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The object of this note will be to show that the 7-spherc possesses several
distinct differentiable structures.

In §1 an invariant X is constructed for oriented, differentiable 7-manifolds 37
satisfying the hypothesis (*) H*(M7) = H'Q17) = 0. (Integer coefficients are
to be understood.) In §2 a general criterion is given for proving that an n-mani-
fold is homeomorphic to the sphere S". Some examples of 7-manifolds are
studied in §3 (namely 3-sphere bundles over the 4-sphere). The results of the
preceding two sections are used to show that certain of these manifolds are
topological 7-spheres, but not differentiable 7-spheres. Several related problems
are studied in §4.

All manifolds considered, with or without boundary, are to be differentiable,
orientable and compact. The word differentiable will mean differentiable of
class €. A closed manifold M " is oriented if one generator u e H,(M") is dis-
tinguished.

§1. The invariant A(}7)

For every closed, oriented 7-manifold satisfying (*) we will define a residue
class A(M7) modulo 7. According to Thom [5] every closed 7-manifold M7 is
the boundary of an 8-manifold B®. The invariant AM") will be defined as a
function of the index r and the Pontrjagin class p; of B,

An orientation » € Hg(B®, M") is determined by the relation v = 4. Define a
quadratic form over the group H'(B®, M7)/(torsion) by the formula o — (», o).
Let 7(B%) be the index of this form (the number of positive terms minus the
number of negative terms, when the form is diagonalized over the real numbers).

Let pie H'(B®) be the first Pontrjagin class of the tangent bundle of B®
(For the definition of Pontrjagin classes see [2] or [6].) The hypothesis (*) im-
plies that the inclusion homomorphism

:HY(B®, M) — H*(BY
1s an isomorphism. Therefore we can define a “Pontrjagin number”

9(BY) = (v, (7)),

THEOREM 1. The residue class of 2¢(B%) — 7(B®) modulo 7 does not depend on
the choice of the manifold B®.
Define A(3”) as this residue class.” As an immediate consequence we have:
CorOLLARY 1. If N(M7) 5 0 then M7 is not the boundary of any 8-manifold
having fourth Betti number zero.
! The author holds an Alfred P. Sloan fellowship.
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let 7. B2 be two manifolds with boundary M (We may assume thev are
disjoint.r Then €7 = Biu B ix a closed 8-manifold which possesses a differ-
entiable structure compatible with that of B and B . Choose that orientation
+ for € which i= consistent with the orientation », of B} (and therefore con-
istent with —u.0. Let ¢(C7) denote the Pontrjagin number (v, PH(CH).
According 1o Thom 3] or Hirzebruch 2] we have

(") = (v, 1% (/7]);((75) — pf(CS»;

and theretore

(0 (N = T pa(Ch)) = 0 (mod 7).
This plies
" 200N — (Y =0 {mod 7).

Leana 1. Under the above conditions we hare

(24 O = +(BY) — (B
ol
o G = (B} — ¢(B1).
Formulas 1.2, 3 clearly mmply that
2(BY) — (Bl = 2¢(BY) — (B (mod 71:
which is Just the assertion of Theorem 1.

Proor or Lranry 1. Consider the diagram

H'(B,. M) @ H(B., M) e an

~
~

[ . .
B oJ

H(BY @ H'(BY e

Note that for » = 4, these homomorphisms are all isomorphisms. If
o = b e @ ao e (), then

i At = tv. Jh Hai & ag),‘ = {1 @ (—w), o B a:j') = (n, a%) — (. ag').

Thus the quadratic form of €7 is the “direct sum” of the quadratic form of B

and the negative of the quadratic form of Bi. This clearly implies formula (2).
Define a; = /7' pi(By) and a» = 7' pi(Bs). Then the relation

/U(.Zh(:('k)\) = 7)1(31) @ 171(13‘:)

tmplies that
*Rimilarly for v = 4& — 1 a residue class M3 ") modulo su(Ly) could be defined. (See
2 page 140 Fork = 1.2.3. 4 we have sin(Ly) = 1,7, 62, 381 respectively.
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G My @ an) = po(O).
The computation (4) now shows that
(v, P‘i)(;(r"):> = (v, 04{) - (v, (¥§>‘

which is just formula (3). This completes the proot of Theorem 1.
The following property of the invariant X 1s clear.
LeMya 2. If the orientation of M7 is reversed then NM7Y 1s multiplied by —1.
As a consequence we have
COROLLARY 2. If MM ™) 5= O then M7 possesses no orientation reversing diffeo-
morphism® onto itself.

§2. A partial characterization of the n-sphere

Consider the following hypothesis concerning a closed manifold M " (where R
denotes the real numbers).

(H) There exists a differentiable function f:M" — R having only two critical
points xo , T1 . Furthermore these critical points are non-degenerate.

(That is if wy, -, u, are local coordinates in a neighborhood of e (or 1)
then the matrix (9°f, w01 ;) is non-singular at xo (or 11).)

TuroreM 2. If M" satisfies the hypothesis (H) then these exists a homeomorphism
of M7 onto 8™ which is a diffeomorphism except possibly at a single poin.

Added in proof. This result is essentially due to Reeb [7].

The proof will be based on the orthogonal trajectories of the manifolds f =
constant.

Normalize the function f so that f(xe) = 0, f(z;)) = 1. According to Morse
(13] Lemma 4) there exist local coordinates vy, - - -, v, in a neighborhood V of zq
<o that fx) = ¢} + -+« + % for x e V. (Morse assumes that f is of class C’,
and construets coordinates of class (*; but the same proof works in the C*
case.) The expression ds” = dri 4+ -+ + dv} defines a Riemannian metric in
the neighborhood 1. Choose a differentiable Riemannian metric for 3/ " which
coincides with this one in some neighborhood* V' of xo. Now the gradien‘Loff
can be considered as a contravariant vector field.

Following Morse we consider the differential equation

T~ grad /| grad 1|1

In the neighborhood 17 this equation has solutions
(D), - e0) = (@@ -, a®)

for 0 £ ¢t < ¢, where a = (a1, -+, a,) is any n-tuple with Zab = 1. These
can be extended uniquely to solutions z,(t) for 0 £ ¢ £ 1. Note that these solu-
tions satisfy the identity

i A diffeomorphism f is a homeomorphism onto, such that both f and f~! are differentiable.
 This ix possible by [4] 6.7 and 12.2.
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fle )y = ¢
Map the interior of the unit sphere of R” into WM™ by the map
(@0, -, au)’) = (D).

It ix easily verified that this defines a diffeomorphism of the open n-cell onto
M’ — (x). The assertion of Theorem 2 now follows.
Given any diffeomorphism ¢: 8”7 — S an n-manifold can be obtained as
follows,
Coxstruerion (C). Let M(g) be the manifold obtained from two copies of R"
" = (0) under the diffeomorphism

by matehing the subscts R"
1 u
== e g e )
" A

(Such a manifold is clearly homeomorphic to S”, If ¢ is the identity map then
Mgy is diffeomorphic to 87.)

CororLary 3. A manifold M" can be obtained by the construction (C) if and
only of it satisfies the hypothesis (H),

Proor. If 3/"(g) is obtained by the construction (C) then the function

Sy =1 ul*/ (14w =1/ 4+ ol

will satisfy the hypothesis (H). The converse can be established by a slight
modification of the proof of Theorem 2.

§3. Examples of 7-manifolds

Consider 3-sphere bundles over the 4-sphere with the rotation group SO(4)
as structural group. The equivalence classes of such bundles are in one-one
correspondence’ with elements of the group m(SOM)) &~ Z + Z. A specific
isomorphism between these groups is obtained as follows. For each (h,j)eZ + Z
let f;,:8° — 80O(4) be defined by fi;(10) -0 = 4", for v e RY, Quaternion multipli-
cation is understood on the right.

Let « be the standard generator for H*(S%). Let £, denote the sphere bundle
corresponding to (fi,) e m(SO(4)).

Lesses oo The Pontrjagin class pu(gy,) equals + 2(h — Tt

(The proof will be given later. One can show that the characteristic class
&£, (see [4]) is equal to (h + /i)

For each odd integer I let M; he the total space of the bundle &; where 4
and j are determined by the equations 4 + j = 1, h — J = k. This manifold
M has a natural differentiable structure and orientation, which will be de-
sceribed later,

Lesra . The tnvariant N(M3) is the residue class modulo 7 of ¥ — 1.

Leymya 5. The manifold MM satisfies the hypothesis (H).

Combining these we have:

® See [41 §18.
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TuroreM 3. For ¥ £ 1 mod 7 the manifold ML is homeomorphic to S’ bul not
diffeomorphic to N

(For & = #1 the manifold A is diffeomorphic to S'; but it is not known
whether this is true for any other £.)

Clearly any differentiable structure on S" can be extended through R* — (0).
However:

CoroLLARY 4. There cxists a differentiable structure on 8" which cannot be ex-
tended throughout R,

This follows immediately from the preceding assertions, together with Corol-
lary 1.

Proor oF Lesaa 3. It iz clear that the Pontrjagin class pi(£;) is a linear
function of A and j. Furthermore it is known that it is independent of the orienta-
tion of the fibre. But if the orientation of S ix reversed, then &, is replaced by
£, . This shows that py(&,) is given by an expression of the form c(h — j)e.
Here ¢ is a constant which will be evaluated later.

Proor oF Lemya 4. Associated with each 3-sphere bundle My — S thereis a
1-cell bundle pe:Bi — S*. The total space B} of this bundle is a differentiable
manifold with boundary 3 . The cohomology group H*(B}) is generated by the
element a = pi (). Choose orientations u, v for M} and B} so that

(v, (7)) = +1.

Then the index 7(B3) will be +1.

The tangent bundle of B} is the “Whitney sum” of (1) the bundle of vectors
tangent to the fibre, and (2) the bundle of vectors normal to the fibre. The first
bundle (1) is induced (under pi) from the bundle &, and therefore has Pontrjagin
class py = pr(c(h — j)) = cka. The second is induced from the tangent bundle
of §*, and therefore has first Pontrjagin class zero. Now by the Whitney product
thearem ({2] or {6])

pl(B;) = (‘A’(Y ‘l" O

For the special case kb = 1 it is easily verified that Bj is the quaternion pro-
jective plane Py(K) with an 8-cell removed. But the Pontrjagin class pi(P:(K))
is known to be twice a generator of HY(P.(K)). (See Hirzebruch [1].) Therefore
the constant ¢ must be +=2, which completes the proof of Lemma 3.

Now g(BY) = (», (T £2ka))y = P and 2 — 7 = 8 —1=15L -1
(iod 7). This completes the proof of Lemma +.

PrOOF OF LEMMA 5. As coordinate neighborhoods in the base space S* take
the complement of the north pole, and the complement of the south pole. These
can be identified with euclidean space R* under stereographic projection. Then
a point which corresponds to e R* under one projection will correspond to
W = u/" u * under the other.

The total space M can now be obtained as follows.” Take two copies of
I % S* and identify the subsets (R* — (0) X S* under the diffeomorphism

() — (0 0) = (w0 vl /)
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(using quaternion multiplication). This makes the differentiable structure of
M precise.
Replace the coordinates (1, o) by (", "1 where w” = 2", Consider
the function f: M — R defined by
f@)y = N/A 4w =N+ w”

M

where R(v) denotes the real part of the quaternion v. It is easily verified that s
has only two critical points (namely (u, ) = (0, +=1)) and that these are non-
degenerate, This completes the proof.

§4. Miscellaneous results

TureoreM 4. Either () there exists a closed topological 8-manifold which does not
possess any differentiable structure; or (b) the Pontrjagin class p, of an open 8-mani-
fold is not a topological invariant.

{The author has noidea which alternative holds.)

Proor. Let X} be the topological 8-manifold obtained from B} by collapsing
its boundary (a topological 7-sphere) to a point z,. Let & ¢ H*(X%) correspond
to the generator « € *(B}). Suppose that X3 | possesses a differentiable structure,
and that pi(X: — (x)) is a topological invariant. Then p(X:) must equal
+2k&, hence

9

20(X3) — (XD =8k — 1= =1 (mod 7).

But for &% # 1 (mod 7) this is impossible.

Two diffeomorphisms f, ¢g:MT — M3 will be called differentiably isotopic if
there exists a diffeomorphism /' X R — M3 X R of the form (z, t) — (h{z, 1), {)
such that

il

)

W, ) =) gt 10)

\\ g(x) (

VA

2 vrn—1

Lesya 6. If the diffeomorphisms f, g: 8" — S are differentiably isotopic,
then the manifolds M™(f), M"(g) obtained by the construction (C) are diffeomorphic.

The proof is straightforward.

THEOREM 5. There exists a diffeomorphism f:8° — 8° of degree +1 which is
not differentiably isotopic to the identity.

Proof. By Lemma 5 and Corollary 3 the manifold M3 is diffeomorphic to
() for some f. If f were differentiably isotopic to the identity then Lemma 6
would imply that 33 was diffeomorphic to S”. But this is false by Lemma 4.

PrixcETON UNIVERSITY
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