mvrozom_
analogues of the quermassintegrals, and perhaps the better analogues, since i, is
increasing for each r.

§4.  The lattice point enumerator

Among the valuations derived from a measure, the next natural one after volume
is perhaps the lattice point enumerator G defined by

G(K): = card(K n Z9),

where Z¢ is the integer lattice in £¢. This function, of course, has its 5602»3
place in geometry of numbers, and we refer the reader to the survey article of
Gruber [1979]. An equaily useful review of the known _‘n_ﬁ._o:m cn:zan:. the
lattice point enumerator and other functionals on convex bodies rwm been given
by Betke-Wills [1979]. Here we are only concerned with :5. valuation aspect of
G. From this point of view, it turns out that most of the relations for G which are
found in the literature are special cases of results which hold for more general
valuations. Although these will be discussed in §§10, 12, we give a ﬁni.a.,annnonm to
the special results, since they added to the motivation for developing a general
theory.

w««%n we denote the set of convex lattice vo:;onom. in B9, and by N the set of
positive integers. Ehrhart [1967a] proved the existence of a polynomial
expansion

d
(4.1) G@P)= Y n'Gy(P) forPe?{, neN,
i=0
where the coefficients G; depend only on P, and he made applications of it to
various counting problems. Ehrhart [1967b] also discovered and proved the so-
called “reciprocity law”

L H . - n
(42) G(relint nP) = (= H*™" Y (—=n)G(P) for Pe#{, neN.
i50

Equality (4.1) has a gencralization similar to the polynomial expansion (3.2),
namely
(43) G(n,P, + - +nP) =) n" - nxG(P,ri.5Pry)

Valuations on convex bodies

for Py,..,P, e 2] and n,,....n, € N; the sum extends over the nonnegal
integers ry,...,r, with r; + - + r, < d. Expansion (4.3) for the lattice pc
cnumerator was obtained by Bernstein [1976] at about the same time that it
discovered to hold for more general valuations, see §10.

Besides G, weighted lattice point numbers have been considered; these
simple valuations. Macdonald [1963], [1971] defined A(P) as the number wh
results when each lattice point in P is counted with weight V(P ~ B)/V(B) fc
sufficiently small ball B centred at the point. He proved an expansion similal
(4.1) and obtained some information on the coefficients. Hadwiger [193
[1957], p. 69, took lattice-oriented cubes instead of balls and used the result
simple valuation, applied to translates of lattice polytopes, in an equidissec
bility criterion with respect to lattice translations.

§5.  Extension problems

Since the definition of a valuation involves unions and intersections of sets
seems preferable that valuations be defined on set systems which are closed un
(finite) unions and intersections. Thus for the valuations considered here whi
are, in the first instance, defined on the set 2 of convex bodies or the set ¢
convex polytopes, there arises the problem of extending them, as valuations,
the lattices U(4") or U(#9), respectively. This extension problem is not only
formal interest. For instance, in integral geometry and its applications, one wat
the formulac involving specific valuations to hold not only for convex sets, but
least for the elements of the convex-ring. A second reason for investigati
extensions is technical: Even if only information on certain valuations on cony
bodics is the aim, it may be necessary in the course of the proof first to extend t
valuations to a broader class of sets.

For the classical valuations considered in the foregoing sections, one kno:
special constructions for extending them to U(x"¢). Although the existence
such extensions would often also follow from more general theorems to
reviewed later, the explicit definitions are nevertheless of interest, since th
exhibit the gecometric meaning of the extended valuations, and sometimes pern
the deduction of additional information.

There is, of course, no problem with volume or the lattice point enumeratc
since they are measures, and hence valuations, on a ring containing U(#"4). F
the Euler characteristic, the explicit construction of extensions was described
§2. Once the Euler characteristic y is available on U(#"%), one can define (
Hadwiger [1957] does)
for K e U(£™%). For K € "¢ this gives, by (3.11), the r-th quermassintegral of }
and since the valuation property of j carries over to W.,. this yiclds an additiy
extension of the quermassintegrals to the convex-ring.

In a similar way one can proceed with the quermassvectors. In analogy to (2.
one first defines (following Mani [1971]) for Ke U, ueQ® ! and je
(with H, ; as in (2.2))

(52) h(Ku):= 3 i 7(KnH,,)~ lim y(K ~H, ) |,

Ae® oA
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where the limit exists and the sum is finite since K is a union of finitely many
convex bodies. If K is convex and non-empty, then the right-hand side of (5.2) is
the value of the support function of K at u, thus the definition is consistent. On
the other hand, the valuation property of x carries over to h(-,u), so that (5.2)
extends the support function, as a valuation, to U(#"?). Observe that the support
function of K € U(#"?) no longer determines K uniquely, and that

(5.3) h(K + tu) = hi(K,u) + z(K)<t,ud

for te B

Now equation (3.28) may serve as definition of the Steiner point s(K) for
K € U(#"?); then s is a valuation on U(.#"¢) extending the classical Steiner point.
Equation (5.3) implies the translation covariance property

(5.4) s(K + t} = s(K) + x(K)t.

As proposed by Hadwiger-Schneider [1971], one may now define the
quermassvectors q,(K) of K € U(.#"%) by equation (3.29). Then q, is a valuation
on U(f"%), and by (5.4) and (3.11) one has

(5.5 adK + 1) = q(K) + WK)L

The Euler characteristic on U(#"4) can also be used to obtain an additive
extension of the area functions and the curvature measures. We briefly explain
this method of Schneider [1980]. Forz € £%and p > 0, let B(z,p) = E¢ denote the
closed ball with centre z and radius p. Then for K e U(#"¢) and q,x € E¢, one
defines the index of K at q with respect to x by

I —lim Iim (K n B(x,ix — gl —&) n B(q,0)) if qeK

5.6) j(K,qx): = s10¢c10
(5.6)  }K.gx) 0 if qéK.

If K is convex, then j(K,q,x) =1 if q = p(K,x) (where E.E.,.v is the metric
projection on to K), and j(K,q,x) = O otherwise. The additivity of the Euler
characteristic implies that j(-, g,x) is a valuation on U(#¢). Now for K €
U(#9), p > 0, a Borel set w < Q, and x € Y, one defines

5.7 sKox:= Y j(KnBxpax),
q e Ed\(x)
(x—glocw

where (x —q)g: = (x —q)/|lx —qf}. I K is convex, then s,(K,w.") is the
characteristic function of the local parallel set B (K.w) defined by (3.17), :m:nm. the
Lebesgue integral of this function satisties the Steiner »,o:dc_m.a._@. minn
s, (-, m,x) is a valuation on U(.#™%), it is easy to sec that the polynomial expansion
extends, and one has et /d
(58) | s Kox)dx=-=3Y {]p* 'Si(Kiw)

T d o 1
for K e Ut.#™). This defines signed Borel measures S, on Q which are the additive
extensions to U{#'Y) of the area functions.

Similarly, for a Borel set f# in F¢ one dcfines

(59) c,(Kfpx):= ) j(KnB(xp).qx)

qepitxt
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then K+— ¢ (K,f,+)is a valuation on U(¢"¢) which extends the indicator function
of the local parallel set A,(K,B) defined by (3.19). The Steiner formula (3.20)
extends to give

14t /d .
(5.10) M ¢, (K,Bx)dx = 3 Y. et ICK,p)
ot i=0 \ 1
for K & U(#"?) and thus signed Borel measures C, on E¢ which additively extend
the curvature measures.
If the point x in (5.6) “tends to infinity”, one gets a different notion of index (see
Schneider [1977a]). For K e U(#"¢), q e E¢, and u € Q¢ !, we write

I—lim lim y(K "H, <qy>+.NB(@d) if qeK
5.11) i(K,qu): = 510¢)0
0 if q¢K.

If K is convex, then i(K,q,u) = 1 if uis an exterior normal vector to K at q, and
i(K,q,u) = 0 otherwise. Again, i(-,q,u) is a valuation on U(o%). In analogy to a
differential geometric notion, one may call q a critical point of K with respect to
the height function (-.u) if i(K,p,u) # 0. This analogy extends in so far as the
“critical point theorem”

(512) ¥ i(K,qu) = y(K)
qekK
is valid for g-almost all directions u.
For K e 5% and a Borel set #  F¢ it is easy to see that

(5:13) Co(K,p) = ~M MNw i(K,q,u)da(u),

qe
saying that Cy(K,$) measures the area of the spherical image of dK n . By
additivity, (5.13) holds for arbitrary K e U(#"%), thus yielding a geometric
interpretation of C, as measuring the spherical image “with multiplicity”. A
particular consequence of (5.12) and (5.13) is the equality

(5.14) Co(KEY) = o(Q4~ 1)y(K).

Although this seems trivial, since it is evident for convex K and both sides are
valuations in K, it has the nontrivial interpretation of expressing that the Euler
characteristic can be obtained by adding up the local information provided by the
curvature measure Cy. Thus (5.14) is an analogue of the Gauss-Bonnet theorem
of differential geometry. For a polyhedron P e U(2¢), Hadwiger [1969b] gavc a
different, though equivalent, definition for the curvature Co(P,{p}) and proved
(5.14).

If P e U(:29) is the point set of a cell complex of which A¥ is the set of k-cells,
then the index defined above satisfies

d
(5.15) i(Pqu) = 3 (-1 Y i(Zq,—-u).
k=0 ZeAx

For the special case of the boundary complex of a convex polytope P, this
equality, which is related to the Euler-type theorems to be discussed in §12, was
proved by Shephard [1968¢], Lemma (13). Due to the valuation property of the
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index, (5.15) can be extended to the general case by means of an argument by
Perles-Sallee [1970]. A definition equivalent to (5.15) was used by Banchoff
[1967], [1970], who discussed critical point theory, curvature, and the Gauss-
Bonnet theorem for polyhedra. Finally we mention that for polyhedral cell
complexes a purely combinatorial (and very elementary) analogue of the Gauss-
Bonnet theorem was proposed by Schneider [1977b].

As we have seen, some of the classical valuations derived from volume have
natural additive extensions to the sets of the convex-ring U(X¢). There remains
the question whether there exist more general scts to which these functions can be
additively extended in a reasonable and useful way. Since, for instance, the
integral geometric formulae involving quermassintegrals have applications in
geometric probability theory and stercology and thus to practical problems, one
would like to have those formulae available for fairly general sets which might
serve as approximate models for material bodies occurring in reality. This
motivation led Hadwiger {1959] to the introduction of his so-called normal
bodies. Roughly speaking, their definition is chosen in such a way that
Hadwiger’s inductive definition (2.3) of the Euler characteristic can be carried
over, and then the quermassintegrals of normal bodies can be defined by means
of (5.1). As Lenz [1970] remarks, it seems difficult to prove that point sets which
“normally” occur (he mentions the example of compact solution sets of finitely
many analytic inequalities) are normal in Hadwiger’s sense.

In a different direction, the quermassintegrals have been extended beyond the
convex-ring by Groemer [1972]. He considers his vector space A¢ of approxi-
mable functions, which was mentioned in §2. Since the Euler characteristic and
projections of functions in A¢ are available, it is possible to use an analogue of
Kubota’s recursion formula for the quermassintegrals to extend the latter from
X% to continuous linear functionals on A In particular, this yields an additive
extension W, of the quermassintegral to the class &, of subsets of E¢ whose
characteristic function belongs to A%, Among other results, Groemer shows that

(5.16) W,(relint K) = (— 1)¢ i *¢im Ky (K)

for K € %, However, it seems difficult to describe the sets of %, geometrically.

A class of point-sets with an easy intuitive definition was considered in this
context by Federer [1959]. A subset K of E¢ is called of positive reach if there
exists a number £ > 0 such that, for each x e E¢ with distance less than & from K,
there is a unique point p(K,x) in M nearest to x. For such sets, Federer was able
to show that (3.20) holds (for p <g¢ and yields signed measures
Co(K,*),-..,Cq -1 (K,"), the curvature measures of K. These are valuations, for
compact K the Gauss-Bonnet formula (5.14) (where the topological definition of
x is used) holds, and the curvature measures satisfy generalizations of the
kinematic and Crofton formulae of integral geometry. A special case is the
principal kinematic formula for compact sets K, L of positive reach,

d
(5.17) .q wKngl)du(g) = rMc Cax WilK)Wy (L),

where the integration is over the group of rigid motions of E¢ with Haar measure
u, the ¢4, are certain positive numbers, and dW,(K) = C,_(K,K) for k =
I,...,d,Wy(K) = V(K). From the point of view explained above, a class of
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subsets of E® containing "¢ to which the Euler characteristic and the
quermassintegrals can be additively extended, gains in interest if (5.17) can be
proved for K,L in this class. For the class of normal bodies and for the class &, of
sets with approximable characteristic functions, such a result is not known. To be
sure, neither of these classes nor the class of sets of positive reach is intersectional,
but in (5.17), x(K ~ gL) need only be defined y-almost cverywhere on the motion
group. In fact, Federer [ 1959] shows that for K,L of positive reach, K n gL is of
positive reach for almost all g.

On the other hand, the class of sets of positive reach has the disadvantage that
it does not contain the convex-ring U(X"4). Perhaps the system of all finite unions
of (compact) sets of positive reach is a good class of point sets to consider in
integral geometry. However, it seems unknown whether Federer's curvature
measures admit additive extensions to this class.

We mention that certain generalizations of Federer’s curvature measures to
arbitrary closed sets have been constructed by Stacho [1979], but these do not
have the valuation property. Kuiper [ 1971] has used singular homology to define
a sequence of curvature measures including a generalization of Cy,. In either case
it seems difficult to work with these measures except in the special cases already
known.

Let us now turn to the extension problem for the mixed volume. This is the
function, also denoted by V, on (#"9)® which sends the d-tuple (K,,....K,) of
convex bodies into V(K ,...,K,), the coefficient of 4, --- 4;in (3.1)for k = d. Since
the mixed volume is Minkowski additive in each argument, only such extensions
to more general domains are of interest for which this property is maintained in
some sense. Now Minkowski or vector addition is defined for arbitrary subsets of
EY. But, as Groemer [1977a] (p. 141) remarks, “this generalized concept of
addition is not suitable as a basis for a theory of mixed volumes that applies to a
reasonably large class of non-convex sets”. In a strong sense, this was made clear
by Weil [1975a] who showed the following. Suppose that X' is a class of
compact subsets of E¢ containing o and closed under vector addition. If there
exists a function V:(¢"')¢ — R which is Minkowski additive in each variable and
for which V(K,...,K) is the Lebesgue measure of K € X", then ' = x4, Thus it
appears that a theory of mixed volumes of point sets which is satisfactory from a
geometric point of view is only possible for convex sets. But extensions of the
concept of mixed volumes beyond the field of convexity are possible if functions
instead of point sets are considered.

The following such extension is particularly useful. Clearly the mixed volume V
can be viewed as a function defined on a subset of C(Q)?, where C(Q) denotes the
real vector space of continuous real functions (with the maximum norm) on €2,
just by identifying a convex body with its support function on €. Then V can be
linearly extended to differences of support functions. By use of uniform
continuity, in one argument a further linear extension to continuous functions is
possible (as mentioned already in connexion with (3.14)). This procedure occurs,
as a technical device, already in the important work of Aleksandrov [1937a,b].
Later the extension of mixed volumes (and a similar one for mixed area functions)
was exploited in two papers by Weil [1974a,b]. One might ask (compare Weil
(1974a], pp. 355-356) whether a further extension of the mixed volume to a
continuous d-linear functional on C(Q)¢ is possible, but this has been answered in
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the negative by Meier [1982]. Yet further progress along these lines is possible, as
shown by Weil [1981], whose starting point was the representation (3.14). That
equality exhibits the linearity of V in its first argument, but it does not Bmoo.— the
symmetry of V in its arguments. Therefore, one might ask whether 32.0 exists a
completely symmetric analytic representation of the mixed volume involving
each of the support functions linearly. Weil [1981] was able to show that there
exists a distribution T on (¢~ !)¢ such that

V(K;,...Kg) = T(h(K,)) @ - ® h(K,,")),

where ® denotes the tensor product. As a consequence, there exists a sequence
(f;);en of C*-functions on (¢~ ')¢ such that

V(K,,...,Ky)
= lim .q _‘.:AT:L.:E—A?:LQ:T...,FLQQA:L:.QQ?L
j— oo Qd-t Qd-1

uniformly for all K,,...,K, in some fixed ball.

Quite a different extension problem arises if convex bodies are identified with
their characteristic functions. An interesting theory of mixed volumes on V()
was developed by Groemer [1977a]. He first shows that there exists a unique
bilincar map ¢ of V(A" ) ® V(¥ %) into V(# %) such that

y(K*L*) =(K + L)* for K,Lexe

and that the vector space V(2#"¢) together with the multiplication x defined by
f x g:=yl(fg) is a commutative algebra over R with unit element. The Euler
characteristic 5 on V(' 9) (as defined in wwv. is an algebra :oBoBoaG?wB. ‘_,ao
every affine map a:E¢ — E? there exists a unique linear map a: V(#"¢) - <§w )
such that a(K*) = (aK)* for K € "4 In the special case ax = ix (x ¢ mJ.i:r
€ R™ one writes a(f) =:4 0 f for fe V('¢). Clearly there is a unique linear
functional V on V(x#'%) such that V(K*) is the volume of K e X"¢. Groemer
shows that (3.2) can be generalized as follows. Let k,,....k, be nonnegative
integers so that k| + --- + ky = d and write k = (k,....k,). There exists exactly
oae d-linear mapping v, of V(#'4)¢ into R so that

VK%, K2) = V(K kyi Ko ky) for K, Kyex
For f,,...fy € V("% and 4,,...,4, = 0 one has

V(A = £) x o x (2 2 1))
d
o 0

Ak ke Viy k) T1ae - fg):

The functions v, ,,, are called mixed volumes, and QBQBQ investigates
their properties carefully. We remark that mixed area ..::o:o:.m could also Vn
extended similarly and that some parts of the convex theory, for instance certain
integral geometric formulae for mixed area functions, carry ever (see Schneider
[(1980], Bemerkung 9). Similar extensions of some integral geometric formulae
for mixed volumes have becn given by Groemer [1977b]. But, on the E:o_.o. the
theory scems rather algebraic in character, and it loses much of its elegance if one
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tries to go back to point sets whose characteristic functions belong to V(" ¢), and
to the generalized mixed volumes of such sets.

So much for the cxtensions of special valuations derived from the notion of
volume. Now we consider the general problem of extending an arbitrary
valuation on a class & (of subsets of some set S) to a valuation on U(¥)or to a
linear functional on V(&) as described in §1.

Volland [1957] has proved that every valuation on the class #¢ of convex
polytopes admits a unique additive extension to the class U(#?) of polyhedra
(related but simpler extension results can be found in Hadwiger [1957], p. 81,
Bohm-Hertel [1980], p. 47). Volland first uses induction to prove the following
result.

(5.18) Theorem. Every valuation on ¢ satisfies the inclusion-exclusion principle.

The rest of Volland’s proof is not restricted to the special geometric situation.
Together with the obvious remark made in §1 after (1.2), it shows the following.

(5.19) Theorem. Let ¢ be a valuation on an intersectional class &. Then ¢ has an
additive extension to U (&) if and only if @ satisfies the inclusion-exclusion
principle. The extension is unique.

Volland’s theorem was rediscovered by Perles-Sallee {[1970]. They prove (5.19)
(in its abstract form) in essentially the same way, and for the assertion of (5.18)
they refer to Sallee [1966], where the corresponding result w 15 obtained for the
Steiner point. The proof (which is similar to Volland’s) holds for arbitrary
valuations on 2. Sallee [1966] subsequently used the continuity of the Steiner
point to show that the Steiner point satisfies the inclusion-exclusion principle on
9. Spiegel [1976b] noticed that here one does not really need the continuity; he
proved that any Minkowski additive function from % ® into E¢ which vanishes on
centrally symmetric bodies satisfies the inclusion-exclusion principle. This can be
generalized:

(5.20) Theorem. Every Minkowski additive Sunction on "% (with values in an
abelian yroup) satisfies the inclusion-exclusion principle, hence by (5.19) it
can be extended to a valuation on the convex-ring U(x9),

The proof is very simple. By formula (5.2) the support function was extended,
as a valuation, to U(¢"?), hence it satisfics (1.2). Thus for K = K,u- UK, with
KK;e #%(i=1,..,m) we have

m

hK, )= (=" ¥ KWK, n...~K,,).

r=1 << i
Observing that h({,+) = 0 by (5.2), we can write this in the form
K+ ) ¥ KiynenK, =3 ¥ Kin-nK,,

. ol .
reven jy<---< rodd i; <. <i,

where the sums Y’ extend only over those K;, n -+ nK; which are non-empty. If
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now ¢ is a Minkowski additive function on J¢"¢, we may apply ¢ to either side of
this equality and deduce that ¢ satisfies (1.2). This completes the proof of (5.20).

We turn to the question of lincar extensions to the real vector space V(&)
spanned by the characteristic functions A* (defined on S) of the sets A € &. Here
we assume that ¢ is a function on .’ with values in some real vector space 4. By a
linear extension of ¢ to V(&) we understand a linear map @ from V(&) into 4 for
which @(A*) = ¢(A) for A€ &. If ¢ admits such an extension, it must be a
valuation (see §1). The following was proved by Groemer [1978]:

(5.21) Theorem. Let ¢ be a function from the intersectional class & into a real
vector space so that ¢(Z3)=0. Then the following statements are
equivalent:

(a) @ has an additive extension to U(¥),
(b) ¢ has a linear extension to V(&),
© o Kf + - + o, Kt =0withK, e &, 0, € Ri = 1,...,m)

implies o, (K ;) + - + a,0(K,) = 0.

The implications (b) = (a) and (c) = (b) arc easy and were already discussed in
§1, so the essentially new result is the fact that (a) (or, what is equivalent by (5.19),
the inclusion-exclusion principle for ¢ on &) implies (c). Using (5.21), Groemer
also proved an extension theorem for valuations on . Let us say that the

function ¢ from "¢ into a topological (Hausdorfl) vector space is -continuous if
for every decreasing sequence (K,);€, in "¢ onc has

lim o(K;) = | ) K,
i"w® ieN
Clearly continuity with respect to the usual Hausdorfl metric on £ ¢ implies o-
continuity. Groemer [ 1978] proved:

(5.22) Theorem. Every o-continuous weak valuation on A" (with values in some
topological vector space) has an additive extension to U(A'9).

Apparently it is not known whether every valuation on ¢ has an additive
extension to U("?). About valuations on classes which are not intersectional,
only a recent result of Stein [1982] is known. He showed that every valuation on
24, the class of convex lattice polytopes in E¢, satisfies the inclusion-exclusion
principle if it is invariant under lattice translations. The latter restriction has
recently been removed by Betke.

We conclude this section with a remark concerning valuations on polytopes.
Let ¢ be a valuation on 2¢ with values in a real vector space (this could be
generalized). By (5.18),(5.19), (5.21) there is a linear function @ on V(22%) such that
@(P*) = o(P) for P € 2. We extend the definition of ¢ by means of ¢(P): =
@(P*) for each sct P for which P* € V(29). It is not difficult to see that these sets
are precisely the finite unions of relatively open convex polytopes. Thus ¢ as just
defined is a valuation on U(2,). The value of ¢ on a relatively open polytope is
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given by
(5.23) @°(P): = g(relint P) = M (— 1)fimP-dim ¥ gy

for Pe P4, irn.:w the sum extends over the faces F of P (including P). The pro:
casily done by induction with respect to dim P if one uses the Euler relatior
faces F < G of a polytope. Equivalently, (5.23) results from the obvious forr

@®(P) =Y o(relint P)
F
(which holds since ¢ is a valuation on U(2},)) by applying the Mdbius invers
formula (see Rota [1964], p. 344, and observe that u(F.P) = (—1)dimP-dimF)
a given valuation ¢ on 24, Sallee [ 1968] defined

(5.24) @*P): = MT:&;JE for Pe !,

Formula (5.23) exhibits the meaning of ¢* namely
(3:25) @*(P) = (= 1)%m P p(relint P).

Using the additivity of ¢ on U(24) it is easy to see that @* is a valuation on ;
Sallee proved this in a different way.
The derived valuation ¢* will be taken up in §12.

IL Dissections and simple valuations

Valuations, and particularly simple valuations, which are invariant under a giv
group G of transformations acting on EY are intimately connected wi
equidissectability of polytopes with respect to the same group G. We are going
review E.o more recent developments in this area. The reader will find usef
S:oa.:o:ozm and extensive references to the older litcrature in the books
Hadwiger [ 1957] and Boltianskii [1978] (see also Boltianskii [ 1 963]). For speci
aspects also the shorter survey articles by Hadwiger [ 1968c], [1975] and Her!
[1977] may be helpful.

We adopt the convention here that “valuation”, without specification of tl
range, means real valued valuation.

§6.  The algebra of polytopes

Let us define our terms here. Let P and Q be two d-polytopes, or, more generall
elements of U(2Y). A dissection of P is an expression of P in the form P -
Pyu-UP, where P, P, e (or U(29) satisfy int(P,nP;) = & fo
1 # ]. We write this as

P=P,U-UP or P=[J, P,
Wesay that P and Q are equidissectable with respect to G, or G-equidissectable, |
there are dissections

WNT_C.:CF: OHO,G:.COT
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such that Q; = g(P;)forsomeg; € G (i = 1,....k); we writc thisas P ~ ;Q. ,.zn call
P and Q equicomplementable with respect to G, or G-equicomplementable, if there
are P,P",.Q,Q", such that P" = PUP, Q"= QuUQ’, and ?.Ro Q. P 2;Q"
we write this as P ~ Q. (The corresponding terms in Hadwiger [1957], where
most of the early work on this topic is collected, are :No:nmcz.mmw_nmncz and
“ergdnzungsgleich”, respectively. A variety of terms have been used in English; we
have chosen to use those above because they more exactly convey the meaning of
their definitions, and, equally importantly, do not have any other meaning within
convexity.)

As examples of groups G commonly encountered, we E:a the full group T &.
translations, the group TH of translations and Ennxmosm._s points :&:. turns in
E?), the group D of isometries of £, its subgroup SD of direct isometries or rigid
motions, the full affine group A, and the group EA of equiaffine mappings
(determinant = + 1). (We also refer later to the orthogonal group O and the
rotation subgroup SO.) In what follows, we shall always assume G to have T at
least as a subgroup. .

Before we go any further, let us mention two results by Hadwiger [1957].

(6.1) Lemma. Let P,Qe #%. Then P x5 Q if and only if P ~; Q.

The validity of this result depends upon the field R being archimedean.
Let ¢ be a simple valuation on 9. We say that ¢ is G-invariant if ¢(gP) =
¢(P) for all g € G. Then we have

(6.2) Theorem. Let P,Q € 2% Then P ~5Q if and only if o(P)= ¢(Q) for
every real valued G-invariant simple .

Unfortunately, Hadwiger’s proof is highly non-constructive, depending as it
does on using the axiom of choice to pick a basis of the polytope group I'g, which
we are about 1o define below. In fact, the problem which will concern us here and
in §§8 and 9 can be succinctly phrased as:

(6.3) Problem. Given a group G, find a “nice™ subfamily of G-invariant simple
valuations which separates T1;.

In other words, we would wish to find an easily describable family ¥~ of such
valuations ¢, so that P =  Q if and only if ¢(P) = ¢(Q) forall ¢ € «

We define the polytope group Ig; as follows. Let Z#9 be the free abelian group
with the d-polytopes as basis elements; we write + and — ?:):5 group
operations, to distinguish them from the usual + and — in E% Let J = 7 be
the subgroup generated by all elements of the form P— P, — P, and P — gP,
where P = P, U P, and g € G. In other words, .7 is generated by all P — Q, with
P~ Q. The quotient group

[ = 2497 ¢
is called the polytope group with respect to G. We also use E.xm:o:m mcg as
I1;(EY), as we shall wish later to write IT(L) = IT;(L) with the .ocSo.:w meaning for
linear subspaces L of E% Until we wish to emphasize the dimension d, we shall
write IT; instead of I1g.
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We now make an obvious remark.

(6.4) Let & be a group. The (group) homomorphisms ¢:T; — & are precisely
those mappings induced by the G-invariant simple valuations ¢:P° - &.

In such cases, we shall often use the same letter to denote two such related
mappings.

For a number of reasons, the basic polytope group I we need to investigate is
IT = I1y. For one thing, the familiar group isomorphism theorem gives:

(6.5) Let G be a group containing T, and let X = J/T+ be the subgroup of T1
corresponding to 7. Then I1/Z = I,

That is, every polytope group Il is a suitable quotient of I1.

After these preliminaries, we are now ready to embark upon our investigation
of Il. We shall give the main results, always without proof, following the
treatments of Jessen-Thorup [1978] and Sah [1979]. Our notation will be closer
to that of Jessen-Thorup; Sah’s is more comprehensive, but also more
complicated.

Animportantrole is played in these investigations by the dilatation operator m,
which is induced by the corresponding operator u on P9, defined by u(4)P =
AP = {ix|x e P}, for 1> 0. That is, m(})[P] = [p(4)P], where [P] is the
equivalence class of P under ~ = ~. For 4 < 0, we define m(d) = (—1)°m(-2),
and also m(0) = 0. (The choice of (—1)¢ is due to our considering unoriented
voc:ovvnm. Further justification comes from Theorem (7.2); compare also (6.6)
below.

We call a polytope P a (basic) r-cylinder, if there are independent linear
subspaces L,,...,L, of E% whose dimensions d; = dim L; are positive and satisfy
d; + --- +d, = d, and d;-polytopes P,in L,, with P = P, + - + P,. We denote
by 3, the family of all r-cylinders in 29, and by

N_. = ANqu + .Ql.ﬂv\%lﬁ
the corresponding subgroup of I1. Thus we have
N=27,22,2--22,227,,, ={0}.

In fact, as will be clearer later, all these inclusions are strict. We notice as well that
we have a natural embedding

L)® - @TI(L,)—~IT;
we shall write x, x --- x x, for the image of (x,,...,x,) under this embedding (the
tensor product is, as yet, only over Z).
We write [a,,a,,...,a,] to denote the equivalence class of the simplex with
Vertices g, ap + ay, a9+ ay + a,,...,39 + a;, + -+ + ay, for a,el?, where

{a,...aq} is linearly independent. We have the two canonical simplex
dissections:

{6.6) Theorem. m(/ + wlay,...,a4]

= \uﬂlo {m(A[a,,...0;] x m@)[a;,,,...a.]}
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(6.7) Theorem. Letn be a nonnegative integer. Then

4 fn

m(m)[ag,...3a] = 2, z,

=1 \F

where z, = Y [Ay,.-85,] X - % [a;, ,+1r--2a) € Zs.
1<jis- Sie-1<d

The general term is [a;,4+15---8;,, -
Tor future reference, it 1s helpful to take note of the actual translations involved
in (6.7). In a different notation, let T be the d-simplex T = conv{Xg,.--Xq}, and

write
T(Gyseeesde-1) = convi{Xg,...X;; + -+ conv{Xx;,_,,---Xa}-

Here the general term is conv{x,,,...,X;,, - Then we have (compare McMullen
[1977])

EA—.&A. = Cnn CQATA...A.?-_A._ Cw.wo.n—:n:ta ‘—.:T...Lni —v + .Mo me.r .
Next, we have a fundamental result, from which much else follows.

(6.8) Theorem. Let E¢ = L, @ L, (direct sum), and let x; € TIL) (i = 1,2). Then,
forall fpeR,

X, * X; = m(A)x, X m(u)x; — m{ux, X m(A)x, € Z;.
From (6.6) follows directly

d-1

b.M‘_ Ay, 2] * [8) 415 8a] € Z3-
(Curiously, Sah fails to notice that it is a trivial consequence.) Jessen-Thorup then
deduce (6.8) from this by a geometric lemma due to Thorup, while Sah uses a
more algebraic argument to give the same deduction.
The next results concern various properties of the map m:R — End T1. We
denote by E < End I the subring of endomorphisms of I1 generated by the m(4).
It is clear that m is multiplicative:

m(iy) = m(A)m(p).
Also m(0) = 0,m(1) = 1.Our aim is to show that R is embedded in E,sothatITis

a real vector space. Our first step is to embed Q (the rationals) in E.
We define the operation A,(x € R) by

Am(d) = m(4d + o) — m(A).

Then A,Ap = Agh,. We write Ay = A, -+ A, (s times). It casily follows by an
inductive argument that
d

mia = 3 (+)amm(©)

p=0\P
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for every a€ R and q e Z (we must interpret (3) here as q(q - Jomlg=p +
1)/p!). There follows: ®) )-(@—p

(6.9) Lemma. If k€ Z\{0},thenl/k e E. Thus E is divisible, and Q < E.

For,

11 4 d! [kd! -1
—=—m(l) = — A
k k ) _.M_ p\p—1

Now, by induction from (6.6) follows
A, -+ Dg,m(A)Xoq

- oA:.MA,sMnBARLXO: X X aﬁﬂvvxmvl_mv X BQLN:_?

5 :::5@.

where we write X;; = [a;+ 1»++2;]. In particular,
Agy oo Aggm(d) =0

for .m: Al e+ g A..Ew means that m(4) exhibits polynomial like behaviour
wzw_o? using (6.9), is already clear from (6.7) for positive integral A). We now
efine

N 1 ;
BQAR—...JR«L = qu_ Dﬁ_ Dﬁnﬂ,;\,v

(this is independent of 4, by the above), and forr <d,
. 1
(000 00) = 5 Ay o Ag(m —my — - — m, 4+ {A)

where m(4) = it (,..,4). We also write & =my1),E, = Il and
1) = M, (4) + my(LA) + - + mu(1,...,1,4).

We can conclude the description of the polytope group I1 as follows:

(6.10) Theorem. The dilatation operator m has the following properties:

(i) E&,....lqare orthogonal idempotents, with 1 = EL 4+ L

(i) My(Ayye-nhs) = Uy oo A)Ess

(iii) :R—>Eisa (non-trivial) ring homomorphism;

(iv) E is isomorphic to the product ring R®, the isomorphism being given by
(Apyernhg)> M (A1)E) + o+ mg(1,..., L, A4)Eq.

(6.11) Theorem. The polytope group I1 has the following properties:

) Z = EDE LD - @ (r=1..d)

(i) each =, is a non-trivial real vector space, generated by the elements X,
X - x X, withx, € 21(Ly) (i = 1,....8), and =L ® ®Lg

(iii) the scalar multiplication in Z is given by

Axy % o X Xg) = (MAX,) X e x Xy = HA)Xy X e X X)-
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(iv) the dilatation operator m acts on Z, by
mi{z)X = 1{2*)x, xe€Z,

Of course, in (6.11)(iii), to which factor x; we apply m(4) is immaterial. We may
remark that Z, is isomorphic to R under the volume map.

It is now relatively easy to find a suitable family of functionals which separates
I1. Let %* be the Stiefel manifold of k-frames U = (u,,...,u,) of orthonormal sets
in E4. If P isa polytope, we denote by P, the face of Pindircction u € Q; thatis, the
face of P lying in the supporting hyperplane of P with outer normal u. We define
Py(U = (u,,...,u,)) inductively by

—v::.:..:r. = :J:...:.:., _L:r.

A basic Hadwiger functional of type r is a function ¢, defined by
A\C:J = M &y hn1q<~ﬁv~3=_..:.m=Q:._ LV

=11

where U = (u,,...,uq-,) € %47, and V, is ordinary r-dimensional volume. (In
case r = d and U = &, we have ¢, = V, ordinary volume.) We observe that
@u(P) = 0 unless, for some choice g, = £ 1,

dim 1?-:-..:.....‘:3 =d l.—

forj = 1,....d — r. Thus an unrestricted “linear” combination Y ypycy (cy € L,
where 7 is now a real vector space) of basic Hadwiger functionals is always finite-
valued on 2% such a linear combination is called a Hadwiger functional. We write
, for the real linear space spanned by the basic Hadwiger functionals of typer.

It is easy to verify that a (basic) Hadwiger functional is a simple translation
invariant valuation, so that it induces a linear mapping on I, denoted by the
same symbol.

(6.12) Theorem. The Hadwiger functionals separate T1.

The theorem is trivial for d = 1 (the only Hadwiger functionals are multiples of
length). One now proceeds by induction. The proof is in two steps. Let Hbea
(lincar) hyperplane, and e ¢ H a vector. Let Z be the subgroup of Tl generated by
the “prisms”™ m(4)[e] x y, where y € IT(H). If L is any hyperplane not containing
e, we can construct homomorphisms p:T1 - TI(L) and =, :TI(L) - [1/Z as
follows. We define p, on ¢ first. Let u be a fixed normal vector to L (say that
lying on the same side of L ase); for P € #° define p (P) =P, — P_,. If xeIlis
such that ¢(x) =0 for all Hadwiger functionals ¢, then (by the induction
assumption) p, (x) = O for all L.

We again define , on 2%~ {(L) first. Let F € 247 ! (L). Translate F so that it lies
in the open half space bounded by H containing ¢. Let F be the convex hult of F
and its projection on to H in direction e. Then  (F) is the equivalence class of F
in I modulo Z. It is easy to see that x, is well defined.

For the equivalence class of P € # modulo Z, we have

[P]= M en(F) (6= 1),
s
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where n(F) = n, (F)if F is parallel to L, and the sum is over the facets of P |
parallel to e. We can write this as

[P} = M n(pu(P)).

So, if x € [T is such that p, (x) = 0 for all L, we have x € Z (since its equivale
class modulo Z vanishes).
Now Z is generated by all

m(A)[e] x y; x - x y, = [e] x m(A)y; x - x y,

where H=H; @® - ®H, and y; € £, (H,)(i = 1,...,t). That is, if x € Z, then
[e] x.x_.. »,o.n some x* e I1(H). But now ¢(x) = 0 for all Hadwiger functional
on ITis easily seen to imply ¢*(x*) = 0 for all Hadwiger functionals ¢* on T
and so, by our induction assumption, x* = 0, and hence x = 0. This then prc
Theorem (6.12).

Jessen and Thorup [1978] also give further results. For example:

(6.13) Theorem. Let x e T1. Then x € Z, if and only if @y{x) = 0 for all b
Hadwiger functionals ¢y of type r withr <s.

.5. FQN if x € £, and ¢y is of type r, then ¢y(x) = O unless r = s. In particu
this implies that each =, (s = 1,...,d) is non-trivial.
We can also show:

(6.14) Theorem. Let Z be any real vector space. Then all linear mappi
@:I1 > & are of the form

¢ = Mc Puly

where U— ¢y is an arbitrary function from frames into & .

Jessen and Thorup [1978] appeal to a “well-known theorem on vector spac
to prove this, but it is not clear to us what this theorem is. Sah [1979] explic
constructs bases in duality of 2, and J#,, and then remarks that these can be u:
inductively to find bases of Z, and J#,, not now in duality, but neverthel
showing that every (non-trivial) linear function on Z, is in J#,.

Ho.ooso_:ao this section, we mention some other results on equidissectabil
If G is any group of transformations of E* containing T, let ' (G) denote
family of real valued G-invariant Hadwiger functions; that is, ¢ € #(G)
HS_A%WMMVGAEEV for each P € ¢ and g € G. Then we have (Jesscn and Thor

(6.15) W.Mmqoi. Let x e T1g. Then x =0 if and only if @{(x) =0 for each
[ v-

In most cases of interest, (6.15) is as useful as (6.2). However, in two cases. (6.
can be applied.

(6.16) Theorem. {a) Two polytopes P and Q are TH-equidissectable if and onl,
o(P) = @(Q) for each o e Ky + Hy_, + -



200 Peter McMullen and Rolf Schneider

(b) Let 2 ¢ {0,1,—1}, and let G(4) be the subgroup generated by T and a
dilatation of ratio . Then Tlg;, = {0}.

In (a), TH is the group of translations and reflexions in points, and #,; +
Ky, + ---is the sum of the #, with d — r even (compare Hadwiger [1952¢], see
also Harazi$vili [1978]).

(b) is due for 4 > 0 to Meier [1972]; it says that any two d-polytopes are G(4)-
equivalent (see also Zylev [1968], Debrunner [1969], Hadwiger [1974b] and
Harazi$vili [1977]).

(6.16) (b) clearly implies that any two d-polytopes are A-equidissectable. It is

also easy to prove:

(6.17) Theorem. Two d-polytopes P and Q are EA-equidissectable if and only if
V(P) = V(Q)

Jessen and Thorup [1978] and Sah [1979] base their description of I1 on the
fact that a general polytope can be dissected into simplices. Tverberg [1974] gives
a particularly nice way of doing this: if a polytope P is not a simplex, it can be cut
into two polytopes P, and P, by a hyperplane spanned by a (d — 2)-face and a
vertex of P; P, and P, arc then treated similarly, and after a finite number of such
cuts, P is dissected into simplices. Such a dissection avoids the need to appeal to
the inclusion-exclusion principle. Another method of finding a dissection into
simplices is given immediately below.

Meier [1977] has a theory of “mixed polytopes™, to generalize that of mixed
volumes, but it appears that his proof is flawed at one point. We describe here an
alternative approach, which in fact employs a more elementary method.

We use the “lifting theorem” of Walkup-Wets [1969], which (for our purposes)
states that if a polyhedron Q is the image of a polyhedron P under an affine map
@, then there is a subcomplex € of faces of P, such that ® is one-to-one on set %,
and ®(set €) = Q. This same lifting theorem can be used to show that, if X is a
finite set in E9, then the polytope P = conv X admits a dissection into a simplicial
complex, whose O-cells are just the points of X; this can be proved by more direct
methods.

We now apply the lifting theorem to the affine map

Py x oo x Py 2 Py o+ APy,

where the term on the right is a Minkowski linear combination of the polytopes
P, with non-negative coefficients 4;. Since the d-faces of Py x --- x P, are of the
form F, x --- x F,, with F; a face of Py(i = 1,....k) and ) j-, dim F; = d, we see
that 4, P, + --- + 4P, admits a disscction into cylinders A, F, + -+ + A4, F;
(note that some F; may be vertices, so these are not necessarily k-cylinders).
Passing to the polytope group I, expanding the terms [4F,] = m(4)[F;] into
their homogeneous components (in the appropriate polytope groups), and
collecting together terms of the same degree, we now sce that we have an
expression

(4P + o+ aPy]
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The mixed polytope p(P,,ry;...;Py,1,) is positive homogeneous of degree r; in
(and hence independent of P; if r; = 0); we have taken out the multinom
coefficient as a factor, so that if P, = .- =P, =Pandr, + .-+ 1, =1, th
p(P,.ry;..;Py,1,) is just the r-th homogeneous component (in Z) of [P]. (T
notation is again as in (3.3).)

However, it must be emphasized that the mapping

(Poe. P D(PLrye Pty

is not particularly nice, in that it does not induce a multi-lincar mapping
I x - x I1(k-times). Indeed, if we replace P; by —P;, we obtain only Eul
type relations, of the kind we discuss in §12 below. ‘

We saw in (6.14) that the linear functionals on IT are precisely the unrestrict
linear combinations of the Hadwiger functionals ¢y It is thus a natural questi
to ask about (linear) relations between the Hadwiger functionals, or, in otl
words, about syzygies between them. The complete picture is, as yet, unclear, t
Sah [1979] gives some partial results.

We first dismiss, with the barest mention, the trivial relationships between ¢,
when the U’s are obtained from each other merely by changing signs.

For the next relations, we recall that if the d-polytope P has n facets with u
outer normal vectors u; and areas A, (i = 1,...,n), then Y .’_, w,A; = 0. Applyi
this to the facets of an (r + 1)-face, we deduce:

(6.18) Theorem. Let U = (uy,...,uq_ ) be fixed. Then
M uQuw =0,
where the sum extends over all u orthogonal to uy,....U3_,_;.

A(d — 2)-face of a d-polytope P is of the form P, ,, for exactly two (u,v)'s, w
u normal to a facet of P, and these pairs span the same 2-dimensional subspa
but have opposite orientation. There easily follows:

(6.19) Theorem. Let (u,...,U 1,Ug4 2,.--,Ug-,) be fixed. Then

M* Qy = O,

where the sum extends over all U = (uy,...,uq.,), such that {ugu,, ) i
basis of given orientation of a given 2-dimensional subspace orthogona
the remaining u;'s.

There are no other known syzygies. Sah further discusses this topic in a m

gencral (algebraic) context, but we shall refrain from following his example, 4
instead refer the interested reader to Sah [1979], §5.2-5.8.

§7.  Simple valuations

Let ¢ be a simple valuation, taking values (for the moment) in a divisible abell
group (@-module) 2. There follows directly from (6.7) and the subsequ
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remarks:

(7.1) Theorem. (a) If @ is translation invariant, then for P e #¢ and rational
1 > 0, there is a polynomial expansion
d

@(AP) = 3 AodP).

r=1
(b) If ¢ is translation covariant, then for such P and 4, there is a polynomial
expansion of degreed + 1.
In each case, the function @, is a translation invariant or covariant valuation
on P9, which is (non-negative, rational) homogeneous of degree 1.

Translation covariance will be discussed in §10, where the term is defined.

We need some kind of continuity condition to extend the range of validity of
(7.1) beyond the rationals, as the following example illustrates. Let #g:R—>Rbea
Cauchy-Hamel function:

O(x + B) = 0() + 0(B),  6(1)=0;

if the axiom of choice is used to construct a basis for R over @, non-trivial
Cauchy-Hamel functions can be found. Then, with V being as usual volume,
¢ =0:V{pP)= O(V(P))) is a rational homogencous translation invariant va-
luation which is not real homogeneous.

In this section, we wish only to note one additional result, which justifies our

definition in §6 of m(4) for A <O.

(7.2) Theorem. Let ¢ be a translation invariant simple valuation on P4, which is
homogeneous of degree t. Then
@(—P) = (= 1)*"o(P).

In view of the description of the polytope group I in §6, it follows that the
behaviour of ¢ is completely determined by its behaviour on r-cylinders: ¢ = 0if
and only if @(P)=0 for all Pe I E=L& DL, with d, = dim L;
(i = 1,....r), then for P=P, + -+ P, o(P)= (P, + - + P,) = §(Py,....Py)
induces a simple valuation on cach #(L,), which is homogencous of degree t. So,
@(—P) = (—1)* " o(P) will follow from (....,— P} = (=)@ Py )

The case r = 1 is established by induction on d.Ford = litistrivial (—Pisa
translate of P). Ford > 2, ¢ vanishes on 34. We now use an argument similar to
that of (6.12). Let H be a linear hyperplane, and e a vector not in H. Let Lbe a
general hyperplane not parallel to H. We define ¢, as follows. Translate Fe
247 1(L)so that it lies on the positive side of H relative toe, let F’ be the image of
F under parallel projection onto H in direction e, and define F = conv(Fu F).
Since two such F differ only by a prism with upright e, ¢, (F) = o(F) is well-
defined. Then for P € #¢, p(P) = Y e (F), where ¢ = +1 as F is a positive or
negative face, and from

o(—P) = ¥ (—g)o(—F) = (= 1(~ 1472 e (F)
=(—1)°""o(P)
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(7.2) now follows.

Theorem (7.2) also turns out to be at the basis of the Euler-type theorems whicl
we shall discuss in §12. )

Theorems (7.1) (with non-negative integer coefficients) and (7.2) apply equail;
to valuations on lattice polytopes which are invariant under integer translations
In McMullen [1975b, 1977], where these generalizations were first proved, i
seemed necessary to assume that the valuation ¢ satisfied the inclusion-exclusio
principle, but Stein [1982] has recently shown how to remove this assumption

Of course, (7.1)and (7.2) also apply directly to valuations on rational polytope
invariant under rational translations. The extension to such valuations invarian
only under integer translations is discussed in McMullen [1978, 1982b].

Theorems(7.1)and (7.2) are due, as are (6.6) and (6.7) on which they depend, to
series of papers culminating in Hadwiger [1957]. However, Hadwiger usuall
also imposes <ertain continuity or monotoneity conditions; for a discussion
their implications, see §11 below.

§8.  Spherical dissections

It is natural to pose the same questions about equidissectability of polytopes m
any spaces in which the question is reasonable; in particular, the spherical (¢
elliptic) and hyperbolic spaces. What little we shall say about the hyperbolic ca:
we postpone to the end of this section. However, it has become clear that 2
understanding of the spherical case is a necessary prerequisite for the unde
standing of the general euclidean case.

We write Q = Q¢! for the unit sphere in E®. According to §1, a spheric
polytope in € is an intersection P = Q A K of Q with a polyhedral cone K wi
apex 0. The dimension of Pis thus dim P = dim K — 1. We often identify P wi
the corresponding cone K; as we shall see, for many reasons, it is more convenie
to work with the cones K.

The only groups acting on which we should naturally wish to consider a
the full orthogonal group O = Oy, and its subgroup SO = SO, of rotations.

The concepts of equidissectability and O- or SO-equivalence of spheric
(d — 1)-polytopes are defined in the obvious way, and lead immediately to t
spherical polytope group ¥4 For d =0, it is convenient to define 0
Z = Z.[&]. Clearly, £ = Z also. In what follows, we shall sketch a descripti
of what is currently known about T¢ this is largely taken from Sah [1979].

(8.1) Theorem. (a) 7 is divisible;
(b) Z¢is 2-divisible for d = 3.

Part (a) is obvious. It is enough to prove (b) for a simplex T. Let T have fac
F,,..Fg and let G;=F,n F; (i #j). Let the insphere of T have centre p,
meet F,inq; (i = 1,...,d), and fori # j, define

T;= no:iO:b:nvE.

ThenT = C_ cicjsd Lijs and T;;is symmetric in the plane spanned by G; an
This proves firstly that T is equidissectable under SO with any of its images un
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O (justifying our nol mentioning which group we used to define X), and
consequently that T is itself 2-divisible, since cach Tj; is.

Whether ¢ is divisible for d > 4 is an open and apparently rather deep
question (we shall treat the case d = 3 shortly).

While the openness of this question clearly prevents our assuming cven a Q-
linear structure for ¢, we do (in a certain sense) have a reduction from odd
dimension d to the even dimension next below. This is a consequence of the first
of two dissection theorems we now describe.

Let K be any polyhedral set in ¢ (for example, a cone or a polytope), and F a
non-empty face of K. Translate K so that O € relint F; then the positive hull pos K
of K, which is the cone generated by K with apex 0, is a polyhedral cone, which we
shall call the angle cone of K at F, and denote by A(F,K).

Associated with K is another convex cone, its recession cone or characteristic
cone rec K, which is defined by

recK = {xeEx+yeK forall yeK}.

Thus if K is a polytope, recK = {0}, while if K is itself a cone with apex a, rec
K=K -a.

Using [-] to denote corresponding equivalence classes in T9, we then have the
following recently proved (McMullen [1982a]) generalization and abstraction of
the theorems of Brianchon-Gram (see Brianchon [1837], Gram [1874],and, fora
proof in the present spirit, Shephard [1967]) and Sommerville [1927]:

(82) Theorem. Ye(— D¥™ F[A(F, K)] = (= 1)’[rec(—K)].

We have kept rec (— K) instead of rec K to emphasize the geometric nature of
the dissection, which follows by considering the orthogonal projections of K onto
arbitrary hyperplanes.

In the case of cones (Sommerville’s theorem), we can apply (8.1) to (8.2) to
obtain

(8.3) Theorem. Ford odd, if K is a pointed polyhedral cone in B,

Ly (CrymFiAFK)]

2 ¢ ¥70

Let £ be the direct sum of the £¢ (d > 0). Then ¥ admits a product, induced by
the cartesian product of cones lying in orthogonal subspaces. We shall denote
this product by #, so that [K,]=[K,]=[K; x o(K,)], where ¢ is a suitable
rotation taking K, into a subspace orthogonal to that carrying K,. With this
product (and the carefully chosen definition of £°), Z becomes a graded Z-
algebra, T4 being assigned the degree d.

An r-fold (orthogonal) join is just an r-fold product

Hx—u— * ek ﬁ—ﬁnun
with each dim K, > 1; we write I for the subgroup of ¢ generated by the r-fold

[K] =
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joins, and I, = { JazoZ;. We then have
L=%,2%,2-, IN+IfcIiil

We may now observe that each term on the right of (8.3)is a join. Indeed, let us
write (with the convention introduced above) B(F.K) = A(FK)nL, where
L < E¢ is the orthogonal complement of lin F; we call B(F,K) the intrinsic
inner cone of K at F. Then fordim F > 1,

A(F,K) = B(FK) x lin F
is a non-trivial cartesian product. Yet a third angle function is also useful:
A(F,K) = B(FK) x E4mF~!

fordim F > 1, which is the corresponding interior angle of the spherical polytope
K A Q at its face F n Q. The mapping e:Z¢ — ¢~ ! given by

e[Kl= ¥ (~1)"F'[AFK)]
F#{0}
is called by Sah (for reasons which are not entirely convincing) the Gauss-Bonne!
map. Thus, for d odd, (8.3) can be written

[K] = p = e([K]),
where (illogically) we write p = [point] for the class of a point of €, or a ra;
of some E¢ (we here use the 2-divisibility of X). If d is even, Sah [1981] show:
that e([K]) = 0. Since it subsequently assumes some importance, let us writ
I = p *» £471 (d = 1). Then the foregoing can be summarized as:

(8.4) Theorem. For j =0, 2+l = T2+ = px £2. The map e TH
Y2 is an isomorphism inverse o X+ p * X.

In particular, writing I' = p » Z for the direct sum of the subrings T*(d > 1
we see that T/I is evenly graded by degree.

In order to give these results a more concrete interpretation, we introduce th
graded volume map. Sah follows Schlifli in normalizing so that the volume o
Qd-1 is 29 For reasons that will become clearer below, we prefer a differen
normalization. The easiest way to introduce this is to define

vol K = [ exp(—nx|?)dx,
K

where dx is ordinary Lebesgue measure in the linear subspace lin K spanned b
the polyhedral cone K with apex 0. We then define the graded volume by

gr.vol [K] = vol K. T4" X
where T is an indeterminate, and extend to T by lincarity. The normalization

such that vol L {=vol(Qn L)) = 1 for all linear subspaces L.
Using volume, we see that (8.3) becomes

vol K = H M (— :EE w.l_hﬁu,_ﬁv,

2 F#{0}
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where we write §(F,K) = vol A(F,K) = vol B(F,K); the latter follows from the
elementary observation

vol [K,] * [K,] = vol [K,].vol [K,].

In case d =dim K = 3, this gives thc well-known formula expressing the
spherical area of a spherical polygon in terms of the angles at its vertices.

We now come to our dissection result. To describe this, we need to introduce
another important concept. The polar K° of a polyhedral cone K with apex 0 in
E¢ is defined, as usual, by

K°={xeEY<{x,y> <0 forall yeK].

Then K° = K. We shall discuss propertics of the polarity correspondence (or,
rather, a suitable modification of it) as it applies to the group X a little later, For
the moment, let us define the normal cone N(F,K) of a polyhedral set K at its face
F to be (pos K)® = K°, where (as previously) we have taken 0 € relint F.

(8.5) Theorem. Let K be a polyhedral cone with apex 0 in ES. Then the cones F
and N(F,K) (F aface of K) are orthogonal, and ES is dissected into the cones
F x N(F K).

In terms of Z, this gives
(E] = M [F] « [N(F.K)].

The proof of (8.5) is immediate, on noticing that an arbitrary point z € E% can be
uniquely represented in the form z = x + y, where, for some face F of K (possibly
K itself) x € relint F and y € N(F ,K); x is the (unique) nearest point of K to z.

There are two other equidissection results that we shall want to use later, at
least on the level of (graded) volume. To prove these results, it is convenient to
introduce a little more notation.

We shall write b(F,K) = [B(F,K)], and adopt a similar convention for other
such cones. The intrinsic outer cone C(F,K) to K at F is just C(FK) =
N(F,K)nlinK; then C(F,K) is the polar of B(F,K) with respect to its linear
hull. We let Z(F,K) be the orthogonal complement of lin F in lin K, and (with
2(F,K) = [Z(F,K)] as above) we define

m(F,K) = (— 1) ZFKgyF K).
As we shall shortly see, z and m are X-valued analogues of the zeta and Mobius
functions of Rota [1964] and McMullen [1975b]. Indeed, * induces a multi-

plication on the Z-valued functions f on pairs of cones, which are such that
f(F,G) = 0 unless F is a face of G, by

fa mﬁﬁwov = M *.A—u.,.: * WC.OV,

the sum extending over all faces J of G. We then have from Euler’s theorem:

(8.6) Theorem. m=z =i=zxm, where i is the identity function: that is,
i(FG)=0ifF£G,and 1(e Z)if F = G.
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We can now rephrase (8.2) (for cones) and (8.5) as

(8.7) Theorem. (a) m+b = b, where B(F,G) = (— 1)4im G~ dim Fb(F.G);
(b) bxc =z

Z.Q.:. we can paraphrasc the arguments of McMullen [1975b], to prove new
equidissectability results by purely algebraic means. For, let us similarly write
&F,G) = (— 1)4imG-dimFo(E G). Then we have:

(8.8) Theorem. (a) bxc=i=bx&

(b) cxb=i(=¢&xb)

For, (8.7)(a) and polarity yields ¢ = ¢ * m. (8.8)(a) follows at once from (8.7)(b),
since b * ¢ = m x b * ¢ = m » z = i; the other relation is proved similarly, or by
another appeal to polarity. (8.8)(b) needs a further remark. Confining attention to
pairs of faces of a fixed polyhedral cone, we see that b and ¢ correspond to
triangular matrices with values in the ring X, whose diagonal entries are 1. So, b
and c are both invertible. But since b * ¢ = i, we have ¢ * b = i also. (The other
relation of (8.8)(b) is redundant, since & *b=c+m % b = ¢ b)

Note that (8.8) (a) implies

0= MT, D™ FIF] « [N(F,K)]
whenever K is not a subspace. By adding and subtracting this and the relation of
(8.5), we obtain generalizations of Sah {1979], Proposition 6.3.5. In odd
dimensions, we obtain another way of expressing a cone K in terms of product
cones, while in even dimensions, we get a relation between K,K® and product
cones, whose components are also even dimensional.

We shall need the metrical consequences of the relation of (8.5), which can be
written b * ¢ = z, and those of (8.8), in §10 below.

(8.9) Theorem. Let K be a pointed polyhedral d-cone with apex O(d > 1). Then,
(a) MEO,Ei_ﬁf =1
(b) MT 1y*mF BO,F)y(F.K) = 0;
AOV M A _ :EE K—dimF \Ao.muvuﬁn“xv — O
F

Here, (F,G) = vol ¢(F,G) is the normalized external angle of the polyhedral
set G at its face F (as used in §3).
Polarity plays a further role in . To begin our discussion, we remark:

(8.10) Lemma. Let KK, be polyhedral cones in E® with apex 0. Then
(KynK;)® = K} + K9,

where the sum is Minkowski addition.
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Now, if K, UK, isalso convex, we have K, L K,=K; +K,. Further, if dim
K < d, then K° has the orthogonal complement (lin K)* as its non-trivial face of
apices, and so [K°Je 'Y, the converse also holds. In other words:

(8.11) Theorem. The polarity correspondence induces an involutory automor-
phism § of £9/T°9, defined by
[K) =[K°].
This automorphism, which for reasons explained Un_oﬁ we n.u: :5. antipodal
map,extends to Z/T". The algebra structure on I, with B::E:am:o: *, induces an
algebra structure on X/I". To complete the picture, we now describe a coalgebra

structure on X/, o .
In fact, we begin with something more general. For x € Z, write X € £/T for its

representative. The total spherical Dehn invariant of a pointed polyhedral cone K
(or corresponding spherical polytope) is

¥y(K) = 3 [F1® [BIFK)] € £ @ (I/T),
¥

where the sum extends over all faces F # {0} of K with dimK — dim F even. (In
fact, the terms with dim K — dim F odd automatically drop out, due to the even
grading of £/I". The term F = {0}, in case dim K is even, is not needed, since the
information contained in the first term K ® [J] includes that contained in
[D1®([K]) _

The map ¥ then induces a map Ws:E/T — (£/T) ® (X/I); defined on a
generator [K7 of Z/T, its effect is

¥[K]= Mmﬂ ® [B(F.K)].

This is the comultiplication on £/I'. The counit or augmentation (which is dual to
the unitinan algebra)is the natural mapping whose kernel is the set of elements of
Z/T of positive degree. With these algebra and coalgebra structures, and the
antipodal map, Z/I" then becomes a Hopf algebra (see Sah [1979]). .

We are now in a position to discuss equidissectability in general. vm with 5%
case of the group I'1¢, we look for a suitable separating family of functions on Z°.
The map Ws does separate T9, but in a rather trivial way, since it is obviously
injective. More to the point is the total classical spherical Dehn invariant

@ = (gr. vol ® id) - Vg,

so that

OyK) = 3 (vol F-T4mF) @ [B(F.K)] € B[T] ® (£/T).
F

The summation convention is that used in defining ‘P, above.
Unfortunately, the general equidissectability problem is far from solved.

(8.12) Theorem. dg separates =4 for d = 2 and 3.
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All this says is that arc length (in case d = 2) or arca (for d = 3) characterize
spherical polytopes up to cquidissectability.

For d > 4, we encounter severe problems; the case d = 4 already illustrates
most of these. For, we observe that, if K has rational dihedral angles, then
Dg(K) = vol K.T*, and the lower degree terms vanish identically. So, if ®gdocs
separate T*, then such K should be equidissectable with product cones. How-
ever, this is far from obviously true in general, although Dupont and Sah
[1982] have recently shown that it is true in one important case.

(8.13) Theorem. A fundamental polyhedral cone for a finite orthogonal group in
E¢ is equidissectable with a (d — 2)fold product cone over a planar cone.

In fact, what Dupont and Sah prove is that fundamental polyhedral cones for
two finite orthogonal groups in E® of the same order are equidissectable. The
result ultimately reduces to proving this for the special case of p-groups (Sylow
subgroups) of the same order.

But the general problem remains unsolved; indeed, polyhedral cones with
rational dihedral angles are a possible source of torsion in 3¢ (Sah [19797]).

As we said at the beginning, there is also some interest in the hyperbolic case.
As with the spherical case, in the hyperbolic line or plane, equality of length or
area is a necessary and sufficient condition for equidissectability. Once again, the
real problems begin in the next dimension.

In general, as with the spherical case, there is a difference between odd and even
dimensional hyperbolic spaces H. The “Gauss-Bonnet” map can be defined
equally well for hyperbolic polytopes, and associates with an element x of the
polytope group in H (with respect, of course, to the group of all hyperbolic
motions) an element e(x) of the polytope group in Q°~'. On the level of volume,
we have

voly—(e(0) = (~ )*/24(Q%)vol (x).

where (Q°%) = 1 + (—1)%is the Euler characteristic of Q9 (in the spherical case,
the factor (— 1)¥? is omitted). It is possible that there are deeper connexions, but
these have not been much investigated.

Of course, if d is odd, the above formula yields no information. In recent years,
much attention has been payed to the first non-trivial case d = 3, but even so, it
seems not to be near complete solution.

One can further consider equidissectability in A = HYy JH¢, obtained by
adding to H“ the ideal points (at infinity) forming 6H°. However, we are going a
little far from our topic, so we shall merely refer the reader to Sah [1979; 19817,
Dupont-Sah [1982], and the bibliographies contained therein,

§9.  Hilbert’s third problem

Discussion of the spherical problem was a prerequisite for consideration of the
euclidean equidissectability problem, as we shall sec. From an historical peoint of
view, of course, we have things back to front, as the cuclidean problem was
investigated carlier. The case of dimension d = 1 is trivial, and the case d = 2 is
nearly as easy. As Gerwicn [1833a] and F. Bolyai observed, a triangle is D- (or
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SD- or even TH-) equidissectable with a parallelogram of the same area. Asa
consequence, and using the results of §6:

(9.1) Theorem. Two polygonsin 2 are D-equidissectable if and only if they have
the same area.

In a later extension of this result, Hadwiger-Glur [1951] showed that,if Gisa
group such that two polygons with the same area are always G-equidissectable,
then G =2 TH.

However, it was early recognized that the situation in E? was likely to be
different, and in 1900 Hilbert [ 1900] formally posed the problem of finding two 3-
polytopes of the same volume (specifically, pyramids with the same height on the
same base) which were not D-equidissectable. Modifying an earlier incorrect
attempt of Bricard [1896], Dehn [1900], [1902] found a suitable pair of
examples in the same year the problem was posed.

Before going further into Dehn's examples, it will be helpful to make some
remarks about the appropriate polytope group M¢. (Once more, we distinguish
the dimension d.) Firstly, the fact that reflected polytopes are SD-equidissectable
shows that I1¢ = IY,. Secondly, dilatation commutes with isometry (at least,
modulo translation), so that T3 as a quotient space of T4 also admits a grading

i __ =d =d
n=='® - ®=.

However, the presence of scaling by — 1 ensures that E, =0 unlessd —r=0
(mod 2).

Writing I, = Z4, o135 (with IT§ = R), we see that we have a natural product
structure induced by orthogonal cartesian product, which we denote by x.

We now describe what are conjectured to be a separating family of functionals
on I1,,. These are the euclidean Dehn invariants, which are exact analogucs of the
spherical Dehn invariants. The total euclidean Dehn invariant of a polytope P is

Ye(P) = ME ® [B(F.P)] € M, ® (/T),

where the sum extends over all faces F of P with (dim F > 0 and) dim P — dim F
cven. Similarly, the classical total euclidean Dehn invariant is just

@, = (gr.vol ® id) o ¥,

so that

®e(P) = Mé_ F.T%"* ® [B(F.P)].

Theorem (9.1) shows that @, scparates T1§ for d <2. The considerable
achievement of Sydler [1965] was to extend this tod = 3; Jessen {1972] was then
able to use Sydler’s result further to extend this tod = 4. In fact, Jessen [1968]
was also able to simplify Sydler’s original proof, essentially by using the language
of the algebra of polytopes.

It would be inappropriate to give full details of these proofs here, but we can
point out some of the salient features.
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(9.2) Theorem. @ separates I13.

It is easy to see that the group I} is generated by the (equivalence classes.
orthogonal simplices [a,,...,a4], which are such that {a,,...,a,} is an orthogos
set of vectors. In the particular case d = 3, Sydler’s proof of Theorem (5
depends upon considering those particular orthogonal simplices T(,n)
[a;.a;,a3], where

1 = E\V2 1 — n\1/2
= (552) b= (S5 el =

with &, € J0,1[. The more important and less obvious of Sydler’s results is

Nu:;

(9.3) Lemma. For &,n,,n,€]0,1[,
T(E,n1) + Tnyn2) = TEm2) + T(Enzom)-

. ,.:5 proof of this result relies on equicomplementability implying equidissec
bility. Another result, which follows from dissecting one tetrahedron in two wa
is much easier.

(9.4) Lemma. Forént >0,

E4y ¢ E+7 1
T( - AL L
we) E4n+ &+ +unT E+n+ &+
&+ ¢ E+¢ {

g ML ey o

= )T
Finally, there is a further casy result.

(9.5) Lemma. Let .8,y € 10,in[, with « + B + y = n. Then there is a rect
gular parallelepiped, which when dissected by the three planes containin
fixed diagonal and pairs of opposite edges of the box, yields orthogo
tetrahedra whose dihedral angles at the diagonal are 2,0,3,2,5,y.

Now Theorem (9.2) reduces to the following assertion.

(9.6) Lemma. Let ¢:Z} — Y be a linear map into a real linear space Y. T
there is a linear map $:R ® (R/Z) - Y, such that
@ =3 0N,
where Oy = OIT? + OV T on 115,

In particular, with Y = Z3, this shows that ®"' is a monomorphism. Note t
the real linear structure of R ® (R/Z) 1s inherited from its first component.

If we write [T(En)] = t3(En) + t(Emwith (Em) € =, (r = 1,3),and Q<)
o(t;(&n)), then (9.3) and (9.4) yicld corresponding functional relations for ¢. Fr
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(9.3), there is an £:]0,1[ - Y, such that
(&) = (&) + () — 1(Zn).

(Curiously, the proof of this fact, and that to follow, need the axiom of choice.)
From f, one defines G:R, x R, =Y by

¢
¢+ m+:
so that (9.4) and its definition yield
G =G.8), G(AAn) = AG(En) (4> 0)
G(&m) + G(& + 1) = G + () + G(EL).

G can be extended to R x R satisfying the same functional equations. Now we
find g;:R, — Y, such that

g4(Sn) = ng, (&) + &g.(m),

G(¢m = &M +f

’

and

G(&m) = 84(8) + 81(m) — 84(& + 1)
Writing g,(&) = £g(&) (¢ > 0), we have g:R, — Y, such that

8(én) = g(&) + ),
G(&n) = ¢8(&) + nglm) — (£ + me( + n).
We note that g(1) = 0. Now, if &y > Owith & + 5 =
&(E) + nf(n) = G(&n) = £8(8) + ng().
fh=f-g:]0,1[ - Y, then
@(&n) = h(&) + h(n) — h(¢n),

with
Ch(f) +qh(m =0 if {n>0, {+n=
We complete the proof by defining 6:R — Y, where ¢ is periodic with period
im, by
o(a) = tanah(sin?a), 0 <a <in
with a{n) = 0. That ¢ is additive follows from the above and (9.5), which gives
a@)+a(f)+0(y) =0, O<afy<in, a+f+y=n
From its definition follows
@(&n) = cotaa(a) + cot fa(f) — cot(x * fala = ),
where

& =sina, n =sin?p
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and

sin{fe * f) = sinasinf, 0<a,Baxp <in.
Finally, if we define :R® (R/Z) - Y by

0(¢ ® w) = ¢olinw),

then 8 is the required linear map.
The extension by Jessen [1972] easily follows.

(9.7) Theorem. @ separates I,

We have IT§ = £4 @ E4, so that every x e IT# is equivalent to a prism e x
where e is a unit segment. (Jessen [1972] gives a a:dﬁ proof of this). The res:
now follows a:oo:w from (9.2).

We end this section by Bm_c:m a few remarks, and m::_:m some ?,ov_oBm
fact we have used above is that the Dehn invariant ® is compatible with t
product structure. Indeed,

We(P x Q) = Ye(P)¥e(Q),
since the angle P x Q atitsface F x G is
B(F x G,P x Q) = B(F,P) x B(G,Q).
A general question raised by the proof of (9.7) is:

(9.8) Problem. Is every even-dimensional polytope equivalent to a direct sum
products of odd-dimensional components?

For nxmav_n. Ni=22==21@zl. m:::ﬂ Ec =Z4®EL Now Zi:
®*E}, and E% is generated by 2! ® 23 and £2 ® E2, the latter term vanishin

50 the result roEm here also. Oa:us_% :5 %mom of _aonanOmmEm elements
I, is the sum of the spaces Z2* 1. So, a variant of (9.8) is:

(9.9) Problem. Is I, isomorphic to a symmetric algebra based on the space
indecomposable elements?

In particular:

{9.10) Problem. Is [}, an integral domain? Is Tl a Hopf algebra?

Finally, related to (9.6), there is a question about Dehn invariants.

(9.11) Problem. [s ®'V:Z} - R ® (R/Z) an isomorphism? More generally, wh.
are the images of the Dehn invariants?

Those readers who, after their excursion into dissection theory, might wis
some recreation, are referred to the amusing book of Lindgren [1972].
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I1I.  General valuations
§10. Polynomial expansions for general valuations

While the polynomial expansion of @(AP) for a simple (translation invariant)
valuation ¢ dates back, as we have seen, to Hadwiger [1957], the question of the
existence of such polynomial expansions for general valuations was settled much
more recently. The question was posed (in the context of continuous or
monotone valuations, with real coefficients) by McMullen at the Oberwolfach
meeting on Convex Bodies in 1974, and settled by him the same year (see
McMullen [1975a; 1977]). Somewhat later, but independently, Spiegel [1978]
and Meier [1977] gave proofs using different approaches; in retrospect, their
proofs should have been available earlier, since they involve fairly elementary
modifications of the ideas of §7. However, McMullen’s approach yields con-
siderably more, and so we shall largely follow that here.

The basic idea is to use the angle-sum relations described in §8, to relate a given
valuation ¢ (which for simplicity of exposition will always take values in a real
vector space Z') to a family of simple valuations. Let & be the class of translates
of a given flat A in [¢ (possibly A = E¢ itself), and write (/) for the family of
polytopes P such that aff P is a subflat of some flat in o/.

(10.1) Lemma. Let ¢ be a translation invariant valuation on 2°. Let the function
V4 be defined by

L(=1)HimPmdmERE P)p(F), if affPe o,

— F
ValP) = 0, otherwise.

The Y, is a simple translation invariant valuation on P(sf).

We can use (8.9) to invert (10.1); the converse result was first proved by
Hadwiger [1953b; 1957].

(10.2) Lemma. For each translation class s/ of flats in B9, let \y, be a simple
translation invariant valuation on 2(s/). Define Y(P) = i,5p4(P), where
[A] is the translation class of A, and

o(P) = Mv.Am_EEE.
Then 4 is a simple translation invariant valuation on P(s/).

The proofs of (10.1) and (10.2) are straightforward but tedious.
From (7.1a), (10.1) and (10.2) lead at once to

(10.3) Theorem. Let ¢ be a translation invariant valuation on #°. Then for
rational 4 > 0,

d
@(AP) = Mlo W@ (P).
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The coefficient ¢ (P) (which is independent of 1) is a translation invaric
valuation on 24, which is homogeneous of degree .

In particular, po(P) = ¢({x}) is the value taken by ¢ on a point.

We extend (10.3) to general lincar combinations by means of (1.4). Let ¢ b
translation invariant valuation on 2, and let Q € 2 be fixed. Then by (1.4) t
?so:ao: i defined by y(P) = (P + Q) is also a translation invariant valuati
on ¢,

We deduce immediately the general result:

(10.4) Theorem. Let ¢ be a translation invariant valuation on P°. Then |
Py,...P, € 2% and rational 4,,...,, >0, @(4, P, + -« + 4,P,) is a po
nomial in 4,,...,4, of total degree at most d. The coefficient of Ayt --- A% i
translation invariant valuation in P; which is homogeneous of degree
(J=1...k).

We call these coefficients mixed valuations. If ¢, is the homogencous valuati
occurring in (10.3), so that @ = X2_; ¢,, we may write

. . r
@A P+ + AP =Y - A LAk Py P,
oo Ty

in analogy to (3.2).

Let us briefly survey the other two approaches. Spiegel [1978] uses t
canonical simplex dissection, the inclusion-exclusion principle and induction
the dimension to obtain a direct proof. Meier [1977], which we have mention
carlier, uses his mixed polytopes and the inclusion-exclusion principle to obt:
the same result. (In fact, these approaches cover valuations taking values in
rational vector space, while McMullen’s needs a real vector space; the modific
tion of Meier’s argument outlined in §6 possibly shows this most easily.)

The discussion of covariant valuations proceeds on very similar lines. We s
that a valuation ¢:2% — X is translation covariant if there exists an associat
function ®:#9 — Homz(£%,7) = Homg(E,Z), such that

@(P + t) — o(P) = O(P)t,
forte EYand P e 24

(10.5) Lemma. Let ¢ be a translation covariant valuation on #9. Then t
associated function ® is a translation invariant valuation on P°.

Lemmas (10.1) and (10.2} carry over at once to covariant valuations. So, all th
is needed is to appeal to the expression after (6.7) for the specific translatio
involved in the canonical simplex dissection, in order to generalize (10.3) ar
(10.4), and show:

{10.6) Theorem. Let ¢ be a translation covariant valuation on #°. Then |
P,,...P e #Y and rational 2,....;, = 0, (A, P, + - + i, P,) is a pol
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nomial in A,,...,2, of total degree at most d + 1. The coefficient of A --- Ax
is a translation covariant valuation in P; which is homogeneous of degree I
(= 1...k).

The degree d + 1 (rather than d, as in (10.4)) arises from the translations.

The results discussed above can be generalized in various ways. The main way
is by restricting the translations which are allowed. For several reasons, the most
interesting cases concern the translation subgroups Q¢ and Z¢ (or, of course,
isomorphic subgroups). It might be thought that the case F9, for a general subfield
F of R, would also be of interest; however, analogues of the weak continuity
condition to be discussed in §11 are needed to extend Q-linearity to F-linearity.

The case of the translation group Q and rational polytopes needs no further
comment; the results above carry over with no change of language. When the
translation group is Z¢ and the polytopes are lattice polytopes, (10.4) and (10.6)
remain valid with integers 4; (McMullen [1977], and using Stein [1982]; see also
Bern3tein [1976] for the special case of the lattice point enumerator). More
generally, though, some changes are needed.

Let P be a rational polytope. The r-index ind,(P) is the smallest positive integer
m, such that, for every r-face F of P, aff (mF) is spanned by lattice points (or,
equivalently, contains a lattice point). Then we have:

(10.7) Theorem. Let ¢ be a lattice translation invariant valuation on rational
polytopes in E4. Then for rational polytopes P and integer n > 0, there is an
expression

4

¢(nP) = Mo n’p,(P,n),

where @, (P,n) depends only on the congruence class of n modulo ind (P).

Such an expression is called a near-polynomial in McMullen [1978], where this
theorem is proved (and “polynome mixte” by Ehrhart [1967a] in the case of the
lattice point enumerator G). The coefficient ¢, is near-homogeneous of degreer,in
that

¢ (mP,n) = m"y,(P,mn)

for all integer m,n > 0. There are analogous expressions for integer combinations
of rational polytopes; similarly, (10.7) and its generalizations are valid for lattice
translation covariant valuations (McMullen [1982b]).

The proof of (10.7) depends upon a specific representation of the valuation,
and so we defer further discussion until §17.

In view of (10.4) and (10.6), a translation invariant or covariant valuation on
2 which is homogeneous of degree 1 is also Minkowski additive:

@(P + Q) = o(P) + 0(Q);

this was earlier proved (for a special case of covariance) by Spiegel [1976a]. We
have already remarked on the converse in (1.3).
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§11. Additional properties

We now complete the discussion of the original question of McMullen, by
considering various continuity conditions. As usual, continuity of functions on
2 or ¢ will be with respect to the Hausdorfl metric.

A different concept of continuity is due to Hadwiger [1952¢]. Let U =
(uy,...,u,) be a (for the moment) fixed set of unit outer normal vectors, and write
2%U) for the family of polytopes of the form

TA%V = ﬁxm_ma_Ax.ﬁmv Ma_ A_ = Ht..‘:vw.

where y = (1,,...,,). We call a function ¢ on 2¢ weakly continuous if, for each
such U, the function ¢, defined by ¢y(y) = ¢(P(y)) is continuous. Clearly we
have:

(11.1) Lemma. A continuous function on P is weakl y continuous.

It turns out that, to extend (10.4) and (10.6) to real (rather than rational)
coeflicients, all that is needed is weak continuity. In fact, we have:

(11.2) Theorem. The following conditions on a translation invariant or covariant
valuation ¢ are equivalent:

(@) o is weakly continuous;

(b) for all polytopes P,,...,P, and all real numbers Asensdy 20,
@4 Py + - + A4 Py) is a polynomial in Aseneshye

(c) for each U, the one-sided partial derivatives of py exist.

(d) @ is continuous under dilatations; that is, the mapping ©p on R defined
by ©p(2) = @(4P) is continuous for each P.

In fact, condition (c) can be replaced by
(c) for each U and each a € EY, the (one-sided) derivative of ¢y in
direction a exists.

The equivalence of (a), (b) and (c) is due to McMullen [1977]. The equivalence of
(a) and (d), which was left as an open problem by Hadwiger [ 1952e], foliows from
the inversion formulae (10.1) and (10.2), and the fact that T19is a real vector space
(see also (11.4) below),

As far as (weakly) continuous valuations are concerned, one general remark is
often useful.

(11.4) Theorem. The mixed valuations associated with a (weakly) continuous
translation invariant or covariant valuation are {(weakly) continuous in each
of their arguments.

To what extent this result extends to monotone valuations {which we shall next
consider) is unknown. We call a function ¢ on ¢ or "¢ taking values in a
partially ordered real linear space monotone if ¢(P) < ¢(Q) whenever P < Q.
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Then we have the following result of McMullen [1977] (for d = 2, Hadwiger
[1951b], §5):

(11.5) Theorem. A monotone translation invariant valuation ¢ is continuous.

It is enough to prove this on 2% any extension to X"¢ is fairly easy. Let
(P;) = 24 be a sequence with lim P; = P. If dim P = d, assume 0 € int P; from
(1 —g)P = P; < (1 + ¢)P for cach rational ¢ > 0 and all large enough j, lim
¢(P;} = @(P)follows from the polynomial expansion of ¢. If dim P < d, we con-
sider instead @(P; 4+ nQ), where Q is a fixed d-polytope and n > 0 a positive
integer; @(P;) is the constant term in the cxpansion of ¢(P; + nQ) as a poly-
nomial in n, and the result follows from the previous case.

§12. Valuations and Euler-type relations

If @ is a function defined on #¢ (with values in, for the moment, an abelian group),
we can define a new function ¢* on #¢ by means of

@*(P) = MT 14 Fo(F).
(Our usual convention for such sums prevails.) It is a consequence of Euler’s
theorem that 9**(={(p*)*) = ¢. As shown by Sallee [1968],

(12.1) Theorem. If ¢ is a valuation on :?%, then so is ¢*.

Sallee’s proof is direct, and needs the same kind of considerations which prove
(10.1} and (10.2); a different version of the proof was indicated at the end of §5,
and an alternative one as a consequence of (10.1) and (10.2) is indicated below.

As an cxtension of the definition due to Sallee, let us say that ¢ satisfies an
Euler-type relation of kind (¢,n) if, for all P € 224,

o*(P) = e(nP).

Evidently, from ¢** = ¢ follows ¢(P) = ¢*¢(5*P). Sallee only considers the case
n = 1,sothate = + 1 (assuming ¢ non-trivial); more generally, we shall see that
n = =+ lisusual,sothate = +1also holds(we know of no valuation satisfying an
Euler-type relation with 2 # 1),

If ¢ is any function on 29, now taking values in a rational vector space, and we
define ¢, = (¢ + ¢*),thenp =@, + ¢_,andp% = ¢,,9* = —¢_.Thus¢
is always the sum of functions satisfying Euler-type relations. This might seem to
make the concept of an Euler-type relation of little significance, were it not for the
rather deep connexions between them and valuations which we shall now
describe.

We first discuss results of Sallee [1968].

(12.2) Theorem. Let ¢ be a continuous function on #¢ which satisfies an Euler-
type relation * = (— 1)~ Y. Then ¢ is a valuation.
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{12.2) depends upon several results. Firstly

(12.3) Lemma. If ¢ is a continuous function on P°, satisfying o(Pu Q) +
o(P N Q) = ¢(P) + ¢(Q) whenever P,Q, P U Q are d-polytopes, then p isa
valuation.

Secondly, a function ¢ satisfying the condition of (12.2) yields expressions of
the form

P =3 T (~1F ()

F.dim F <d
for d-polytopes P, enabling ¢(P) to be calculated from its values on lower
dimensional faces.

Thirdly, using the continuity of ¢, to verify that ¢ is a valuation, it is enough to
consider P and Q of (12.3) satisfying dim(P n Q) = d — 1, such that each face of
P U Qisa face of P or Q. Checking the valuation property in this case is straight-
forward.

Sallee appears to claim a more general result than (12.2), involving continuous
functions satisfying ¢* = ¢ for any ¢ (= £ 1 by previous remarks). But his ¢ has
domain 2 = u2* (presumably in E* = UE?). In fact, (12.2) does not extend to
¢ = (—1)% a counterexample is o(P) = V(P_,), where P_, is the inner parallel
body of P at any fixed positive distance p. (The crucial feature of this example is
that @(P) = 0if dim P < d, the example can clearly be modified to give functions
@ positive on all d-polytopes.)

The results in the other dircction are more general and interesting. Various
individual cases of translation invariant or covariant valuations satisfying Euler-
type relations were shown by Shephard: the Steiner point [1966]; the mean width
[1968a]; mixed volumes [1968c]. This last result, although its proof did not
admit of generalization, gave a pointer to the general result, due to McMullen
[1975a, 1977].

(12.4) Theorem. Let ¢ be a translation invariant or covariant valuation on
P which is homogeneous of degree r. Then @* (P) = (— 1)'¢(—P) for all
Pe s

For translation invariant valuations, (12.4) reduces to (7.2) in view of

(12.5) Lemma. For each translation class of flats sZ, let § be the simple
valuation corresponding to ¢. Then Y% corresponds to ¢*.

Since YX(P) = (— DUy (P) = (—~ 1) (—P) for aff P e &/, by (7.2), and
(F,P) = y(—F, - P), (12.4) clearly follows.

For translation covariant valuations, we consider the valuation ¢ defined by
@(P) = @(P) — (—1)'@*(— P). It is easy to verify that the associated valuation @
vanishes (by the already proved cascs of (12.4)); hence @ is translation invariant,
so ¢X(P) = (— 1)'@(—P)(again, by the previously proved cases). Thus ¢ = 0, as
required.
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Nothing we have said above needs to be altered if we confine our attention to
lattice polytopes and valuations on them which are invariant or covariant under
lattice translations. In the particularly interesting case of the lattice point
enumerator G, the Euler-type relation

GI(P) = (—1)'G(-P) = (= 1)’G(P)
yields the reciprocity law of Ehrhart [1967b]:

(12.6) Theorem. For a lattice polytope P, let G°(P) = G(relint P). Then
G°(nP) = (- 1)¥™F 3" (—n)G,(P),
r20
Jor integer n > 1.

For,

G(P) = (~ )" *G*(P)

by (5.24).

Erhart [1967c], [1968] has also investigated G(P) for rational polytopes P
(that is, vert P < Q¢), and has proved an analogous formula to (12.6). More
generally, we have (with the conventions and terminology of §10):

(12.7) Theorem. Let ¢ be a latiice translation invariant or covariant valuation on
rational polytopes, which is near-homogeneous of degree r. Then for all
rational polytopes P and all integer n,

@*(P.n) = (= 1)'¢(~P,~n).

The proof of (12.7) depends upon a specific characterization of such valuations
@, for which see §17 below, and McMullen [1978; 1982b].

For the extension of some Euler-type relations to systems larger than 29, see
Perles-Sallee [1970], Groemer [1972], Hadwiger [1973].

IV.  Characterization theorems

The purpose of this last chapter is a survey over the nx.mmzsm results, and some
open problems, that concern the classification of valuations. For the most part,
we shall deal with characterizations of the classical valuations described in %u.. 4
by some of their properties, where invariance under some group n_m.wm a crucial
role. Further, a few results will be given on the explicit representation of more
general classes of valuations.

§13. Minkowski additive functions

Before considering more general valuations, it seems mumnovn.a.:m to study E.omo
special valuations ¢ on X ° or ¢ which are Minkowski additive, that is, satisfy

(13.1) ¢(K + L) = ¢(K) + (L)
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for K,L in the domain of ¢.Here K + L is the Minkowski sum of K and L. The
valuations deserve special interest at least for two reasons: Due to the stro
assumptions, more specific results are available; on the other hand, some proc
for more general characterization results make essential use of certain i
formation on Minkowski additive functions.

The Minkowski additive functions which we consider will have their values
cither R, E¢, or "%, It is clear that (13.1) then implies p(1K) = A¢(K) for ration
Az0,andif ¢is continuous, then this holds for all real 1 > 0.

A familiar example of a real-valued Minkowski additive function on ¢ ¢ s t

mean width b,

- N
KN.II.:W.:%:.,onWm&)_,
EV Q) HM (K,u)do (u)
which is a constant multiple of the quermassintegral W, _ , . It is continuous an

rigid motion invariant, and it is essentially the only function with all the:
properties:

(13.2) Theorem. If o:0¢ - R is Minkowski additive, continuous, and invariar
under rigid motions, then ¢ = aW,_, with some real constant «.

Hadwiger’s proof ([1957], p. 213) uses a rotation averaging process and show
more. Suppose that ¢:#'¢— R is Minkowski additive and rigid motio;
invariant. Let K € #°® be given. If K’ = Mg K + -+ AgK with positiv
rational numbers 2, ,...,4, and rotations 81558680y, then o(K') = (4, + --- +
AJe(K). Since the same holds for the mean width, we have o(K)/b(K) =
@(K")/b(K') assuming that b(K) # 0. Now one knows that the A’s and g’s can b
chosen such that K’ is arbitrarily close to the unit ball B. If ¢ is continuous at B
then it follows that ¢(K)/b(K) = ©(B)/2 is independent of K. Thus in (13.2) i
suffices to assume continuity of ¢ only at the unit ball.

On the other hand, this proof does not work if ¢ is only defined on polytopes
Since (13.2) is a tool in the proof of later characterization theorems, this defec
restricts the generality of those results in a similar way. Of course,if ¢ is locally
uniformly continuous (with respect to the Hausdorfl metric) on 29, then it ha:
a unique continuous extension to 4, and the additivity and invariance
properties would carry over. (We say that a function is locally uniformly
continuous or locally bounded, if it is uniformly continuous, respectively bounded
on the elements of its domain inside any fixed ball.)

(13.3) Problem. If ¢:2¢ - R is Minkowski additive, invariant under rigid
motions, and either continuous or locally bounded, must it be a constant
multiple of the mean width?

As a vector valued counterpart to mean width we have the Steiner point s
which can be defined by

1
s(K) = van.m h(K,u)ude (u)
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and is obviously Minkowski additive. We say that a mapf from "¢ or #4into E¢
or X is rigid motion equivariant (translation equivariant) if {(gK) = gf(K) for
every rigid motion g of E¢(f(K + t) = f(K) + t for t € E¢, respectively) and for all
K. The following analogue of (13.2) holds:

(13.4) Theorem. If f:'% —E® is Minkowski additive, continuous, and rigid
motion equivariant, then f(K) is the Steiner point of K € 4.

Again, it suffices to assume that f is merely continuous at the unit ball. A proof
for this case, which also uses rotation averaging, though in a more subtle way, was
given by Posicel’skii [1973]. The problem of characterizing the Steiner point by
some of its properties was first posed by Griinbaum [1963], p. 239, who asked
whether Minkowski additivity and similarity equivariance are sufficient to
characterize the Steiner point. This is not the case, as can be shown by counter-
examples. The first example to this effect was constructed by Saliee [1971]. A
different example which is easier to describe, was mentioned by Schneider
[1974a], p. 76. The first author to add the continuity assumption to Griinbaum’s
conditions was Shephard [1968b]. He proved (13.4) for d = 2, using Fourier
series. His method was extended, though not in a straightforward way, tod > 3
by Schneider [1971], who proved (13.4) by making use of the fact that certain
representations of the rotation group in spaces of spherical harmonics are
irreducible. Although this method is less elementary and needs stronger
assumptions than Posicel'skii’s proof, the application of spherical harmonics
seems to be a proper tool in this context, since it has proved useful in treating
similar questions-to be discussed below. Before Schneider’s [1971] proof of (13.4),
a slightly weaker version was obtained by Meyer [1970], who assumed uniform
continuity. Two attempts to prove (13.4) (Schmitt [1968], Hadwiger [1969a])
contained errors. For the two-dimensional case, interesting elementary proofs
were given by Hadwiger [1971] and Berg [1971]. The latter author obtained
additional results for polytopes. To describe them, define

fo (P)
(13.5) s,(P):= ) o(N(V,P)nQ)v; for Pe P9

i=1
where the sum extends over the vertices vy,...,vg, p Of the convex polytope P,
N(v;,P) denotes the cone of exterior normal vectors of P at v, (see §8) and g isa
simple valuation on spherical polytopes. If ¢ = ¢/a(Q), where o is spherical
volu: 1e, then s, is the Steiner point s; this representation is a special case of (3.26).
The proof for the Minkowski additivity of s which uses this representation (see
Griinbaum [1967], p. 309) extends to yield that s, as defined above is Minkowski
additive. Clearly s (AP) = As (P)for 4 = 0, and if ¢(Q) = 1, then $,, is translation
equivariant, If f:#¢ - 1[?% is Minkowski additive and commutes with all
similarities (including improper ones), then Berg [ 1971] calls this map an abstract
Steiner point. Formula (13.5) yields an abstract Steiner point if ¢ is invariant
under rotations and reflections and is normalized to ¢(2) = 1. Whether every
abstract Steiner point is obtained in this way is not known, but Berg [1971]
showed that this is true for d = 2.3. In these dimensions one then also has ¢ =
0 « (0/0(Q)) with some function 0:[0,1] — R satisfying 0(1) = 1 and 0(u + v) =
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0(u) + 6(v) for u,v,u + v € [0,1]. Berg deduced that every abstract Steiner poin
on #°, d = 2,3, which is locally bounded, is the usual Steiner point.

When Minkowski additive maps on "¢ are considered, it appears particularl;
natural to investigate those ones whose range is also X%, A Minkowski additive
map @®:."* - ¢ which is continuous and rigid motion equivariant has beer
called an endomorphism of X'* in Schneider [1974a], since such a map i:
compatible with the most natural and geometrically important structures whicl
one usually associates with %9, Special questions concerning endomorphisms of
"¢ were apparently first posed by Griinbaum ([1963], p. 239, [1967], p. 315
answers are given by Schneider [1974a], p. 54 and pp. 55-56). The investigatior
of endomorphisms of ¢ shows different features in dimensions d = 2 and
d > 2, due to the commutativity of the rotation group in dimension two. Let u:
first consider the two-dimensional case.

A particular example of an endomorphism ®:4"2 - "2 is given by

(13.6) O(K): = A,g,[K —s(K)] + --+ + 4,g[K — s(K)] + s(K)

for K € "2, where 4,,...,4, = 0 are real numbers and g, ,...,g, € SO, are rotations
It turns out that the general endomorphism is a limit of such rotation averages
To formulate a precise result, we choose an orthonormal basis €,,e, of E2 anc
write u{a): = {cosa)e, + (sina)e, for « € [0,2n); further, for K € ™% we wrilc
h(K,a) instead of h(K,u(x)).

(13.7) Theorem. Let @ be an endomorphism of 2. Then there exists a ( positive
measure v on the Borel subsets of [0,27) such that

2n
(13.8) h(®(K)x) = % h(K — s(K)a + B)dv(B) + <s(K)u(®))
Jor a € [0.2r) and all K € X2,

This was proved by Schneider [1974b]. Conversely, any Borel measure v or
[0,2n) defines an endomorphism ® by means of (13.8). If @ is given, the measure s
in (13.8) is unique up to the indefinite integral of (a,cosa + a,sina) with
constants a;,a,. From (13.8) it can be deduced that any endomorphism @ of %"
whose image contains a polygon (with more than one point) is of the form (13.6)
Moreover, every endomorphism which maps "2 onto all of "2 is of the form
D(K) = 1g[K — s(K)] + s(K) with 4 > 0 and ge SO,. These are also precisely
the extreme endomorphisms, if the set of all endomorphisms of 2#" 2 is made into
a convex cone in a natural way (loc. cit., p. 310). Another consequence of (13.7) i
the fact that some properties which Inzinger {19497 has proved for a certain very
special class of endomorphisms, are shared by all endomorphisms, at least after
suitable normalizations.

The proof of Theorem (13.7) uses a characterization, essentially due to
Hadwiger {1951b], of the Minkowski additive, continuous, and translation
invariant real functions on 7 (see §16). This result first yields an integral
representation of the form

2n
(13.9) h(@(K) = s(K)a) = | (8 —2)dS, (K2
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for « € [0,2n) and K € 42, where g is a continuous real function determined by
the endomorphism ® and S, (K,-)is the first order area function of K, considered
as a measure on [0,27) instead of Q*. The passage from (13.9) to (13.8) uses mainly
analytic arguments.

For d > 3, a comparatively complete description of the endomorphisms of
X4 is not known, but a series of partial results were obtained by Schneider
[1974a]. Non-trivial examples of endomorphisms can be obtained as follows. We
consider the support function h(K,u): = max{{x,ud:xe K} of K e X for
arbitrary u € E%. Let q:{0,00) — [0,00) be a function for which all the following
integrals exist and are finite. Let K € ¢ be given. It can be shown that
x> fga h(K,x — [|x|2)q(jizli)dz is a support function, hence there exists a
unique convex body ®,(K) for which

(13.10) h(®(K),x) = m.q.. h(K — s(K),x — IIxliz)q(llzll} dz + <{s(K),x)>

for x € EY. It is then easy to see that the map ®,: "¢ — o ¢ defined by (13.10)is an
endomorphism of ¢ ¢. We remark that this map @, with special choices for q, is
particularly useful in the treatment of certain approximation problems for
convex bodies, see Berg [1969], Weil [1975b]. Further constructions for
endomorphisms of ¢ ¢ were described in Schneider [1974a]. The main theme of
that paper was the investigation of additional assumptions by which, from the
variety of endomorphisms, those with a simple geometric meaning could be
singled out. The following results were obtained. Here we assume d > 3.

(13.11) Theorem., (a) Every endomorphism of X is uniquely determined by the
image of one suitably chosen convex body, for example, a triangle with at
least one irrational angle.

(b) Let ®:.4°$— ¢ be a Minkowski additive and continuous map such
that ®(aK) = a®(K) for every nonsingular affine transformation a of E°.
Then

O(K)=K + A[K +(—K)] for Kexg,

where A > 0 is a real constant.

(c) Let @ be an endomorphism of . If the image under ® of some at least
one-dimensional convex body is a point, then ®(K) = {s(K)} for K e X" If
the image under ® of some convex body is a segment, then

O(K) = A[K — s(K)] + u[—K + s(K)] + s(K) for Ke

with real numbers Au > 0,4 + > 0.

(d) The only surjective endomorphisms of X ¢ are given by

O(K) = A[K — s(K)] + s(K) for Kex*

with A # 0.
(¢) If ® is an endomorphism of A ¢ satisfying W, (®(K)) = W (K) for some
ke {0,,....d — 2} and all K € X9, then

D(K) = e[K —s(K)] +s(K) for Kex*

wherege {1,—1}.
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The proof uses a combination of elementary facts from harmonic analysis (for
the rotation group acting on the sphere ) with convexity arguments.

So far the invariance or equivariance with respect to rigid motions has played
an important role. It is clear that, in absence of such an assumption, particular
Minkowski additive functions can only be characterized if fairly strong
assumptions are imposed. Here is an example for such a result, due to Schneider
[1974c]:

(13.2) Theorem. Let T:o¢ — 2% (d = 2) be a Minkowski additive map satisfy-
ing V(T(K)) = V(K) for all K € X . Then there exists a volume preserving
affine map a:E® - £ such that T(K) is a translate of aK for eachK € 4.

Finally we mention that Valette [1974] has studied the continuous maps
F: ¢ - % ¢ which commute with affine maps and, instead of being Minkowski
additive, only satisfy F(K, + K,) 2 F(K,) + F(K;) for K, K,eox

§14. Volume and centroid

From now on, it seems convenient to define that “valuation”, without further
specification of the range, means real-valued valuation.

We shall now review the characterization theorems for volume. The essential
uniqueness of Haar measure, applied to the additive group of EY, gives the
following well-known uniqueness theorem: If ¢ is a translation invariant
(positive) measure on the Borel sets of £ with ¢(C) = 1 for some fixed unit cube
C, then ¢ is the volume (Lebesgue measure). From a geometric point of view one
would, of course, not want to assume from the beginning that ¢ is defined on the
Borel sets and is g-additive, but rather that ¢ is a simple valuation defined on ¢
or X%, We shall often consider only ¢ as domain, since the assumptions which
we have to impose in order to guarantee uniqueness will afterwards also give
uniqueness if "¢ was the original domain. If ¢ is a simple valuation on ¢, then
we know from (5.19) and (5.20) (or from the simpler version in Hadwiger [1957],
p. 81) that @ has an additive (simple) extension to the set U(2¢) of polyhedra, and
if ¢ was invariant under translations or rigid motions, then the extension also is.
If ¢ is nonnegative, then the extension is obviously monotone, that is, it satisfies
®(A) < ¢(B) for A = B (A,B e U(2?)), and hence also nonnegative. Thus for
simple valuations it makes no difference whether they are defined on #¢ or on
U(£%), and whether they are assumed nonnegative or monotone. For these
valuations we have:

(14.1) Theorem. Let @ be a translation invariant, nonnegative, simple valuation on
P4 Then ¢ = aV with some real constant a = 0.

The easy proof is well-known from analysis text books, see. e.g.. Maak [1960],
§46, Satz 8; see also Hadwiger [1955b], p. 47. These and similar proofs for the
characterization of elementary volume cannot be considered as strictly elemen-
tary from a geometric point of view, since they use infinite processes for simple
geometric figures, like “exhaustion™ or polyhedral approximation. By Dehn’s
theorem, no proof can work with finite dissections alone, without some limit
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process, even if translation invariance is sharpened to rigid motion invariance.
But one can give a proof where the unavoidable limit process is only used to
establish the essential uniqueness of a monotone solution of Cauchy’s functional
equation, while the geometric part uses only finite dissections of polytopes. A
proof which is clementary in this sensc was given by Hadwiger [1950] (ford = 3
also [1949a]), [1957], 2.1.3.

We digress a bit and consider the corresponding problem in spherical and
hyperbolic spacc. For the notion of convex polytope in these spaces the rcader
may consult Bohm-Hertel [1980]. These authors also discuss at length the
problem of an elementary theory of volume in those spaces, and they give such a
proof of existence and uniqueness in dimension two. The uniqueness problem in
general is the following: Suppose that ¢ is a nonnegative simple valuation on the
convex polytopes of RY (this stands for either euclidean, spherical, or hyperbolic
space of dimension d) which is invariant under the motion group of R% Is ¢ a
constant multiple of the usual volume? All the methods of proof mentioned
above for R® = E® make essential use of the vector space structure of E¢ and
hence do not extend to non-cuclidean spaces. An affirmative answer for spherical
spacec was given by Schneider [1978], Th. (6.2). The proof, which can be
generalized to yield an abstract version of the result for compact homogeneous
spaces (Schneider [1981]), relies heavily on compactness. For hyperbolic space,
too, the answer is in the affirmative, although no proof seems to be known which
is as directly geometric as Hadwiger’s in the euclidean case. We sketch a less
elementary proof which works for all three types of spaces.

Suppose that ¢:2(R?) — R (where 2(R?) denotes the set of convex polytopes
in R%) is a nonnegative simple valuation, which is invariant under the motions of
Re. For an arbitrary subset A < RY, define ¢*(A): = inf Y ¢(P,), where the
infimum extends over all sequences (P,),.n of convex polytopes in R¢ which
cover A. Then ¢* is an outer measurc on R¢ (see, e.g., Munroe [1953], ch. II). If
A,B = R? are such that their distance (with respect to the usual metric on R9) is
positive, then it is easy to see (using coverings by convex polytopes with
sufficiently small diameters) that ¢* (A UB) = ¢* (A) + ¢* (B). Thus ¢* is a
metric outer measure and hence all Borel sets of RY are ¢*-measurable (Munroe,
loc. cit.). Since ¢ is a simple valuation, it has an additive extension to the ring
generated by the convex polytopes. We assert that the extension, also denoted by
@, is a premeasure (i.e., countably additive). This can be shown as in the usual
construction of Lebesgue measure on F* (e.g., Bauer [1978], p. 29), as soon as the
following has been proved: () To any convex polytope P = R¢ and any ¢ > 0,
there exists a convex polytope P’ = RY such that P’ < int P and o(P) —
o(P’) < & 1f P and ¢ are given, let P, be obtained from P by “pushing a facet” of
P towards the interior of P. For all P, sufficiently close to P we have ¢(P\P,) <
&/n, where n is the number of facets of P. Otherwise, the nonnegativity and
motion invariance of the extension ¢ would casily yield a contradiction (since a
large number of congruent copics of a “sufficiently flat™ P\ P, can be packed into
some fixed polytope). Continuing in this way, (*) is proved. After that, it follows
that the restriction @ of ¢* to the p*-measurable sets is a measure which extends
¢{c.g., Bauer [ 19781, §5). Since by construction it is invariant, its restriction to the
Borel sets must be a constant multiple of Haar measure, from which the assertion
follows.
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We return to euclidean space and consider characterizations of volume t
usc assumptions different from those of (14.1). Hadwiger [1957], p. 79, pro
that a .éEu:O: (not necessarily simple or nonnegative) on ¢ ««Eor
translation invariant and homogeneous of degree d, must be a constant multi
of volume. A different invariance property was supposed by Hadwiger [1970]
the course of proving a more general theorem he showed: A nonnegative sim
<m_=u.:o= on 24 which is invariant under volume preserving linear maps of
;oo?:m.go origin fixed) must be a constant multiple of volume.

More Important, with a view to the extension to quermassintegrals (see §15,
a characterization of volume where the nonnegativity is replaced by continu
with respect to the usual Hausdorfl metric for convex bodies. The follow:
theorem is due to Hadwiger [1952d], [1957], p. 221.

(14.2) ‘:.Moqo:.. hm.a @ be arigid motion invariant, continuous, simple valuation
A S Then ¢ is a constant multiple of volume.

It seems to be unknown whether here 2'¢ can be replaced by #9. Hadwige
prool works with polytopes for a long while, but at the end it essentially us
(13.2). An .mmm::m:é answer to Problem (13.3) would, therefore, yield
corresponding generalization of (14.2). We remark that in (14.2) it would not
Mw_mmﬁoi to assume translation invariance instead of rigid motion invariance, s

An apparently hard problem is the analogue of (14.2) in non-euclidean spac

evidently the proof does not carry over. We restate P bl )
Schneider ﬁ—@u\ou y roblem 74 of Grub

(14.3) mu_.ov_.n_:. Let ¢ be a rotation invariant, continuous, simple valuation on t
%:S..Rm: y convex polytopes or convex bodies in Q41 [s @ a consta
multiple of spherical volume?

Partial 5»35&...0.: can be obtained from §8. Instead of considerin g spherical
convex polytopes, it is convenient to use the convex polyhedral cones with apex
which they generate. Theorem (8.8) and the remarks following it imply:

(14.4) Theorem. If d is odd, then a rotation invariant simple valuation ¢

polyhedral cones can be expressed as a linear combination of the valuatio
on proper product cones.

In particular, this can be used to give an affirmative answer to Problem (14.
for d = 3. But 2:&:2 (14.4) is helpful for the general case remains open. )
We nozo_zan this paragraph with a view to vector valued valuations. Some ¢
the characterizations of volume in euclidean space have counterparts for th

centroid (centre of gravity). For a bounded measurable set K < [ wi
the centroid is defined by = Ewth Vi) 2
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(so that, in the terminology of §3, V(K)c(K) = z(K) = go(K) for K € %). Clearly
Vc is a simple valuation with values in E%, We recall that 2§ < ¢ (X'§ < %) is
the subset of polytopes (resp. convex bodies) with interior points. The following
theorem of Schneider [1973] may be viewed as a counterpart to (14.1); the proof
is also similar.

(14.5) Theorem. Let £:U(2P3) — E be a translation equivariant function such that
f(P) lies in the convex hull of P and Vf is a simple valuation. Then f(P) is the
centroid of P for P &€ U(29).

And the following result of Schneider [1972b] (p. 21 1)is a counterpart to (14.2):

(14.6) Theorem. Let f:4"3 — E be a rigid motion equivariant continuous function
such that Vf is a valuation. Then {(K) is the centroid of K for K € o478,

§15. Quermassintegrals, mixed volumes, moment vectors,
curvature measures

The following famous theorem of Hadwiger, which characterizes the linear
combinations of quermassintegrals, is certainly the central result in a theory of
valuations on convex bodies.

(15.1) Theorem. If ¢ is a continuous and rigid motion invariant valuation on A 4
then .
(152) ¢(K)= Y c¢,W(K) for Ke A

i=0

with real constants cg,...,Cq.

There is a companion to (15.1) with continuity replaced by monotoneity (with
respect to set inclusion):

(15.3) Theorem. If ¢ is an increasing and rigid motion invariant valuation on X °,
then (15.2) holds with nonnegative real constants cg,....Cq4.

By means of (11.5), which was proved by McMullen [1977], it has later become
clear that (15.3) can be deduced from (15.1).

Results of this type were first considered by Blaschke [1937], §43. He
investigated the rigid motion invariant, locally bounded valuations on U(2%),
but in order to obtain a representation of type (15.2), he had to impose an
additional assumption, namely that the volume part be invariant ::ann volume
preserving affinities. Since the other quermassintegrals do not have this property,
the assumption, which is dictated by the method of proof, scems artificial;
moreover, it can only be formulated in the course of the proof, since a “volume
part” of the valuation is not defined from the beginning. mmaimmﬂ proved (15.1)
for d = 3 in [1951a] (see also [1955b], §16), and for general d in [1952d]. The
proof of (15.3) was then given in Hadwiger [1953a]. Both proofs were reproduced
in Hadwiger [1957], 6.1.10 (sec also Leichtweif3 [1980], §17). It may be 85.&._2&
that the proof needs only the weak valuation property (without first having to

Y

Valuations on convex bodies

deduce the valuation property). Some (obvious) supplementary remarks to (15
were published by Miiller [1967].

Hadwiger’s proof of (15.1) uses induction with respect to the dimension a
relies on (14.2) and thus on (13.2). [t is, therefore, necessary to consider valuatio
on J¢, whilc the proof would not work if 2¢ were the domain. This is also tr
for Hadwiger’s proof of (15.3). The following seems to be open.

(15.4) Problem. Let ¢ be a rigid motion invariant valuation on 2 which is eith
continuous, or increasing, or locally bounded, or nonnegative. 1s it true t}
@(P) = Y .c;W,(P) for Pe 2° with constants cq,...cq?

Questions of this type were already suggested in the work of Hadwiger. T
assumption of nonnegativity, known to imply monotoneity only in the simp
case, was supposed by Spiegel. Both assumptions, local boundedness ar
nonnegativity, appear particularly natural in the case of polytopes. They a
however, not appropriate for general convex bodies: For K € 2%, let ¢(K) be t|
sum (finite or infinite, but obviously well defined) of the (d — 1)-volumes of t|
(d — 1)-dimensional faces of K (and twice the (d — 1)-volume if K is of dimensic
at most d — 1). Then ¢ is a rigid motion invariant valuation which is local
bounded and nonnegative, but not a linear combination of quermassintegrals

The characterization theorem (15.1) has important applications in integr
geometry. The principal idea also goes back to Blaschke [1937]. To demonstra
this method in a simple case, consider formula (3.11). The integral on the righ
hand side, considered as a function of K, clearly defines a rigid motion invaria
continuous valuation on ¥4, hence it can be expressed as a linear combination
quermassintegrals. Choosing for K a ball with variable radius, one then easi
calculates the coefficients and thus proves (3.11). Hadwiger [1950d], [1955b
[1956], [1957] used this approach systematically for the derivation of several o
and new integral geometric formulae. An interesting application of (15.1) of
different kind appears in Matheron’s [1975] work on random sets.

We mention two variants of (15.1). As described in §5, Groemer [1972] h:
defined extensions of the quermassintegrals in the form of continuous line:
functions on a certain vector space A? of so-called approximable functions on [
From Hadwiger’s theorem he could then deduce a corresponding characte
ization theorem for the extended quermassintegrals. Baddeley [1980], motivatc
by requirements of stereology, developed an integral geometric theory of certa
absolute curvature integrals, and he proved a characterization result analogot
to, and motivated by, Hadwiger’s theorem.

Results analogous to Theorems (15.1) and (15.3) should be expected to hoid i
noneuclidean spaces. Let us state this as a problem for spherical space. F¢
spherically convex polytopes we defined the functionals ¢, by (3.31), and w
mentioned that they have continuous extensions to general spherically conve
sets. The functionals ¥, defined by (3.32) are increasing.

(15.5) Problem. Let ¢ be a rotation invariant valuation on the spherically conve
sets {or polytopes) in the sphere Q. If ¢ is continuous, is it a linec
combination of the ¢, with constant coefficients? If ¢ is increasing, is it
linear combination of the . with nonnegative coefficients?
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The first part could be answered in the affirmative if (14.3) were true, since the
induction part of Hadwiger’s argument casily carries over. .

We turn back to euclidean space and consider analogues of Hadwiger’s
theorem for the other particular valuations described in §3. A result which closely
parallels (15.1) exists for the quermassvectors q, defined by (3.23). These are
continuous, rotation equivariant E-valued valuations (F-valuations, mon.mro:v
as is clear from the definition. The behaviour under translations is exhibited by
(3.24), namely

¢GK+t)=q(K)+ W,(K)t for Kex® and teld

From the characterization (13.4) of the Steiner point s = q,/x4 one can deduce
the following stronger version, where Minkowski additivity is replaced by the
valuation property (Schneider [1972b]). If one assumes that f commutes m.__mo
with similarities, then a simpler reduction to (13.4) is possible, see Hadwiger
[1971].

(15.6) Theorem. Let f be a rigid motion equivariant continuous E*-valuation on
XS, Then {(K) is the Steiner point of K for K e 4.

From this result and Hadwiger’s theorem (15.1) it is not difficult to conclude the
following.

(15.7) Theorem. Let f be a rotation equivariant continuous E%-valuation on X ¢
such that f(K + t) — f(K) is always parallel to t. Then
d

(K)=Y caq(K) for Kex®

i=0
with real constants c,...,c4.

The proof may be found in Hadwiger-Schneider [1971] m:a. Schneider
{1972b]; these papers also contain applications to integral geometric formulae
for the quermassvectors. o

Also the area functions and curvature measures satisfy characterization
theorems which may be compared with Hadwiger’s theorem (15.1). Hromo were
proved by Schneider [1975a], [1975b], [1978] and were also applied to the
derivation of integral geometric formulae. Since these results have already been
reviewed in Schneider [1979] (§§6,7), we refer the reader to that survey. A new
application of the characterization theorem for area ?:.o:osm to a problem on
geometric probabilities was recently made c.w Vogiatzaki.

Since the quermassintegrals are special mixed <@_=Bn.m, one may ask whether
more general mixed volumes can be characterized in a similar way. O.:G a very
few special results in this direction are known. Fary [1961] characterized, for a
given convex body U, the functionals

4
¢:K+ Y ¢,V(KiUd — i)
<o

with ¢,,...,cq € R as the translation invariant, continuous valuations ¢ satisfying
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»(K) = (L) whenever V(K,i;Ud — i) = V(L,i;U,d — i) fori =0,...d. Cle:
an assumption of this kind cannot be omitted, but it makes the wt
characterization theorem appear slightly artificial. Firey [1976] replaced
valuation property by Minkowski linearity and he showed that an increas
function @:¢"% - R with this property which is zero on one-pointed sets must
of the form

oK) = VIK,EK,p ~ 15,4 ,...,54)

with an essentially unique convex body K and pairwise orthogonal segme
Sp+15--,Sq Of unit length which span the orthogonal complement of the affine
of K. Obviously the assumptions of this theorem are quite strong, implying
particular, that ¢ is translation invariant, nonnegative, and continuous; toget
with the linearity this opens the way to an application of the Riesz representati
theorem.

Further characterization results related to mixed volumes appear in §16.

§16. Translation invariant valuations

Hadwiger’s theorem (15.1) characterizes the (linear combinations of) querma
integrals as those real valuations on "¢ which are continuous and invariz
under rigid motions. Among the various possibilities of relaxing the assumptio:
the condition of translation instead of motion invariance seems both naturala
important. Translation invariant or covariant valuations are the topic of t
present section. Theorem (14.1) is an example where translation invarian
together with some other conditions, is still sufficient to characterize a particul
valuation. But without such strong additional assumptions, translation invaria
valuations abound, and a classification seems difficult.

Let us first consider some examples. Generally speaking, any representation.
the quermassintegrals, suitably modified, will yield more general translatic
invariant valuations. For polytopes P € 2¢ we have

(16.1) V/(P)= M HELP)V (FT)

by (3.30). Two modifications offer themselves. We may replace V, on the righ
hand side by a real function which, restricted to the polytopes in any
dimensional affine subspace, yields a simple valuation in that space. The resultin
function is a valuation on 2. In fact, every valuation on ¢ {not necessaril
enjoying an invariance property) can be represented as a finite sum of suc
valuations (Hadwiger [1953b]). In the translation invariant case, a special suc
representation was described and used in §10. On the other hand, the extern:
angle y(F",P) in (16.1) was defined via the notion of spherical volume, We ma
replace this by other simple valuations on spherical polytopes and obtain
translation invariant valuation on #2° For the characterization of suc
valuations, see Theorem (16.6) below.

Now we consider general convex bodies. Definition (3.7) of the quermass
integrals as special mixed volumes generalizes to

(16.1) o(K): = V(K,p;6) for K e x¢
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wherepe{l,...d -1} and ¢ = (Kp+15--Kq) is a fixed (d — p)-tuple of convex
bodies. This yields a translation _=<w:w2 valuation ¢ on o which is increasing
and (hence) continuous. The integral geometric approach to quermassintegrals
motivates the definitions (3.12) and (3.13) of valuations on J¢'¢ which are
translation invariant if ¢ is. Finally, the mixed area functions defincd by (3.14)
can be used to generalize (16.2) by

(16.3) o(K): = | g(u)dS(K,p;%;u) for Ke ™,
Q

where pe{l,...d — : € =(KpsyKyoy) is a fixed (d — p — 1)-tuple of
convex bodies, and g is a fixed continuous real function on Q. It follows from the
properties of the mixed arca functions that ¢ is a continuous translation
invariant valuation on " which is homogeneous of degree p. The special case

(16.4) ¢(K): = .,. g(u)dS,_, (K;u) for Kexd
Q

with an odd continuous function g yields a simple valuation. This shows that in
(14.2) the rigid motion invariance is indispensable (and also that the last sentence
on p. 387 of Hadwiger [1952¢] is erroneous).

For each of these special classes of translation invariant valuations it would be
interesting to have an axiomatic characterization. Let us now describe the known
results.

First we consider the translation invariant valuations on ¢ which are weakly
continuous {see §11). Here a complete description is available. The case of simple
valuations goes back to Hadwiger [1952¢]. It extends, without change of proof,
to valuations with values in a real topological vector space Z'. To describe the
result, recall that %° is the Stiefel manifold of s-frames U = (u,...,u,), that is,
ordered orthonormal s-tuples of vectors, in E%. We call a function #: %* — Z odd if

MEL U, 08 Ug) = & - En(uy,...,u,)

wheneverg, = +1(i = 1,...,5). For p e 2% and U € %°, the face Py, was defined in
§6; by convention, P, = P. Then we have (Hadwiger [1952¢]):

(16.5) Theorem. A function @:#*— % is a weakly continuous translation
invariant simple valuation if and only if there is an expression

e%vnm Y V{Pyn(U) for Pe,

=0 ueWa--
where y,: 4" — X is an odd function (r = 0,....d — 1; n4 a constant).

Clearly the sums occurring in {16.5) are finite. Note that the term for r = 0
vanishes identically when d > 1.

Essentially by employing the method used in §10, McMullen [1982b] extended
Hadwiger’s result to non-simple valuations:

(16.6) Theorem. A function @:#°— 4 is a weakly continuous translation
invariant valuation if and only if there is an expression
d

eP)=3Y Y V(PP for Pepl

r=0 Fe#r ()
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Here, "' denotes the family of r-faces of P, A, is a simple valuation ol
(d — r)-cones,-and A,(F,P) = 1(N(F,P)), where N(F,P) is the cone of al
outer normal vectors to P at F.,

Further extension is possible to translation covariant valuations (McMullen
loc. cit.). According to §11, a valuation ¢: 2% — & is translation covariant if ther
exists a map ©:2¢ — Homg(E%,Z) such that o(P + t) — ¢(P) = ®(P)tfor t € E
and Pe 24 If ¢ is weakly continuous, then the rational linearity of & extend:
to real linearity, so that ®(P) e Homg(E%,2') = Hom(E4,Z'). Moreover, @ is ¢
weakly continuous translation invariant valuation, and this permits to deduc
the following from (16.5) and (16.6). Here the moment vector m,,,(P)of anr
dimensional polytope P in [ is defined by

m,, ((P): = M. xdx,

where the integration is with respect to r-dimensional Lebesgue measure in aff P

(16.7) Theorem. A function @:P°— I is a weakly continuous translatior
covariant simple valuation if and only if there is an expression
d

e(P)= Y 3 [H(Um,, (Py)+ V(Py)n(U)],

r=0 Uedd-r
where H,: %% ™" — Hom(E%,Z) and y,: %" — X are odd functions.

(16.8) Theorem. A function @: P4~ is a weakly continuous translatior
covariant valuation if and only if there is an expression
d

¢(P) = Mo . ) . [A(F,P)m, . ((F) + V(F)4,(F,P)],

=0 Fegr(P)
where A_is a simple ' -valued valuation on normal cones of dimensiond — |
and A, is a simple Hom(E®,Z')-valued such valuation.

Let us now turn to translation invariant (real valued) valuations on . The
problem of characterizing the translation invariant continuous valuations or
Heis open, but one has some partial results. A complete explicit representation is
known in the two-dimensional case. We recall from §3 that S, (K;-) is the p-th
o&nﬂmam function of K € o4, itis a positive measure on Q = D,T_ ForK e #°
or ) * let

(16.9) @(K)=a+ | g(u)dS,(K;u) + bV,(K),
D~

where a,b are real constants and g is 4 real function on Q! so that the integral
exists for all K. Then ¢ is a translation invariant valuation.

(16.10) Theorem. If ¢ is a locally bounded translation invariant valuation on #*
then constants a,b and a bounded function g exist so that (16.9) holds for
K e 2?2,
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If @ is a continuous translation invariant valuation on X %, then
constants a,b and a continuous function g exist so that (16.9) holds for
Kex?

This was proved by Hadwiger [1949b], {1951b]. Actually, he did not use the
area function S, (K;-), but his results are easily seen to be cquivalent to the above.
The function g is uniquely determined by the valuation ¢ up to a summand of the
form (v,-» with a constant vector v. If ¢ in the second part of (16.10) is even
Minkowski additive, then (16.9) holds with a = b = 0. This result was used to
obtain (13.9), in the course of the proof of Theorem (13.7).

For d > 3, no such explicit representation is known. If ¢ is a continuous
translation invariant valuation on %™, then it follows from §§10, 11 that ¢ =

¢=0 @,, where @, is a continuous translation invariant valuation on 5 which
1s homogeneous of degree r. By Hadwiger [1957], p. 79, ¢, is a constant multiple
of volume, and clearly @, is constant. Thus there remains the problem of
determining the continuous translation invariant valuations on "¢ which are
homogencous of degree re {1,...,d — 1}. Forr = d — 1 the following solution
was given by McMullen [1980].

(16.11) Theorem. Let ¢ be a continuous translation invariant valuation on ¥ ¢
which is homogeneous of degree d — 1. Then there is a continuous function g
on the unit sphere Q such that

oK) = gw)dSy_, (K;u) for Kexs
Q

Thus (16.3), with p =d — 1, describes the general translation invariant
valuation which is continuous and homogeneous of degree d — 1. If one prefers
an expression in terms of mixed volumes, that is, valuations of type (16.2), one can
deduce from (16.11) (see McMullen, loc. cit.) that to any such valuation ¢
correspond sequences (L;); ., (M;)icn in 27 ¢ such that

o(K) = lim [V(K,d — LL) — V(K,d — 1;M,)]
forKexs

For degrees p e {1,...,d — 2}, no analogue of (16.11) is known. Clearly any
finite linear combination of functions of type (16.3) leads to a continuous
translation invariant valuation on "¢ which is homogeneous of degree p, but
one cannot obtain the general such valuation in this way. Also, it seems difficult to
draw any further conclusions from Theorem (16.6) in case ¢ is continuous.

Only for p = I and under a stronger continuity assumption has one a result
(McMullen [1980]; compare also Schneider [1974b], p. 306). If ¢ is a uniformly
continuous translation invariant valuation on % ¢ which is homogeneous of
degree 1, then one easily deduces from the Riesz representation theorem that
there exists a signed Borel measure p on Q such that

¢(K) = [ h(Ku)du(u) for Ke s
0

Hence, there exist L,M € ¢ such that
oK)= VIK;Ld — 1) — V(K:M,d — 1).
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But the assumption is fairly strong, and there exist continuous translatior
invariant valuations on )9, homogeneous of degree 1, which are not uniformi
continuous; for an example, scc Schneider {1974b], p. 306.

§17.  Lattice invariant valuations

A function on subscts of E* which is invariant under the translations of the
integer lattice Z%, will bricfly be called lattice invariant. The lattice poin
enumerator G, the functionals G, appearing in (4.1), and the weighted lattice
point numbers are natural examples of lattice invariant valuations. In this sectior
we consider, under the aspects of characterization and representation, the lattice
invariant valuations on 22, the class of lattice polytopes in E% and on 2§, the
class of polytopes with vertices in Q.

It is an interesting challenge to prove characterization theorems in the spirit of
§§16, 17 for valuations on 2. The following result of Betke [1979; 1982] may be
viewed as an analogue of Hadwiger’s theorem (15.1).

(17.1) Theorem. Let ¢ be a real valuation on P which satisfies the inclusion-
exclusion principle and is invariant under unimodular transformations. Then
d

@(P)= Y a,G{(P) for Pe}

i=0

with real constants a,,...,a,.

A unimodular transformation of E¢ is a volume preserving affine map of F¢
into itself which leaves the lattice Z¢ invariant. Due to Stein’s {1982] result, the
assumption that the valuation ¢ satisfy the inclusion-exclusion principle can be
omitted.

We turn to lattice invariant valuations on 2§, Some of the structural results of
§16 have analogues for this case; these were used to prove Theorems (10.7) and
(12.7). The following can be proved along the lines of Hadwiger’s characterization
of weakly continuous translation invariant simple valuations.

(17.2) Theorem. A function ¢: P4 — R is a lattice invariant simple valuation if
and only if there is an expression

d
A\v:“vv = M U Mﬂ <~QVCY§.AC'TCV .\.Qﬁ wm.ﬁ\m‘
r=0 Ue -r
where n,(U,Py) is odd in its first argument and depends only upon the
translation class modulo Z° of the translate of the subspace orthogonal to
the frame U which contains the face Py,.

This was proved by McMullen [1978]. As a consequence, one has (10.7) for
simple valuations, and then the methods of §10 can be adapted to this case to
yicld (10.7) in general.

Inspection of the proof of (17.2) shows that the range R of the valuation @ may
be replaced by an arbitrary Z-module Z'. As remarked in McMullen [1982b], it is
further possible to extend Theorems (16.6), (16.7) and (16.8) to lattice invariant or
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covariant valuations on 2%, as long as the coefficients 4,,A,,H, and 5, exhibit the
same additional dependence as the 5, in Theorem (17.2); further, Hom(E%, %) is
replaced by Hom,(Z4,7).
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Remarks and further references
(added in proof)

An application of the Euler characteristic of Hadwiger’s normal bodies, which were mentioned in §5,
to a question in probability theory may be found in

Adler, R. J,, Hasoler, A. M., Level crossings for random fields. Ann. Prob. 4(1976), 1-12.

Adler, R. J., The geometry of random fields. Wiley, Chichester, etc. 1981.

An additive extension of Federer’s curvature measures to certain (but not all) finite unions of sets of
positive reach was recently studied by

Zihle, M., Curvature measures and random sets I {to appear).

The expression of Weil [1981] in §5 has been extended (and the proof corrected) by

Goodey, P. R., W. Weil, Distributions and valuations (to appear).

They show that, if ¢:(X™%) - Risany continuous multilinear function, then there is a distribution T

on ('Y, such that
@K yK) = T(A(K, ) x - x h(K,,"))

The probiem of finding the syzygies between the Hadwiger functionals, discussed at the end of §6, isin
effect settled in Proposition 3.16 of

Dupont, J. L., Algebra of polytopes and homology of flag complexes. Osaka J. Math. 19 (1982),
599-641. )
The recently published volume “Convexity and related combinatorial geometry”, ed. by D. C. Kay
and M. Breen, Marcel Dekker, New York etc. 1982, contains two articles which are concerned with
valuations on polytopes:

Sallee, G. T., Euler's theorem and where it led; pp. 45-55.

Spiegel, W., Nonnegative, motion-invariant valuations of convex polytopes; pp. 67-72.

In the discussion in §10, it was necessary in following McMullen’s approach to assume that 4’ was a
real vector space. It is worth remarking, though, that a rational vector space or abelian group
(regarded as a Z-module) 2 can be embedded in a real vector space % = RA', I'; ¥ inherits its real
vector space structure from the first component of the tensor product, and 7 itself can be identified
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with {1} x &. We can now pass from the general valuation e to the simple valuations 4, and back
using the angle-sum relations. Analysis of the proof of (7.1) {compare (6.7)) shows that we obtair
expressions of the form
‘4 (n
Py =Y . (P)

=0 r
where each ¢, #¢ — 1 is a continuous translation invariant valuation. If & is a rational vector space.
then we obtain the required rational polynomial expansion of (10.3).
Considerable progress with some of the problems mentioned in §15, 16 has been achieved recently. In
the work of Goodey and Weil quoted above (for r = 1) and by U. Betke and Goodey (in preparation,
forre {2,....d — 2}),itis shown that,if ¢ is a continuous translation invariant valuation on X%, which
is homogeneous of degree r, then there exist sequences (L;};n» (M;}en in X%, such that

o(K) = lim [V(K,r;Bd-1-r;L,) — V(K,r;B,d-1-r;M,)],

uniformly for K in a compact subset of X This exactly generalizes the reformulation of (16.11)
(immediately following), and proves a suitably modified conjecture of McMullen [1980]. Betke and
Goodey make use of (16.6) to show that, if a polytope P is identified with its r-th order area function
S,(P;), then « induces a continuous linear mapping on the space spanned by such functions. The
method of Betke and Goodey also provides a new approach to Hadwiger’s characterization theorem
(15.1), as well as an aflirmative solution to the continuous case of Problem (15.4).
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