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1. INTRODUCTION

The discovery of toric varieties in the early 1970s began a new chapter
in the interplay between combinatorics and algebraic geometry. The
combinational nature of these varieties express itself in every aspect of their
theory, which consists largely of a dictionary between geometric constructs
(e.g., orbit structure, line bundles, cohomology) and combinatorial objects
familiar from the classical theory of convex polyhedra. A window is thus
opened between these two areas of mathematics, that indicates a seemingly
improbable kinship. The purpose of this paper is to add a new entry to this
dictionary by showing that the K-theory and equivariant K-theory of a
toric variety can be naturally explained in terms of the scissors congruence
theory of polyhedra. The latter theory, conversely, benefits from the impor-
tation of ideas from K-theory. This theme, and most of the combinatorial
results necessary for our present purpose, are developed separately in
[Mo2].

Recollection. Let us recall the well known results that are generalized
here. Let 7 be a d-dimensional algebraic torus over C, and let M~ Z“ be
its character group, imagined as the integer lattice embedded in
RY= M ®R. Suppose that X is a smooth, compact torus embedding of T.
Let & be an ample line bundle on X to which the action of the torus
extends, ie., & is an equivariant line bundle. Then the action of the torus
on the vector space /(&) of global sections of & is multiplicity free.
Furthermore, the weights of this representation are exactly the characters
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K THEORY OF A TORIC VARIETY 155

corresponding to the points of M which lie inside a certain convex
polyhedron P, whose vertices liec in M. The polyhedron P, is of central
importance in the theory; it determines X and & uniquely and captures
much of their geometry in its combinatorics. The fan of X is the collection
of cones in N®R=(M®R) "~ dual to the cones along the faces of P,.

As the line bundle & varies, the polyhedron P, varies in position and
what we might call—to borrow a crystallographic term—its habir. How
many faces it has, their incidences, and in which directions they face are
fixed, determined by the fan of X. Only their sizes may vary. In other
words, only the local geometry of the polyhedra is determined. There
results a bijection between the set of all ample equivariant line bundles on
X and the set of all habits of a certain polyhedral form.

Example. Below is the fan for a realization of P! x P! as a toric variety,
and P, for three different &’s.

s

S

Virtual Polyhedra. There is no way to associate polyhedra to non-
ample (equivariant) line bundles, or to higher rank vector bundles, in a
way that is compatible with the best features of the case of the ample line
bundle. The main idea of this paper is to extend the construction by
introducing virtuality, so that associated to a vector bundle is a formal sum
of polyhedra.

By a formal sum of polyhedra [ mean an element of the group L(M) of
functions on R~ M ® R generated over Z by the indicator functions 1, of
convex lattice polyhedra P:

[ (x) = 1, xeP
AX)= 0, otherwise.

It can be shown that the only relations among the 1, are
[lPuQ] = [lp] + [lg] - [lPr\Q]a

which holds whenever P, Q, Pu Q, Pn Q are all convex lattice polyhedra.
The group L(M) which is of independent combinatorial interest is studied
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in separate papers [Mol, Mo2]. In addition to other structures, it carries
a natural A-ring structure.

Construction. The construction, which associates to an equivariant
vector bundle an element of L(M), is additive on exact sequences of
bundles, so descends to the equivariant K-group. Denote the resulting
homomorphism I;:

11 Ko (X) - L(M).

The formula for 1,(x), xe K;(X,), evaluated at a point m/keM,=
M®Q, me M, k a positive integer, is

lT(x)(rn/k) = Xm( (Ilk(x))a

where x,, is the weight m Euler characteristic and ¥* is the kth Adams
operation {see Subsection 4.2).

Equivariant K-Group. Theorem 7 states that the homomorphism 1, is
an injective A-ring homomorphism. Its image in L(M) is characterized by
Theorem 8 in terms of a local condition on germs. (Although the functions
in L{M) are discontinuous, it still makes sense to speak of their germs).
Specifically, a function f is in this image exactly when its germ at each
point is in the linear space spanned by the duals of the cones in the fan of
X. This local condition is the virtual analogue of allowing a polyhedron to
vary in habit. In this way we obtain a complete combinatorial description
of the equivariant K-theory of a smooth compact toric variety.

Example. The projective plane P? can be realized as the toric variety
with the fan at right. A typical element (or elements) of K, (P?) is depicted
at left. The conventions are as follows. Numbers represent the value of
1,(x) in the indicated region. On an unnumbered bounded region the value
1s assumed to be 1. Dotted lines indicate that the value does not extend to
the boundary of the region.

M N
I___' a4

2 P?

Picard Group. By comparison, the equivariant Picard group has the
following well known description. The classical construction of Minkowski
associates to a convex polyhedron in M® R=R“ its support function,
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which is a piecewise linear convex function on the dual space of R The
support function of P, is always linear on the individual cones of the fan,
and is defined over Z. It turns out that the space of all piecewise linear
functions, which are linear on the individual cones and defined over Z, is
isomorphic to the equivariant Picard group. Virtuality manifest itself here
as the passage from convex functions to arbitrary functions.

The ordinary Picard group of a toric variety is simply the equivariant
group modulo M, where M is embedded in the group of piecewise linear
functions as the globally linear functions. Adding a global linear function
to a support function corresponds to translating the associated polyhedron
by the vector defining the linear function. Therefore, to an ample line
bundle without equivariant structure, one can associate a convex lattice
polyhedron defined up to a translation by an element of M.

Ordinary K-Group. The relation between the ordinary and the
equivariant K groups follows a pattern similar to that between the ordinary
and the equivariant Picard groups. It is shown that K, (X) surjects on
K(X) and the map I, descends to a map I from K(X) to the group
ZL(M) of coinvariants of L(M) with respect to the natural action of M
(Theorem 6). Recall that this latter group is defined as the quotient of
L(M) by the additional relations

[1:,,,P] = [IP]a
where me M and ¢, P is the translation of P by m. The map I is also
injective, and its image is known since the image of I, is known.

Example. One knows that the ordinary K ring of P? is generated by
the classes 1 and ¢ represented by the trivial bundle and the line bundle
(1), respectively. These generators are subject to the sole relation
0=(E—1P=¢3—3¢24 38— 1. In terms of polyhedra, the trivial bundle !
corresponds to a point, while the ample line bundle ¢=[0(1)]
corresponds to the standard triangle. The powers &2 and &* correspond to
the dilations of the standard triangle by 2 and 3. One has

N
£ = B o 0 AN B AN
the subtraced 1 being the point at which the two triangles overlap.
Similarly,
AN
BN
) NPT NS Y
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The relation &3 —3E2+ 3¢ — 1 =0 is therefore represented pictorially as

[ 1+3\ -2-3([T+2\ -n+3[\ -1=0

The ordinary K group of a compact smooth toric variety X has been
known in a weak sense via the chern character map, insofar as the inter-
section ring 4*(X) has been computed by Jurkiewicz and Danilov. The
description in terms of polyhedra is a complementary and in some ways
more natural picture.

In the following section we will collect some notation and relevant basics
about toric varieties. In so doing, we will introduce torus quotient
embeddings, which are a trivial but, for us, very convenient generalization
of torus embeddings. Our notation follows [Oda], which is a good general
reference.

2. ToriCc VARIETIES—RECAP AND NOTATION

Intrinsic Definition. Let T be a d-dimensional complex algebraic torus,
T=T"Y=(C*)“ A torus embedding is a normal algebraic variety X together
with an action of T,

TxX->X
and an equivariant embedding of T as a dense open subvariety of X
TsX.

If X is affine, the embedding is called affine. A variety X which admits a
torus embedding is called a toric variety. By a torus quotient embedding
we will mean a torus embedding of a quotient T/T, of T be an algebraic
subtorus 7.

The category of torus quotient embeddings of a given torus has
equivariant algebraic maps as morphisms. More generally, if Tg X and
T's X' are torus quotient embeddings of 7 and 7T’, respectively, then a
morphism of embeddings is a homorphism f: 7T-— T" of algebraic tori,
together with an equivariant map F: X — X, for which the diagram

T/C"—>X’

commutes.
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Fans. The classification theorem identifies the category of toric varieties
and torus quotient embeddings with a category of combinatorial objects
called fans. We recall the basic definition pertaining to this combinatorial
category.

Fix a lattice N = Z By a rational polyhedral cone (or simply cone) ¢ we
mean the convex hull in R of a collection of rays defined over Z,

g=R*v,+ .-- +R% 0,

The span of ¢ is the subspace Rv; + --- + Rv,, generated by o, and the
cospan of o is the largest subspace contained in o. A rational cone is called
strongly convex if its cospan is {0},

DErFINITION |. A fan in N is a nonempty collection 4 = {o} of rational
cones satisfying two properties

(1) If o is in 4 then so are all faces of o.
(2) If o and 7 are in 4 then o 7 is a face of each of ¢ and 7.

The support of 4 is the set (4] ={J, ., 0 € R% We write 4(k) to denote the
subset of & dimensional cones in 4.

Notice that all the cones in a fan have the same cospan. I will call a fan
strongly convex if all of its cones are strongly convex. This terminology
departs from the literature, where strong convexity s ordinarily taken as
part of the definition of fan.

The set of cones in N is a category with inclusions as morphisms.
(Hence, there is at most a single morphism between two objects.) More
generally, if ¢ is in N, and 7 is in N,, then define a morphism from ¢ to
t to be a homomorphism f: N, — N, such that f{o) is included in 7. We
can likewise define the category of fans in N: there is a unique morphism
from 4 to I if for each o€ 4 there is at least one re [ for which o= 1. It
is clear now how to define morphisms between fans in different lattices. The
set of all faces of a cone is a fan, and the category of cones is thereby
embedded as a subcategory of the category of fans.

Classification. The set M of characters of the torus, {e: T—>C*}, is a
lattice M x Z“ under pointwise multiplication. The dual group N=M "~ =
Hom, (M, Z) is canonically identified with the group of one parameter
subgroups of T, {A:C*-» T}, under pairing (e, 1> =deg(e-i)e Z. Now,
T*=N®C*=Spec C[M]=Spec C[z,,z, ", ... 24, 2, '], where C[M] is
the group ring of M over C.

THEOREM 1. The categories of torus quotient embeddings, torus
embeddings, and affine torus embeddings of T are equivalent to the categories
of fans, strongly convex fans, and cones in N, respectively.
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For any rational cone 6 < R“= N®R, there is a dual cone ¢¥ < M ® R
6" ={xe M®R:{x, y)=0Vyeq}.

The set ¢¥ N M is a semigroup under addition, and finitely generated
(Gordon’s lemma), so the spectrum of the semigroup ring Cle¥ ~n M],
Spec C[6¥ nM], is an affine variety. It is in fact a torus quotient
embedding—a torus embedding provided cospan ()= {0}. A fan is then
essentially a gluing diagram for a torus quotient embedding.

Nonsingularity. Let ¢ be the cospan of a fan 4 in N. Then 4 evidently
determines a fan in N/(c n N) which we call the quotient of A4 by its cospan.

DEFINITION 2. A strongly convex cone is called nonsingular if it is
generated by a subset of a Z basis of N. A strongly convex fan is
nonsingular if all its cones are nonsingular. A fan is generally called
nonsingular if the quotient by its cospan is nonsingular.

Orbits. An important fact about affine toric varieties is that there is a
unique minimal orbit V(g) < X, of dimension equal to the condimension of
the span of g. Another perspective on the fan results from this: X, is the
disjoint union of the orbits V(ag), g€ 4. In particular, the d dimensional
cones correspond to the fixed points while the cospan of the fan, its mini-
mal cone, corresponds to the dense orbit. If the fan is strongly convex then
the 1 dimensional cones correspond to the invariant divisors. As usual, the
orbits may be partially ordered by the relation “is included in the closure
of.”

Summarizing,

THEOREM 2. (1) The category of fans in N is naturally equivalent to the
category of torus quotient embeddings of the torus N®C. (2) A torus
quotient embedding is nonsingular if and only if its fan is nonsingular.
(3) A torus quotient embedding is compact if and only if the support of its
Jan is all Np = N®@R. (4) There is an order-reversing bijection between the
partially ordered set of cones in a given fan and the set of orbits in the
corresponding torus quotient embedding.

Fan of an Orbit Closure. The closure of an orbit V(g) is a
torus quotient embedding of 7 in a natural way. We show this by simply
describing its fan 4,

4,={t+span(c):c<te4d},

where span(g¢) is the linear subspace spanned by o. The cospan of this fan
is span(o). On the level of spectra, the inclusion morphism is described as
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follows. Denote the cone 1+ span(s) by 1,. Then 17 =t" is a face. Map
CltvnM] to Clt) nM] by sending m to m if mety nM and to 0
otherwise.

Cohomology of Line Bundles. We quote here one final result which will
play an important role:

THEOREM 3. Suppose that X, is a compact toric variety, so that
|4l =Ng=N®R. Let h be a function on Ng which restricts to a linear
function on each cone in A, and which takes integral values on N. Such a
function is called A-linear. Then,

(1) There exists a T-equivariant line bundle &, on X, whose sections
over the open set U, are spanned by all the characters e(m) for which m
satisfies m(n) =z h(n), Vneo.

(2) Every equivariant line bundle on X , is obtained this way. Call h the
support function of é,.

(3) The cohomology of &, splits into weights spaces under the action of
the torus. For a character me M, the associated weight space is canonically
identified as

HYX 4, 6)m= HY( 1(Ng, C),

where the right side is the local cohomology of Ny with respect to the subset
Z(m, hy={neNg: {(m n>=h(n)}.

For a proof, see [Oda, p. 751

3. K, K', AND K

In this and all subsequent sections all toric varieties are
compact unless otherwise stated.

For an algebraic variety X, denote by K(X) the grothendieck group of
the category of finitely generated locally free sheaves (i.e., algebraic vector
bundles) on X. This means that K(X) is the abelian group generated by
expressions [E] for E an algebraic vector bundle, with a relation
[E]1-{F]+ [G]=0 for every exact sequence

0-E->F->G-0.
There is also a natural ring structure in K(X) induced by [E][F]=

[E® F]. Denote by K'(X) the grothendieck group of coherent sheaves
on X.
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The functor K is naturally contravariant, as vector bundles may be
pulled back along morphisms, while K’ is naturally covariant for proper
morphisms f; through the formula

fIF1= 3 (=)' [Rf, 7] (1)

nz0

where R"f, are the right derived functors of the direct image functor f,,.

We will also consider the equivariant analogues of these groups. Let
X be a scheme with an algebraic action of an algebraic group G,
a: G x X — X. Recall that an equivariant vector bundle is a vector bundle
together with an action of G which is equivariant with respect to the
projection map, and which maps the fibers to each other linearly. More
generally, we can define an equivariant sheaf to be a sheaf .#, together with
a given isomorphism of sheaves on G x X, h:a*F x5 pr¥#. (The map pr,
here is projection onto the second factor.) This isomorphism is required to
satisfy the associativity condition: (pr¥a)-((1 x a)* h)=(mult x 1)* h on
G x G x X. The two notions of equivariance coincide on locally free sheaves.

Denote by K (X) the grothendieck group of equivariant algebraic vector
bundles on X, and by K (X) the grothendieck group of coherent
equivariant sheaves on X. These groups have been systematically
investigated by Thomason, see [Th]. In our special case, G will be the
algebraic torus 7, and X will be a torus embedding X, of 7. The formula 1
still makes sense in the equivariant setting. We will denote the equivariant
pushforward fy,.

The obvious natural map from K(X) to K'(X), sending a generator
[E] to [#] where # is the dual of the sheal of sections of E, is called
the Poincaré homomorphism. The general fact is that the Poincare
homomorphism is an isomorphism for any smooth variety (see [B2,
Theorem 3.47]). The proof depends on the fact that any coherent sheaf is
the quotient of a locally free sheaf. This latter fact is true for any variety
which is divisorial in the sense of [B1]. Adapted to our case, the argument
(of [B2]) also yields the equivariant version of this fact, from which we
will conclude that the equivariant Poincaré homomorphism is an
isomorphism.,

PROPOSITION 1. Let X, be a d-dimensional toric variety for which the fan
A consists of simplicial cones (cones generated by linearly independent rays).
Then every coherent (respectively coherent equivariant) sheaf is the quotient
of a locally free (resp. locally free equivariant) sheaf.

Proof. Let oceA(d). The open set U, is affine and invariant and
coincides with the complement of |/, , ¥(¢), where the union is over all
one dimensional cones ¢ not contained in 6. The U, cover X ,.
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Consider the divisor D, =Y, V(). In general it will not be a Cartier
divisor, but some muitiple of it will be. In fact, if pe 4(d) and {m(e)},.,
is the basis of M, dual to the basis {n(¢)},., of Ng, then for some
positive integer k, all the multiples & - m(g) fall within M. For that k, kD,
is principal on U, generated by [],., ,e(k-m(g)). Let &, be the line
bundle associated to some multiple of D, which is locally principal, and let
s be the constant function 1, considered as a section of &,. It is invariant,
and vanishes on ¥(g) if and only if ¢ & 6, so the zero section of s is exactly
the complement of U,.

Let # be an (equivariant) coherent sheaf on X . Since U, =spec 4, is
affine, the space B=1I(U,, #) of sections over U, is finite dimensional.
Choose generators s, ..., 5, of B. For each i, there is an integer d such that
5,® s®4 extends to a global section of # ® &2 It follows that there is some
integer d, such that # ® & ®“ is generated on U, by its global sections.

Write I, for the vector space I'(X, # ® £ ®). Then we have a sequence
of sheaves

ORI, FRES 6, -0

in which the cokernel €, is supported outside U,. In the equivariant case,
the torus 7T acts algebraically on I',, so the sequence is naturally
a sequence of equivariant sheaves. In any case, tensoring with the
(equivariant) line bundle &* ®% gives

EXU QORI > F »6,®E*®4% 50
from which

@$;®"”®(f7x®ra—>?—»0,

since the U, cover X .

PROPOSITION 2. The Poincaré map and the equivariant Poincaré map are
isomorphisms on any smooth toric variety X ,. Hence,

K(X ) =K'(X,)
and

Kr(X )= Kr(X,y)

Proof. This proposition follows from the previous one by the well
known argument of [BS, Theorem 2], whose equivariant version is also
valid. The idea is to apply the previous proposition repeatedly to resolve

607,100;2-3
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a coherent sheaf into locally free sheaves, and show that the alternating
sum of the terms of this resolution is well defined, giving an inverse to the
Poincaré homomorphism. This argument is presented and axiomatized in
[L, Theorem 3.7].

The equivariant K-ring of a point with the trivial action of T¥ is the
representation ring of T¢, which is Z[M]. Through the projection of X,
onto a point, K(X,) has a canonical Z[ M] module structure.

PROPOSITION 3. Let X, be a smooth torus quotient embedding.

(1) The equivariant K group K,(X ) is additively generated (over Z)
by the classes of equivariant line bundles.

(2} The natural map
Kr(X,) = K'(X,)

which forgets equivariant structure is a surjection.

Proof. For part(l) we use the following fact, proved in [Th,
Theorem 2.7]. For any closed invariant subset Z of a T-variety X with
complement U, there is an exact sequence

K'H(Z) —2— K'p(X) —"o Ky (U)— 0, (2)

where / denotes the (equivariant) closed imbedding of Z in X, and j
denotes the inclusion of U.

Define a decreasing filtration of K (X,) by setting FXK,(X,) equal
to the subgroup generated by elements which can be represented by
equivariant sheaves whose support is contained in the closure of the union
of the codimension k orbits. It follows from the exact sequence quoted
above that the kth graded component of gr¥* K is some quotient group of
@ e au) Kr(V(o)). On the other hand, V(o) is just T/T, where T, is the
isotropy group of the orbit, a homogeneous space for the torus. Now the
equivariant K-group of such a homogeneous space is well known to be
Z[M,], the group ring of the character group of T,. As a module over
2Z[M], KA V(o)) is generated by the trivial bundle with trivial T action,
which corresponds (mod F%*') to the sheafl (‘47 with its natural action.
It will therefore suffice to exhibit these bundles, on all k-dimensional orbits
V(o), as sums of equivariant line bundles (mod F%*"'),

The locally free sheal @ .., 4im.—; ¢(V(7)) has an invariant section s
whose component in ('(¥(t)) is the constant function 1. The zero section of
s is ¥{a), so we obtain the equivariant Koszul complex

o @ TV @ (VM) - Gy~ 0

TSo s
dim =2 dimrt=1
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which, as is easy to check in local coordinates, is a resolution of (77 with
its natural action of 7.

For part (2) we use the nonequivariant version of the exact sequence
quoted above:

K'(Z) —2— K'(X) —L— K'(U) 5 0.

As above K(X,) if filtered by setting F*K(X,) equal to the subgroup
generated by elements which can be represented by sheaves whose support
is contained in the closure of the union of the codimension k orbits.
The kth graded component of gr* K is some quotient group of
@D o a0y K(V(0)). In this case, K(V(o))=Z. The same argument as above
shows that K(X,) is generated by line bundles. Since these may all be
endowed with equivariant structures, we are done.

Let X, be a smooth torus embedding. The ring A*(X ;)= @, A*(X,) of
cycles modulo rational equivalence has been entirely calculated by
Jurkiewicz (projective case) and Danilov (see [Dan]). Their result states
that 4“(X ) is generated by the classes of invariant cycles [V(o)], o € 4(k),
with two types of relations:

(1) for oeA(k) and 1€ A(I),

V(e +1)] if o+tedk+])
0 otherwise

[V(0)]- [Vm]={

(where ¢ + t is the convex hull of o U 7).
(2) For any me M,

Y (m,n(e)>[V(e)]=0,

ee (1)

where n{g)} is the unique primitive element of N lying in the one dimen-
sional cone g.

This calculation shows in particular that these groups are torsion free.

LEemMma 1. If X, is a smooth torus quotient embedding, then K(X ) is
free af torsion.

Proof. 1t is known generally that if the group A*(X) is free of
torsion then so is K(X) This follows from the existence of maps
@: A*(X) - gr* K(X), taking a cycle [ V] to the structure sheaf ¢@,, and
Y gr* K(X) - A*(X)q, which satisfy ¢(¢(x))=i(x) where i is the natural
inclusion of 4 into A,. The map ¢ is generally a surjection. See [SGAS6,
Exposé IX, 4.2; Fu, Example 15.1.5 and 15.2.16] for more details.
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ProPOSITION 4. For X, smooth, the quotient of K(X,) by M, ie. the
group of coinvariants K (X ), is K(X ).

Proof. With no loss of generality, we may assume that 4 is a strongly
convex fan. We have already seen that K, (X,), hence K, (X ,),,, surjects
on K(X,). It is sufficient to prove that there is an isomorphism of the
associated graded groups. The map ¢ mentioned in the last proof is
actually a ring homomorphism, which in this case is an isomorphism since
K(X ;) is torsion free. (In this context it is convenient to bear in mind the
homological description of multiplication in K'(X ).} As a ring, gr* K(X,)
is generated by (37 for g e 4(1), and there are two kinds of relations
on these generators corresponding to the two kinds of relations on the
generators of A*(X,). We will show that these two kinds of relations have
equivariant versions. The first relations (i) clearly hold on the nose in
gri K (X,).

For the relations of the form (ii), let me M. Denote by D, the divisor
of zeros of e(m), ie., m considered as a rational function on X,. This
is just 3,4, <m,n(e)>[V(e)] where A(1)" consists of all ped(l)
for which {(m, n{g))> is positive. Similarly, denote by D_ the divisor of
poles. Now e(m) - ('(—D_ )= (- D), while in gr}. K,(X,), [((—Dy)] =
1 =3 sy <my (@) > [ O], and similarly for [¢(—D ,.)]. Therefore,

Y mn@)Orpl+m- 3 <mon(@)y[Cpgl=(1-m)- 1.

ee A1) e (1)

Since this reduces in K;(X,),, to the relation (i), the map
gr* K, (X, ), — gr* K(X,) is injective.

LEMMA 2. Suppose X, is smooth and projective. Then there exist
elements x, ..., x,, of K;(X,) which generate K(X ) over Z[ M} and whose
images in K(X ,) constitute a basis of K(X,) over L.

Proof. 1t is known (see [Ju, Dan]) that every projective toric variety
admits a filtration by closed subvarieties

XQEX}Q M EX,=XA

satisfying the following properties:
(1) X,is T-invariant

(2) the successive differences Y, = X, — X,_, are affine spaces of the
form {J,,c.c., V() where p,e 4 and o, € 4(d)

(3) the cycles [Y,]=[V(p,)] constitute a basis of 4*(X ).

It follows that the classes [ ('] constitute a basis of K(X,). On the other
hand, it is easy to see that K,(Y;) is just the character group of the
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isotropy group of V(p;). (For this one can even use that bundles on affine
space are trivial.) By the exact sequence (2) this implies that K, (X} is
generated over Z[M] by [('5] together with sheaves supported on X, .
By induction, the [0+ ] generate K,(X,) over Z[ M ].

4. THE CORRESPONDENCE

4.1. Polyhedral Functions

This section contains a synopsis of the combinatorics in which the
main results are stated. A fuller treatment is undertaken in [ Mo2], where
relevant proofs may be found

Definition. Let M denote a lattice of rank d. We will refer to elements
of M as lattice points, and to polyhedra in My=M®R all of whose
vertices lie in M as lattice polyhedra.

DerFmviTioN 3. Define an abelian group L(M) by taking as generators
the symbols [P] for all convex lattice polyhedra P, and relations

(Pu@l=[P]1+[Q]-[PnQ] (3)

whenever P, Q, Pu Q, and P Q are all convex lattice polyhedra.

We will also denote by L(M,) the analogous group generated by
polyhedra whose vertices lie in M.

By abuse, we will sometimes identify a convex polyhedron P with its
image [P] in L(M).

An alternate description of this group is also useful. Define the indicator
function of a polyhedron P to be

o(x) = 1, xeP
727770, otherwise.

The indicator functions of all lattice polyhedra generate a subgroup of the
group of all (discontinuous) Z-valued functions on M. It is proven in
[Mo2] that the map sending [P] to 1, is an isomorphism from L(M)
onto this subgroup. For this reason, we will refer to elements of L(M) as
polyhedral functions, and treat them, when convenient, as functions.

Euler Characteristic. There is a unique homomorphism y: L{(M)—~Z
which maps each convex lattice polyhedron [P] to 1. If P is an arbitrary
lattice polyhedron then y{1,) is the ordinary topological Euler charac-
teristic of P.
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Direct Image. Given a homomorphism n: M — M’ there is induced a
homomorphism =, : L(M)— L(M’) defined as the unique homomorphism
which takes a convex polyhedron [P] to [ng(P)], the image of P under
ng=n®R. This may be rephrased as n,(f)x)=x(fl-1) for any
feL(M)and xe M.

Coinvariants of L(M).

DerFiNITION 4. Define the group ¥ (M) to be the quotient of L(M) by
the relations

[1.P]=[P],

where m is any element of M, P is any lattice polyhedron, and t,, P denotes
the translation of P by m.

The group & is simply the group of coivariants of L with respect to the
natural action of M, ¥{M)=L,, = Hy,(M, L(M)). It is similar to the group
of scissors congruence classes of polyhedra studied in connection with
Hilbert’s third problem. In contrast to euclidean scissors congruence, where
a polyhedron is considered equivalent to any subdivision, rotation, or
translation of itself, we only allow subdivisions and translations. The
resulting translation scissors congruence problem was studied and solved
in low dimensions by Hadwiger who introduced what are now called
Hadwiger invariants. Jessen and Thorup, and independently Sah, solved
the problem in all dimensions, generalizing Hadwiger’s work. The scissors
problem posed by £ (M) differes from the classical case in two respects.
First, polyhedra of dimension smaller than 4 are not discarded. Second, the
polyhedra and subdivisions are restriced to a lattice. This prolem was
solved in [Mol].

Hadwiger Invariants. Let us now define what we mean by Hadwiger
invariants in the context of £ (M). Define a rigged hyperplane to be a
hyperplane U < Mg together with a choice of one of the two halfspaces
bounded by U. A rigged flag of length k is a flag of subspaces
F=(My=U2U"'2 --- 2 U*), where U’ is a rigged hyperplane in U’ '
for i=1, .., k. In particular, codim U'=.

If U'is a rigged hyperplane, choose a linear functional {e Ng= My
whose kernel is U' and which is positive on the chosen halfspace bounded
by U'. If P is a convex polyhedron, set 3,1 P = {ve P: &(v)=min(((P))}.
More generally, if F is a rigged flag, set 0P =040 u-1--- 0 P. It is easy
to see that 0. extends by linearity of a function on L

dp: L(M)— L(M)

which also descends to ¥ (M).
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Notice that there is well defined absolure notion of volume in a lattice,
normalized so that a fundamental parallelepiped in any full rank &
sublattice has unit volume.

Definition 5. Let F be a rigged flag of length k and x an element of
L(M). Define the Hadwiger invariant Hadg(x) as

Had g (P)=vol,_(d(x)).

In particular, if k=0 then Hadg(x)=vol,(x) for the unique flag of
length 0.

THEOREM 4. If fe L{(M) and Hady(f) =0 for every rigged flag F in M,
then f=0.

Lambda-Ring Structure. There is further algebraic structure in L(M)
and #(M). Most interesting for us will be the augmented special A-ring
structure. The multiplicative structures in L(M) and ¥ (M) are determined
on generators [ P] and [Q] by

[(P1=LQ]=[P+Q],

where P+ Q is the Minkowski sum P+ Q={x+y:xeP,yeQ}. One
checks that this extends by linearity to a well defined ring structure. The
A-operators are determined by the fomula

A([P])=1+[P]

The augmentation is the Euler characteristic. Despite first appearances, the
A-ring structures on L and & are nontrivial. Bear in mind that a convex
polyhedron will correspond to a line bundle, so it should be expected to
have trivial higher exterior powers.

4.2, Definition

Let E be an equivariant vector bundle on X 4. Then the torus acts on all
the cohomology groups H'(X,, E), hence they decompose into weight
spaces

Hi(XA, E); @ HE(XAa E)m'

meM

The weight m component of the Euler characteristic is then defined as

d
1n(E)= 3, (=1)'dim H'(X, E),,.

i=0
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Now since the long exact cohomology sequence associated to a short exact
sequence of equivariant bundles is a sequence of T-modules, the weight m
submodules are also an exact sequence. Hence the weight m component of
the Euler characteristic passes to a well defined homomorphism from
Ky (X) to Z,

EH XI'I(E)'

It makes sense therefore to take the weight m Euler charactertistic of
Y(E), the ith Adams operation applied to the class of E.

DEerINITION 6. Let X, be a smooth compact torus embedding (or
quotient embedding) of a torus T with character group M. We define the
indicator map 1;: K+(X,)— L(M), by means of the formula

IT(X)(m/k):Xm(qlk(x))s (4)

where xe K,(X,), me M, and ke N.

Remarks. (1) It is not clear a prion that I(x) is well defined even as
a function, since the representation m/k of an element of M, is not unique.

(2) We could use the same formula for noncompact toric varieties,
but the result would not generally lie in L(M) because it might not have
bounded support.

(3) If X is any algebraic variety or Kaehler manifold with torus
action, a map from K,(X) into an appropriate group may be defined by a
similar formula. This will be taken up in a separate paper.

THEOREM S. Suppose that X , is a smooth compact toric variety (or torus
quotient embedding). Then the map 1, is a well defined homomorphism of
augmented J-rings.

Proof. First we show that I,(x) is well defined as a function on M.
Explicitly, we need to know that y,.(¥*(x))= x,..{¥™(x)). Replacing x
with ¥*(x), we are reduced to the case k=1, y,,.(¥"(x)) = y.(x). Since
both sides of the equation are linear, we need only show it for a set of
generators, which by Proposition 3 we may take to be the classes of line
bundies. Let &, be the line bundle associated to the support function 4 on
4, see Theorem 3. Now, ¥"(4,) is simply the nth tensor power of &,, which
is the line bundle associated to the support function » - A. Referring to the
explicit computation, Theorem 3(3), we have that for any me M, the sets
Z(m, h) and Z(nm, nh) are identical, from which the desired resuit follows.

Futhermore, Theorem 3 gives an essentially combinatorial formula for
the cohomology of &, in terms of 4. From this one obtains a combinatorial
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formula for f, =%'1,(&,) in terms of A. This f, agrees with the f, defined
in [Mo2], according to Proposition 9 there. The remainder of the proof is
thereby reduced to combinatorics studied in [Mo2].

It should be fairly clear from Theorem 3 that f} lies in L(M,), but we
need to check that it actually lies in L(M). This follows from [Mo2,
Theorem 117, which shows that f, e L{M).

As for compatibility with the multiplicative structure, we must show that
L (&, ® E)=1,(8,) * 1:(&,). Now &, &6,=8, .4, as one easily
checks. Theorem 10 of [Mo2] implies that f, *f,. = f, . 4,» which is exactly
what we need.

Finally, we must check that the 4 operations and the augmentations are
compatible. For this we are again reduced to the case of a line bundle &,.
Proposition 13 of [Mo2] states that 4,(f,)=1+ f,t. This translates into
Al (&) =1,(A{8,)). That x(f,) =1 is proved in Proposition 9 there, and
this translates into y{I,(&,)) =rk(&,) where rk, the virtual rank, is the
augmentation on K,(X,).

Remark. 1If x is the class of an ample line bundle, then [,(x) is the
indicator function of a convex polyhedron. This is the correspondence that
underlies the well known applications of toric theory to combinatorics. The
A-linear function 4 corresponding to the line bundle is the classical support
function of the convex polyhedron P =1,(x). For us, this support function
is defined

h(&) =inf E(P).

In order to see why this is so, note that the higher cohomology of an ample
line bundle x=¢, on a toric variety vanishes. Therefore, 1,(x)(m)=
HY,,. .(Ng). This latter group is nonzero exactly where Z(m, h)= Ny and
there it is 1. Such points m occur exactly in the intersection of all the
halfspaces determined by all the one dimensional cones, g(m) = h(n(q)).

Let us now consider the contravariant functorial properties of 1,.
Suppose 4 is a fan in N, and 4’ is a fan in N'". Let g: N~ N be a map of
lattices inducing a map of toric varieties g,: X, — X, which in turn
induces g%/ on the equivariant K-groups. The dual map gv : M > M’
induces by direct image a map on polyhedral functions g, : L(M)— L(M').

PROPOSITION 5. The map 1, is functorial in the following sense:
L(g%7(x)) =g, (Lp(x))

Proof. 1Tt follows essentially from definitions that the pullback of the
line bundle &, by g*’ is just &,,. Consequently, for any 4, we have
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1:(8%76,) = 17(6h0g) = froe- On the other hand, it is a purely combinatorial
fact (Proposition 9 of [Mo2]) that f,,. =g, (f,), which is just g,(1,(&,)).
By linearity, we are done.

CoroLLARY 1. Dilation by a factor of ke N in the lattice N determines
a map on X 4. The induced (contravariant) map on K(X,) is the Adams
operation ¥,

PROPOSITION 6. Let U be the hyperplane in M dual to a vector A in N.
Rig U by choosing the halfspace on which i takes positive values. Let ¢ be
the smallest cone in A which contains A and let i,: V(c)— X, be the
(T-equivariant) inclusion map of the closure of the corresponding orbit. Then,
in the notation of Defintion 5,

Ir(ifr(x)) = aUlT()C)

Jor any x€ K (X ).

Proof. By Proposition 3, it is sufficient to take for x the class of a line
bundle. The proposition now reduces to Proposition 10 of [Mo2].

Much of the algebraic structure in K,(X,) is reflected in simple
combinatorial terms in L(M). For instance the duality involution in
K,(X,) sending a bundle E to its dual bundle £~ corresponds to the
operation in L(M) which takes a convex polyhedron 1, of dimension 4 to
(—1)*1 ., where — P is the relative interior of P reflected through the
origin. The virtual rank homomorphism on K, (X,) corresponds to the
Euler characteristic on L(M) which takes each convex polyhedron P to 1.
Beware that the virtual rank of x € K(X ;) has no relation to the dimension
of the support of I,-(x), which really reflects, if anything, the dimension of
the variety X,. It can be shown that if I(x) lies inside a k-dimensional
affine subspace of M, then the class x is the pullback along an equivariant
morphism of a class in K;(X;) where X is some quotient embedding of
T of dimension k.

4.3. Snapper Polynomials

It is a well known result of Snapper and Kleiman that the Euler-
Poincaré characteristic, x(&"), of the powers of a line bundle ¢ on a
complete variety grows as a polynomial. More generally, y(&7'® --- ® &)
grows as a polynomial in the n,. In the case of ample line bundles ¢, on a
toric variety it is known that the mixed volume of the associated convex
polyhedra is equal to the coefficient of the leading term of this polynomial
(see [Dan, pp. 133-135]). Because we will need it in the following section,
let us fit this observation into the present framework.

First note the following slight generalization of the Snapper polynomial:
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if x,,.,x, are classes in the K-group of a complete variety X, then
(¥ (x,)® --- & ¥™(x,}) is a polynomial in the n,. This is a direct
consequence of the Hirzebruch—-Riemann-Roch theorem and the fact that
WX acts as multiplication by k/ in 4/ (as in the case with the ordinary
Snapper polynomials, see [Fu, Example 18.3.6]). For the sake of
notational simplicity, take r =1 and find

W) = | chy(¥7(0)) Tdy(X)
—zj ch,(P"(x)) Td,_,(X)

=Y | ehytx) Td, (), (5)

where | denotes the degree homomorphism {,: 4,(X)q — Q.

We will need the following simple observation. If P is a convex lattice
polyhedron in M, denoted by #(P) the number of lattice points P
touches. By linearity, # extends to a homomorphism L(M}— Z, given by
#(f) =2 e ar f(m). By definition, if x € K(X ), then y(x) =3, o I7(x)(m),
so that

x(x) = #(I;(x)).

This function # has been an object of considerable interest in
combinatorics. It is studied further from the present point of view in
[Mo3].

If fe L(M) and ne N, denote by ¥"(f) the dilation of f by a factor of
n, ie., Y'(f)(v)=f(v/n) for ve M. We have already seen that

(W) = ¥ (I7(x)).

It turns out that #(f n)=%" #(¥"(f)) is polynomial in n with leading
coefficient vol,(f). In fact, from what we have just seen,

A (xim) =Y ' L chy(x) T, (X,).

In particular, the leading coefficient is vol,(1,(x)) = [, chy{(x).

4.4, Injectivity

From Proposition 3, we know that for any x in K(X,) there is an ¥ in
K,(X,) mapping to x. In order to define a map I: K(X)— & taking x to
the element represented by 1,(X), we need to know that this latter element
is well defined in &
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THEOREM 6. If X, is nonsingular then the map 15 descends to a well
defined, and in fact injective, homomorphism 1: K(X) - £ (M).

Proof. By what we have already seen, if T is well defined its image will
be in .Z(M).

We saw in the last section that vol,(I,(X))={,, ch (%)= (y, ch,(x).
Therefore, at least the volume of 1,(¥) is well defined. We proceed to
construct the higher Hadwiger invariants of I(x) from x.

From a nonsingular k-dimensional simplicial cone o € 4, together with
an ordering on its edges, we can construct a rigged flag of length & as
follows. Choose generators ¢q,, ..., g, of the ordered edges of o. The kernel
of g, in My= Ny is a rigged hyperplane U'. Now ¢, restricts to a nonzero
linear functional on U!, hence gives a rigged hyperplane U? of U'.
Continuing in this fashion, we obtain a rigged flag F=(Ngy=0U’2
U'2 ... 2 U*). There are thus k! different flags associated to o.

PROPOSITION 7. The Hadwiger invariants of Y(x) are all determined by
the chern character of x. In particular, if the flag F in Ng is any one of the
k! rigged flag constructed above from a cone o, then

Hadg(I(x)) = (chy(x) - [V(0) ]
Otherwise put,

ch*(x)(6) =Had ¢(1(x)).

Proof. Let F=(Ng=U%2U"'2 -.- 2U*) be any flag. According to
Proposition 6 (applied & times), the polyhedral function 8y« --- 8, I(x) is
the indicator of the pullback of x to the closure of one of the orbits in X .
If F is constructed as above from a cone ¢, then this orbit is the orbit V(o).
It should be clear from Propositon 6 how to formulate which one it is in
general. Now we apply the naturality of the chern character, and the obser-
vations above connecting the chern character with volume to determine the
Hadwiger invariants.

It now follows from Theorem 4 that I(x) is well defined. We have a
commutative diagram

Kp—2 L

Lo

K —o

We now turn attention to injectivity. If x is in the kernel of 1, then the
Hadwiger invariants of I(x) vanish. By the proposition, the chern character
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of x then vanishes. But the chern character is generally an isomorphism
mod torsion, so x is torsion. By Lemma 1, K(X,) is torsion free. Hence x
is 0.

Remark. In K'(X,)=K(X,) we have an increasing filtration whose
kth term is the subgroup generated by coherent sheaves with support of
dimension at most k. The indicator homomorphism I maps this filtration
to the weight filtration F* in ¥ (M). For k > 0 the kth term of the weight
filtration in # (M) is generated by k-fold products of element of the form
[P]1-[Q], P and Q convex polyhedra.

THEOREM 7. If X, is nonsingular then 1, is injective, and its image lies
in L(M).

Proof. We already saw that the image lies in L(M) in the proof of
Theorem S. For the injectivity, we need some observations. First, we can
reduce to the projective case as follows. If 4 is any fan, we can find a
projective refinement A’, so we have a proper morphism f: X — X,.
Since f is a birational morphism of normal varieties, f, €y,. Moreover,
RY, Oy,=0 (see KKMS, Sect.3)]. By the projection formula we
then have that f, f*"=1d so fy, is a split injection. By the naturality of
I, I (f%7(x))=1,(x), so it is enough to show that I is injective on X ,..

Now L(M} is a module over Z[ M] by means of the natural action of
M by translations, and 1, is clearly a homomorphism of Z[ M J-modules.
We know by Lemma 2 that if X, is projective we may choose generators
¢, . & of Kr(X,4) whose images in K(X ,) constitute a basis. Suppose now
that xe K;(X,) is in the kernel of I,. Write x=3",a,¢, with a,e Z[M].
Then 2, a4, ;(&)=1{(x)=0, and the (&) are linearly independent as
elements of ¥ by Theorem 6. By the following lemma all 4, vanish.

LEMMA 3. Let P; be elements of L(M) whose images P, in L (M) are
linearly independent over Z. Then the P, are linearly independent over
ZTM].

Proof. Assume that there is a relation >, a,P,=0in L with g, Z[ M
not all zero. Then we can find a full sublattice H< M of rank d—1 for
which the images a,€ Z[ M/H] don’t all vanish. Write L{M),, for the group
of coinvariants of L with respect to H, and let z be a generator of M/H.
Then it is clear that z— 1 is not a zero divisor for L(M),. Now let (z — 1)’
be the highest power of z — | which divides all ;. Factoring, 0=Y,4,P,=
(z—=1)3,5,P, in L(M), so 3, 5,P,=0. Since not all 3, are the augmenta-
tion ideal of Z[M/H], reducing further to £ gives a nontrivial relation
2 bipi =0.

607.100;2-4
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COROLLARY 2. [If X, is a smooth and projective toric variety, then there
exists a ZLM] basis {&,, .., £,} of K;{(X ) for which the images of the &,
constitute a Z-basis of K(X ,).

CorOLLARY 3. If the pullback of a class in K;(X,) to the closure of
every one parameter subgroup of the torus vanishes, then the class itself
vanishes. More generally, if 0 <k <d, and the pullback to the closure of the
exponentiation of every rank k sublattice vanishes, then the class itself
vanishes.

Proof. The closure Y of a one parameter subgroup corresponds to a
line / in M. By the naturality of the indicator map, the indicator of the
pullback of x to Y is the image of I;.(x) under the quotient My — M, /I*.
Every such image of I,(x) must therefore vanish. By the injectivity of the
Radon transform for L(M) (see [Mo2, Theorem 5]), 1;(x) must itself
vanish.

4.5. Image

The description of the image of I, is intuitively simple, but requires some
definitions to state.

There is an evident notion of subdivision of a rational cone into a collec-
tion of rational cones, and hence there are scissors congruence groups of
cones, analogous to the scissors congruence groups of polyhedra.

DeriNITION 7. The group of polyhedra germs & ¥ (M) is the abelian
group with generators [o], ¢ a rational convex cone in M, and relations

[ocut]=[o]+[1]-[onT]

whenever ¢ Ut is a rational convex cone.

If elements of L(M) are interpreted as functions, then £ (M) is simply
the group of germs of these functions at a fixed point (the origin, say). In
fact, given a lattice polyhedron P, and a point pe M, we obtain a rational
cone

3,(P)={veMy,:p+eve P for all £>0 sufficiently small },

the cone subtended by P at p. It is clear that 3, passes to a homomorphism
from L(M) to S £ (M). For fe L(M), 3,(f) is literally the germ of f at p.

DEerFiNITION 8. Given a fan 4, let ¥%,(M) be the subgroup of &% (M)
generated by the duals of the cones in 4. Define L ,(M) to be the subgroup
of L(M) consisting of those f for which 3,.(f) lies in ¥.¥,(M) for each m
in M. Define ¥,(M) as the image of L, (M) in ¥ (M)
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THEOREM 8. We have isomorphisms
L K(X 4) = Z,(M)
and

I K (X)) = Ly(M).

Proof. 1t clearly suffices to show that the image of 1, is L ,(M). The
proof depends on combinatorics developed in [Mo2] which I will only
sketch here.

We know that every 4-linear support function A corresponds to some
equivariant line bundle &, on X ;. Now any convex polyhedron P in L ,(M)
has a support function #, for which 1.(&,,) =P, so we would be done if
we knew that such P generate L ,(M). But this is certainly false; for non-
projective toric varieties there may not be even a single nontrivial convex
P in L,. However, extending the notion of support function to all of L{M)
allows us to follows a nearby route.

To an element of L (M) one can associate a “polysupport” function on
4. A polysupport function is defined as a function on N, with values in
the group ring Z[R], which restricts on each cone of 4 to a virtual sum
of linear functions, each taking M to Z. To define this polysupport
function, proceed as follows. Write f as a sum f=3%, a,[P,] of convex
polyhedra. (If fe L (M), we needn’t necessarily take P, e L ,(M).) Let h,
be the classical support function P,. The polysupport function 4 of fis then
defined h(&) =2, ac[h(E)].

It can be shown that (1) the correspondence taking fe L, (M) to its
polysupport function is an isomorphism onto the group of all A-linear
polysupport functions; (2) if 4 is nonsingular, then every polysupport
function is globally a virtual sum of 4-linear support functions; and (3) if
the polysupport function of f is a A-linear function A, then

f= ]T(éﬂh)'

The proof of (1) is in [Mo2, Sect. 5], especially Propositions 11 and 12.
Statement (2) 1s proven in Theorem 12 there, and statement (3) follows
from Theorem 3, together with [Mo2, Proposition9]. The three
statements together obviously imply the theorem.

Here is a proof for I that avoids these combinatorics. First of all, it is
clear that the image of I lies in %, (M). For surjectivity, choose an element
x in %,, and write x as a virtual sum of nonsingular simplices, i.e.,
simplices with volume 1/d!. This is always possible because by Theorem 13
of [Mo3], the nonsingular simplices generate ¥ (M). These simplices may
not be in .Z,(M), but we can find a nonsingular refinement A’ of 4 in
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which they all lic. As we have seen, the simplices, being convex, are all
images under I of line bundles on X, . We then have x=I(¢) for some
Ee K(X ). Now the chern character of £ can be determined in terms of the
hadwiger invariants of x. Since x € %, this means that ¢/, (&) - [ V(o) ] only
depends on the smallest cone ¢ in 4’ containing ¢. Since the image of the
cycle [ ¥(o)] under the natural map X, — X, is [ V(d)], this implies that
the cohomology chern character ¢h*({) is the image of a cohomology class
on X . Letting Ebea corresponding class in K(X ), we find that since 1)
and x have the same hadwiger invariants, they are equal.

Remarks. (1) One would expect a similar result for X, smooth but
not necessarily compact, where I(x) is a polyhedral function which is not
necessarily bounded. However (in addition to the condition on the germs
of these function as above), we would expect them to be bounded from
below in the directions which occur in the fan 4. That is, we expect the
support of fe (X ,) to satisfy that A(supp /) is bounded from below for
any 4 in [4] = Ng. (This is because K(X,) is defined using coherent
sheaves.) This extra condition would impose bounded support on
fel(X,) for a complete fan even if we had not assumed it in our
definition of L{M).

(2) The duals [ ] of cones ¢ in A are actually a basis of ¥ Z,(M).
(This follows from the fact that the duality operation extends to an
isomorphism ¥ #(N)— ¥ L(M).) For any element f of L, (M) and any
ae 4 we can therefore define f, as the function whose value at a point
p€ My is the [a” ]-component of 3,(f). It is easy to see that f, is in L(M)
(but not necessarily L ,(M)). Proposition 7 says in effect that

vol,(I(x),) = ch(x) - [V(o)]. (6)
Another way of saying this is that the codimension k& generalized Dehn
invariant of I,(x) is ch?” *(x), the Poincaré dual of ch,(x).
5. EXAMPLE

We illustrate the ideas in this paper with a final example. Consider the
blowup of the origin pt in P°. We have the following fiber square

P —— BI,P?
pl n‘l
pt — s P?

in which all four spaces are torus quotient embeddings. The horizontal
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maps are equivariant regular maps, while the vertical maps are maps of
torus quotient embeddings. In terms of fans this diagram is as follows.

p! BL,(P?)

&

|- A

pt p?
i
B ————————

In general the K-group of a blowup is connected with the K-groups of
the base space, the center, and the exceptional divisor by an exact
sequence, which in the case at hand is

0 —— K(pt) —— K(P") @ K(P?) 225 K(BI, P?) —— 0.
The first map in this sequence is (— 4 _,(F)-p*) @ (ix) where F is the class
of the universal quotient bundle on P'. One computes that in K(P'),
A_(F)y=[0(1)] -1

Now we know the descriptions of all these groups in terms of polyhedra.
The fan of the point pr has a single cone, which is all of Ny, and whose
dual is the origin of M. Therefore, I (K (pt)} is generated by indicator
functions of points. The fan of P' has three cones, whose duals are the line
y= —x and the two rays from the origin which it contains. Therefore,
I1{K(P")) is generated by points and line segments parallel to y = —x. We
already described K(P?) in the second example in the Introduction. Some
typical generators of 1,(K(BI, P?)) are depicted below.
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1K L—

Let us now describe the maps. By naturality, the maps p* and =% do
nothing. The map i, takes a point to the half open square. The image of
the map j, on a point and a line segment is indicated as

- L

NN

Therefore, j (4 _(F)) is

\_. ik A.K

Assembling all of this, we have below a pictorial illustration of the exact
sequence.

p! _ Bl (P?)

— L
PSR (O N
[,\_I(F)p’( K

Pz

ix

- N

The map fi is shown below. Faces parallel to y= —x which face
upwards are inadmissible with respect to the fan for P, Such faces “buckle
in” when fy is applied. This is a typical, if simple, example of how
pushforward behaves in terms of polyhedra. Incidentally, this picture
illustrates the failure of Adams operations to commute with pushforward,
and even hints at the appearance of bott’s cannibalistic classes in the
Adams Riemann—Roch formula.
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fKr

In general, the Grothendieck Riemann-Roch theorem provides a
description of the pushforward map for K(X) which can be translated into
a combinatorial description of pushforward in terms of ¥ (M) (which is
not geometrically intuitive). A corresponding description of pushforward
for K;(X) and a consequent combinatorial description of pushforward in
terms of L(M) would also be interesting. At present, I don’t know such a
description.
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