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Abstract. Computer algebra provides means to obtain a diversity of
results in many areas of science. In this paper we explore the possibility
of representing properties of graphs by polynomial ideals. We show that
several properties (emptiness, colorability) admit such representation,
but we also work out limitations of this approach.

1 Introduction

Many areas of science benefit from the ability to describe their objects in various
ways using formalisms from fields which are seemingly far away from each other.
In most cases, this does not introduce a mere redundancy, but frequently opens
new views and many times provides for unforseen insights.

Motivated by the work of Yu. Matiyasevich ([8]), we are going to describe
an algebraic method to study properties of graphs. This method is developed to
provide means to solve the decision problem whether a given graph G has some
property P. Especially, we do not intend to design an all-embracing general
solution but rather adapt some concepts from algebra to graph theory where
these naturally fit.

Given a decision problem on graphs, we will transform each instance of it
into an instance of the polynomial ideal membership problem by capturing the
essence of the property P in a polynomial ideal and encoding the graph G as
a homogeneous polynomial. Then, ideally, the graph G satisfies the property
P if and only if the polynomial corresponding to G is contained in the ideal
corresponding to P.

What are the supposed merits of such approach? First, numerous methods
for solving the polynomial ideal membership problem are available, some of them
have efficient implementation in software. Second, polynomial ideals are in most
cases not “flat” but rather “structured” objects. This structure can possibly be
transformed back into the graph theory where it could provide new insights.
And, finally, even though graph properties and polynomial ideals are used to
select (basically) equal subsets of the set of all graphs, these two concepts stress
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different aspects. Hence, it is not unreasonable to assume that there will be
classes of graphs which can be described and /or studied using polynomial ideals
more easily than using logical formulas. _

The approach we will be using here is as follows: Let G be a graph with
n vertices. We assign each vertex of G a variable. The graph G will then be
associated with a polynomial fg € k[z1, ... ,Zx], and we construct an ideal J in
k[z1,... ,Tn) (depending on the property under consideration P, the number n,
and usually on some other parameters) such that an assertion of the type

P(G) < fc €7 (1)

is valid. However, we will see that this situation is not reachable under all circum-
stances. We will even prove that in some interesting cases the above relationship
is impossible.

The next chapter gives a short introduction to polynomial ideals. After some
general considerations regarding the properties which are suitable to be described
by polynomial ideals we will start with representing the property of a graph to
be nonempty. After showing that the colorability with a fixed number of colors
is a property which can be described by a relationship as in (1), we will finally
consider the property of a graph to contain a complete subgraph. This property

is tightly connected with the colorability and the expectation is that they will -

behave similarly. However, it turns out that the containment of complete graphs
cannot be expressed by means of polynomial ideals.

In Section 3 the notion of a Grobner basis is extensively used. Readers not
familiar with Grobner bases may consult some of various text books such as [4].

2 Basic Notions and Concepts

A graph G = (V,E) is a pair of finite sets V (vertices) and E (edges) with
E C {{u,v}| u #v, u,v € V}, ie. all considered graphs are undirected With. 10
loops or multiple edges. For the sake of simplicity we assume that the vertices
of G are named {1,...,n} where n = |V| unless explicitly stated otherwise. We
write [n] to denote the set {1,...,n}. o

The following definition associates every graph with a polynomial. It is orig-
inally motivated by the wish to express whether the vertices of a graph can be
colored in such a way that no two adjacent vertices get the same color. How-
ever, same objects will prove useful also for deciding other properties, like the
emptiness or whether a graph contains a complete subgraph.

Definition 1. Let G = (V, E) be a graph on n vertices {1,...,n}. With each
vertez i € V we associate the variable z;. Let = be a conner partial order on
the set of variables {z1,... ,zn} (i-e. a reflezive, transitive, and antisymmetric

order with z; =< z; or x; = x; for any i,7). The graph polynomial fe of G 5

given by
rran P 1—[ (. )
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Note that the polynomial fo is a homogeneous polynomial of degree |E|.

Remark 2. There are several ways to associate a graph with a polynomial. All
of them aim at encoding graph properties. The approaches differ in the way
which parts of the polynomial are used to encode the desired information. One
approach is to use values of the polynomial at certain distinguished points —
examples are the Penrose and the Tutte polynomial (cf. [10], [1]). Another way
is to use polynomials as generating functions and to use coefficients — examples
for this kind of encoding is the classical characteristic polynomial, the matching
polynomial, and others (cf. [9], [5], [2]).

The graph polynomial defined above carries the information in its coefficients.
This makes it possible to vary the ground field according to particular needs.
Section 3.2 provides an example where the freedom of choosing the ground field
makes solving a problem easier.

Throughout the paper we will denote by k an arbitrary field, and by
k[z1,... ,zn] the ring of polynomials over k. Moreover, we assume that the vari-
ables are ordered z; < z3 =< ... < T,. At this moment it may not be clear why
an ordering on variables is needed — except for eliminating redundant factors
from the graph polynomial. The reason becomes apparent when Grébner bases
come into play later in the paper.

As we already mentioned, the properties will be encoded in polynomial ideals.
The structure of an ideal makes it possible to circumvent the problem which
arises from the assigmﬁent of variables to vertices. This step virtually introduces
labels — something we want to avoid. On the other hand, ideals constitute a
framework where efficient computations can be performed and whose structure
is to a large extent compatible with problems we intend to solve.

Definition 3. Let R be a commutative ring. An ideal a in R is an additive
subgroup of R such that aR C a.

Notation. Given a (finite) set of elements A = {a1,... ,an} C R we denote by
(ai,... ,a,) the smallest ideal of R containing A, i.e. the set of all finite sums
}: a;ri, r; € R.

After having defined basic ingredients we are going to clarify the precise
meaning of the relationship (1). There are some questions to answer:

— In order to be able to define a graph polynomial we introduced an assignment
of variables to vertices of GG. Since this assignment is arbitrary, it should not
have any influence on the result, and we require that the defined ideals do
not depend on it.

— Since we are working with polynomials with a fixed number of variables, a
property P usually cannot be captured in a single ideal. It will be described
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Definition 4. Let P be a predicate (property) defined on the set of all unlabeled
graphs. We say that the sequence of ideals (Jn)nen represents P if for alln € N
and for all unlabeled graphs G with n vertices the following holds

P(G) <= fx(q) € In for all permutations m € Sy,

where 7(G) corresponds to G where each vertez i has been renamed to 7 (i), and
S,, denotes the permutation group on n elements.

Whenever it is clear (or irrelevant) what the parameter n is and how the sequence
J,, is constructed, we will omit the reference to n saying that “the ideal J”
describes the property P.

Before we proceed, let us see what implications arise from the decision to
choose ideals as the underlying structure. Suppose, the ideal J C k[z1,... ,25)
represents a property P. This means that the graph G satisfies P if and only if
the graph polynomial f¢ lies in J. Now, let g € k[z1,... ,z,] be a polynomial
such that the product gfe turns out to be a graph polynomial (i.e. is a square-
free product of differences of variables) of some graph G' (which contains G).
Since J is an ideal, the product g f¢ belongs to J and thus G has to satisfy P too.

Since this holds for arbitrary polynomials g, all properties P to be represented -

by ideals must be monotone, i.e. they satisfy the following condition:

Let G and G' be two graphs such that G is a subgraph of G'. If P holds
for G then it holds also for G'.

Fortunately, quite some properties, which we are interested in, are monotone.
Some of them will be studied in the next section. -

3 Special Graph Properties

In this section we consider three properties of graphs for which we would like to
obtain an algebraic description in the sense of Definition 4:

(1) the graph contains at least one edge; G
(2) the vertices of a graph are not properly colorable by a fixed number of colors;

(3) the graph contains a complete subgraph.

Next, we will construct ideals representing the first two properties, and we will

prove that the third one does not admit such representation.

3.1 Non-Emptiness

We start with a simple property of a graph to contain at least one edge. For any
n we want to find an ideal €, such that the following holds: Let G be a graph

" LT e cacionment
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degree at least 1 and vice versa. Hence, we are looking for an ideal containing
all polynomials of degree at least 1.

Obviously, (z1,... ,2,) C k[z1, ... ,zy] has the required property. If a graph
contains at least one edge, its graph polynomial is a homogeneous polynomial
of degree at least one and hence lying in (z1,...,Z5). On the other hand, if a
graph has no edges its graph polynomial is 1 which is not contained in the ideal
(z1,...,2,). Otherwise we could write 1 as a linear combination of {z1,... ,2,}
with polynomial coefficients. Setting all variables to zero would yield a contra-
diction. ,

We note that this ideal — and, in general, all ideals which represent some
property — is not unique as it can be replaced for example by (zn, — 21,2, —
T9,-.. ,Tn — Tp—1). This ideal represents the non-emptiness of a graph as well.

3.2 Coloring of Graphs

In 1974 Yu. Matiyasevich ([8]) discovered a way to describe proper vertex color-
ing of graphs in terms of properties of coefficients of graph polynomials (see [8]).
In this section we use these ideas to construct an ideal which represents the
property of a graph to be not colorable with a fixed number of colors.

Let G = (V, E) be a graph with n vertices and let 1 < r < n be an integer. A
proper coloring of vertices of G with colors {c1,... ,c,} is an assignment ¢ : V —
{c1,... ¢} of colors to vertices of G such that no two vertices connected with
an edge are assigned the same color, i.e. (Vi # j)({vi,v;} € E = o(v;) # (v;)).
Let us denote by C7(G) the property that a graph G with n vertices has no
proper coloring with at most r colors. Since a graph which can be properly
colored with a single color has no edges, we assume from now on that r > 2.

Theorem 5. Let

Ur = (z] —1,...,2) —1) Cklz1,... ,2n]

T n

The ideal U* represents the property of a graph to be not properly colorable by
at most r colors.

Proof. Let G be a graph with n vertices such that
C™(G) holds, (2)

i.e. there is no proper coloring of G with at most r colors. We will show that (2)
is true if and only if its graph polynomial lies in U. -

Let F' denote some field. If the colors ¢;’s are elements from F', the prop-
erty (2) means that for all subsets I' C F with at most r elements and for all
assignments ¢ : {21,...,zn} — I" of colors to variables we obtain

fo((z1),... ,¥(zn)) =0, (3)
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assertion is equivalent to the fact that (3) is true for some set I" with r pairwise
different elements and for all assignments ¥ : {z1,...,z,} — I'. Especially we
can choose I' to contain only nonzero elements of . Thus (2) is equivalent to

folzy, .. ,zn) =0o0n I™. (4)

Now we are going to specify precisely how the colors ¢y, ... , ¢, in I" are selected.

Let ¢ be a natural number with ¢ = 1mod r which is a power of some
prime p. (If p is chosen so that it does not divide r, the cyclic subgroup of the
multiplicative group Z» generated by p is obviously finite. It is easy to see that
we may set g to be p°™d(#), where ord(p) > 0 is the order of p in Z7.) Then there
is a finite field GF(q) with g elements (for a summary of properties of finite fields
see e.g. [7]). Now, the key idea is to select the colors {ci,...,cr} to be certain
distinguished elements of GF(q).

We recall that every finite field GF(q) has a primitive element, i.e. an a €
GF(g) such that any nonzero element a € GF(q) can be written as a = o for
some integer i. Moreover, such elements satisfy the equation

Xot=1 (5)
Let m be such that ¢ = rm + 1. We set
¢ i=alU™ for1<i<r.

Since « is primitive, the set
I={1,a™ >, ..., alr"m} (6)

consists of r pairwise different elements of GF(q).

Now, if the graph polynomial f¢ of G is fully reduced modulo Uy (i.e. every
occurrence of 2T in fg is replaced by 1), every variable has degree at most 7 — 1.
The reduction process corresponds to subtraction of elements of U;' from fa-
Hence, fg can be written as

fo = fa+u, (M

for some u € U. We will prove that fe must be zero, i.e. all coefficients of fa
vanish.

We assumed that G has no proper coloring with (at most) r colors. As we
saw above, this is equivalent to the fact that fo vanishes in all points of I'™. As
u € UM, it is easily seen that the same is true for the polynomial u. Hence, the
equation (7) shows that also fe vanishes on I'". However, the following lemma
(see e.g.[3]) shows that this is impossible unless it is identically zero.

Lemma 6. Let f(21,...,%n) € k[T1,... ,2n] be a polynomial where the degree

deg,, (f) of the variable z; is bounded by t; and in which every variable x; occurs
TTOT R - e T T e ) T 1 ta nf ke
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Proof. If n = 1, the assertion follows from the well known fact that a univariate
nonzero polynomial of degree ¢ has at most ¢ roots. The general case is inferred

by induction. O

Now, let {z;,,...,%;,} be the set of variables which effectively occur in fe.
Since the degree of any variable in fg is at most r — 1 and this polynomial
vanishes on I'™, the previous lemma restricted to {z;,,...,z;, } yields that fg

must vanish identically. Then (7) finally implies
fGe(IIZ{"].,...,E;;—-].). (8)

On the other hand, if (8) holds then there is obviously no proper coloring of
G with at most r colors. O

To conclude, we proved that for a graph G = (V, E) on n vertices and for
any assignment ¢ : V — {x1,... ,x,} of variables to vertices the graph G has
no proper coloring with at most r colors if and only if the corresponding graph
polynomial fg lies in the ideal Ul

CHG) <= fe U (9)

3.3 Representation of Subgraphs

After we have affirmatively answered the question about representing non-empti-
ness and colorability of graphs by ideals, we will consider another interesting
property. Let G and H be two graphs with n and r vertices, resp. We are looking
for an ideal which would represent the property of H being a “subgraph” of G
(as an unlabeled structure). To be more precise, we require G to contain an
isomorphic copy of H. Let us elaborate this point.

Both G and H are given by sets of vertices and edges: G = (V,E), H =
(W, F). Then, by definition, H is a subgraph of Gif W C V and F' C E. However,
here the names of vertices play an important role. We want to represent a similar
property without referring to these names.

Definition 7. Let G and H be as above. The graph G contains an isomorphic
copy of H if there is an injective map p: W — V such that p(H) is a subgraph
of G (by p(H) we denote the graph H after renaming each vertexr i € W to
p(i) € V). This property will be denoted by HSG.

Remark 8. To keep the notation simple we will use the term “subgraph” in the
more general sense of “contains an isomorphic copy”.

How should an ideal J corresponding to graphs containing H as a subgraph
look like? If each vertex i € W is assigned a variable z; we obtain a graph
polynomial fz € k[z1,...,z,]. The polynomial fg has to lie in J. In Definition 4
we stipulated that the construction is to be independent of a particular naming
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Proof. Let < denote the degree lexicographical ordering. A Grébner basis of an
ideal J is a set of polynomials such that the leading terms of these polynomials
generate a monomial ideal which is equal to 1t(J) (w.r.t. some term ordering)
where the leading term of a polynomial is its largest term (w.r.t. <) and

16(3) == {1t(f)| f € 3}.

From this it is clear that any set of polynomials containing a Grébner basis is
again a Grobner basis. We wil] show that the set

7

Ok, ={fy|H = {1yuw', F), w C{2,...,n}, H=K,} CB%, (11)

i.e. the set of graph polynomials of all labelings of K, containing the vertex 1 is

a reduced Grébner basis of R with respect to the degree lexicographic ordering
<.

W(RY) = (16(g1), ..., 1t(gs)). (12)

Since Gz C B% . the inclusion (It(g1), ... ,1t(g)) C It(R?) follows immediately.
To show the equality, let f =3 pfi € Ry, pi € klz1,... ,2,], and fi €
B . We will prove that there exists an ¢ such that 1t(g:)|16(f). Then It(R?) C
(1t(g1), ... ,1t(g:)) and the equality (12) follows. Since all polynomials are defined
over a field, for the sake of simplicity we will work with leading monomials
(product of powers of variables without the coefficient) instead of leading terms.

How do the leading monomials of polynomials from BY%  look like? First,
since a graph polynomial is product of (;) linear factors, it is homogeneous.
If a polynomial f involves variables Tins -« 5Ty, where ¢, >4y > .. > i1, its
leading monomial is

r—1_r—2 2
in - i3 i

z
(note that 75 > 1). Let Im® (f) denotes the i-th largest monomial of f. Then,
e.g.,
Im®(f) = x;’r_lx::j RPN ST
If we consider the r — 1 exponents of variables in each term of f as a vector

in N'=1, the set E of such vectors is a subset of N1 consisting of all vectors
(e/h PR 7ekr—1) with

r—1
Zek, = (;) and ey, <r—1, for all 1 <Ii<r-—1.
=1
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The terms of f are sorted in the decreasing lexicographical order of their expo-

nen&‘zzzzotrlsﬁt for f = Y.0_, pifi € Ay the leading monomial Im( f) is divisible by

some 1m(g;), we distinguish two cases depending on whe‘.chgr Im( f)bstems g(l);n
the leading ’monomial of a single term p; f; or whether it arouse by canceling

leading monomials of some terms.
Case 1. (Im(f) = lm(p; f;) for some §) In this case lm(f;)|1m(f) and since lm(f;)

is equal to some lm(g;) the assertion follows immediately.

Case 2. (Im(f) is different from all Im(p;f;)) Then thefle arte ;n;i;ztiese; ;it fl
such that lm(p;fi) = lm(p;f;) (there may be‘more than Wables ces with
this property). Let {i1, ... ,ir} and {]1,....,jr} ?ae the var1> oo Imonved
in Im{p;f;) and Im(p; f;), resp. We assume r > zr; >C.1.}./I 1 "
jp_1 > ...>ji. Then we have for some monomials ¥ an

1,72 2.
h'Il(plfz) = ifmz 1-’13;;_1 et :1?7:3:1112

-1 _r—2 L2 3
Im(p; f;) = Y’g:gr a;;r_l T T

Let [ > 1 be the least index such that 1 7 jf a'nd ik = Jk» forTlh Slk ;nl.
Withoﬁt loss of generality we assume i, > ji, ie. z; = zj. lhe leading

monomials of p; f; and p; f; have the form
-1
1,11 k-1
t(pifi) = m(pifp) = Uit - TLh
k=

where U is divisible by
zit, (13)

te{{ir1see vir FO{G14 15 00r T

with e, =k—1ift =1 or t = Jk-
Let I be as above and let

-1 I
o= {(er, - e1-1) € N™Hei<r— 1,2165 B <2>}|

Tt is not hard to see that the o largest monomials of p;f; and p;f; will be
identical and thus will not appear in f- Moreover,

-1
—2 1-1 k—1
1m () (pifi) = leiz °$§l Ti_, H 3,
k=1

7 1 -1
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Thus Im(”“)(pj f;) becomes the leading monomial of f. Using (13) we see
that Im(f) is divisible by

Im(f;) = ﬁ zp
k=1

and hence by Im(g;) for some g; € G,
O

The Case K> and Kj. In the special case r = 2, the basis B, of the ideal
Jk, consists of graph polynomials of all edges {{i,;j}| 4,5 € [n], % # j}. This
is the ideal J3 considered in the Example 10. Hence, the ideal J%, correctly
represents the property of a graph on n vertices to contain an edge.

Now, in general, does &) represent the property of a graph with n vertices
to contain an isomorphic copy of a complete graph K,? We will show that the
answer is — unfortunately — No. The counterexample yields already the ideal AT,
generated by all graph polynomials of triangles.

First, it is clear that if a graph contains a triangle then its graph polynomial

(regardless of naming of vertices) is in &2. However, the reverse direction is not
true.

Theorem 12. Let Cp, denote the circle with m > 3 vertices, i.e. a graph with
edges {{i,i +1}| 1 <4 < m}U{{1,m}}, and = € S,, a permutation on the

set [m]. The ideal 8% contains the graph polynomial of all 7(Cy) for any odd
m < n.

Proof. The assertion will be proved by induction on m.

When m = 3 the statement is trivial since the graph polynomials of all 7 (Cs)
are equal to fc, € By, .

Let 5 <m < n be an odd positive integer and 7 € S,,, a permutation. Then

~

fC'm = (mm - xm—l)(xm - xl)(xm—l - wm~2) Tt (:175 - -'174)1'

v
=0

(4 — 23)(23 — 22) (22 — 71).

‘We obtain

fom +ofc,
= 0(z4 — m3) (T3 — T2) (22 — 71) + 0(T3 — T2) (T3 — T1) (T2 — 71)
=0(z4 — 1) (73 — 22) (22 — 1)
= fw'(om_z)(% - $2)(:E2 - 1),

for some 7' € Sy,_5. Thus fo,, +0fc, corresponds to a graph polynomial which
isamultivle of f..,.r -~ for some 7 € § o Qinee hoth £rr and £ ara
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This is a bad news as it destroys any hope to success by “massaging” the
ideal A7. We immediately obtain:

Proposition 13. There exists no ideal representing the property of graphs to
contain a complete subgraph Ks.

Proof. Tf such ideal existed it would contain graph polynomials of allntriangles
(with vertex names taken from [n] for some n) and hence the Wholg 82 -anse—
quently, graph polynomials of circles of odd length would be contained in it as

O
well.

Despite of this negative statement, Theorem 12 provides for a somewhat
surprising conclusion.

Corollary 14. The ideal &5 contains graph polynomials of all graphs on n ver-
tices which are not bipartite, i.e. which cannot be properly colored with two colors.

Proof. Let G be a graph with n vertices which is not.bipartite. To keep tél.e prtc?;)f
simple, we borrow a theorem from graph theory saying that every nonr—I‘ ;lpar tlh e
graph contains a circle with an odd number of edges (see e.g. [6]). Then : e
graph polynomial fg is a multiple of fr,,) for some odd m and some T € Sy

O
Thus fa € R5.

On the other hand, &7 is generated by polynomials of the form (mi.— zj)(T;—
z)(x; — zi), for some 1 < k < j < i < n. Taking the normal form with respect
to the] ideal UD (see Section 3.2) — which is zero —we immediately see that every

such polynomial is in U3 and hence
fmcup. (14)

Thus if G is a graph with n vertices such that fo € K% then fg € ‘Uzn. In
Section 3.2 we proved that in this case G cannot be properly colored with two

colors — it is not bipartite. . .
What we got is the representation of not bipartite graphs! The same property

which was considered in Section 3.2.

Theorem 15. The ideal A} represents the property of a graph to be not bipar-
tite.

To summarize this subsection, we saw that the ide;al K7 represents the pr.%;{—
erty of a graph to contain Ks (an edge). However, it proved to be gnpossl'ni
to extend this statement to the general case due to the fact that K% contal :
circles of odd length. Finally, we were able to prove th.at ﬁg‘ represents the sam
property as Uy — the property of a graph to be not bipartite.

o PR e 1 g cheranhe Ko for
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lies in the ideal but which do not contain K. The nature of these exceptional
graphs is diverse and does not allow a simple description as in the case r = 3.
Computations showed that there are e.g. 72 graphs with 6 nodes not con-
taining K4 but whose polynomials lie in £S. Similarly, there are 252 graphs with
7 nodes not containing K5 whose polynomials lie in &. These graphs do not fall
into any single graph theoretic category. However, we saw that there is a connec-
tion between them and the corresponding complete graphs — the defining ideal.

This matter requires further investigation to see whether it may be exploited to
obtain something useful.

4 Conclusion

In this paper we were exploring the possibility of representing graph properties
by polynomial ideals. We showed that some properties (non-emptiness, coloring)
are suitable to be treated by this approach, but in some interesting cases a
representation (in the sense of Definition 4) is impossible — the ideals proved to
be too coarse to capture the desired property exactly. Nevertheless, they may
serve as an “approximate” representation.

The proposed approach has many positive aspects, but also some limitations.
On the other hand, the fact that it cannot mimic graph theory exactly is not
necessarily a failure. It merely leads to new classes of graphs characterized by

common properties which cannot be efficiently described in the language of graph
theory.
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Abstract. In this paper we present a symbolic algorithm for blending
parametrically with G'-continuity a collection of rational surfaces with
rational clipping intersections. The method provides a family of para-
metrizations that depends on a set of parameters, which number can
be controlled in advance, and that can be used further in the modeling
process. For this purpose, we introduce the notion of curves being in good
position, that can always be assumed w.l.o.g., and we prove the main
property of a set of rational curves in good position, that guarantees
that the method always provides a correct solution.

1 Introduction

One of the main problems in Computer Aided Geometric Design is modeling ob-
jects (see [9]). Usually, one models the object as a collection of surfaces. However,
in many cases, one wants this collection to form a composite object whose sur-
face is smooth. This question leads to the blending problem. In fact, a blending
surface is a surface that provides a smooth transition between distinct geometric
features of an object.

Roughly speaking, if V1, . .., V;, (surfaces to be blended), and Uy, . .., Uy, (clip-
ping surfaces) are given, the blending problem consists in finding an algebraic
surface V such that C; = U;NV; C V, and V meets each V; at C; with “cer-
tain” smooth conditions (G*-continuity, see [2]). In this paper we only deal with
G'—continuity (i.e. tangent plane continuity along C;) but the method presented
can be extended to G¥—continuity. Thus, the problem of blending smoothly a
collection of surfaces may be decomposed into two separate subproblems. The
first one focuses on finding appropriate clipping surfaces U; (see [8], [14]), and
the second assumes that the clipping surfaces are given, and deals with the ques-
tion of determining the final blending surface V (see [7], [14]). In this paper we
investigate on the second problem, that we will call in the sequel the blending
problem.

In addition, the blending problem can be approached from two different
points of view, namely, implicitly (see [8], [15]) or parametrically (see [3],[13]). In



