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ON THE BETTI NUMBERS OF REAL VARIETIES -

J. MILNOR

The object of this note will be to give an upper bound for the sum
{ the Betti numbers of a real affine algebraic variety. (ddded in

-opf. Similar results have been obtained by R. Thom [10].)

Let V be a variety in the real Cartesian space R™, defined by poly-

~.anial equations

fl(xl) c 'aer) =0,-- '7fp(x17' v

y Xm) = 0.

i e gth Betti number of V will mean therank of the Cech cohomology

_oup He(V), using coefficients in some fixed field F.

THEOREM 2. If each polynomial f; has degree <k, then the sum of the

i numbers of Vis Sk(Qk—1)m%

Analogous statements for complex and/or projective varieties will

¢ piven at the end.

[ wish to thank W. May for suggesting this problem to me.

REMARK A. This is certainly not a best possible estimate. (Compare
wemark B.) In the examples which 1 know, the sum of the Betti
-umbers of V'is always k™. Consider for example the m polynomials

filwy, - oy wm) = (0= D — 2) » - - (s = &),

cwre =1, 2, - - -, m. These define a zero-dimensional variety, con-

“ting of precisely 2™ points.

"he proofs of Theorem 2 and of Theorem 1 (which will be stated

aer) depend on the following.

Lesya 1. Let Vo C R™ be a zero-dimensional variety defined by poly-

ol equations fi=0, - -

-, fm=0. Suppose that the gradient vectors

Wy dfm are linearly independent af each point of Vi Then the
wanber of points in Vy is at most equal to the product (deg fi)(deg f2)

~+ - (deg fn)-

Proor. Approximate fi, - - -, fu bv real polynomials 7y, - -

'yFm

1 the same degrees whose cocfficients are algebraically independent.
X . . . .
Sow consider the variety Ve in the complex Cartesian space C™ de-

tued by the equations Fi=0, - -

- . F,.=0. It follows from van der

Waerden [9, §41] that the number of points n Vg is equal to
Ao fi)(deg fa) - - - (deg fm). Since each point of 17 lies closc to somie

‘il point of Vg, this proves Lemma 1.

Received by the editors January 17, 1963.
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. 276 J. MILNOR .

Next let W be a compact, nonsingular hypersurface in R™, defi-., .
by the equation f=0, where f is a polynomial of degree 2.

TuEOREM 1. The sum of the Beiti numbers of W is <2k(2k—1)m

Similar estimates have been given by Olneinik [5].

The proof follows. Consider the function n: W—S™*! which assigng
to each point of W its unit normal vector grad f/lgrad fl . According
to a theorem of Sard, the set of critical values of n has measure 7.;¢
in Sm1 (See [7] or [6, p. 10].) Hence, after rotating the coordin:.
system if necessary, we may assume that the two points (0, - - -, 0, + 1
of S™! are not critical values of n. In terms of local coordinatc.
%1, * * *, Um1 00 W, this means that the matrix (On./du;); j<n is non-
singular whenever n=(0, - - -, 0, +1).

Now note that the “height function™ (x1, - -+, Xm)—%m o W has ny
degenerate critical points. In fact near each critical point of this func-
tion we can choose local coordinates 3, - - -, #m—y so that

X1 7= Uy, vty Ul = Umey, X = WUy, + 0y Ume),

where k is the height function. Then

n(ulr T T um—l)

= & (8h/9u1, « + -, Oh/ Uy, —1)//(D_(8h/0u,)? + 1),

hence
on/ou; = + 3%h/dudu;

at each critical point. Therefore the matrix (9%h/8u,0u,) is nonsingu-
lar; as was asserted.

Now applying Morse theory to the height function h: W—R, it
follows that the sum of the Beiti numbers of W is less than or equal to
the number of critical points of h. (See for example Seifert and Threlfall
[8, §§5 and 8].)

The critical points of & can be characterized as the solutions of the
m polynomial equations

af/ax1 = 0, tery, 6f/(3xm_\1 = 0, f = 0,
Note that at each critical point of 4 the m gradient vectors
d(of/dx), « - -, d(0f/Ixm-1), df

are linearly independent.
Proor. If we differentiate the identity

f(uh oy Umey, k(ula Tty um—l)) =0
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and then evaluate at a critical point, we obtain
9%f/0xdx; + (8f/8%m) (9°h/du:du;) = 0;

which shows that the matrix (8%/8x:0%;)i,i<m is nonsingular. From
this the linear independence of the m gradient vectors follcws easily.

Now Lemma 1 asserts that the number of critical points of & is less
than or equal to the product _

(deg of/0%:) - - - (deg 9f/0xn-1)(deg f) = (2k — D=2k

herefore the sum of the Betti numbers of W is less than or equal to

this number. This proves Theorem 1.
ReMARKE B. Using a more complicated argument, which applies

\lorse theory directly to the function f, one can prove the following
slightly sharper inequality:
rank H*W < 2k — D"+ 1.

rwice,

Using this, Theorem 2 can be sharpened to the form
rank H*V < 32k — D™+ 1).

ProoF oF THEOREM 2. Let +D™ denote the disk of radius 7 in R™
For each r we will show that H*(VNrD™) has rank <EQE—1)""L
Given numbers €, >0 let K (e, 8) denote the set of points in R™

for which
Ftotfotc@m+ - Fa) S5,

This is a compact set, since it is contained in the disk of radius &/e.
If r<8/e note that v\rD™CK(e, 8). The set of points in R™ for
which the equality

fa ot f el =0

holds will be denoted by 9K (e, 8), and called the boundary of K. This
isan algebraic hypersurface of degree 2k, where k= Max {deg fi, » +
deg f,} =1. This hypersurface is nonsingular if and only if 8% 1s a regu-
lar value of the function fi+ - -~ +f24e|xi2 Hence, keeping ¢
fixed, it follows from Sard's theorem that this hypersurface is non-
singular for almost all values of 8. We will assume henceforth that €
and 6 are chosen so that this is the case.

Applying Theorem 1 to 9K we see that H*(3K) has rank
<2k(2k— 1)1 But the Alexander duality theorem implies that

rank H*(K) = }§ rank HO*(0K).
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(See for example [3, p- 279].) Hence
rank H*K < k(2% — 1)m1,

Now choose sequences {e:} and {8:} so that {e:} decreases mono
tonely with limit zero; so that {6,-/6,»} decreases monotonely y,th
limit r; and so that each 0K (e, 8,) is nonsingular. Then

K(ey, 81) D K(es, 82) D K(esy83) D - - .

with intersection VrDm, (These inclusion relations become ¢fear
if we put the defining inequality for K{(e, 8) in the form

T8+ st < 1,

and note that 5{+1§5i6{+1/€,‘§6i.) Therefore the Cech cohomology
group H*(VMrD™) isequal to the direct limit of the groups H*K (e, ¢
(Compare Eilenberg and Steenrod [1, p. 261].) Hence

rank H*(V N rD™ < lim sup(rank H*K(e,, 5,)) < EQ2k — 1)m1,

There remains one small but tricky point: the passage to the iy j{
as r— . One approach is to make use of the theorem that V cay, be
triangulated. (See for example Lefschetz and Whitehead [2].) It fol.
lows that the Betti numbers of V based on singular homology theory
are the same as those based on Cech cohomology theory. But the
singular homology group Hy(V) is equal to the direct limit of the
singular homology groups of the ctompact subsets! of V. If P CVrv
CVis any compact sub-polyhedron, then the restriction homomor-
phism H*VSI*P has rank Sk(2k~1)": hence the correspondin.
homology homomorphism HyP—HyV also has rank £k(2k—1)»-,
Therefore the limit HyV has rank Sk(2k—1)"1: which completes the
proof.

An alternative approach which does not assume triangulability can
be sketched as follows. By an argument similar to that in [4, p. 338]
one constructs an exact sequernce

0— 'HY (Vv N rD™) —s gy LAV N rD™) — 0,

where £ denotes the inverse limit functor, and g’ denotes its first
derived functor. Since each H&=Y(VN\rD™) is a finite-dimensional

UIn contrast note that the Cech homology group of a space need not be the
direct limit of the Cech homology groups of its compact subsets. A counter-example is
provided by the union of the curve y=sin(1/x)/x and the y-axis,
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.cctor space, an argument similar to that used by Eilenberg and
<geenrod in [1,p. 226 shows ‘that the £ term is zero. Therefore
rank H*V = rank (SH*(V N\ rD™) £ k(2 — 1)m71,

which completes the alternative proof.
As corollaries one obtains similar estimates, presumably rather

crude, for complex or projective varieties.

COROLLARY 1 (THE COMPLEX AFFINE CASE). If Vi CC™ is defined by
rolynomial equations of degree =k, then rank H*V, S kQ2k—1)""L

COROLLARY 2 (THE COMPLEX PROJECTIVE CASE). If VaC Pn(C) is
defined by homogeneous polynomial equations of degree =k, then
rank H*Vy Smk(2k — 1)+,

COROLLARY 3 (THE REAL PROJECTIVE CASE). If VsCPn(R) ts de-

“ined by homogeneous polynomial equations of degree = k, thenrank H* Vs

<mk(2k—1)". Here the initial factor m in this expression is needed
only in the special case when the coefficient field F has characteristic 2.

In order to prove Corollary 1 it is only necessary to think of Vi as
areal variety in R*, To prove Corollary 2 note that the same homo-
geneous equations can be used to define an affine variety Vi CC"*.
The intersection V4 MNS*™+1 is the total space of a circle bundle over
V.. Using the Gysin sequence of this bundle, one arrives at the given
estimate. Corollary 3 is proved in the same way. In this case V//MS"
is a 2-fold covering of Vj; so that the prime 2 plays a special role.

Added in proof. A rather different problem arises when one con-
siders a locus which is defined by polynomial inequalities. In this case
any estimate must depend not only on the degrees of the inequalities
but also upon their number. As an example the p quadratic inequal-
ities
" (JC - P)

1 1
x— 1)tz —, x =2z —, -
( )—10 ( ) 10

on the real line define a locus with p-+1 compcnents.
THEOREM 3. If X CR™ is defined by polynomial inequalities of the
form
H=z0 yfrz20
with total degree d =deg fi+ - - - +deg fy, then
rank A*X £ 12 + (1 + H™ L.

S ————
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ProOF. Again we first replace X by XN\rD», This can be d...
simply adjoining the additional inequality

fo=r—|zl2320.

Given numbers e e+ 0>0, let L{e, 8) denote the set of poy,-
for which

Jotez0,--- f,+e=0
and
(fo+ofit o - (f,4+¢ -520.
This set is compact. Its boundary is obtained by setting only -
last expression equal to zero.

Given € we may assume that § is chosen so that the bound.:.

nonsingular. Therefore the proof (if not the exact statement: .
Theorem 1 shows that

rank H*(0L(¢, 8)) < (2 + d)(1 + d)ym=t;
and hence that

rank H*L(e, §) < (2 + d)(1 + d)=1.

Now choose numbers e, tending monotonely to zero and choose
0<8:< (e;—€:.1)P*1; s0 that L(e1, 81) DL (e, 0)D - - with intersi..

tion XMrD™. As in the proof of Theorem 2, it follows that
rank H*X = lim sup (rank HY (XN rDm) 12 + (1l + g)»,
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