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1. INTRODUCTION

It is well known that questions involving lattice points and lattice
polyhedra often admit an algebro-geometric interpretation via the theory of
toric varieties. For instance, Danilov [Dan] {see also [Kh]) pointed out
that a formula for the Todd class of a toric variety would imply a formula
for the number lattice points inside a lattice polyhedron (but did not
actually show that either formula held). This paper studies these two for-
mulas and the relation between them. An undercurrent of this work, and
its original motivation, is the attempt to understand the mutual relation of
these formulas to a classical result of Pick concerning the area of a lattice
polygon. This relation is explained in the section below labeled overview.

Using combinatorial methods developed in [Mol], 1 prove (Corol-
lary 3) that there is a formula, of the type suggested by Danilov, for the
number of lattice points in a polyhedron. By establishing the converse
of Danilov’s implication, 1 deduce from this that there is furthermore a
formula for the Todd class of a toric variety, of the type he envisioned
(Section 3.1). Following these results, which are abstract in nature, is the
derivation of an explicit such formula, from the residue theorem of Baum
and Bott as applied to a toric variety.

Let me now explain the latter explicit formula. A more through explana-
tion and motivation is presented in the following section. Let M =Z“ be a
lattice, and N =M " its dual. The convex hull in N®R=R¥ of finitely
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many rays which pass through points of N is called a rational polyhedral
cone. Denote by G, =G, (N®R) the grassmannian variety of k-planes in
N®R. In Section 4 we construct for each k-dimensional cone ¢ in N, a
rational function ui*(s) on G4_,, . This construction has the following
properties:

1. (Linearity) If ¢ is expressed as a union ¢ ={}J, g, of rational cones
o, with disjoint interiors, then

w o)=Y u(o,).

2. (Number of Lattice Points} Suppose that P is a convex lattice
polyhedron in M, ie., the convex hull in M®R =R of finitely many
points in M. For each face F of P we obtain a rational cone 4,.(P)" in N
consisting of all ne N®R which, when considered as functions on P,
achieve their minimum along F. In particular, if F is a k-dimensional face,
then 3,.(P)" is a (d — k)-dimensional cone. Then for each k&,

Y VOl (F) i K(8x(P))
Fe P
dim F=k
i1s a constant function on G, ,. Furthermore, if we denote this constant
value by # ,(P) then the number of lattice points in P is

#(P)=Y #(P).
k

For an illustration of this formula see the example in the overview below.
(The # ,(P) are the coefficients of the Ehrhart polynomial, so that the
number of lattice points in the dilation of P by a factor of n is
T #u(P)n*)

3. (Danilov’s Question) Let X be any toric variety (possibly singular
or noncompact), and 4 its fan. For each k-dimensional cone ¢ in 4,
o € A(k), there is a codimension & orbit, whose closure determines a chow
class [V(o)]e A, ,(X). Then the Todd classes of X are expressed as

Tdy «(X)= Y WMo Vo)),
age k)
where the sum on the right is evaluated after scalers are extended
appropriately.

A second purpose of this paper is to draw attention to a sort of duality
between the number of lattice points in lattice polyhedra, and their
volumes. I do not yet understand the precise form of this duality, so that
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this theme is somewhat tentative. It encompasses the following result: if P
1s a lattice polyhedron in N® R of dimension 4 at most 4, then

vol (P)=3 #(F) ui(3,(P)),
T

where 3,(P) is the cone subtended by P along F (whose dual cone is
Fe(PY)

This paper is one of a series relating combinatorics and algebraic
geometry. 1 hope that readers of one or the other viewpoint may read
selectively the relevant parts without too much distraction. An overview is
contained in the following section.

1.1. Overview

This work is an outgrowth of efforts to generalize an elementary theorem
of plane geometry discovered by Pick. Pick’s theorem states that the area
of a convex polygon P whose vertices lie in the integer lattice Z” is given by

Area(P)=I+§—1, (1

where [ is the number of lattice points interior to P, and B is the number
on the boundary. Of course, this formula fails for higher dimensional
polyhedra: for d> 2, it is easy to construct simplices in RY with arbitrarily
large volume, but which meet Z“ in only their o+ 1 vertices.

Elementary Proof. However, another possibility is suggested by the
following proof. Let us normalize angle measure ¢/ so that the whole circle
has measure 1. For any v in Z*, a small circle centered at v will meet P in
an arc whose angle measure we denote / . (P). For instance, if v is interior
to P, then 2 (P)=1, and if v is exterior, then /. (P)=0. The sum of
. {P) over the v on the boundary of P is (B/2 — 1), since the sum of the
normalized exterior angles of a polygon is 1. Pick’s theorem is therefore
equivalent to

Area(P)= Y L (P). (2)

o
ve 7~

Now, let rot P be the rotation of P by 180, and let ¢, P be the trans-
lation of P by the vector v. Let us moreover identify a polygon Q with its
indicator function 1, on R? defined

(x) = 1, XeQ
ot = 0 otherwise.



186 ROBERT MORELLI

Under this identification we can add polygons together as functions. For
instance, the sum of two polygons Q, and Q, is the function whose value
is 2 on the intersection, 1 on the symmetric difference, and O elsewhere.
Consider the sum

T=Y t,P+ Y 1.rotP.

re?Z? reZ?

It is meaningful because all but finitely many of the terms vanish at a given
point in the plane.

I claim that, outside the union of all the translates of the edges of P, T
is a constant function. The trick here is that each edge of a translation 7. P
of P coincides with the corresponding edge of a unique translation t,. rot P
of rot P, so that all the polygons fit together into a sort of a tessellation
with overlaps. Let us determine the constant value of T in two ways. First,
the integral of T over the unit square must be Area(P)+ Area(rot P}=
2 Area(P), since this integral is equal to the integral jR: (P +rot P)dA over
the whole plane. On the other hand, the integral of T over a small circle
about the origin is (X, 2 £ (P)+ 2, LATOUP)=23 2 L (P)
Equating these two constants yields Pick’s theorem.

Inrrinsic. 1t is natural to conjecture here that Eq. (2) generalizes to
lattice polyhedra of higher dimensions d as

VOld(P)= Z LI(P)’

veZd

but one checks that this formula fails already in dimension 3 (though it
does work in dimension 1). The flaw in this generalization is that the
volume of a lattice polyhedron is intripsically defined, independent of any
metric on R so the intrusion of spherical volume, which is not intrinsic,
is unnatural. A closer look at the proof of Pick’s theorem reveals that ~,
could be replaced by any measure i on angles satisfying certain weak for-
mal properties. We might therefore ask whether there exists some measure
i on angles, necessarily different from euclidean angle measure, for which
the equation above holds with / replaced by u. Such considerations lead
us to make the following definitions, which capture what is intrinsic in this
problem.

Definitions

DertNITION 1. Let V=R be a real vector space. The group L(V} of
polyhedral functions on ¥V is defined to be the group of integer valued
(discontinuous) functions on ¥V generated by the indicator functions 1, of
all convex polyhedra Q.
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The group L(}'} has been used (mostly implicitly) by the school of convex
geometers who study valuations of convex sets and polyhedra. (It also falls
within a general construction of valuation groups of lattices defined by
Rota.) Naturally, the field R may be replaced by any ordered field. More
relevant for our immediate purposes is the

DerNITION 2. The group L(Z¥) is the subgroup of L(R“) generated by
the indicator functions of lattice polyhedra.

Obviously, L(Z“) does not depend on a basis, so we can also write L(M)
whenever M = Z4is a free Z-module, i.e., a lattice.

Recall that a convex polyhedral cone is the convex hull of finitely many
rays emanating from the origin. Such a cone is called rational if the rays
are generated by vectors with integral coordinates. As with polyhedra, we
identify a polyhedral cone with its indicator function.

DerFmiTION 3. Define the group of polyhedral germs . Z (V) as the
group of functions generated by the set of the indicators of convex
polyhedral cones. Define ¥ %(Z“) as the subgroup of ¥ #(R“) generated
by the indicator functions of rational cones.

Again, it makes sense to write ¥ (M) for any lattice M.

So far these definitions fail to incorporate a very important ingredient,
namely translations. The device we used in the proof, of adding together all
translates of a given polyhedron, is equivalent in some respects to equating
a polyhedron with any translation of itself.

DeriNiTION 4. Define the group (V) as the quotient group of L(V)
by the relations

,f.:_ [I/;

where feL, veRY and ¢, f is the translation of f by v, ie., (£, f)x)=
f(x—1v). Define the group (M) as the quotient group of L(M) by the
relations f =t f, where fe L, veZ".

Another way of saying this is that # (V') is the group of coinvariants of L
as a V-module, or & = Hy(V, L). Quotients such as this of groups of
polyhedra by group actions are the object of study in the theory of scissors
congruence of polyhedra, an outgrowth of Hilbert’s third problem.

First Reformulation. Let us now recast Pick’s theorem and the problem
of generalizing it in terms of these definitions. A polyhedron P looks like
a polyhedral cone in the neighborhood of any lattice point v. For P convex
we may define this cone 3,(P)e ¥ ¥ as the cone R"1 P spanned by the
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translation ¢ P of P which takes v to the origin. The expression £ (P)
represents the angle measure of this polyhedral cone.
For each v we therefore have a gernt homomorphism

\')ll.: L"’ ,(/)5([).

DeriNiTION 5. The sum 3 f)=3, _,:%(f) is finite, and invariant
under translations, so descends to a /artice germ homomorphism

19: S L

wr= |+ + N +>

The problem can now be stated as follows:

Does there exist a factorization

& __"___} S P
|

voly

b n

I (3)
+

Q

of the volume map vol;?

(Volume is normalized so that the unit lattice cube has unit volume.) Pick’s
theorem states that we take u to be the euclidean angle measure for d =2,
A second reformulation is stated below.

Scissors Congruence.  Let us now turn to the group ¢, whose structure
is clearly relevant. As we stated above, similar groups are considered in the
theory of scissors congruence. Let us say a few words about this area.

Hilbert’s third problem asks, in spirit, whether a theory of volume for
polyhedra can be based upon dissections, without limiting processes.
Volume is supposed to have three properties: (1) if P lies in a hyperplane,
then its volume is 0; (ii) volume is invariant under rigid motions; and
(iii) if P is divided into two picces with disjoint interiors P=Q U R,
int{Q N Ry=¢5, then vol(P)=vol(Q)+ vol(R). A dissection theory of
volume would therefore equate two polyhedra if one of them could be
subdivided into pieces, and the pieces reassembled. using rigid motions,
into the other. Two such polyhedra are called scissors congruent. Hilbert’s
third problem, as it was ornginally posed, asks specifically whether two
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polyhedra with the same volume are scissors congruent. In the nineteenth
century, the answer had been shown to be yes for the plane. In higher
dimensions it is no, as was shown by Dehn; scissors congruence preserves
many beautiful invariants more subtle than volume. The problem has
therefore been transformed and is nowadays usually taken as the problem
of finding a complete set of invariants. For a concise account of Hilbert’s
third problem, see [Ca].

We are concerned here with a more manageable variation, posed by
Hadwiger, which stipulates that in the reassembling, we may translate, but
not rotate, the pieces. Two polyhedra are called translation scissors
congruent if one of them can be subdivided into pieces, and the pieces
reassembled, using only translations, into the other. It is convenient to
incorporate the idea of scissors congruence into a Grothendieck group
construction. We take the free abelian group generated by expressions { P]
for P a convex polyhedron, and mod out by the three types of relations:
(1} [P]=0if P lies in a hyperplane; (ii) [P]=[t,P], where ¢ P is the
translation of P by v; and (i) if P is divided into two pieces with disjoint
interiors P=Q U R, mt(@n R)=(, then [P]=[Q]+ [R]. Translation
congruence invariants identify themselves with homomorphisms from this
group into the domain of the invariant.

In this case a complete set of invariants can be given, and all of the rela-
tions that hold between these invariants (the “syzygys”) are known. The
invariants were discovered by Hadwiger. Their sufficiency in all dimensions
was proven by Jessen and Thorup, and independently by Sah. Dupont
described the relations that hold among the Hadwiger invariants.

Latrice Scissors Congruence. These results, however, were carried out
over an ordered field, and what we would like to understand is the case of
lattice polyhedra, which are in some sense defined over the ring Z. For this
reason, a theory of scissors congruence for modules over (non-ordered)
rings, which when specialized to Z“ gives lattice polyhedra, was worked out
in [Mol]. This was accomplished by using the observation, which is
contained in [ Dup], that the group of polyhedra is generated by simplices,
and the subdivision relations (iii) are generated by the boundaries of
degenerate (d+ 1)-simplices. The point is that simplices and their
boundaries are purely algebraic constructs, not depending on any notion of
convexity. This allows us to define a chain complex 2, (M) for any module
M over any commutative domain A4, and to use the methods of homological
algebra to study it. The elements of #(M) are thought of as k-dimensional
polyhedra in M up to translation congruence. In fact, for any ordered field
K, the group #,(K?) is isomorphic to the Grothendieck group defined
above. (The isomorphism is non-canonical because the elements of 2,(K“)
are oriented.)



190 ROBERT MORELLLI

The upshot of this is that both the sufficiency of the Hadwiger invariants
and all the relations among them are determined by the homology of the
complex #,(M) which is computed in [Mol]:

THEOREM 1. Suppose M is free, and char A=0. Then the homology
H(P,(M))= N\ M for k> 0.

Solvability of First Reformulation. Let us now return to Pick’s theorem.
Specializing to the case M ~ZY, the groups Z,(M) reflect lattice scissors
congruence and are related in a precise manner to £(M). From the
knowledge of the homology of #,(Z7) it is easy to deduce that 9 is an
injection. This means that

THEOREM 2. A4 lattice polyhedron P is determined up to subdivision and
translation by its lattice germ 3(P), that is,

$ L(M)sFL(M).

It follows that anything preserved by subdivision and translation, e.g.,
volume, is determined by the lattice germ:

COROLLARY 1. A factorization 3 exists.

There remains the problem of actually constructing an explicit such
homomorphism u. We will return to this problem later.

Facial Structure. Let us express the first reformulation in terms of the
facial structure of P. If Fis a relatively open face of P, denote by 3,(P) the
common value of 3,(P) as v ranges over all points of F. Denote by #{Q)
the number of lattice points contained in the lattice polyhedron Q. Since
each lattice point v in P is contained in exactly one relatively open face
of P,

8(P)= ) #(F)3(P) (4)

Fep

Our first reformulation of Pick’s theorem is therefore equivalent to

vol (P)=3Y #(F)u(3:(P)).

Fe P

It is natural to widen the question to include polyhedra of dimension k not
necessarily equal to d. We can then put

vol(P)= ) #(F)u(3,(P)). (5)

F =iy 4
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In this equation,. P is a k-dimensional polyhedron, and g, is a function
defined on the subgroup of ¥ ¥ (M) generated by k-dimensional cones. If
we denote this subgroup by F{™¥ % (M) we can write

1 Fdme 2 (M) - Q.

Despite appearances, it is possible to replace P in formula (5) by an
arbitrary element of the subgroup of L(M) generated by k-dimensional
polyhedra. For this purpose one interprets the right-hand side in terms of
natural Hopf algebraic structures which are explained in [Mo2). The
existence of such y, reduces immediately to the k = d case.

Second Reformulation. There is a second and dual reformulation of
Pick’s formula (1) which depends on the notion of polar dual. The polar
dual of a convex polyhedral cone C= {x: fi(x}, .., f{x) 20} in V is the
cone in the dual space V' ¥ of V whose edges are f, ..., f,,. If ¢ is a rational
cone in the lattice M =~ Z¢ then ¢V is a rational cone in the dual lattice
M.

The second reformulation is

#(P)=), Y volu(F)uy_o(84(P)"). (6)
k Fe P
dim F=k
The subscript 4~k in u, _, indicates that since F has dimension &, 3,(P)"~
has dimension d — k. Let us write N = M ¥ for the dual lattice. The function
i, here is defined on cones in the dual space:

e FEmP P(M ¥ ) - Q.

In the two dimensional case, # (P)=1+ B. On the other hand, if we
take euclidean angle measure for y, then as one easily checks that the right
side of formula (6) with euclidean angle measure for u, is

vol(P)+ Y vol,(e)%+ 1= vol(P)+-12—?+ 1.
edges ¢
Thus euclidean angle measure works up to dimension 2 for this second
reformulation, but again it fails in higher dimensions.
The existence of ug, ..., p, which satisfy Eq. (6) can be established in
general in a way similar to that in which the existence of a p, for the first
formulation was established.

Relation between Formulations. 1 do not know in general whether the
same pu, can simultaneously satisfy both Eq. (5) and Eq. (6). In other
words, do there exist u,: F{™¥ #(N)— Q which satisfy formula (5) for

607 100 2-5
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lattice polyhedra P in N and which satisfy formula (6) for P in M? I know
the answer is affirmative at least for d < 5. At any rate, the equations are
not formally equivalent, and a little experimentation reveals that they make
rather different demands of the y,. An interesting point is that if u, were
ordinary angle measure, then two such adjoint equations would be
equivalent by a theorem of McMullen. While this is suggestive, ordinary
angle measure (with respect to any inner product) does not work here.

Toric Varieties. We now shift gears a bit and describe a quite different
area of mathematics which is relevant.

There is a beautiful construction which associates to any convex
polyhedron with integral vertices a complex algebraic variety, together with
an ample line bundle, (and vice versa). The variety and line bundle are
unchanged by a translation of the polyhedron, so this already suggests a
connection with our problem.

The variety so constructed falls within a very special class known as toric
varieties [KKMS-D]. They are intrinsically characterized as normal
algebraic varieties on which an aigebraic torus 7" = (C*)” acts, and into
which the torus embeds equivariantly as a dense open subset. In effect, they
are “equivariant partial compactifications of tori.” Henceforth we denote
the group of characters of 7" by M ~ Z* and its dual M ¥ = Hom (M, Z)
by N.

A complete classification of toric varieties of a given dimension can be
given in terms of the combinatorial notion of a fan. A fan is a collection
4= {a} of convex cones ¢ defined over Z (recall that such cones are the
generators of ¥.%(Z“)). We require of the fan that (i) if o € 4, then any
face of ¢ 1s also in 4, and (i1) if ¢ and t are in 4, then their intersection
gnt is a face of each of them. The classification theorem is that there is
a canonical bijection between toric varieties and fans. (The fan sits in the
lattice N~ Z“ of one parameter subgroups of the torus.) We denote this
bijection 4+ X ,. We will not explain it here, except to say that the cones
in the fan correspond to the orbits of the torus action, a k-dimensional
cone to a codimension k orbit. This foundational work was carried out in
the 1970s.

The construction of a toric variety from a polyhedron proceeds by
constructing from P in N=M" the fan {3,(P)” : F a face of P} in M.
Conversely, let X be a toric variety, and L an ample line bundle. We may
trivialize L over the torus, thereby identifying functions with sections there.
In particular, we can ask which of the characters on the torus extend to
global sections of L. These characters are points in M, and in fact, they are
exactly the set of lattice points interior to a certain convex polyhedron P, .

This correspondence has been exploited by algebraic geometers as well
as combinatorialists since the discovery of toric varieties, and the rule
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seems to be that a natural theorem in algebraic geometry gives rise to a
natural theorem in combinatorics. For instance, the Alexandrov-Fenchel
inequalities result from the Hodge index theorem, and important facts
about the number of faces of a convex polyhedron result from the hard
Lefschetz theorem.

Relevance of Toric Varieties. The relevance of toric varieties for us
begins with some observations contained in [Dan] and [Kh]. For an
ample line bundle L on a toric variety X, it is known that H'(X, L) =0 for
i> 0. Danilov noticed that the number #(P,)=dim HX, L) is therefore
equal to the Euler-Poincaré characteristic y{L), so that methods like
the Riemann-Roch theorem are applicable. In particular, one derives
Ehrhart’s reciprocity theorem # (P;x)=(—1)¥ # (interior(P); —x) from
Serre duality.

Let us assume from here on that our toric varieties are compact and
smooth. This is the case if X arises from a polyhedron whose edges incident
to each vertex are parallel to a subset of the coordinate axes with respect
to some basis of M. We mentioned above that to each cone in the fan there
corresponds an orbit V(a). Its closure defines a cycle in homology, and by
Poincaré duality, a cohomology class [F(a)]. It turns out that these
classes [V(o)] generate the cohomology of X ,, but there are relations
among them. The structure of the cohomology ring was determined by
Jurkiewicz and Danilov by finding all these relations.

Danilov’s Question. Since the [V(o)] for dime=k generate the
cohomology in degree k, for any particular toric variety X ,, the kth Todd
class can be written as a sum

Td(X,)= Y r,[V(o)]

ge k)

for some rational numbers r,. Danilov poses the question of whether the
r, can be chosen once and for all, independently of any particular 4. He
also notes that the Hirzebruch-Riemann-Roch theorem implies

#(P,)=Y Vol(F,)-r,, (7)

Fo

where F, is the face of P, for which 3, (P,)" =o. Finally, if we extend
coefficients to R then, in dimension 2, the r, may be taken to be the
ordinary cuclidean angle measure of a.

Relation ro Pick’s Theorem. 1t is clear that there is a close connection
between Danilov’s question and the second formulation of Pick’s theorem,
formula (6). Let us modify it slightly to accentuate this point. We can pose
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the question of the r, as follows: does there exist a homomorphism
py: Fim e #(Z4) — Q for which

Td'(X,)= Y wlo)V(o)] (8)

o e dlk)

for every fan 47 It would follow that

#(P)=Y Y VOL(F)py_ ,(c") 9)
k rYe P
dim F=k
for any lattice polyhedron P of the special form associated with smooth
toric varieties.

A natural question now is whether we can go backward from the
existence of u, satisfying formula (6) for polyhedra to conclude the
existence of u, satisfying Eq. (8) for toric varieties. Theorem 8 states that
the two problems are equivalent. The proof of this depends on extending
the correspondence between ample line bundles and polyhedra, to the
entire K group of algebraic vector bundles. (We should point out that there
exist nonprojective toric varieties, which correspond to no polyhedron, so
it is hopeless to try to go backward if we do not make some extension.)

Equivariant K Theory. Recall that if a group G acts on a space X, then
an equivariant vector bundle on X is a vector bundle together with an
action of G on the total space, for which the projection to the base is
equivariant, and the fibers are mapped to each other linearly. The
isomorphism classes of equivariant vector bundles fit together into a
Grothendieck group K (X).

Now the torus T acts naturally on a toric variety X, so we have the
group K, (X). If E is an equivariant vector bundle on a toric variety X,
then there is a natural action of the torus on the cohomology groups
H(X, E), and these groups therefore split into sums of weight spaces:
H(X,E)=@®,,., H(X, E),,. Using these components we can define the
weight m Euler characteristic of E as y,(E)=3,(—1)'dim H'(X, E),,. It is
easy to see that y,, passes to K, (X). Recall further that the operation of
exterior power makes sense in equivariant X theory, inducing there a
structure called a special A-ring structure. In terms of the A-ring structure
certain natural ring homomorphisms ¥°, ¥, .. called Adams operations
are defined.

DerFmNITION 6. We define a homomorphism x> 1(x) from K. (X) to
L(M) for any compact (smooth) toric variety X by the formula
fb(m/k) = Xm( '{Ik(E),\w

where me M, and k is a positive integer.
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Now, ¥{x) is well defined, and is in fact a polyhedral function, so we
obtain a homomorphism

1 K (X) > L(M).

Furthermore, ¥, is an injection whose image can be geometrically
characterized. These facts are proven in [Mo3]. By virtue of the natural
map K(X)— K(X), which is a surjection, and the natural map t: L(M) —
£(M), we also obtain an injection from the ordinary K group K(X) into
L(M).

Volumes of Faces. When a toric variety X with ample line bundie L
arises from a polyhedron P, the cones in the fan of X correspond to the
faces of P. When L varies, the resulting polyhedra vary in habir, i.e., have
parallel faces but with varying volumes. Now, the volumes of the faces do
not vary arbitrarily but are constrained by certain linear relations. When
we consider, more generally, all of the images of ¥, we can no longer speak
of faces, but it is still possible to define functions Had.: L(M}— Q which
play the same role as the volumes of faces. These functions are the
Hadwiger invariants mentioned above as the separating invariants on
ZL(M). Such a Hadwiger invariant is in fact an extension by linearity of the
function, defined on the set of polyhedra, which assigns to a given
polyhedron the volume of the face with a given orientation. Again, the
different Hadwiger invariants are dependent on each other by certain linear
relations. In fact, the relevant Hadwiger invariants for a given X are in
bijection with the cones ¢ of the fan and

the relations holding among the Hadwiger invariants are
exactly the same relations that hold among the cohomology
classes [ V{a)].

This is a consequence of the close connection between the Hadwiger
invariants of ¥(x) and the chern character of x (see [Mo3] for details),
together with the injectivity of . One may make a comparison here. The
problem of finding the linear relations holding among the volumes of the
faces of a polyhedron with prescribed fan is solved by considering the
cohomology of the toric variety. This is analogous to the problem of
finding the linear relations among the numbers of faces of different
dimensions, whose solution comes from the betti numbers of toric varieties.

Solvability of Danilov’s Question. Let us return to the question of going
backward from the combinatorial formula (6) to the formula (8) for the
Todd class. Without going into the details, which are explained in
Section 3.1, let us simply summarize:
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1. The Euler-Poincaré characteristic of x is y{x)= # (¥ (x)).

2. The Hadwiger invariants of ¥,(x) are connected with the chern
character of x.

3. The relations on the Hadwiger invariants are the same as those on
the cohomology classes [ V(o) ].

Because of these compatibilities, the Riemann-Roch situation on toric
varieties, which characterizes the Todd classes, duplicates itself in the
combinatorics of polyhedra. It results that functions p, satisfy Danilov's
question if and only if they satisfy the second reformulation of Pick’s
formula. We have therefore shown the existence of a local formula for the
Todd class:

THEOREM 3. For each k there exists a homomorphism u, from the
subgroup of & ¥ (M) generated by k-dimensional cones to Q satisfying

Td'(X)= ) wdlo)[V(o)] (10)

e 4K

for every toric variety X 4.

As in the other cases, we would like to give p, explicit form. This is
actually possible, by residue formulas of Baum and Bott, if we are willing
to extend the coefficient field.

Bott Residue Theorem. The Bott residue theorem gives a formula for
the characteristic numbers of a variety in terms of the local behavior of any
holomorphic vector field near its zeros (assumed isolated). Now the one
parameter subgroups » of the torus (elements of N=M ¥) determine
vector fields on any toric variety X through the action of the torus. The
zeros of these vector fields occur exactly at the 0 dimensional orbits, which
correspond to the cones of dimension 4 in the fan. We may therefore apply
Bott’s theorem to a toric variety X with vector field corresponding to ne N
to determine the Todd number of X. We find the following:

1. The contribution from the fixed point corresponding to a cone o
depends only on ¢ and ne N, not on the fan.

2. This contribution is linear in o, giving rise to a homomorphism

3. For fixed o the contribution is a rational function of » invariant
under scaler multiplication; i.e., it is a quotient of homogeneous polynomial
functions of the same degree, defined on the vector space N@R.
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Another way of putting this is that the local contribution from 6 is a
rational function on the projective space P(N®R), so we obtain a
homomorphism from (M) to the space of rational functions on
P(N®R).

Now, this is not yet sufficient to solve Danilov’s problem because it
computes only the top Todd class Td (which, incidentally, is always 1 for
a toric variety) while Danilov’s question refers to the entire Todd class. The
necessary generalization is provided by a theorem of Bott and Baum which
determines characteristic classes in terms of the singularities of foliations.
Now a (d—k+ 1)-dimensional subspace of N®R determines a rank
d—k + 1 foliation on the toric variety, to which we can apply the residue
theorem. Just as above, we obtain a local contribution r, for each cone o
of dimension k, for which the theorem states that

Td' (X )= Y r.[Va)]

ae Ak)

As before, this contribution r, is independent of A4 and is linear in
the o. Moreover, the (d—k+ 1)-dimensional subspaces of N@®R are
parametrized by the grassmannian variety G,_,, ,(N®R), and the local
contribution for a fixed cone ¢ of dimension k is a rational function on the
grassmannian. Therefore, these constructions yield a homomorphism

pie: FOm P P(N) - R(G i (NOR)).

If a point of G,;_, ., (N® R) is chosen, then by evaluation we obtain a real
valued u,, and these u, satisfy Danilov’s equation, and hence the second
formulation of Pick’s theorem. It is more natural however to consider p*
as an R(G,;_,.(N®R))-valued solution. Of course in doing so we
must appropriately extend scalers, passing for example to H*(X,)®

R(Gy_ k1 (N®R)).

Return to Combinatorics. At this point we can forget the geometry of
toric varieties. The Todd measures p'“* constructed from Bott's formula
are given explicitly in terms of the cone. We therefore obtain a purely
combinatorial formula:

THeOREM 4.  For any lattice polyhedron P,

#(PY=Y Y VOL(F) u  3:(P)”),
k Fe P
dim F=4&
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by which we mean that the right-hand side is a constant function whose value
is #(P).

This formula has the advantage of naturality; it is functorial with respect
to the lattice. While calculations with the ui* can be cumbersome (they
involve the symmetric functions), they are entirely constructive, as the

fields involved are countable.

Recipe. Let us give the recipe for p% in the case of a d-dimensional
cone ¢ in a d-dimensional lattice N. Assume first that ¢ has 4 edges, and
that the primitive vectors in N on these edges constitute a basis for N. Such
a cone is called a nonsingular simplicial cone. It follows that ¢ may be
expressed as o = {x: f,(x), .., f4(x) =0} for linear functionals f,fe M=N".
This expression is unique if the f; are taken to be primitive. In this case,

— ,dd(fli vy fd)
fiofa

uia)

which we take to be an element of the fraction field of sym& M. Recall that
td, is the symmetric polynomial defined as the coefficient of +/ in the power
series

d

tdixy, . x) =11

i=1

l—e

Now we claim that any d-dimensional cone can be realized as a union {J; o,
of nonsingular cones with disjoint interiors, and that the expression
3, uis;) is independent of choices.

ExAMPLE. Let P= B be the unit triangle with vertices (0, 0), (0, 1),
and (1,0) in M=2Z% Now td, =% (c?+c¢,) in terms of the elementary
symmetric functions ¢,. Let us use the variables x and y to denote the
standard basis of M. Then,

¥ ValR P =1 (L) w1 Ny 1 )
o NE BRI RN
+3(O)”
={xy20}+{-y(x-y)20}

+i-x(y—x}=0}+ ...
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50,

(x+p)P+xy (—y+x—py)—plx—1y)
12xy —12p(x — )

Y. VOl(F) u(3p(P)”) =

Fc P

(=x+(y—x))—x(y—x)

+

—12x(y—x)

Lot

2 22

L1

2
_ Rxy(y—x)
T 2xy(y —x)

+2
=3
= #(P).

First Formulation Revisited. The inevitable question now is whether
these natural functions u5“ work in Eq. (5). As we remarked above, this

equation is not formally equivalent to formula (6), and nothing we have

said so far implies that u';” should work in it. The answer is that u%“ works

for d=1, 2, 3, and 4 but fails for =35, 6, ....
THEOREM 5. For any lattice polyhedron of dimension d at most four,
vol,(P) = pf4S(P)).

This is proven by direct calculation. Unfortunately, the same calculation
that proves it for d< 5 also disproves it for 4> 5. It is mysterious to me

why p'# works for d< 5, and just as mysterious why it fails at d= 5.

ExaMpPLE. Let P be the unit triangle in M. Then, (using x and y again
for the basis elements of M =N ") we have

spy=L_ + N +\

={x, y20}+{x,—(x+ )20} + {p,—(x+y)=0}
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50,
e (X+2)P+xy (x=x+2)—x(x+y) (= (x+p)
pyH3(P)) =
12xy —12x(x+ y) —12p(x + y)
_ bxp(x+y)
T R2xp(x+ y)
_ 1
2
= vol(P).

2. LATTICE POLYHEDRA

2.1. Definitions
Let M denote a free Z-module of rank d, ic, M=Z" is a lattice. We

refer to elements of M as lattice points, and to polyhedra in My =M ®R,
all of whose vertices lie in M as lattice polyhedra.

DermiTiON 7. Define an abelian group L(M) by taking as generators
the symbols [ P] for all convex lattice polyhedra P, and relations

[(PuQ]=[P]1+[Q]-[PNnQ] (11)

whenever P, Q, Pu @, and P Q are all convex lattice polyhedra.

An alternate description of this group will also be used. Define the
indicator function of a polyhedron P to be

) _ 1, xeP

Ax)= {0 otherwise.

The indicator functions of all lattice polyhedra generate a subgroup of the
group of all (discontinuous) Z-valued functions on Mg. It is proven in
[Mo2] that the map sending [P] to 1, is an isomorphism from L(M)
onto this subgroup. For this reason, we refer to elements of L(M) as
polyhedral functions, and treat them, when convenient, as functions.

DeriniTiON 8. Define the group £ (M) to be the quotient of L(M) by
the relations

(z.P1=L[P],
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where m is any element of M, P is any lattice polyhedron, and ¢,, P denotes
the translation of P by m.

Note that we have a filtration by dimension in .#. To be explicit, let
F{™ % (M) be the subgroup of elements of ¥ (M) generated by polyhedra
of dimension at most &, and set gri™ (M) = F{™L(M)/F™ L(M).

By definition the group L(M) is generated by lattice polyhedra. Note
that there i1s a well defined absolute notion of volume in a lattice,
normalized so that a fundamental parallelepiped in any k-plane has unit
volume. We denote it

vol,: gré™ L(M)— Q.

The lattice point enumerator is the homomorphism # on L(M) which
returns the number of lattice points touching a given polyhedron (interior
points together with points on the boundary}. The map # may also be
considered as a homomorphism from % onto Z.

It was first proven by Ehrhart that for a polyhedron P, the integer
valued function # (P.n):= #(¥"P) where ¥"P is the dilation of P by a
factor of n, is a polynomial in the positive integer variable n. whose leading
coefficient is the volume of P. Let us write this polynomial as

#(P.n)=) #,(P)n~
k

We have #4(P)=1 and #,(P)=vol,(P) for any convex lattice
polyhedron P.

By a rational convex cone in M we will mean the convex hull in the
vector space M ® Q of finitely many rays. There is an evident notion of
subdivision of a rational cone into a collection of rational cones, and hence
there are scissors congruence groups of cones, analogous to the scissors
congruence groups of polyhedra.

DermNITION 9. The group of polyhedral germs % (M) is the abelian
group with generators [¢], ¢ a rational convex cone in M, and relations

[eut]l=(c]+[t]-[on1]

whenever ¢ U t is a rational convex cone.

There is a filtration by dimension on .2 (M) whose terms we denote
Fd™% #(M) and whose associated graded groups we denote gri™ £ (M).

Given a lattice polyhedron P, and a point pe M@ Q, we obtain a
rational cone

3,(P)={ve M®Q: p+eve Pforall e >0 sufficiently small },
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the cone subtended by P at p. It is clear that 3, passes to a homomorphism
from L(M) to ¥ #(M). (We can consider §,(f) to be literally the germ of
/ if we consider f as a discontinuous function; see [Mo2].)

If Fis an open face of P then 3.(P) is the same cone for any veF.
Denote this common value by 3,(P).

DermNiTION 10 Define the total germ map @, : L —» L ® ¥ ¥ by setting
0.([Pl)= ). FR®I.(P)
FeP

for a convex polyhedron P, and extending linearly. The summation extends
over all the open faces of P (which have been identified with elements
of L).

For example,

o= ol + 0N+ .0\
+ e+ — ®—'L’+\®-\
+ o0
We call @, the rotal germ homomorphism. The algebra of this map is
studied in [Mo2].
2.2. Local Formulas for Volume

We refer the reader to the first page of the overview for some of the
motivation for what follows.

DerINITION 11.  Define the lattice germ homomorphism 9: L — #(M)
as

)= 4,00

pe M

This makes sense because for a given f'e L(M), 3,(f) will vanish for all
but finitely many p. In terms of the total germ map, we have

3 f)=(# ®id)-0(f).

The homomorphism & is translation invariant and so it descends to a map
from £(M) to LL(M). In fact, it is a complete invariant for ¥ as is
stated by the next theorem, which we quote from [Mol].
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THEOREM 6. The lattice germ homomorphism on ¥ (M) is an injection
LMY s S L(M).

Furthermore, the dimension filtration on £ (M) is simply that induced from
S L(M):

§ 'Fimy (M) =F&™ P (M),

From this we can deduce our main objective, that volume admits a
“local” expression.

COROLLARY 2. The volume map factors through 3. That is, there exists
a homomorphism p from £ (M) into Q such that

B )) = vol,(f)

for any element f of L. In fact, for each k 20 there exists a homomorphism
Wy: BEE™ L L (M) — Q with the property that

(S = Vol (f), (12)

all f in gré™ P(M).

Proof. The theorem identifies ¥ with a subgroup of ¥#. Using Zorn’s
lemma we may extend the domain of the volume map to all of ¥¥.
(In other words, Q is an injective Z-module.) Moreover, by the same
identification the map vol, is defined on a subgroup of F¢™¥ (M), and
since 37 'F3™ PP (M)=FI™ £(M), we know that vol, must vanish on
elements belonging to F{™ %% (M). By Zorn’s lemma we may extend
vol, to a homomorphism on all of F¢™¥ #(M) which vanishes on
Fim ¥ %(M). This then defines the homomorphism g, .

Remark. The map 9 extends to polyhedra with rational vertices as
follows. It can be shown that if P is a lattice polyhedron, and if ¥"P
denotes the dilation of P by the factor n, then $(¥"P) is a polynomial in
the positive integer variable n with coefficients in ¥ Z(M)® Q. Denote this
polynomial 3(P;n). If P is a polyhedron with rational vertices, then for
some integer ny, ¥™P is a lattice polyhedron. Set §(P)= §(¥™P; /ny) e
FL(M)® Q. Then for any p, as above,

(1 ® Q)(I(P)) = Vol (P).

Evidently, there are many maps u which will factor volume. We do not
know what additional conditions to impose in order to find a distinguished
u. One possibility is to work in a category of lattices with additional struc-
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ture, such as the category of metric lattices. We can reject two natural
candidates, however.

PROPOSITION 1. Set M =27
(a) For d> 1, there exists no SL(d, Z) invariant u factoring volume.
(b) Put the standard inner product on Z“. Then SO(d,Q) acts

on S L(Z4Y) (though not on ¥). For d>2, there exists no SO(d, Q)
invariant .

Proof. Consider the following two Z-valued SL(d,Z) invariant
maps on ¥.%. The Euler characteristic maps each rational convex cone
(including the point at the origin) to 1, and x'* maps the point at the
origin to 1 and every other rational convex cone with a vertex to 0 (see
[Mo2]). Part (a) follows from the more general.

Claim. The only SL(d, Z) invariant maps on .¥.% are linear combina-

. loc

tions of the Euler characteristic and y <.

To see this, consider the group W=.4%%, ., of germs modulo the
action of SL(d, Z). A cone is called nonsingular if it is generated by a sub-
set of a basis of M. It is well known that any rational convex cone may be
subdivided into nonsingular cones, so nonsingular cones generate &£ (M).
Clearly, any two simplicial cones of the same dimension are equivalent in
W. Moreover, any simplicial cone ¢ of dimension at least 2 may be split by
a hyperplane into two such cones ¢, and c, intersecting in a cone of lower
dimension c¢y. We have ¢=c¢,+c,—¢;, which in W becomes ¢=c;.
Iterating, we may write any cone of positive dimension as a sum of one
dimensional cones. Since any two such cones are equivalent in W, we find
that W is generated by any one dimensional cone together with the zero
dimensional cone at the origin. The Euler characteristic and '°° therefore
generate the dual of W.

As for part (b), we construct an explicit counterexample. Let o be the
simplex in Z* with vertices (0,0, 0), (1, 1,0), (1,0, 1), and (3, -1, 1). It is
easily checked that although ¢ has volume 1, it is primitive (contains no
lattice points other than its vertices). Let A be the element

2 -2 1
A=4 -1 =2 =2,
2 1 =2

of SO(3,Q). We find that 4¢ is again a lattice simplex with vertices
(0,0,0), (0,—1,1),(1,=1,0), and (3,—1,1). On the other hand 4o is no
longer primitive; two lattice points lic on the edge between (0, -1, 1) and
(3,1, 1)at (1,—1, 1) and (2, —1, 1). Denote by t the dihedral angle along
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this edge, considered as an element of ¥.%. Then 8(A40)= A3 o)+ 21, so
any SO(3, Q) invariant u would have to vanish on t. But 7 is simply the
45° dihedral angle spanned by the x-axis and the vectors (0,0, —1) and
(0, 1, —1). By symmetry u must also vanish on the complementary angle
and the rotations of t about the x-axis by multiples of 90°. Since the sum
of these angles differs from the entire space by two dimensional cones, and
u# must take value ! on the entire space, ¢ must be nonzero on these two
dimensional cones. This is easily seen to be absurd.

2.3. The Lattice Point Enumerator

In the last section we encountered the fact that 9 is a separating
invariant for lattice polyhedra and observed that this implies the existence
of a formula for the volume of a lattice polyhedron. In this section we
produce dual invariants, show that these are separating, and deduce the
existence of formulas for the number of lattice points in a lattice
polyhedron.

Let N be the lattice dual to M, so that M=Hom (N, Z). If ¢ is a
rational convex cone in N, then by the dual of this cone we shall mean the
cone

6" ={ve N®R:v(6)=0}.

(Note that this is contrary to the usual definition of the polar dual but
agrees with the conventions of toric variety researchers.) It can be shown
that o> 0" passes to a well defined homomorphism ¥ ¥ (N)—» L (M)
which is in fact an isomorphism.

Consider the direct sum of subquotients of X(M)® ¥ L (N),

B=@ gri™ L(M)®grd™, S L(N).
k

One checks that the total germ map @, followed by the duality
homomorphism, id & ~, maps into B in a natural way. Formally,

DerINITION 12.  Define a map 8: £(M) — B by setting the kth compo-
nent equal to
OuP)= Y F®3I,(P).

Fe P
dim F=k

Consider the maps J,: L(N) ~» Q®gr§™, & £(M) for 0 <k < d defined
by 9, = (vol, ®id)&,. If P is a convex polyhedron, then

JuPy= 3 Voll(F)8:(P)".

Fc P
dim F=k
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PROPOSITION 2.  The maps 3, are a set of separating invariants on £{N).

Proof. It is shown in [ Mol] that the Hadwiger invariants are a set of
separating invariants on .Z(N). Let us recall the definition of these
invariants in the present context. For this purpose it is convenient to use
the vector space V'=N® Q.

By a rigged hyperplane 1 mean a hyperplane U< V together with a
choice of one of the two halfspaces bounded by U. A rigged flag of length
k is a flag of subspaces F=(V=U%2U'2 --- 2 U*), where U’ is a rigid
hyperplane in U'~"! for i=1, .., k. In particular, codim U=

There is a Hadwiger invariant associated with each rigged flag, by which
[ mean the following. If U' is a rigged hyperplane, choose a linear func-
tional £V ¥ whose kernel is U! and which is positive on the chosen
halfspace bounded by U'. If P is a convex polyhedron in N, set 8,1 P =
{ve P:&(v)=min(&(P))=hp(£)}. More generally, if F is a rigged flag, set
Qg P=0ydyx-1--- 8, P. It is easy to see that dg extends by linearity to a
function on L and passes to a function of ¥

Op: L(N)—> Z(N).

Let F be a rigged flag of length k and x an element of £ (N). Define the
Hadwiger invariant Hadg(x) as

Hadg(P) = vol,_(d¢(x)).

In particular, if k=0 then Hadg(x) = vol,(x) for the unique flag of length
0. It is proven in [Mo!1] that

If Hadg(x) =0 for every rigged flag F, then x =0.

Our task 15 to show that the Hadwiger invariants factor through the
maps 3,. In other words, we must determine Hadg(x), given §k,

The codimension 0 Hadwiger invariant, volume, is simply §, (after
identifying gra™ % (M) with Z).

A hyperplane U in V=N®Q determines a line U* in W=M®Q,
while a rigged hyperplane U in V determines a ray in W, which we may
consider as, an element 1, of gr{"™ ¥ #(M). It is clear from the definitions
that

Jy(x)=Y Had, ®71,,
U

where the sum is over all rigged hyperplanes.
Let us define another filtration (decreasing this time) on &% (M) by the
dimension of cospans. The cospan of a convex cone is the largest subspace
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it contains. Let HY % (M) be the subgroup of elements of ¥ L (M)
generated by convex cones whose cospans have dimension at least k, and
set gr¥. P L(M)=F* LL(M)/FH'FL(M).

There is a homomorphism from (M) to gr¥, &£ (M) defined by

Sk(P)= Z mk(F) SF(P)'
dimgFik

Moreover, the duality map o+ o ¥~takes gré * ¥ L (M) to gri™ ¥ L(N),
and under this map &, , is taken to §,. It is therefore sufficient to
determine the Hadwiger invariants from the §,.

Let U be a rigged hyperplane, with chosen halfspace U™*. Define as

follows an operation d,, which takes cones in ¥ to cones in U:

cn U, ceU"*

%) otherwise.

au(0)={

It is clear that 0, respects the subdivision relations in &%, so it passes to
a homomorphism from ¥ (M) to &£ (U). Moreover, if e U™ then its
cospan must be contained in U, so d, determines a homomorphism

dy: gr’, SLM) - gr*, S L),

Let F=(V=U’2U0'2.--2U% be a rigged flag. Set JpP=
Cuwlyi-1-+- 0,1 P. Note that gre ¥ FL(U*) is simply Z. I claim that the
general formula for Hadg is

Hadgp(x) = 0§ 8, _(x),

where on the right-hand side we are identifying Q®gré * ¥ L(U*)
with Q.

To see this, take x to be a convex polyhedron P. If U is a rigged hyper-
plane, then the cones 3,(P) (F a face of P of codimension &} which are not
mapped by J, to 0 are exactly those for which F is contained in the face
J0y(P). If we are given a codimension & riggid flag F, it then follows that
the cones which survive d are simply the cones 3(P) for which F< d,(P).
Since Jg(P) has codimension at least &, if 3 survives it must be dg(P). This
means that if dg is applied to 9,_, (P)=3 ;e p aim o YOla_ «(F) 8£(P)
the result will be 0 unless d¢(P) has codimension exactly &, in which case
the result will be vol,_, (F). In either case it agrees with Hadg(P).

COROLLARY 3. There exist homomorphisms y,: gri™ & ¥ (N)— Q with
the property that for all x in £ (M)

#.(x)= /Jk(gd-k(x))-

607 100:2-6
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In particular, for any lattice polyhedron P,

#,(P)= Z %_ld‘k(F)uk(‘gF(P)v)
dimFod

and
#(P)= Z mdim F(F) Heodim I-(SF(P)V)

FepP

Proof. The maps §, are separating invariants, and J, has weight k in
the sense that

3.(¥"P)=n*3,(P)

for a dilation ¥"P of P. Therefore: any homomorphism on £(N) which
has weight & must factor through 3,.

Remarks. 1. Tt is not possible to choose y, so that it is positive on
every cone. This is simply because # ,(P) may be negative even if P is a
convex polyhedron. The simplest example is the tetrahedron T with vertices
at the origin, at (0, 1,0), (1, 0, 0), and at (1, 1, 13), for which # (7)= —{.

2. Of course, we also know that vol, factors through J, and #
factors through 3, but these are both trivial.

3. The formal duality between Corollary 3 and Corollary 2 raises the
following question. Do there exist functions g, : gri™ & £ (M) — Q so that
Corollary 2 holds for polyhedra in M, and Corollary 3 holds for polyhedra
in N?!

3. Topbp CLASS OF A TORIC VARIETY

Notation. Recall that a toric variety (over C) is a normal algebraic
variety on which a complex torus 7= (C*)“ acts, and into which the torus
embeds equivariantly (see [Oda]). We denote the character group of 7 by
M, and the dual of M by N. The classification theorem constructs a
bijection 4 «» X, between the fans 4 in N and the toric varieties X, with
torus T. Let A(k) denote the set of k-dimensional cones of 4. To each
a e A(k) there corresponds a codimension k orbit V(o) of T in X, whose
closure is ap algebraic cycle we denote [ V(a)].

Intersection Ring, Homology, and Cohomology. Let A,(X,) denote the
group of k-cycles modulo rational equivalence. For a compact nonsingular
toric variety X ,, the cycle class map

A (X ) H (X, Z)

' The author has recently settled this question in the affirmative.
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is an isomorphism, and A,(X,) is generated by the cycles {¥(g)] for
o € A(d— k). The relations among these generators, and the multiplicative
structure in A, can be elegantly expressed in terms of the fan, as was done
by Jurkiewicz (projective case) and Danilov (in general).

THEOREM 7. Let X, be a compact nonsingular toric variety. The inter-
section ring is generated by the cycles [V(c)], o € A, subject to the relations:

(i) For ae A(k) and 1€ A(]),

[Vio+1)] if o+tedlk+1)
0 otherwise

[V(o)]- [V(e)] ={

(where 6 + 1 is the cone generated by o and t by Minkowkski sum).

(it) For any me M,

Y <m, n(e)>[V{(e)1=0,

eea)
where n(g) is the unique primitive element of N lying in the one dimensional
cone @.

It is useful to bear in mind the following simple consequence.
A homology class x on X, may be represented as

x=3 r,[V(o)]

aged

The representation is not unique. A cohomology class ¢ (with coefficients
in, say, Z) may be evaluated on the classes [ ¥(g)] so gives a function on
the fan

c:d—-Z. (13)

Not every function on 4 represents a cohomology class.

3.1. Existence of Local Formulas

Suppose that X, is a nonsingular compact toric variety. Then the Todd
class Td*(X,} of the tangent bundle TX, of X, is a class in A*(X,)=
A*(X,)® Q defined as follows. Let td (x, .., x,) =3, 4 1d,(x, .., x,) ' be
the power series

i
—rx,°
oy 1—e ™
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Its coeflicients are symmetric polynomials in the x;. Then the Todd class is

Td*(X)= Y Td'(X)
20

=Y tdi(x, ... x,),

iz0

where the x, are interpreted as formal roots of the chern polynomial of
TX e dTX )=2,00cATX,) fi=1’Ii-’=1 (1+ x;1t).

We know from Theorem 7 that for any &,

Td(X )= 3 r.dV(o)] (14)

ae Ak)

where r, are rational numbers not uniquely determined. A problem, posed
first by Danilov, is to decide whether the r, can be chosen independently
of 4. That is, can we choose a rational number r, for each cone o, so that
Eq. (14) holds for any fan 4. We show below that such a choice is possible.
In fact, we show that the r, may be chosen so that they are linear with
respect to subdivisions. Incidentically, the Todd class is the only charac-
teristic class for which one would expect linearity.

THEOREM 8. Let p: gri™ & L(N)— Q be a homomorphism. The three
Jollowing conditions are equivalent.

1. For all smooth compact toric varieties X ,,

Td(X.,)= ) wmlo)[V(a)] (15)

ae Ak)

2. Foradl fin (M)
#,(f) =3, ().

3. For all convex lattice polvhedra

#(P)= ) voly W(F)ud8(P)). (16)
diml;“g:}t; A
Proof. This proof depends on results and constructions from [Mo3],
to which we will freely refer. That paper constructs a natural injection
1 K(X,)— £ (M) from the K group of a smooth compact toric variety to
ZL(M). This injection satisfies the following properties relevant to our
present purpose:

(a) H¥"(x))=%¥"1(x), where ¥” on the left is the nth Adams
operation and ¥” on the right is dilation by a factor of n.



TODD CLASS OF A TORIC VARIETY 211

(b) #(¥(x))=yx(x), where y is the Euler Poincaré characteristic.
(¢) J,(F(x)) can be written uniquely in the form

JHxN= Y a,®[c]

oedld-k)

The a, are determined by

a,= | chy () [Vi0)],

where {: A%(X ) — Q is the degree map; see [Mo3, 6].

(d) A nonsingular simplex, te., a_simplex with volume 1/d!, is the
image under ¥ of ¢(1) on P¢ (with some toric structure).

Conditions 2 and 3 are trivially equivalent. Assume that 1 holds. In
consequence of (a) and (b) above, and the Riemann-Roch theorem,
#a4 ((Hx))={ch, (x)Td"(X,);see [Mo3, 5]. On the other hand, by (c),
chy «lx)- Td“(X ) = ch, XD 20 ca @) V()] = 2, ¢ iy tklo) a, =
Ue( G (H(x))). Thus, 1 implies 2 for elements of the image H K(X ,)) for a
given 4. Now by (d) above, any nonsingular simplex is such an image. But
Theorem 13, which is proved in Section 4.2, states that nonsingular
simplices generate Z(M).

Conversely, suppose 2 holds. On a given toric variety X, consider the
cycle c=3 i, (o) V(a)]. It follows from (c) tt\at for any x in K(X,)
andany o€ A(k), f ¢ - chi(x) =3, 4, 14(0) @0 = (S (FON) = # 4 ((H(x)).
On the other hand, we have already seen that | Td*(X,)-ch, (x)=
# 4 (}(x)). Therefore, | (c— Td*(X,))-ch, (x)=0 for all x. But, ch, ,
is surjective modulo torsion, so by Poincaré duality, ¢ — Td*(X ,) vanishes
in H*(X,,, Q)= A*(X.,)q-

COROLLARY 4. The r, in expression (14) may be chosen linearly with
respect to subdivisions and independently of A.

Proof. This merely asserts the existence of homomorphisms g, as in the
proposition. We know these exist by Corollary 3.

PROPOSITION 3. Any u, satisfying the equivalent conditions above also
automatically satisfies (15) for arbitrary {possibly singular or noncompact)
toric varieties:

Td, (X, = z plo) Vo)l

o€ k)

Proof. When the variety X, is singular the Todd class Td.(X,)e
A (X )q is taken in the sense of [Fu]. The extension from compact
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smooth to arbitrary smooth toric varieties is trivial. For the extension to
singular toric varieties, let f: X, — X, be a resolution of singularities of
X,. Then by the generalized Grothendieck-Riemann—-Roch theorem
proved in [Fu], Td (X, )=/ (Td(X,)). On the other hand, the
pushforward of a cycle [¥(6')] on X . is

. [V(o)], dim(o)=dim(s’)
Vie')]=
/elV)] {O otherwise,
where o is the smallest cone of A containing ¢'. Therefore, Td, (X ,)=

Sl 2o e ay )V ) = (2, . 4k, #x(a)[V(a)]), by the additivity of u,.
We therefore have the reformulation:

The Todd class can be lifted to a well defined cycle, functorial
with respect to proper push forward in the category of torus
embeddings of a fixed torus.

Formula of Fulton. As an application of the existence of u; we prove
a formula of Fulton for the Todd classes of projective space. This formula
can be described as follows. Let N be the lattice of vectors in Z¢*! whose
coordinates sum to 0. Let 4 be the fan in N whose k-dimensional cones are
spanned by k-subsets of the vectors (1,—-1,0,..,0), (0,1,—-1,0, .., 0), ..,
(=1,0,..,0,1). One knows that X,~P¢ Endow N with the metric
induced from the standard metric on Z“*'. Denote by £ ,(ag) the spherical
angle measure of a k-dimensional cone ¢ with respect to this metric,
normalized so that an interior cone, ie., an entire k-dimensional subspace,
has angle measure 1. Fulton’s formula states that

Td"(P')= ) Lulo)[V(e)] (17)

ae MKk

Fulton has also raised the general question: given a fan 4, when does
there exist a metric on N for which such a formula (17) holds? It is known
that in dimensions 1 and 2 the answer is that any metric works for any fan.
In higher dimensions, one finds that for a reasonably “spread out” fan the
right side of (17) tends to roughly equal T%(X,). but it is rather-unusual
for actual equality to hold.

DermviTioNn 13, Call a fan 4 in a metric lattice N splayed in dimension
k if formula (17) holds.

If G is a group of automorphisms of a lattice N, let us say that a cone
o of dimension k is G-commensurable with its linear span if in the group
dim

of coinvariants (gr;™ Y%(N))y., go=r(spanc), where g and r are
integers. Equivalently, G - o is equal, as an element of gr¥™ ¥ £(N), to a
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sum of interior cones. This is the case, for instance, if the linear span of ¢
is the union g,¢ LI ..- U g,0 of non-overlapping translates of a.

ProprosITION 4. Let A be a fan in a metric lattice N. Suppose there is a
Sfinite group G of automorphisms of N such that each o€ Alk), is
G-commensurable with its linear span. Then A is splayed in dimension k.

Proof. Let yu, satisfy the equivalent conditions of Theorem 8. Let us
first make a general observation. If ¢ is a k-dimensional interior cone, then
u(c)=1. To see this consider a half-open parallelepiped f in ¢* " M. By
a half-open parallelepipid in a lattice isomorphic to Z* we mean a subset
of QX of the form

), 0 x):0<x, <1},

It is easy to see that #(fin)=n"%so #,(f)=1, while §, ,(f)=c.
The dual action of G on M preserves #,. Moreover, for any lattice
polyhedron P in M and any automorphism g of N, we have

S(g" P)=gdu(P),

so the composition of u, with a g again satisfies Eq. (16). Since G is finite,
we can arrange, by averaging if necessary, that u, be G-invariant.

Let ged(k), and suppose that qo is equal to r(spanc) By the
G-invariance of y,, u(a)=r/g. On the other hand, G acts by isometries, so
for the same reason, (/ ,(¢)=r/q. Since on the cones of A(k}), p, and £,
agree, formula (17) follows from Theorem 8.

Remarks. 1. To derive Fulton’s formula, interpret the lattice described
above as the root system A, with its invariant metric. The Weyl group,
which is the group of permutations of the coordinates of Z“* ", satisfies the
hypothesis of the proposition, as one readily checks.

2. There are smooth toric varieties X, for which Td*(X,) cannot be
represented by an algebraic cycle which is a linear combination with
positive coefficients of the invariant cycles [V{(o)]. This follows from
Remark 1 in Section 2.3. For example, any nonsingular subdivision of the
fan dual to the tetrahedron T described there gives rise to such a toric
variety. For such a fan A4, there can be no metric for which A4 is splayed.

3.2. Bott Residue Theorem on a Toric Variety

More satisfactory than an abstract existence statement would be explicit
homomorphisms u,. By a straightforward application of residue formulas
of Baum and Bott (see [Bo], [BB]J) we construct such homomor-
phisms with certain desirable properties. For example, they are natural and
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multiplicative in a certain sense. The concession we must make to achieve
these properties is that the u, take values not in Q but in extension fields
of Q which are described below.

Let us recall the relevant statement of [BB]. Suppose M is a compact
complex manifold, and ¢ is a coherent subsheaf of the tangent sheaf TM
which is closed under Lie brackets. The sheaf ¢ will restrict to a subbundle
of TM of rank, say k, on some dense open subset, so by the Frobenius
theorem it will define a k (leaf-) dimensional foliation there. Denote by S
the singular set of &, i.e., the set of points at which £ is not locally free. Let
i: M —Sg M be the inclusion. Suppose that the image of the adjunction
map TM — i, i*TM is the same as the image of the composite £ — i, i*¢ —
i 1*TM. Suppose further that there is a dense open subset S’ of S for
which the following holds:

for each point peS§’, there is a neighborhood U, of p,
complex coordinates z,..,z,; and holomorphic functions
day, .., a, defined on U, so that

H

xelU, i, (x)=--- =z,{x)=0}

{
{xeU,:q,(x)= -+ =a,(x)=0}.

il

2. f1<j<k~—1 and k<i<d then da;/0z; vanishes on U,.

3. The vector fields &/0z,,..,8/¢z,_, and X9, a;0/0z;, are
generating sections of £

4. The matrix A=(da,;/0z;), k<i,j<d, of partial derivatives is
nonsingular at p.

The sheaves ¢ satisfying these properties can be characterized in a more
conceptual way (see [BB, p. 284]), but we will not address such points
here. Note in particular that § is (K — 1)-dimensional and that the subset
of S on which ¢ spans a subspace of TM of dimension smaller than k — 1
is of codimension at least one.

Now to each irreducible (k — !)-dimensional component Z of S, and
each degree d—k+1 symmetric polynomial ¢, we associate a number
U, &, Z) as follows. Let p be any point of S’ Z, and let coordinates and
functions a, be chosen as above. Then,

Ay oy Ay ,0,..,0
g, &, 2)= Lo o ) (18)

Ay Ad ok

where the A, are the eigenvalues of the matrix A at p. The residue theorem
in question then states [ BB, Theorem 3].
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THEOREM 9. Let {Z,} be the irreducible (k — 1)-dimensional components
of S, and @ is a degree d—~k+ 1 symmetric polynomial. Then under the
hypotheses stated above, the chern class ¢(T/E) is computed as

o(TIE) =Y. U, & Z)(Z,],

where [ Z,] denotes the Poincaré dual of Z, in H*“~**'Y(M; C).

Let X, be a smooth compact toric variety and choose a subalgebra of
the Lie algebra of 7% Then this theorem applies neatly to the natural sub-
sheaf of TX, generated by this subalgebra. To be precise, suppose that H
is a rank k submodule of N generated by elements n,, .., n,. Then the
holomorphic vector fields v'(p) = (d/dr) exp(in,) - p generate a subsheaf H
of TX which are foliations on the maximal torus but which have
singularities on the orbits whose stabilizers intersect exp(H). Note that the
orbits V(o) for which this occurs are exactly those for which the span of
o meets H nontrivially. In order that the hypotheses of the residue theorem
hold, we need that there be no singularities on orbits of high dimension,
ie, H does not meet the span of any oed(d—k). One checks that if
this is the case, then the local condition is also automatically satisfied.
Therefore, for a generic H these hypotheses are in fact met.

Since H, is free, the residue theorem computes the characteristic classes
of TX,. Now let us compute the right side of (18). Since the computation
is local, we restrict attention to an affine toric variety U,,c .a
k-dimensional cone in N, with associated orbit V(o). Suppose then that H
is a (d— k + 1)-dimensional subalgebra generated by n,, ..., n,. The cospan
of ¢ is d — k dimensional so we may choose a basis {m,, .., m,} of M for
which ¢ is generated by m,, m,, .., m,, tm, ., .., tm, Set z;=e(m),
the character m; considered as a function on U,. We then have V(o)=
{z,= -+ =2z,=0}, as desired. In these local coordinates, the action of the
torus is simply (£, ..., t;)- (24, w0y 24) = (2,2}, -\ [424) SO the vector fields in
H, are generated by

{my,n;»z,08/0z,+ {my,n;>2,0/0z,+ -~ + {my,n,) z,0/0z,,

i=k,..,d It is easy to prove that generically these generate the same
subsheaf of TX as

0f0z) 41y oy 0/024

and

k
Y miAm (A Amg g A e ARy 2, 8/0z,

i=1



216 ROBERT MORELLI

The matrix A of partial derivatives is thus diagonal, and the number

(o, Hy, V(a)):‘p(<ml A g A s A R A - AR, )

. (19)
IL<mame A Amgnen - Angy

Now as it stands, the construction depends on the specific subspace H
we choose. In order to make the construction natural we therefore consider
the numbers /(¢p, Hy, V(o)) as functions of the subspace H. That is, we
consider them as functions on the grassmannian of d— k& + 1 planes in N.
In fact, these functions are rational and happen to fall within a series of
similarly defined functions which may be interpreted generally as
meromorphic sections of the various twists ¢'( j) with respect to the Pliicker
embedding. We will hold off writing these expressions down until
Section 4, where the concrete recipes are given.

3.3, Equivariant Cohomology

In [AB], the residue formula was reinterpreted in terms of equivariant
cohomology, at least in the case of a one dimensional foliation resulting
from the action of a circle S. This new interpretation also allows the local
computation of the equivariant characteristic “numbers,” which lie
naturally in the equivariant cohomology of a point, H ¥(pt) = H*(BS).

The result of applying the ideas of [AB] to our situation is as follows.
Let ne N be a generic one parameter subgroup S T of the torus 7, and
let ¥ be a corresponding generator of the character group of S. To any
symmetric polynomial ¢ of degree 4, there is a corresponding equivariant
characteristic cohomology class in H%(X ;). In ordinary cohomology one
can evaluate a cohomology class over the fundamental cycle of X, to yield
a number. Correspondingly our equivariant class may be pushed forward
to a point pt, yielding a class in H¥{(pt) ~ C[u]. This equivariant charac-
teristic “number” need not vanish even if & is distinct from d. We then have,
for the equivariant characteristic number corresponding to ¢, the formula

Z @((/dﬂ n>’ e </Zﬂ n>) uk
o€ A(d) [1.<f7.n> u '
where [, .., /5 are primitive generators of the dual cone o of a. The

right-hand side s evaluated in the fraction field of C[u]. If £=4d this
formula reduces to a special case of the formula of the previous section.

4. COMBINATORIAL CONSEQUENCES

In this section we distill out the combinatorics of the residues that arise
in connection with the theorem of Baum and Bott. Our aim from this point
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onward is to sever connections with the geometry of toric varieties as much
as possible.

We first define a sequence of homomorphisms on the graded pieces
griim & . They will all take values in the field of rational functions in d
variables. To be more precise, instead of 4 variables, we should say
sym* M, the symmetric aigebra (with Z coefficients) of the dual of V. For
the sake of clarity, we first give the special case, which is easiest to state.
Recall that a cone in a lattice N is called nonsingular if it can be generated
by a subset of a Z-basis of N.

DerFmITION 14, Suppose that ¢ is 2 nonsingular 4-dimensional cone in
a lattice N (of rank d). Then ¢ is generated by d primitive elements
fis o fy of the dual lattice M, ie., o= {x:f(x)}, .., f,(x)=0}. For any
symmetric polynomial ¢ of d variables set

OS5 0 S

pg(o)= T2l

JreJa

This expression is meant to be a rational function lying in the fraction field
(sym* M},.

The nonsingular cones generate gré™ &.%. On the other hand, there is
no reason to expect a priori that these u¥ will descend to well defined maps
on gri™ #.¥ because there are always many ways to subdivide a given
cone into nonsingular cones. For most choices of ¢ in fact they do not
descend. We will see that when ¢ is the Todd polynomial of degree
k, u% = ' is linear with respect to subdivisions, hence gives rise to such a
homomorphism on grd™ ¥.%. With this in view we set the total Todd

measure to be

d(fy, . fa)
fl o ‘fd ’

The latter expression is a power series with rational functions as
coeflicients. With some caution, we can write

(o) =

d - 1
ud‘(a)=il’:—l‘ | —e -tfi

For sample computations of u’¥, see the examples in the overview.

Now for the general definition.

DEFINITION 15. Let o be a nonsingular k-dimensional cone in a lattice
N. The cospan of ¢ is a (d— k)-dimensional subspace ¢*. There are k
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faces of ¥ of dimension d—k + 1, the “edges” of av. Each “edge” is a
halfspace bounded by o*. Choose generators f, ..., f, of the top exterior
powers of the spans of these “edges.” These are well defined up to a sign.
Choose the generators to be compatible in the sense that the corresponding
orientations on the “edges” all induce the same orientation on a*. If ¢ is
a symmetric polynomial in k variables we set

(P(fl"' fk)
he S

If the degree of ¢ is of parity different from k, then there is an ambiguity
of sign. A way to resolve it is mentioned below. At any rate, the cases
of most interest are deg 9 =k and k£ =d, which arise from the residue
formulas, and for which there is no question of sign.

In particular, we have

ug{e)=

dfis - fi)
oS

which is understood to be a power series whose terms are elements of the
fraction field of the symmetric algebra of A4 **!' M.

uilo)=

TueoreMm 10. 1. The functions pif grd™ S L — (A?*+' M), are well
defined (apart from the sign ambiguity).
2. The maps u'{" are multiplicative with respect to external products

uio x 1y = pif(o) uit(r),

where o and t are in lattices N, N, of respective ranks k and I, while o x t
isin N=N,® N, of rank d. If we write M, M, and M, for the duals of N,
N,, and N,, then the product on the right is interpreted via the isomorphism
sym* M ®sym* M,=sym* M.

3. The maps p" are natural in the sense that if Qe Aut(N) then
W Qx) = Q*(ui(x)), where on the right-hand side Q* denotes the natural
action of the adjoint of Q on the target field.

Proof. Even prior to well definedness, the naturality property is
immediate. We will also show multiplicativity before well definedness. If o
is defined by equations f,, .., f; =20 and 7 by equations g, .., g,20 then
o x t is described by fi, ..., fi, €15 - £:= 0. By definition,

k 1 ! 1
IJI(JXT)‘I—[ l,/in l—e &

i=1 i=1

= u(0) (e,

l—e
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We show well definedness by induction on the rank d of the lattice N.
Before considering the general case, we will first establish that p’ is well
defined. This is trivial for d=0 and d=1, there being always a unique
decomposition into nonsingular cones in these dimensions. For the general
case, a topological argument based on the residue formulas will be given.

Note that if the rational function u%* is evaluated on a generic element
n of N, then it will have a finite value equal to the local number

Ktd,, ny, V(a)). Bott’s formula (this is the original k=1 case of (18) in
(Bo]) then says that

Ta' (X )X 1= 3 wito)n).

ae Ad)

On the other hand, any toric variety is birationally equivalent to P“ so has
arithmetic genus 1. Therefore, 3. ) #5(6) =1 identically.

We must show that any two subdivisions of a given cone ¢ into non-
singular cones produce the same value for uf(c). We can reduce to the
case of ¢ a nonsingular cone as follows. Take the pairwise intersections of
the cones in two such subdivisions of an arbitrary cone, and further
subdivide the resulting subdivision into nonsingular cones.

Suppose then that ¢ is nonsingular. Endow N with the metric for which
the primitive generators of ¢ are an orthonormal basis of N. The dual cone
¢” is then identified with ¢ itself, and — ¢ is the reflection of ¢ through

the origin. For each face t of ¢, let T be the cone
If=t+(—c"N1t)

The f constitute a nonsingular complete fan.

Suppose we have a nonsingular subdivision of ¢. By induction, u% is
well defined on all of the faces of dimension lower than 4. The subdivisions
of all the faces of ¢ induce subdivisions of the cones of the complete fan {7}
described above. By the multiplicativity of x4 and the inductive

hypothesis, the sum of u“ over this subdivision is independent of the

subdivision of the face. The formula above then shows that g’“(c) is well
defined as p54c)=1-%, .  ui“o).

By essentially the same argument, u'¢ is well defined for i # d. The only
difference is that now u’" represents an equivariant Todd number, which
vanishes. For i < d this follows at once from the formula in Section 3.3. In
general, we can argue as follows. If we map the circle S to itself by z+ 29,
then the induced map on the character group is u+~» qu. According the
formula in Section 3.3, the ith equivariant Todd class of X is then
multiplied by ¢’ “. Since this class is intrinsically defined, it must therefore
vanish if i #d.

Now the well definedness of ui for k #d is an easy consequence of the



220 ROBERT MORELLI

case & = d. Restrict attention to a rank & sublattice W with complement W"'.
Then M=W'@®(W’)*, and we choose a primitive generator w of
A? ¥ W< The map

d—k+1

(WHt—5 A M
X X A®

extends to a map from sym*(W')* to sym*(A“ “*' M). One sees that this
map takes ;" of o e gri™ L L (W) to ui of o considered as an element of
grém # #(N). Thus i is well defined, apart from the ambiguity incurred

in the choice of w. This completes the proof.

Let us finally state the combinatorial consequences of the residue
formulas. We have defined the measures u/* to lie in the fraction field of
sym* A¢ **'M_ which may be considered the fraction field of coordinate
ring of the projective space P(A“ **! N). Actually, u/* has degree 0 so it
is a rational function on this projective space. Now the expression (19)
from Section 3.2 is the evaluation of uf on the top exterior power
of the (d- k+ 1)-dimensional subspace H. Thus the local number
l(td,, H, V(o)) is a rational function of H which is obtained by restricting
the rational function u/* to the grassmannian G,_, ., (N) of (d—k + 1)-
planes in N, embedded in P(A“ **! N) by the Pliicker embedding. The
residue theorem implies that if x is any point of G, ,,,(N), then
S e nn Mo N x)[V(e)]=Td (X ,). Let R(G, ., ,(N)) denote the field of

rational functions on G, ,.,. We have shown (see Proposition 3),
THEOREM V1. For any toric variety,

Td, (X)= Y p0)[Vie)]

age k)
where the sum on the right is evaluated in A; (X))@ R(G, ;. (N))

Simple examples show that this expression is not generally valid in the
“larger” group A, (X,)®(sym* AY **'N),. The ideal defining the
Pliicker embedding therefore comes into play; see, e.g., [GH, pp. 209-21]].

More generally, any characteristic class is determined similarly by a uf
for some degree k symmetric polynomial ¢. An equivaniant characteristic
“number” is equally well computed by a ¥ via the formula in Section 3.3.
The expressions uf for which the degree » of ¢ has parity different from &
involve an ambiguity. These expressions may be considered as sections of
O(1)Y®" %) The ambiguity is removed by passing to the determinant line
bundie of the dual of the canonical bundle. A point of this bundle deter-
mines a (d—k+ 1)-plane H together with an orientation on M/H*.
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Generically, the (d— &k + 1)-dimensional “edges” of the dual of a
k-dimensional cone o are naturally isomorphic to M/H*, so these
“edges” are provided with orientations which resolve the ambiguity in
Definition 15. In any case, the uf for k unequal to 4 or the degree of ¢
are a somewhat unnatural interpolation between the two geometrically
meaningful cases.

CoroLLARY 5. For any element f of &,
# (/)= (vol, ® 18 B4 f)
so in particular for a convex polyhedron P

#(P)=Y Y VOL(F) i S6(P)V).
k Ja = 4
dim F=k

For a worked example see the overview.

Remark. 1f one prefers real numbers to the function fields here, a point
of the grassmannian which is generic over Q may be chosen, and the
rational function u/* evaluated there. This would define a real valued pu,
giving a local formula for the Todd class. The function fields are preferable
because they are countable and functorial.

4.1. Uniqueness

It is natural to ask whether any symmetric polynomials other than the
Todd polynomials give rise to well defined maps on gré™ & #. Call a sym-
metric polynomial ¢ in & variables a scissors polynomial if the associated
residue u passes to a homomorphism on gr{™ £ (N), i.e., uf is linear
under subdivisions (a measure). We have the following partial converse to
Theorem 10.

THEOREM 12. Let N be a lattice of rank d and let ¢ be a homogeneous
scissors polynomial of degree n in k variables, with 0<n<d. Then ¢ is a
multiple of the Todd polynomial 1d,,.

Proof. It is sufficient to assume k=d as we saw in the proof of
Theorem 10. Consider first the case n=d. It is well known that the Todd
class Td“*(M) is characterized among all characteristic classes by the
property that it equals the generator of H>(M;Z) whenever M is a
product of projective spaces [, P“ of dimension ¥, d, equal to ¢ In
particular, Td" is the only characteristic class equaling the generator of
H*(X 4, Z) for any (smooth) toric variety X,. Therefore, the Todd
polynomial is the only symmetric polynomial ¢ for which

Y uito)=1

o e dd)
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for every complete (nonsingular) fan 4. Now in order for u¥ to be well
defined on gry™ ¥ we need that 3", _ ., u%(0) is independent of 4.
Hence, ¢ is a multiple of td,.

We proceed by induction on d, keeping # fixed. Suppose that 1= (4, >
A,z - 24,20)is a partition of n=3_, 4,. We say a monomial of degree

nin x,, .., x, has shape 4 if it is of the form x}'---x7¢ with /,, ..., i, some
permutation of the integers between 1 and 4. Denote by p; the symmetric
function

DXy, s Xy Zx ,'/,

the sum of all distinct monomials with shape 4. One knowns that as 4
ranges over all partitions of n into d parts, the p, constitute an additive
basis of the space of symmetric functions in x,, ..., x, of degree n.

Choose a basis y, ..., v, of N, and denote by x,, ..., x, the dual basis of
M. Let N, be the span of the first s of the y,, and N, the span of the
remaining { =d — s so that N is expressed as a direct sum N=N,@® N,.
If 1 and ¢ are nonsingular simplices in N, and N,, respectively, then

piitxey= 3 ul(z) ul(o), (20)

vep=A

where the sum is over all pairs v, p of partitions (into s and ¢ parts,
respectively) whose juxtaposition is A. The products on the right-hand side
lie in the fraction field of the symmetric algebra on the dual M of N via the
identification sym* M, ®sym* M,=sym* M. This is essentially the
combinatorial content of a theorem of Thom about characteristic classes of
direct sums of vector bundles; see [ MiS, Sect. 16].

Let us apply (20) in particular when o is a nonsingular simplex in the
rank d— 1 sublattice x,=0, and 7 is the ray generated by y,. A partition
v into one part is a nonnegative integer, and uf{(t)=x), . If p is a
partition, set

Po s v occurs in g
bPy= {O else,

where p—v is the partition obtained from p by deleting v. The
formula (20) takes the form

«
ph(txa)= Y x) 'ui?(a).
v=10

By linearity we can extend the operations 1, to the¢ entire space of
symmetric polynomials. Therefore, more generally,

v

Kitexal= T x i (o)
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Now a subdivision of ¢ determines a subdivision of 7 x o, so if u¥ respects
subdivisions, then all of the terms u!;?  must respect subdivisions, giving
rise to homomorphisms on gr&™ &% (N,), in the sublattice N, = x,=0.

We have already considered the case n=d. By induction, we know that
if n<d—1 then for each v,1,¢ is a multiple of the Todd polynomial. In
particular, 1, is a multiple of rd,. On the other hand, since n<d any
partition 4 of n into d parts must contain at least one zero, so 14 is an
injection. In fact, 150(x, ..., X4_{) = @(X{, ..., X4, 0). Now it follows from
definitions that iy1d,(x,, ..., x,) = td, (x|, .., X4_) (as is already implicit in
our notation). Therefore, ¢ is itsell a multiple of d,.

Remarks. 1. The assumption that n < d is essential here. In dimension
d=1 it is trivial that any polynomial is scissors because there are no
nontrivial decompositions of cones. However, the odd degree polynomials
Pi» Ps, - are not multiples of Todd polynomials.

2. In dimension d=2 subdivisions of cones have a rather simple
structure, from which it follows that ¢ is a scissors polynomial exactly
when

(x—y)olx, y)=x0(x~y, y)— yp(x, y — x).

The lowest degree of such a polynomial which is not a multiple of a Todd
polynomial is 12, where the space of scissors polynomials is generated by
td,, together with the polynomial 25x'* —91x'%? — 143x%y® — 91x?y'% +
25y'%. After this the next such degree is 16, where we have the non-Todd
scissors  polynomial 539x'¢ — 1700x'%y? — 2431x%p® — 1700x%y'* 4 539y°.
The following two general facts about the case d=2 hold:

(a) For n odd, every degree » scissors polynomial is a multiple of
td,, ie., is a multiple of p, _( (x, y).

(b) For n>2 even, all monomials in a scissors polynomial are of the
form x=venyeven,

even

Since the Todd polynomials are known not to vanish it suffices for (a)
to show that the space of scissors polynomials in each odd degree is one
dimensional. We have already considered n=1 so assume n>2 The
evaluation of u$ on any complete fan is independent of the fan and
invariant under automorphisms of ¥, hence vanishes. Evaluating u¢ on the
fan of the Hirzebruch surface F,, which has four rays generated by (1, 0),
(G, 1), (0,—1), and (—1, k), yields

o, ¥) olx,—y)  el—x,—kx—y)  @(-xkx+y)
xy Xy . x(kx+ y) T xtkx+p)

607:100:2-7
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Writing g(y) = o(1, y)— @(1,—y), we find that
(k+y)gy)+(=1)" glk+y)=0.

For n odd the substitution y=0, k=1 gives g(0)=0, while y=1 gives
(k+ 1) g(1)= g(k + 1). Therefore, the space of such g is one dimensional.
On the other hand, g determines the coefficients in ¢ of monomials of the
form x***}°4 and the others are determined from these by symmetry.
Therefore, we have established (a).

For (b), we substitute k =0 in the equation above to obtain 2yg(y)=0,
from which g vanishes identically. Therefore, all coefficients of monomials
x°44ypodd vanish in @(x, y).

One is tempted to conjecture generally that if n and d have opposite
parities then ¢ must be a multiple of the Todd polynomial.

3. Using these facts about degree 2 scissors polynomials and the
method of the proof of the theorem to limit the possibilities, we find that,
up to degree at least 17, the space of scissors polynomials in ¢ variables is
generated by Todd polynomials for all 42 3.

4. Using Danilov’s factorization theorem [Dan2] on the birational
geometry of toric 3-folds it can be shown that a polynomial ¢ in three
variables is scissors exactly when

(x=y)olx, y,2)=x@(x—p, ¥, 2) = yo(x, y — x, 2)
and
(x=p)x—=zNy—2)eolx, v,2)=(y—2) pzo(x, y —x, 2 —X)
—x(x—=z)zolx—y, y,2— 3}
+xp(x—p)ol{x—z, y—=z,2)

5. The best we can hope is that if 1,¢ is scissors for each v, and if

o
O s Xg) =Y UO(X) = Xy ey X, = X,y Xy ey Xg— X,),
i=1
then ¢ is itself scissors. This amounts to requiring ¥ to be invariant under
equivariant blowups. It would be the case if any two complete toric
varieties were connected by a sequence of equivariant blowups and
blowdowns.?

6. By virtue of the remarks in Section 3.3, a polynomial is scissors
exactly when the associated equivariant characteristic number is invariant
under morphisms of toric varieties. As a corollary we therefore have that

* This has recently been established independently by J. Wlodarczyk and the author.
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the only equivariant characteristic numbers which can be equivariant
birational invariants (for varieties of all dimensions) are the Todd numbers.

4.2. The Todd Measure and Volume

By a decomposition of a lattice polyhedron P we mean a union P=|) P,
of lattice polyhedra P; whose pairwise intersections have dimension at most
dim P— 1. We call a lattice polyhedron P primitive if it cannot be non-
trivially decomposed. Any primitive polyhedron is a simplex, because any
lattice polyhedron decomposes into lattice simplices. We define a primitive
simplex to be nonsingular if it has volume 1/d!. In dimension larger than 2,
there are singular primitive simplices. For instance, the simplex with
vertices

o, ..., 0}, Cry €y 1, and (1,1, .., 1,k)

has volume k/d!. (Here, e, is the ith standard basis vector.) In [KKMS-D]
the difficult fact that any lattice polyhedron can be subdivided into non-
singular simplices after being sufficiently dilated is proven. The following
theorem is a variation on this theme.

THEOREM 13.  The group L(N) is generated by nonsingular simplices.

Proof. We use a double induction on the rank d of N, and on the
volume, or more properly, the integer d! x volume. The statement is trivial
for d= 0 and also for volume = 1/d!. The induction hypothesis on d permits
us to work modulo F9™ L, in the group gr¥™ L= F4™L/F{™ L, so what
we need to show is that any simplex ¢ in gr$™ L(N) can be written as a
sum of nonsingular simplices.

Let o be a nondegenerate simplex [vg, .., v,] with vertices v,. By the
induction hypothesis, we may write the (d- 1)-dimensional front face
[vo, .ty (] of 6 as a sum of nonsingular simplices. By suspending this
sum with v,, we reduce to the case of a simplex with nonsingular front face.
Let us then assume t,=0 and choose a basis {e,, .., e,} of N for which
e, =0,,..e, ;=by, ;, and (e, v,>>0. Let v,=3 a,e;, and note in
particular that d! vol(¢)=a,.

LEMMA 1. If o is primitive and singular then, after replacing it by its
image under a suitable shear A,

1 0
01

o O
~ 0~
o =

[
o -
~
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we can arrange that
—au<a;<a,; for i<d

and
O<a,+ - +a, (<a,

Proof. We have Av,=v; for i<d and Av,=(a, +ca,)e,+ - +
(@, +cy_a,)ey. +uase,. We may first assume that the a, for i < d are
all in the range 0<a,<a,, as this is a complete set of representatives
moda, If a,=---=a,_ =0 then ¢ is nonsingular or nonprimitive,
according as whether a, is 1 or greater than 1. If on the other hand
a,+ --- +a, |>a,then we may replace positive terms a; one by one with
a,— a, until the sum is brought into the desired range.

Returning to the proof of the theorem, assume that ¢ has volume greater
than 1, and that the components of v, satisfy the inequalities of the lemma.
Set v,, ,=v,—a,e,. Fix an orientation on N. For any collection of d+ 1
points wy, ..., w, in N, we use the notation

(Woy wves Wy)

to mean +[w,,.., w,], the sign depending on whether the orientation
determined by the w, agrees with the fixed orientation on N. Then in
gry™ L(N) we have

0=08(tg, s 0y, 1)
= (U\, hhis ] l“d+ I)— (1’09 U2’ k] vd+ i ) + e + i(v()’ R4 Ud)

(because the v, are affinely dependent (see, e.g., [Mol]). Since the final
term on the right is F o, we will be done if we can show that the other terms

are generated by nonsingulars. Set w=¢, A --- A e,. As for the first term,
Fdtvollv,, vy, =0, =ty ) A - AU;= V44 )
=V, A - AUy
d
— N UIA A AU AL A e ATy

i=1
=a,0—(a,+ - +a,; o
={a,~a;~ - —a,; w

Since 0 <(a,~—a,— -+ —a,_,)<a,=d!vol(s), this first term is handled
by the induction hypothesis. The second to last term is a degenerate
simplex. For the middle terms we have

Fvollvg, v Biy s Uy =0y A -+ AB; A 0 AUy,

= Fa;a,w for i<d
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On the other hand, each of these simplices contains the segment from v, to
vy, as an edge, and this segment breaks into a, pieces. These simplices
correspondingly break into a, simplices, each of volume Fa;. Since |q,| <
a,=d! vol(g), these terms are also covered by the induction hypothesis, so
we are done.

Remark. As a corollary, we obtain the result of Betke and Kneser
{ BK ], which, in our language, states that £ (M} modulo Aut(M)=SL ,(Z)
is the free abelian group generated by the d+ | standard simplices, ie., the
simplices with vertices 0, e, ..., e, for 0 <k <d. This in turn implies Betke’s
theorem that a homomorphism from Z(M) to Q which is invariant under
Aut(M) is a linear combination of #,, ..., # ..

THEOREM 14. For 0<d<4 the functions p"* factor the volume map
through the lattice germ homomorphism

L(N)—2 FL(N)

vol

(Here, N has rank d.) That is, u(9(f)) lies in Q for any fe L(N) and
vol,(f) = p(9(f)).

Proof. By Theorem 13 we may write any f in L as a virtual sum of
nonsingular simplices. It therefore suffices to prove that for a nonsingular
d-dimensional simplex o, u%“(3(c))=1/d!. By naturality, it is enough to
check this for the standard simplex in Z“ whose vertices are the origin
together with the d standard basis vectors. Let x,, ..., x, be the dual basis
in (Z?)" of the standard basis. The d+4 1 faces of this ¢ are determined by

the d+ 1 primitive inequalities

x,20,..,x,20 and —(xy+ - +x )20
Setting x,, , = —(x, + --- +x,), we find that the lattice germ of ¢ is
d+1
9(0‘): Z GH
i=1
where ¢ is the simplical cone {x, .., %,, ..., x;,; =0]}. Applying to this the

definition of uf“ we are reduced to showing the purely algebraic identity

d+1
when Y x,=0.

i=

d+1 o
1 1y (X1, ey Xy ooy Xyt 1)
) XX Xga,




228 ROBERT MORELLI

Equivalently,

1
= the zeroth degree term of

"i' 1A(X )y iy Xy s X 1)
AT X R Xy
_dil “I(xli ooy xd-#l) (1

P=1

__e' x‘)
Xy Xag

where c,(x) denotes the ith elementary symmetric function of the x’s
and where s;(x) denotes x|+ --- +x’,,. Now, the ¢; are algebraically
independent generators of the ring of symmetric polynomials over Q. The
condition 3 ¢* ! x,;=0 says that ¢, =0, so we are really trying to prove the
identity

¢y, /d! = (d+ 1)st degree term of [td - (s, —5,/2!+ ---)] (21)

in Qe ... c,)/c, =Qlc,, ... ;1. Using the well known relation (Newton’s
formula)

s,=¢ 8, A+ -+ (=1 e, s+ (=1)ve, =0,

and working mod ¢, we find

s,=c¢;=0
Sa=0e8, —20,= —2¢,
Sy= --- .—:3('3
54:- :2('5—4(’4
S§s= .- = =S¢ 034 5S¢
3 2
Sg= -+ = —2¢5+ 3¢5+ 6¢5¢,— 6¢,.

The Todd polynomials may also be expressed in terms of the ¢;, and in the
first few cases these expressions are (see [Ht])
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tdy=1

td,=c,/2

tdy = (¢} +¢;)/12
tdy=c,c,/24

tdy=(—cy+csey+ 3+ dey0? —et)/720
tds=(—cqc; + 30t +3c3e, —c,0})/1440
tdg=(2ce— 2c5¢; — 9cq03 — Scact— i+ Ueqesc,

+ Scyel + 1003+ 1le2e? — 12¢,0% + 2¢%)/60,480

so mod ¢, we have

tdy =1

td, =0

td, =c,/12

td,=0
tdy={(—cq+3c3)/720
tds=0

tdg = (2c4—9c40; — ¢35+ 10¢3)/60,480.
Performing the multiplication on the right side of 21 mod ¢, yields
td- (5, —5,/2'4 - )=(14+04¢,/12+ - YO+, +c3/2— --1)
=0+4+c,+03/2+¢4/6+5/24
+{(—3c3+ 30,04+ 6¢6)/720+ ---.

The desired identity 21 thus holds for d=0, 1, 2, 3, and 4.

Remark. 1. The last displayed term above shows that the Todd
measure definitely fails for d=35. In fact, because of the c_i and ¢, ¢, terms,
(3 P)) will not in general lie in Q. The desired constant term 6¢,/720 =
¢6/120 does appear among these other terms so it may still be possible to
extract the volume from the Todd measure for =35 and higher, but I do
not know at present how to do this.

2. The identity 21 is reminiscent of the familiar identity
1 (E) ch (4 ((EY))=c""P(E),

valid for a vector bundle E (or incidentally a sum of invertible elements in
%, using the natural Z-ring structure in % constructed in [Mo2]).
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