TOPOLOGY OF THE CONVEX POLYTOPES' MANIFOLDS, THE
MANIFOLD OF THE PROJECTIVE CONFIGURATIONS OF A
GIVEN COMBINATORIAL TYPE AND REPRESENTATIONS

OF LATTICES

A.M.Vershik

Leningrad State University

CONTENTS

(. Introduction

1. Configurations, combinatorial type
2. Space of the confiqurations
Grassmanian ideology

4. Orientation, oriented combinatorial type

(272 TN ¥2  ¥ o RN 7/ S TR V7 N 975
W

5. Saturation, representations of lattices, implications

(<22}
o)}

Coordinate-form formulation

¢ 7. Classification problems. Universality. Basic theorems

§ 8. The principle idea of the method: joint mechanisms and
solutions of algebraic equations

§ 9. Open problems

References

§ 0. INTRODUCTION

The following intuitive question posed by the author more than
10 years ago was one of the simplest which has stimulated combinato-
rial-topological topics presented in what follows.

!. Is the set of all M -dimensional simplicial convex polytopes

with n verteces of a given combinatorial type connected?
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At the first glance reliably supported by the three-dimensional
experience (in which case the affirmative answer follows from the fa-

mous Steinitz theorem) it seems that the same affirmative answer holds

true in the general case. However, we shall see that this is far from

being true.

Further analysis and making use of Gale duality immediately lead
us to following problem formally more general but in an essence equi-

valent to above problem, which is interest by itself.

IO . Is the set of real rectangular M *Il matrices with fixed
signs of all the minors connected ? In an equivalent form (see § 3):
is the set of all equally oriented nonsingular ordered configurations
of points of the Ml -dimensional affine space connected ?

It turned out that this problems are rather complicated. From on
side they originated from attempt to use the tools of modern topology
and algebraic geometry to such classical combinatorial and yeometrical
objects as configurations in a projective space, convex polytopes,
matroid etc. From the other side some quastions arising in applications
lead to similar natural problems. To menticn only one of the examples,
the concept of the convex polytopes' field (see our paper [V.Ch] ) in
vector bundle over a smooth manifold is a natural generalization of
the vector field and polysystem concepts; the problem on the existence
of convex polytopes'fields with a given combinatorial structure on a
given manifold arises in optimal control, Patero-theory, convex and
differential geometries, linear programming etc. Solving the problem
is reduced exactly to investigation of homotopy type of above spaceSs

of the polytopes and specific characterictic classes. The same holds for
fields of other combinatorial geometric objects CV.ChJ . That is why

the following general problem arises.

UI. What is the homotopy type of space of all convex polytopes'

(or cones, configurations, triangulations, arrangements etc) of a
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given combinatorial type ?

There is one more line which connects these problems with repre-
sentation theory namely with representations of partially ordered
sets (posets). We shall mention in briefly in what follows referring
for the detail to publication elsewhere . There is a definite connect-
ion with more complicated problems on rigid isotopy (in Rokhlin
sense) non-singular real algebraic manifolds. Previous experience may
be of some use, it suggests in particular that the problem on rigid
isotopy is most probably universal in a sense defined below. It is
useful to emphasize importance of the (§ 7) problem not only for the
field Wz but also for Q, , for finite characteristic fields etc.

To the best of the author's knowledge there has been no systematic
study of topology of the space of configurations and related spaces.
Making use of modern tools has to be useful not only for the problems
themselves out for topology as well especially for combinatorial and
homotopy topologies. Some obtained results support this suggestions.

Let us come back to the problems formulated in the beginning.
N.E.Mnev proved in [MI] (see also this volume and §§ 7,8) that the
answer to problems I, I is negative in its extreme form: in general
these sets are not only disconnected but can be homotopy equivalent to
arbitrary algebraic manifold (or even semialgebraic set). For example,
one cane fix the signs of 5 X 19 matrices'minors in such a way that
the set of these matrices is disconnected (The minimal L for
which M O“J[’Mh,

This situation makes the collection of the above manifolds universal

R‘ can have the same effect is unknown but Xé=n41m.

and gives in a sense one more way of representing algebraic manifolds.
It is clear apriori that topological invariants of these manifolds are
invafiants of the combinatorial types themselves, the Mnev's theorem
claims that these invariants are meaningful and there are plenty of
them. For example, contractibility of the manifolds of a given combi-

natorial type of simplicial convex polytopes becomes its important
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invariants. For Gale's polytopes this qustion is studied in a paper
by A.Barvinok (see this volume) .

There arises new classification of combinatorial problem into
"tame and wild" ones depending an universality of the sect formed by
the manifolds of combinatorial type. Another area of interest is re-
presentations of partially ordered sets, it is closely connected with
the configuration theory. Here a new "isotopy"” principle of classifi-
cation is suggested - extending usual linear equivalence. Emphasize
the importance of what we call Grassmanian approach to this guestions
(see § 3).

A number of papers of this volume deal with these topics\(by N.Mnev
A.Barvinok, A.Chernyakov, S.Finashin, V.Gershkovich).we are going to deve-
lope this subject in a series of papers elsewhere.

The author while elaborating formulations and approach to the above
problems discussed some of them with V.A.Rokhlin who showed a vivid
interest towards the problems. This introductory paper is a modest tri-
bute to this outstunding mathematician who has greatly influenced the

author.

§ 1. CONFIGURATIONS, COMBINATORIAL TYPE

Combinatorial-geometric objects are usually referred to configu-

rations. In what follows under the term configurations we mean an or-

dered finite collection objects: points, lines, planes,... hyperplanes
of either a vector or an affine or a projective space over a field. A

homogeneous configuration consists of objects of the same dimension.

We shall consider mainly point configurations. A configuration of hyper-

planes is called an arrangement. It is convenient to consider all the

objects different through multiplisities appear in a natural way. A
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configuration is nondegenerate if the space spanned onto all the
objects ( = hull) coincides with the whole space and their intersec-
tion is empty. We shall associated with each subset of configurations
objects the upper and lower ranks, i.e. the dimensions of the hulls
and intersections respectively. If either the upper rank is less (or
the lower rank is greater) than its values in the general case (with
taking into consideration the objects dimensions) then the subset is

said to be in the upper (lower) incidence. The complete (upper or lo-

wer) combinatorial type (or shortly combinatorial type is by defini-

tion the list of the aill (upper or lower) ranks of all the subsets.
(Actually it is enough to give it for all the subset which are in the

incidence). Note that the list includes also the dimensions of all the

objects. The term"combinatorial type" will be alternatively used for
the set of all the configurations with given ranks.

LEXAMPLE 1. The combinatorial type of a points configuration

KVZ(I/1,. ,erL)aILL(E is the set

PSR T (R € . T NN R U Y T S Rty

dim L (x;,,..,2,)= dim & (2, .., 20}

Lere there is no necessity to give liwer ranks. If E is a plane it
1s enough to indicate all the subsets formed by incident points. In
the ceneral case of points configuration it is enough to indicate all

those subsets which consist of all the points belonging to hyperplanes.

EXAMFLE 2. The combinatorial type of a hyperplanes configuration

(arrangement) is defined similarly with the hulls replaced by the in-
tersections.

Note that according to the projective of another duality to any
configuration of hyperplanes there corresponds a configuration in the

dual space and this correspondence is an isomorphism preserving the

combinatorial type.
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In some problems there is considered an incomplete combinatorial
type, i.e. not all the incidences are taking into account. (The meaning
of the term "combinatorial type" depends on the problem.)

EXAMPLE 3. The convex combinatorial type of a points configuration

(or the combinatorial type of a polytope) in a vector or affiﬂe space
over a linearly ordered field. Let K\ be a linearly ordered field
and ]V -~ a points configuration in k;m/. To define its combinatorial
type means to indicate all the subsets - called faces of the highest
dimensions - of the points belonging to the supporting hyperplanes
(and not to all the hyperplanes as in Example z above).

A supporting hyperplane is defined as usual by virtue of linear
ordering (see § 4).

This list of examples can be continued. Further we shall define an
oriented combinatorial type for ordered fields. The classical concept
of configuration (see [H.C]) is included into the set up.

A configuration (and its combinatorial type) is called open, or

structural stability, or nonsingular or generic if all subsets of its

objects are in the general position. F.€. a point's configuration is

generic iff none of W+ 1 points lie on a hyperplane ( [l is
the dimension of the space). A generic convex type is a simplicial(all
the faces are simpleces) one of a polytope. The combinatorial genus

of a configuration is the set of all configurations having the same
list of the ranks of the insident subsets (including the dimension
of the objects) but is general having additional incidences. Evidently
the genus 1is composed of some combinatorial types; two genuses can be

intersected. The combinatorial genus of a generic configuration is the

set of all configurations with a given dimension of the objects.

§ 2. SPACE OF THE CONFIGURATIONS:

In a natural sense the set of all configurations in a given problem
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with fixed dimensions, of the objects forms an algebraic variety which
we shall call the natural space of the configurations (contrary to the
grassmanian - see § 3).

In what follows, we shall restrict ourselves with the points confi-
rations the natural space being E:WL\ ZX , where E. is the space
which containing the configurations, fIL is the number of points,

ZX - the set of collection with multiple points. The combinatorial
types divide the space into the strata consisting of all configura-
tions of a given combinatorial type and are constructuve sets (i.e.
sets defined by the conditions F)L: O , (lj ¥ O , L&I 7j6 J_’ {%1 QJ
being polynomials over (l of the point's coordinates. Actually,
each incidence is described by an equality of some determinants to
zero, and absence of the incidence - by an inequality (see § 6).

Studying the topology of these strata and the partition into the

strata is the main problem we pose now.

The generic stratum is open 1in Zarihgky topology in the space of
the configurations. The closure of any stratum is combinatorial genus,
which is an algebraic variety over Ql - For the ordered fields every
stratum can be divided into oriented types which are semialgebraic

sets (see § 4).

§ 3. GRASSMANIAN IDEOLOGY

There is an alternative way of constructing the space of the con-
figurations in a given problem which is very convenient in different
respects some of them we shall point out.

Through our considerations are of universal character we shall
restrict ourselves only with the points configurations in the real
Projective space or in other words the lines configurations in the

vector space. Let L and M be naturals, E ::ﬂzn/, G'(Hu m +1}
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be the Grassmanian manifold of the (\T\,+1)—d1mension subspaces in E
and let @{’ .__7(’4\, be the coordinate lines in E . The standard

basis 1in E defines Cartan subgroup Hr\of the groqu-l_ (\’\,JR) of the

invertible transformations preserving the coordinate axes. If F N

€ G (T\/,m*"ﬂ then E F is the orthogonal euclidian projector onto F

The set EF64 R EFem is a configuration of lines in F , Or a
points configuration in pF (projectivisation of F ). It is easy to
prove

PROPOSTITION 1. Every points'configuration in me can be obtain-
ed up to isometry by this construction.

Thus we have a reason to consider the grassmanian G (n/,m +1) as
the space of the L -points'configurations in PmlR . We shall
denote by P[:n,m: T the partition of G(n1m+1) into combinatorial

types and call it the configuration projective partition. Let us desc-

ribe T explicitly. With this aim in view we note the if F4 ; ng €
€ G (rt,m+1) belong to the same stratum then there exists an Pb S Hn,
such that F1 and FLFz, have the same position with respect to the

coordinate subspaces. In other words for every coordinate subspace

KI:{XQ IRn'- .I'/t=0 71/4 IC {,h, } we have

dim (FiaK, )= dim (F, nK,)

where F = KQ'Z E‘F

In fact every incidence and its rank in a configuration can be ex-
pressed in terms of the above dimensions. We have
PROPOSITION 2. A stratum of the projective configuration partition

consists of all the subspaces Fﬁ G (r\'7m+1)for which the values of

dim (AF*aK,) , I<in

are constant for an ?LE Hn' depending on F . It is enough to defi-

ne the value for I with l[]:n/_m*F{
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The partition T is invariant under the action of Cartan group.
In a similar way the space of the [Tl -points'configurations in mim is
G(hqnb)if one identifying FE G‘“L,nL) with the configuration formed
by the orthogonal projective onto F of the coordinate vectors. The
corresponding vector configuration partition is the product of all the
partitions into Shubert cells, generated by all the coordinate flags.
The projective configuration partition is a factor partition of the abo-
ve vector partition with respect to the Cartan group action. The affine
configuration partition can be defined in the same way .

All the configuration partitions are not stratifications in Whitney
sense (that is why we avoid the term "stratification") but each stra-
tum is a constructive set. These partitions are not orbit partitions
for any algebraic groups. The stratum in these definitions and in those
of § 2 differ only by the action of a projective or a linear group.

In a similar way considering the projection of the standard simp-
lex onto F- € (}(rL,nL) one can consider the grassmanian as the space
of all the convex polytopes whose dimensions are not greater than m
and the number of verteces is not greater than n . If we take the
positive orthant instead of the simplex we obtain the space of the
convex cones. We can construct the convex configuration partition
T (or TV } of the i b by identifyi

n,m nom grassmanian as above by identifying
the subspaces with the same convex type of projection of the standard
symplex (or the ccne).

In any case we deal in fact with the tautological vector bundle
over the grassmanian and with fields of the configurations polytopes,
cones in the leaves. These fields play the same role in our theory of
the fields of configurations polytopes etc as the taltological vector
bundle itself does for the theory of the vector bundles and characte-

tistic classes.

The first advantage of the grassmanian ideclogy is a presence of

a duality.
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grassmanian approach.

Recently I.Gel'fand jointly with pupils have considered the parti-

" tion Tom in a completely different context (in connection with
?
a generalization of the hypergeometric functions) see [Ge] . The paper
[ G.M] is especialy closed to ours one.

§ 4. ORIENTATION, ORIENTED COMBINATORIAL TYPE

In the case of ordered fields one can introduce a finer partition
- namely that into oriented combinatorial types. Ve begin with the
definition of the oriented type of a vector configuration.

Let K\ be a linearly ordered field, then we can define an orien-
tation on an and the orientation of the Wl -point subsets. The

oriented combinatorial type of a [ -points'configuration (n,7'nl)is

the set of all the configurations with the same orientations of the
corresponding Il -subsets. In other words we fix orientations of all
the nonincident [Tl ~subsets in addition to all the ranks of incidence
.see § 1). The partition of the configurations'space into sets with

given oriented combinatorial types will be called the vector oriented

combinatorial partition.

Reformulate this definition on the grassmanian context. For I,

I'I'c 4n put

Q={xeK™ix2,50,iel x,=0 1€l 52,20 0¢1"}
We say that two subspaces [ 4, F, € G(R,M) belong to the same orientea
combinatorial type iff dim (F; ﬂ@_) = dim (F n @)
for a1l | I,Ii,I") , 1y ['vl'= (e
The equivalence between two definitions of the oriented combina-

torial type follows immediately from the fact that the orientation of
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PROPOSITION 3. The usual isomorphism between G(n/am/)and G(nqn/‘m')
(the transition to the orthogonal complement) transforms the projecti-

ve (vector) configuration partition /Cn’m, into 'tn,n—m

N -
In fact, the vector {dtm({: n KI), I_‘: 1,h/) is both defined

and defines the vector {d,om (F n KI) ,IC 1,"1/}

This duality between the combinatorial types of f —points’confi—

gurations in quiR and the ones of Il —points'configurations in
PrL_mg4 R , should not be confused with the projective duality in

the dual space. We shall call the above duality complementariess.

Another situation appear in the convex case. The isomorphism bet-
ween G (r\/,m) and G(n«,nf—m)maps ’C?.L%:t (and ,Uffyf:ri ) into a new
partition which had been described by Gale in other terms (see [Cr] and
§§ 4, 6). We do not discuss here other cases (of non.points'configu-
rations, arrangements unordered configurations etc), in every case we
can use the grassmanian as the space of the configurations. For the
arrangements another version of the grassmanian approach is more conve-
nient. Mamely, the subspace F>6 G'UL,H1J will be identified with
the intersection of F- and the coordinate hyperplanes (instead of
the projections). Replacing the projections with the intersections we
get the projective duality between the points'configurations and arran-
gements. One duality more is obtained by the transition from the pro-
jections in F to the intersections in F-l'. All these dualities
are very useful through they don't make the problems easier. They are
very effective for studing the case of small defects between the number
of points and the dimension.

Another advantage of the grassmanian approach is in metric and
measure structures: there are orthoinvariant metric and measure on
G’(R,TTL) , and we can pose the guestions on metric and measure proper-
ties of the strata. It is especiall important in the asymptotic theory
{see [vS] ). The Gale's diagrams (arising in the theory of convex poly-

topes see [6r] ) is a good illustration of the effectiveness of the
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an 1L -subset is determined by the intersections of the kernel of
the projection and the cocordinate orthants. We denote this partition
of Gw W,HL) by T’;Jn . The projective case differs from the
vector case above by the factorization with respect Cartan group (as
a result we come to the projective oriented combinatorial type) .

The oriented type of a configuration on an affine plane 1is called
also the topological type of the configuration because due
to the fact that projectively dual configurations to configurations
with the some oriented type divide the plane into one and same types
of the polytopes.

PROPOSITION 4. The isomorphism between (}(W7NL) and GWYL,n‘mkrans—
forms /t::,m into ’U:L—m,,m_

In fact, the vector { dtnl(Fjﬂ(l)}determines the dimension of the
cone hull K (F.’Q,) (by the duality theorem for the convex cones and
the latter in its turn determines the vector {dwtﬂl (F.Ln Cl)}

Thus we have got the complementariness for the oriented configura-
tions.

As we saw for a ordered field we can define the convex combinato-
rial type (§ 1) and the corresponding partition T:wnv (of the grass-
manian or natural space (see [VCh] ) . Actually it is defined with
the help of the orientation because the notion of the supporting hyper-
plane uses that the notion orientation.

The convex combinatorial partition in any space is not a refinement
of the oriented combinatorial partition because we take into account
not all the orientations and incidences of the subsets but only of tho-
se which lie on the supporting hyperplanes.

Theory of the Gale's diagrams leads us to

e PROPOSITION 5. For every IL,Ml  there exist N ,P4 such that every

)p?\ L stratum of tr:m, is homeomorphic to some stratum both of T,'(::‘: and C“,n.
@

|

\

5

Hence studying the space of the polytopes of a given convex type

is equivalent up to a certain construction to studying the oriented

-
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configurations (see § 7) and vice versa.

§ 5. SATURATION, REPRESENTATION OF LATTICES, IMPLICATIONS

Let us consider an arbitrary configuration ]v in a projective
space and add to it the hulls of all its subsets. We obtain a new fi-
nite confiquration (not homogeneous) LL(TW called the upper satura-
tion. As a partially ordered set with respect to inclusion the upper
saturation is an upper semilattice (i.e. a partialle ordered set where
subset has the supremum). The collection of all the subspaces of a
given projective space is a modular ( = Dedekind) lattice (see [Bil)
Now the upper saturation becomes the identity upper {i.e. preserving
the suprema) representation of some abstract upper lattice into the
lattice of all the subspaces. Note that the upper saturation of the
points'configuration is a lattice (even geometrical lattice (see [A])
with respect to its partial ordering but the identity representation
in general does not preserve the infima. That is why we suggest to in-
troduce to this theory the upper representations. In other words the
upper saturation is an upper subsemilattice but in general not sub-

lattice. In the same way we can define the lower saturation of the con-

figurations E(?V) by adding the intersectionsof all its subsets. All
what has been said above on the upper saturations can be repeated word
in word on the lower saturation with replacing "supremum" with "infi-

mum” and "upper semilattice" with "lower semilattice” etc.

Let h4 be an abstract upper (lower) semilattice. We define as
usual an upper (lower) representation of h4 into the lattice of all
the subspaces of the projective space. Two representations of P4 are
pProjectively isomorphic if they can be transformed one to the other by

some projective transformation. It means that the configurations which

are their images are projectively isomorphic.
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Two representations are combinatorially equivalent if the dimen-

sions of the images of the correspondent elements is equal. It is
useful to note that the notions of the combinatorial types of the con-
figurations ({(upper, lower, convex etc) just are connected with a com-
binatorial type of the identity representation of somenhat lattice
associating with configuration (f.e. saturation and so on)

PROPOSITION 6. Two points'configurations are combinatorially equi-
valent iff their upper saturations are combinatorially equivalent, or

iff the two correspondent upper representations of the upper semilattice

rkwn defined below are combinatorially equivalent.
That rn;n is the lattice which is upper saturation of the ge-
neric N -points'configuration in PmJR . F.e.rnf:z, n=4 then
rzﬂ is as shown

2
(Whitney's numbers for M= R are (17rL, CrL 4) ).
7
A generic points' configuration (or more exactly its upper satu-
ration) 1is the isomorphic representation of rn,nL

Thus we can claim that the theory of configurations is included

into the theory of representations of the partially ordered sets . The

following theorem is foundation of this theory.
THEOREM 1. Every finite geometric lattice (or finite upper semi-
lattice) has an isomorphic upper representation in a projective space

of certain dimension over a given fields.
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An important concept is introduced now. Two configurations in
Pm,R Oor representations of a partially ordered set are isotopic
if they lie in the same connectedness component Of a combinatorial
type. This equivalence seems more reasonable for this theory then
both the projective isomorphism the combinatorial equivalence. The
invariants of isotopy has topological nature. We shall discuss it
elsewhere.
The upper saturation of a configuration has its lower saturation

and conversely. We obtain the increasing sequences of the configura-

tions

e ult) e Lulr)) e wldiuir) e

(since K(ZN)C ﬁHLHN» then the other order of the iterations gives a
confinal sequences). They are called implications of the configuration
and their union "hull" is in general an infinite configuration which
is a lattice in its partial ordering. Moreover the union is a project-
ive space over a certain subfield . This subfield is an invariant of
the linear equivalence but not of the isotopic one. The above "hull"
is the minimal projective space including the configuration.

The problem on whether or not an abstract lattice (or a matroid)
can be realized in a projective space of a given dimension over a given
field is solved algorithmically with the help of Tarsky-Zaidenberg
theorem. It is important that in Theorem 1 the dimension of the
objects cannot be arbitrary and upper representation cannot be replac-
ed with a representation because every sublattice of a modular latti-
ce is modular and that is why it is impossible to imbedd isomorphically
an arbitrary lattice into the lattice of the subspaces.

One can define an orientation on lattices and consider the orien-
tation preserving representations. Tt seems to the author that this
has not been considered yet. The most interesting is orientation preserving
(neither upper, nor lower) representation of the lattice of all the

faces of a convex polytope - shorthly
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"the representation of the convex polytopes".
§ 6. COORDINATL-FORM FORMULATION

We shall describe briefly some of the previous formulations in
matrices terms. Mainly we are interested in the configuration parti-
tions.

Let Mn,mK be the space of all the fL ¥l matrices over K ,

Mn‘m K the subspace of Mn,mK whose first M -minor

)
does not vanish.

a) the group G = GL(m, K) acts from the left on both Mn,mK

1
and Mr‘L,mK , and the factor-siliace G\M"hm is identified with
one of the maps of the standard atlas of the grassmanian G(TLJTL). As
\

usual we can consider G\Mn,mas Mn,n,—m.K . Since this map con-
sists of some combinatorial types as a whole (see § 3) we may restrict
the configuration partition ’ﬁmm, onto the map.

PROFOSITION 7. The restriction of the vector configuration par-
tition on Mn_m’mK is a partition into the classes each of them
is a set of the matrices with fixed nonvanishing minors. The generic
stratum consists of all the matrices whose all the minors don't vanish.

b) 1if MI is factorized with respect to Cartan group Hn,which

acting from the right we get the projective configuration partition.

c) if to imbed GL (m/) into the affine group AH(m) ,and
|
to add the row (1, o, " ) to M and then to factorize the new
— e’

space with respect ‘{:Lo AH(I’M: GL(m’) ; , we obtain

the affine configuration partition.

d) finally if K is a linearly ordered field then fixing the

signs of nonzero minors results in the oriented configuration parti-
i

tion of Mnm .
A
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Note that all the maps of the standard atlas in C}(TL,”L) are equi-
valent to each other, hence we may assume that the coordinate descript-
ion of the configuration partitions of the grassmanian is completed.

The same partitions of h4nm1K are obtained if to consider the

m
columns of matrices as vectors in l< generating a configuration.
The above factorization is equivalent to fixing the first Tl points.

e} the convex configuration partition in matrices terms slightly
different from Gale's one is the following. The stratum of this par-
tition consists of the matrices with the same list of "convex submat-
rices" the lattering such a matrices that there exists a vanishing
linear combination of the columns with positive coefficients. (In
fact, this is a description of the complementary partition - see §3).

If to omit the details then all the strata of the partitions are
sets of matrices subject to certain restriction on the signs or and to
the condition of non-vanishing of the minors (see § 9). That is why
every stratum is a semialgebraic or constructive set.

Recently A.Barvinok has computed the fundamental group of the
main stratum for pzd: . For ple the topology of the main stratum
is very complicated and has the primary interest - see Mnev's theorem
in § 7. In a similar way one can coordinatize the exXistence problem
of representations of partially ordered sets. Let P4 be a poset (or
a matroid); the existence of an exact representation (upper represen-
tation) with a given dimension of the objects over a given field is
reduced to solving some algebraic system in the field("the determinant
system" formed by equalities and unequalities, see § 9). In principle
the problem is solved by Tarsky-Zaidenberg theorem.

The result can be useful in the theory of fields of the convex po-
lytopes and for describing obstructions. Some results are obtained by

A.Barvinok and in an other context by A.Chernyakov (see this volume) .
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§ 7. CLASSIFICATION PROBLEMS. UNIVERSALITY. BASIC THEOREMS

We saw that the set of all the configurations or those with a gi-
ven combinatorial type or genus is an algebraic set as well as phe
set of all the representations of other posets or finitely present-
ed groups or algebras a given type. It can be a submanifold of a pro-
duct of the grassmanians etc. The group of automorhisms of the space
acts on that algebraic set or the variety and its orbits form classes
of (linear or projective) equivalence. However, this equivalence 1is
very cumbersome for the some problem. From a series of investigations
due to Gabriel et al, Gel'fand et al etc (see [Gu),[BGH) we know that
the orbit space is very large for a marjority of sets of posets and
quivers (the problem is "wild"). The exception is presented by Dynkin's
scheme (in that case the problem is "finite" or "tame"). By its very
nature the linear equivalence includes the equivalence of all the im=-
plications of the configurations i.e. is a very rigid isomorphism of
the projective spaces over some subfields and therefore includes the
classifications of the latter.

It seems much more effective the classification which is based on

topological principle i.e. studying the topology of the varieties of

configurations or representations and their stratification.

The linear classification is in a sense the limit case at the com-
binatorial classification of the implications. Hardly it is appropria-
te in a geometric theory to distingnish the configurations differens
one from another only by arithmetic properties of points'coordinates.

From the other side the variety of combinatorial type is not an
orbit of any algebraic group. Studying the topol§gy of the strata as
we know now is a more difficult problem then orbits classification. We
turn to describing these results omitting both details and the repre-

sentations theory for other publications. We emphasize the importance
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and intrinsic natural character of these problem and topological
approach to them.

In order to formulate the results we introduce suitable definition.
A problem on the classification of collection of specifically given ma-
nifolds (et the manifolds of configurations oOr representations etc) is

homotopically (topologically and so on) universal with respect to an

algebraic or an other class of the manifolds if every manifold of this
class is homotopic (homeomorphic and so on) to a manifold which occurs
in our problem. The presence of universality in a given problem must be
considered as the negative answer to the question on effective classi-
fication and as a claim on the possibility of presenting (implicitly)
all the manifold of the class (algebraic varieties or constructive sets
etc). In a sense universality is like hlP -completeness (in the comp-
lexity theory). We can rather easily prove

THEOREM 2. The classification problem of the manifolds of combina-
torial genus of the configurations on the real projective plane is homo-
topically universal with respect to the class of all the real algebraic
varieties over {l

This means that all of then can be given up to homotopy in a deter-
minant form {(see § 9). An algebraic manifold (resp. a semialgebraic set)
in the space Pqnxm &u is called a determinant algebraic manifold (resp.
a determinant semialgebraic set) if it is determined by the following
conditions: a set of minors vanish (resp. a set of minors vanish, some
minors are positive and others are negative). Theorems 2 and 3 claim
that the class of the determinant manifolds (semialgebraic sets) is ho-
motaopically universal.

Much more difficult are the following two theorems proved by N.
Mnev (see this volume) .

THEOREM 3. The classification problem of the manifolds of the gene-
ric oriented combinatorial types on the affine (or projective) real
plane is homotopical universal with respect to the real semialgebraic

sets over (l :
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Following the lines of Theorem 3 (see § 9) one can prove the univer-
sality of a large series of the classification problem of lines'con-
figurations, arrangements etc in the projective, affine, vector spa-
ces. This theorem makes clear both nontriviality of the homotopical
invariants (f.e. contractibility) in combinatorial problems and meaning-
fulness of the isotopical classification. Moreover, the generic stratum
of on oriented configuration partition can have arbitrary singularities
which occur in a real algebraic variety over Ql ! Nevertheless it is
difficult to indicate them explicitly.

But one should keep in mind that the classification problems of
certain special classes of the configurations (f.e. with a fixed num-
ber of points etc) is not universal and effective answers are feasible.

The techniques of Cale's diagrams and additional arguments allow
us to deduce from the previous theorem the second one also due to Mnev

which answers cne of the questions posed formulated by the author

THEOREM 4. The classification problem of the strata of convex sim-
plicial polytopes of a given combinatorial type is universal in the
same sense as in Theorem 3.

There are reasons to believe that this theorem is valid for lRu !
(Steinitz theorem allows us to prove the contratibility of all strata
in Pa ). If it is true strong conclusions for the four-dimensional
convex geometry can be done. Now the following fact on the latter re-
presentations can be proved, it is similar to the above results.

THEOREM 5. The homotopic classification problem of the sets of
indecomposable upper representations with given dimension of the geo—
metric lattices is universal.

However, this problem for a given lattice is a "finite" problem.
It is very interesting to advance in the classical problem on non-
emptiness of the set of representations over a given number field.

THEOREM 6. For every finite extension of the rationals 61 there
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exists a combinatorial type of points'confiqurations (resp. convex po-
lytopes, upper real representations of same lattice) which does not
realize over this extension.

Actually to prove Theorem 6 enough to present an algebraic veriety
which has no points in a given field and then apply the previous the-
orems. Of course these configurations are degenerate. This theorem has
an old history. The question had arised in a connection with Whitney's
matroid theory [w }. For the plane configurations the theorem was anno-
unced by Mclane [M ] . In the convex geometry it was known the Perle's
example (answering a question by Klee - see [Gr] ) of a 8-dimension of
12-vertex polytope non-realizable over ml , but realizable over QQ(VE).
The general case was investigated by Mnev in[M E] in according to a
plan suggested by the author and which will be briefly described in
§ 8 (see also [Gr 1}y .

Tt is interesting to study the dimension preserving representations

of the non-realizable configurations (nonpappian, nondesargian, Fano's

etc) .

§ 8. THE PRINCIPLE IDEA OF THE METHOD. JOINT MECHANISMS AND

SOLUTIONS OF ALGEBRAIC EQUATIONS

The base of the proof of both universality in all the some theorems
and constructing of the examples is the following idea. To realize a
given algebraic variety or a semialgebraic set as a configuration
Stratum we need a configuration which allowing us to solve of a system
of the algebraic equations and inequalities. To do this one has con-
struct a peculiar joint mechanism whose nodes'coordinates are subject
to given algebraic relations (equalities and inequalities). And vice
versa any confiquration subject to the same relations has the same

combinatorial type. The construction of this type is well known 1! It
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was discovered in fact by von Standt (a Gauss's puple) in his "Geomet -
ric der Lage" (1 47) and was called "wurf" (literally "throw", "post-
ponement") . The "Wurf"-method was applied in projective geometry and
in nomography,essentially Hilbert used it for the aim of coordinati-
zation of the projective geometry.

On iterating the configurations giving the sums and the products
of the reals (see[Ha] ), drawing the lines throw the points on the
projective plane with two marked lines it is possible to construct a
configuration on the plane which "computes" the roots. This is the
plan of the proof of Theorems Z and 6. Constructing the generic confi-
gurations is more complicated because one deals with inequelities.
Actually the bundle over given manifold with contractible leaves is
being constructed. Note that in theseproblems it is impossible to use
that induction with respect to the number of points - that is the
origin of all the difficulties.

All these ideas can be generalized to of more complicated cases
(convex polytopes, arrangements, planes etc). In any case one can
construct a configuration mechanism. controlling some variables,
running exactly manifold (or some special set). The positions of the
mechanism itself form a configuration and their set forms a manifold

(or a set). For a good example but rather cumbersome example see

Mnev's paper.

§ 9. OPEN PROBLEMS

1. What is the least dimension for which the problem of classifi-
cation of the strata of convex simplicial polytopes is universal of a
given combinatorial type. It seems plansibile that the answer is -
four. If it is the case a lot of paradoxical examples within the four-

dimensional convex geometry will be added to the well-known ones.
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Note that apriori it can happen that in any fixed dimension the

problem is not universal but is universal as a whole (see § 7).

2. The classification of the open strata for small defects, (i.e.
differeness between the number of points and the dimension) seems
quite possible. It is interesting to study it and to compare with the

problems of singularities theory (see the end of § 6).

3. To give algebraic-geometric axiomaties of the configuration par-
titions. Remind that they are not Whitney stratifications. To be more
precise we should like to put two problems on stratifications. Let

ipt 7L= 1,“.7ﬂ/} be a system of polynomials F% € P [ xq,--47xu] ,

J": { J4,J;, Jb} being a partition of 1,n . The semialgebraic
set A <R A= Lo, Pn)=0 Vi, ; Pila)>0 ¥jel, ; Pilx)ed Ve ]}
is generated by J . For what system { PL,L‘1,.H,R}is the partition

Y
of WZ into { A J} (where ] runs all the partitions of 1,ﬂ, }
a Whitney stratification ? For what subsets LL of the set of all

the partitions of {?H, is a partition of LJ AJ into { AJ ;J 6‘LL}

Jel
a Whitney stratification for every system .{(F.e. it is so
ror UW=1{17J: I3': QD } + where we have the classical stratification
N —
of a semialgebraic set). In the above cases in this paper ﬁi

= P4CLtrpXk ﬂz and every PL is some minor of matrices.

4. To describe all the partitions of grassmanian invariant with
respect to Cartan group (and Weyl group in particular) which are natu-
ral within the category of all the fields or of all the ordered
fields. It seems not impossible that all of them are combined from

configuration partitions.

5. To study the metric properties of the strata of configuration
partitions of the grassmanians. In particular to find the asymptotics
of the grassmanian measure of generic strata and their unions. There

are connexetions between this problem and Banach geometry and linear
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programming (see [VS.)). The numerical characteristic for of the ty-
pical convex polytope (neighbourhood, the numbers of faces etc) are

expressed with the help of metric properties of those partitions.

6. The investigate configuration partitions for the fields of a

finite characteristic.

7. To give analogues of all the objects for the series of simple

groups different from A,x

8. How to use the results on the field {: to the case of IR

(as in the theory of real algebraic curve) ?

9. To compare the Viro's examples of non-homeomorphic configura-
tions of the lines in pBWl which are not distinguished by linking
numbers, with the configurations which have the same oriented combina-

torial type but are not isotopic.

10. Is there an analog of the invariants of the Knot theory (such
as Alexander's, Jone's polynomial etc) in the theory of configura-
tions ?

We don't discuss here especially the new problems of the repre-
sentation theory of lattice,note only that the realization problem
(in a given dimension) for the lattice and matroid includes some topo-
logical problems. One can expect that the applications of the previous
ideas and making use of Tarsky-Zaidenberg theorem to the represent-

ation problem will lead to a new progress in combinatorial topology.
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