—

9
A5

Folding Flat Silhouettes and Wrapping Polyhedral Packages:
New Results in Computational Origami

Erik D. Demaine*

Abstract

We show a remarkable fact about folding paper: Fén
a smgle square of paper, one can fold it into'a flat
or1gam1 that takes the (scaled) shape of any con-
nected polygonal regiofi, even if it has holes. This
resolves a long-standing open problem in origami de-
sign. Our proof is constructive, utilizing tools of com-
putational geometry, resulting in efficient algorithms
for achieving the target silhouette.

We show further that if the paper-has a different
color on each side, we can form any connected polyg-
onal pattern of two eolors. .Qur results apply also to

polyhedral surfaces, showing that any polyhedron can ..

be. “wrapped” by folding a strip .of paper. around it.
We ‘give three methods for solving these problems:
the first uses a thin strip whose area is arbitrarily
close to optimal; the second allows wider strips to be
used; and the third varies the strip width to make a
folding that optimizes the number or length of visible
“seams.”

1 Introduction

Origami provides a rich field of research questions
in geometry. At SoCG’96, Robert Lang’s popular
talk [16] helped to introduce the computational ge-
ometry community to this exciting area of research.
A classic open question in origami mathematics
is whether every simple polygon is the silhouette
of a flat origami. This question was first formally
stated within the algorithms community by Bern and
Hayes at SODA’96 [6]. More generally, we might ask
whether every polygonal region {polygon with holes)
is the silhouette of some flat origami. In this paper,
we show that the answer is yes, and we provide con-
structive methods for achieving such origamis.
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A more general problem in origami design is to
take a sheet of bicolor paper, having a different
color on each side, and fold it into a desired pattern
of two colors. For example, John Montroll’s book
Origami Inside-Out [20] is entirely about such mod-
els. Taichiro Hasegawa [10] has designed an entire
alphabet, including lower- and upper-case letters as
well as punctuation. One origami designer, Toshikazu
Kawasaki, has looked at the special case of iso-area
foldings, that is, foldings that use equal amounts of
both colors [11, pp. 96-97] [12, pp. 26-34]. See Fig-
ure 1.

(a)

(b)

Figure 1: (a) Iso-area pinwheel from [11, p. 97]. (b)
Zebra by John Montroll from [19, pp. 94-103].

Formally, we define a polygonal pattern P to be a 2-
colored polygonal subdivision of a polygonal region,
each subregion of which may have holes. Our most
general flat origami question then asks if there exists
a flat folding of a sufficiently large piece of bicolor
paper such that the top side of the flat origami gives
exactly the input 2-color pattern, P.

A more general question asks whether every poly-
hedron can be wrapped with a piece of rectangular
paper. This is motivated not only by the problem
of constructing three-dimensional origamis, but also
the “gift wrapping problem,” which was introduced
to us by J. Akiyama [3]. We define a polyhedron P
very generally to be any connected union of pairwise-
interior-disjoint polygonal regions (called faces), each
of which lies on a plane in 3-space; we let n denote
the number of vertices of P. We consider also polyhe-
dra whose faces are 2-colored. We then ask: Is every
polyhedron P the folding of some sufficiently large
rectangular piece of paper? If so, is there a folding
of a bicolor sheet of paper that respects the face col-



successive folding under of excess paper decreases the
angle by another #,, so this process must terminate
in at most 1 + (7 — 61)/6; steps. Finally, there is no
excess in cones Kiz), K {3), or K f*), and we advance
to vertex v, etc., folding excess under until all edges
€1,...,€ex become boundary edges of the paper.
(Note that multiple foldings of excess correspond-
ing to a single vertex v; is only an issue if the angle
0; is very small; in fact, if 6; > 7 /2, then one folding
under for each of the lines £; and £;,; suffices. Of
course, C can have at most three angles 6; less than
/2.) 0

An immediate consequence of this theorem is the
following:

Corollary 1 Given any polygon P and convez poly-
gon Q, such that P can be moved to cover Q, P can
be folded into a flat origami whose silhouette is Q.

2.2 Turning a Strip

A natural tool to fold a paper strip into a desired
shape is the ability to turn the strip. More formally,
we will consider turns of the following sort. Take two
infinite strips S and T in the plane, and consider their
intersection I = S N T'; see Figure 2. Label the two
connected regions of § — T [T'— S] by S; and S> [Ty
and Tb]. The turn gadget must fold a strip so that it
covers precisely U = S1 U (SNT)U Th.
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Figure 2: A turn must cover precisely two connected
portions of S — T and T — S aswellas I = SNT.

Our turn gadget is shown in Figure 3. The first fold
is perpendicular to the edges of S and is incident to
the convex vertex of U. The second fold is an angular
bisector of the convex angle 6, effecting the turn. If
6 > m/2, these two folds are all that are needed. On
the other hand, if & < 7/2, they leave a right-angle
triangle of excess paper, whose angle incident to the
convex vertex is /2 — 6. We can hide this triangle
underneath U by “wrapping” it around the angle 8,
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Figure 3: Folding a turn gadget. Step 3 hides the
excess paper and is only necessary for 8 < /2.

extra folds.
We have thus proved the following lemma.

Lemma 1 Given two strips S and T in the plane,
and given any connected region Sy [Ty] of S—T [T —
S], a strip can be folded into a flat origami whose
silhouette is precisely S, U (SNT)UTy.

It turns out that if we apply a sequence of turn gad-
gets, the first fold of a particular turn gadget (which
involves folding through all layers) may destroy the
effect of previous turn gadgets, that is, uncover re-
gions that were covered by previous turn gadgets.
This can be avoided by using a generalized turn gad-
get, which involves letting the strip go past the turn,
making the perpendicular fold once it has gone far
enough to avoid destruction, and then bringing the
strip back before making the second (turning) fold.
See Figure 4. We now obtain a trapezoid of excess of
paper, which can be folded underneath by applying

Theorem 2.
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Figure 4: Folding a generalized turn gadget.

Generalized turn gadgets will also be important to
produce useful overhang, as we will see in Section 3.

2.3 Color Reversal

We utilize a color-reversal gadget, as shown in Fig-
ure 5. It consists of three folds: a perpendicular fold,
and two 45° folds. The result is a color reversal (that
is, an exchange of the showing side of the strip) along
the perpendicular edge. Note that the triangle of ex-
cess paper underneath the finished gadget can, if nec-
essary, be reduced in size by the gadget of Theorem 2.

Figure 5: Folding a color-reversal gadget.
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the endpoints of e;; see Figure 9. Thus, we have A; =
O(hiwcot @pin), which implies that A, = O(wkLy),
where L; is the length of the longest side of T;. Also,
we see that A, = O(wle;|) = O(wlL;), since the
overlaps between rows need not consume more strip
length than twice the longest row (which is roughly of
length |e;|). (We have twice the longest row because
one extra row may be needed to compensate for the
round-up from (h;/w) to [(h; /w)], while a second ex-
tra row may be needed for the parity constraint.) We
summarize with

Lemma 2 The coverage of triangle T; utilizes a strip
of area at most area(T;) + O(wL;), where w is the
width of the strip and L; is the length of the longest
side of T;.

Figure 9: Area estimate for excess paper (shown
shaded) that spills over during a turn-around. The
area of the shaded region is w? + (2w)(2w) cot 6.

The transition from triangle 7; to Tj4; involves
turning the strip in such a way that the strip becomes
parallel to the edge €;11, while creating excess that
can be folded under T; U T;y;. Refer to Figure 11.
This can be done using the generalized turn gadget
of Section 2.2, but for turn angles of more than 7/2,
the amount of excess paper is too large: it grows ar-
bitrary large as the turn angle approaches #. In this
case, we use an alternate turn gadget shown in Fig-
ure 10. Note that this turn gadget solves a different
problem from the one described in Section 2.2 (the
corner does not have to be “filled in”), which allows
us to reduce the amount of excess paper to O(w?).

By induction, we can cover all the triangles of 7'
(and hence of T) in this way. Note that we can also
change which side of the strip is up, as we make the
transition between two triangles, using the gadget in
Figure 5. Thus, we can control the coverage in such a
way that we preserve a given 2-coloring of 7’ (which
is inherited from a 2-coloring of 7 or of the original
facets of P).

Since the transition from triangle to triangle uses at
most O(wL) excess paper area, where L = max; L;,
Lemma 2 applied to the O(n) triangles in turn yields
the following result:

Lemma 3 The coverage of T requires a strip of area
at most area(T) + O(nwL).

Figure 5

Figure 10: Folding an alternate turn gadget, which
reduces the amount of excess paper for turn angles of
more than 7/2. Step 3 can be adjusted to produce
the desired amount of overhang.

Figure 11: Turning from one triangle to another.
Note that the turn must have some overhang to finish
covering the triangle.

Using this zig-zagging method with sufficiently nar-
row strips (w — 0), we obtain, as a consequence of
Lemmas 2 and 3, the following result on optimal pa-
per usage.

Theorem 3 Let A be the surface area of a given 2-
colored polyhedron. Then for any € > 0, there is a
rectangle R of bicolor paper with area at most A+ €
such that R folds into the polyhedron with the desired
colors showing.

Remark. Instead of using a very small width w,
our approach also allows one to use a strip with a
larger width, up to the smallest altitude of the trian-
gles in 7’. Of course, this increases the excess paper
that needs to be folded under, and increases the total
area of paper required.

4 Ring Method

Our second method is based on covering a polyhe-
dron by a collection of “rings.” This method’s main
advantage is that it allows the strip to have the largest
possible width, in the case that the strip width is not
allowed to change.



ring. When we traverse a node that we have visited
before, we can “walk” around the ring (by construct-
ing part of it) and bring the strip to the desired join-
ing place for an adjacent ring. Hence, we only need
to show how to construct a skeleton ring, and how to
connect between two skeleton rings with an optional
color change.

4.3 Strip Rings

Instead of folding skeleton rings directly, we will cover
them by a collection of strip rings, that is, rings with
the same width as the strip. Strip rings are particu-
larly attractive because they can be constructed sim-
ply by folding a sequence of generalized turn gadgets
from Section 2.2. (We use generalized turn gadgets
so that they do not interfere with each other.)

Lemma 5 Given any ring R of width |R| and a strip
of width w, R can be covered by [|R|/w] strip rings,
each of which is contained in the current polygonal
region.

Proof: Assume first that |R| > w. Then one way
to build such a cover is as follows. Let R = {q0,9")
be the ring (between walls go and ¢') that we want
to cover. In general, suppose we want to cover a ring
R; = (gi,q') such that |R;| > w, for ¢ = 0,1,...
Shrink or expand the wall ¢; to pull it towards the
interior of R; by a perpendicular distance of w. The
result is another wall g;4; that is in R;. Indeed,
(¢i,gi+1) is a strip ring.

It remains to cover the subring R; 11 = (¢i+1,¢’) of
R;. If |R; 41| > w, we can recursively apply this pro-
cedure. Each iteration decreases the width of the ring
to cover by the constant w. Hence, after k = ||R|/w]
iterations, we are left with a strip Ry = (gx,q’) whose
width is less than w. If its width is zero (that is, w
evenly divides |R|), we stop. Otherwise, we shrink or
expand ¢’ to pull it towards the interior of Ry, result-
ing in a wall q that is outside Ry but inside R. This
last strip ring (g, ¢’), which contains R, completes
the cover using [|R|/w] strip rings.

Now assume that |R| < w, and let R = (q1,492)-
Consider topologically shrinking or expanding ¢, and
g2 to push them away from R, stopping when we find
a ring R' that has the same width as the strip. If
a wall hits the boundary of the polygonal region, we
stop shrinking/expanding it. Because of the upper
bound on the strip’s width described in Section 4.4,
we cannot have both walls hitting the boundary of
the polygonal region. Hence, we obtain a strip ring
R’ that contains R and is contained in the polygonal
region, the desired result. ]

It only remains to show how to bridge between two
strip rings. Specifically, we need to show how to com-
bine strip rings in two different ways: between over-
lapping strip rings, and between touching strip rings
possibly of different colors. In all cases, we take an
arbitrary edge shared by the two strip rings; for over-
lapping rings, this “edge” has some thickness. We
bridge at any joining place along this edge by using
the turn-around gadget in Figure 8. The excess paper
can be reduced to fit within the two rings by apply-
ing Theorem 2. We can also reverse the color of the
strip in between the two folds of the turn-around gad-
get (note that if the two rings have different colors,
they do not overlap), using the color-reversal gadget
in Section 2.3.

4.4 Strip Width

What are the least possible constraints on the strip’s
width? If our only building blocks are strip rings (in
other words, the width of the strip stays essentially
constant), we need the property that at least one strip
ring fits inside the polygonal region we are trying to
cover. One observation is that the strip’s width must
be at most the minimum feature size, that is, the
minimum distance between two nonincident bound-
ary edges. Indeed, we need a stronger upper bound
on the strip’s width than the minimum feature size,
to ensure that it is possible to turn at every reflex
vertex without falling outside the polygonal region.

Consider a reflex vertex v with exterior angle 6
and consider the nonincident boundary edge e that is
closest to v along the angular bisector at v; refer to
Figure 14. To turn at v, a ring turns at a point on the
angular bisector of v. Let d denote the distance from
v to e along the angular bisector of v. This gives us
the maximum allowed “diagonal” width of the strip.
This means that the true width of the strip must be at
most dsin(/2). By minimizing this expression over
all reflex vertices, we obtain an upper bound on the
strip’s width for that face.

dsin(0/2) &

Figure 14: Computing the upper bound on the width
of the strip.




The basic gadget is shown in Figure 15. Note that
the folding starts with the reverse side of the strip
showing, and is flipped back over in Step 4. The
first fold is the perpendicular along which we want
to change the strip width, and is a valley from this
orientation. The second fold is another perpendicu-
lar, which is the desired reduction amount away from
the first fold. The third fold is a squash fold, which
involves folding down the top part of the strip by the
desired reduction amount, along a horizontal line; the
upper-left corner naturally “squashes” along two 45-
degree folds (which are originally right on top of each
other). Equivalently, we can squash fold upwards the
bottom part of the strip.

Figure 15: Folding a strip-width gadget.

This gadget can reduce a strip of width w into a
strip of width « - w for any % < a < 1. By apply-
ing the “reverse” of the gadget (that is, flipping the
image horizontally), we can also undo any previous
reduction. We are now ready to prove the desired
theorem:

Theorem 5 A strip can be repeatedly resized along
various perpendicular edges to any width that is at
most the original physical width. The number of folds
required to change the width from wy to wa is

0(1+|log (wn fw3)])-

Proof: We maintain the invariant that the strip is
the result of several width-halving gadgets (a strip-
width gadget with a = 1), possibly followed by a gen-
eral width-reduction gadget with some c. To achieve
a particular strip width, we first fold (if necessary) the
reverse strip-width gadget with the same a. Then we
apply width-halving or reverse width-halving gadgets
until the strip has width within a factor of two of the
desired width. Finally, we apply the general width-
reduction gadget to obtain the desired strip width.
The bound on the number of folds follows immedi-
ately. m]

Note that any excess paper from strip-width gad-
gets can be reduced to fit within any desired incident
region (namely, the polyhedron face that we are cov-

ering), by Theorem 2.

5.2 Approach

We are now in the position to describe a folding that
only has seams on the edges of a given convex decom-
position of a polyhedron’s surface. We define the di-
ameter of the convex decomposition to be the largest
diameter of any convex polygon in the decomposition,
that is, the largest distance between any two points
on a common convex polygon. We choose our strip
to have this diameter as its physical (initial) width.

The algorithm works as follows. We traverse a
spanning tree of the dual of the convex decomposi-
tion in a depth-first traversal. The strip always enters
a convex polygon P along a subportion of one of its
edges, perpendicular to that edge e. Reorient so that
e is vertical. At this point of entry along e, we resize
the strip to be the vertical extent of P. Note that
the resized strip may not have the right vertical po-
sitioning to cover all of P; this can be fixed by using
the shift gadget shown in Figure 16.
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Figure 16: Folding a shift gadget, which is just a se-
quence of two right-angle turn gadgets from Figure 3.

Next we continue the strip straight until it covers
all of P; call this the completion point. Let e’ denote
the edge shared by P and the next polygon P’ in the
traversal order. If the length of ¢’ is less than the
current width of the strip (i.e., the vertical extent of
P), then we resize the strip width at the completion
point to the length of ¢’

It remains to show how to turn the strip to reach
¢’ perpendicularly. In fact, this can be done using a
generalized turn gadget (Section 2.2). If ¢’ has posi-
tive slope, as in Figure 17(a), the perpendicular fold
is right at the completion point. If ¢’ has negative
slope, the perpendicular fold may be past the com-
pletion point, as in Figure 17(b). In either case, the
second fold turns onto the infinite strip perpendicular
and incident to ¢€'.

Once we reach the edge e/, we immediately reorient
so that ¢’ is vertical. We apply Theorem 5 to resize
the strip along €’ to the vertical extent of P’. Finally,
if P and P’ have opposite colors, we reverse the strip
color along €’ by applying Theorem 5.

Folding the excess paper underneath completes the
convex-decomposition method, thereby proving The-
orem 4: any polyhedron can be wrapped with seams
only along the edges of a convex decomposition.
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