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The P-matrix problem is co-NP-complete
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Abstract

Recently Rohn and Poljak proved that for interval matrices with rank-one radius matrices testing
singularity is NP-complete. This paper will show that given any matrix family belonging to the class
of matrix polytopes with hypercube domains and rank-one perturbation matrices, a class which
contains the interval matrices, testing singularity reduces to testing whether a certain matrix is not a
P-matrix. It follows from this result that the problem of testing whether a given matrix is a P-matrix
is co-NP-complete.
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1. Notation and terminology
Suppose the matrices A _, A, € R*™" satisfy (A _ Yy<(Ay)ford,j=1,...,n. ThenA_
and A, may be used to define an interval matrix

A=[A_,A,]
={AER™" (A_); <A; <(A,);, bhj=1,..,n}. , ‘

Another representation often used for an interval matrix A, is
Ar=[A,— A4, A, +A]

where
Ac=1(A_+A,), A=A, —-A 0.

The matrix A, is referred to as the center matrix, and A as the radius matrix, of interval
matrix Aj.
Consider a matrix family of the form
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k
A(p)=Ao+ MP\»? (1)

i=1

pEQ:=10, 114 Aj€R"™", and A, R"*" fori=1, ..., k. Since the family of matrices
defined in this way is the convex hull of a finite set of points in R"***, this type of matrix
family will be called a matrix polytope.

Suppose further that for a matrix polytope described by (1) the matrix A; has rank 1 for
each i=1, ..., k. The nature of dependence of the matrix family on each variable p; is
described by a rank-one matrix. A matrix family satisfying this condition will be referred
to as a rank-one matrix polytope. Interval matrices are rank-one matrix polytopes.

For any vector v €R", let D(v) denote the n X n diagonal matrix with the elements of v
in order along the diagonal. Any real n X n rank-one matrix polytope A(p), p € 0, may be
represented by

A(p)=A4A,+ W pirist

i=1

=A, +RD(p)ST

over Oy, where A,ER™™”, p(Ag) =n, r;, s, €ER"fori=1
matrices

,...,kand R and S are the twon Xk

=(ry ry ... o), S=(8 8 ... S).

Matrix polytope A(Q,) is said to be regular if A(p) is nonsingular for each p € Q,.
Otherwise it is said to be singular.

LetN:={1,2, ..., k}, = {J: JCN}, and let p, € {0, 1}* be defined, for JE T, by
_J1 ifjer, o
Py 0 otherwise . S
Then the set {p;: JET} is the set of 2% vertices of the hypercube Q. For any JE T}, A(p,)
will be called the vertex of the matrix polytope A(Q,) associated with J.
For a given integer k, let Z, denote the k-dimensional identity matrix. Associated with any
matrix polytope A(p) is a family of characteristic polynomials

YA, py=det(Al, —A(p))

=AY GpIAT

i=1

p € 0. For any rank-one matrix polytope, the coefficient functions that define the polyno-
mial family are multiaffine. In particular, ¢, (p) = ( — 1)"det(A(p)) is a multiaffine func-
tion of p.

o e s
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2. Background and motivation

In [ 1], Rohn derives a list of regularity conditions for interval matrices. For the special
case of an interval matrix with a rank-one radius matrix, the conditions simplify greatly.
One of the conditions is given in the following proposition.

Proposition 1. Suppose that A;=[A.— rs', A+ rs"] specifies an interval matrix, for non-
singular A.€R"*" and nonnegative vectors r, SER". Then A, is regular if and only if
ZD()AT'D(r)y<1 foreachy,z€ {1, 1}".

Recently Rohn and Poljak [2] (see also [7]) have shown that the NP-complete decision
problem SIMPLE MAX CUT [3] reduces in polynomial time to the problem of testing
whether the regularity condition of Proposition 1 is violated. Consider, then, a decision
problem formulation for testing whether this condition is violated for a given interval matrix
with rank-one radius matrix.

Decision Problem: Singularity of an Interval Matrix With Rank-One Radius (SING-INT-
RKI1R).

Instance: Nonsingular matrix A, €R™"*" and nonnegative vectors r, s €R" specifying an
interval matrix [A.—7rsT, Ac+rsT].

Question: Is

Z"D(HAT'D(Ny>1 (2)

for some pair of vectors yand zin { — 1, 1}"?

It is straightforward to establish that SING-INT-RK1R belongs to NP. Indeed, once a
guess is made of a pair of vectors from { — 1, 1}" satisfying condition (2), checking Eo
guess requires at most a number of multiplications polynomial in n and one logical ovo_.m:os
By Rohn and Poljak’s reduction, SING-INT-RKIR is NP-complete.

P-matrices are defined as matrices all of whose principal minors are positive [5]. This
class of matrices is one of several which arise in the study of the Linear Complementarity
Problem (LCP), a generalization of both Linear Programming and Quadratic Programming.
A particular case of the LCP is specified by a matrix M and a vector g. Whenever M is a P-
matrix the LCP is guaranteed to have a unique solution for all g. Murty {6] has described
as an open question in LCP theory the issue of whether the Eoc_oa of determining a given
matrix to be a P-matrix is NP-complete.

This paper will show that the problem of testing singularity for the class of rank-one
matrix polytopes, for which SING-INT-RK IR is a special case, reduces to testing whether
a matrix formulated from the data defining the matrix polytope is not a P-matrix. This will
establish that the problem of testing whether a given matrix is a P-matrix is co-NP-complete,
thereby settling Murty’s open question.
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3. Main result

Lemma 1. Suppose that F €R**" and G €R***. Then det(I,+ FG) =det(I,+ GF).
Proof. This is a corollary of Theorem 3 in Section 2.5 of Gantmacher [4]. O

By Lemma 1, if A(p) =Ao+ RD(p) ST is a rank-one matrix polytope over hypercube O,
and if Ag is nonsingular, then for any J€ T,

det(Ao +RD(p,) ST) =det(Ag)det(I, +Ag 'RD(p,)S™)
=det(Ao)det(l, + D(p;)STA; ' R).

This last equation equates, for each J € I, the determinant of the vertex matrix associated
with J and the product of the determinant of A, with the determinant of the principal
submatrix of I, + STA 5 ! R formed from the rows and columns whose indices are clements
of J.

Theorem 1. The n X n rank-one matrix polytope
A(p)=4,+RD(p)S",

P E Oy, is regular if and only if A, is nonsingular and I + § TAg 'R is a P-matrix.

Proof. Assume, without loss of generality, that A, is nonsingular.
( = ). Foreach J € I', the determinant of the principal submatrix of I, + ST A ' R formed
from rows and columns with indices in J is

det(I, + D(p,)STA5 'R) =det(I, + A5 'RD(p))S™) ,
making use of Lemma 1. If I, + STA5 ' R is a P-matrix, then
det(Aq +RD(p,)ST) = mmm@»% det(I, + D(p;)STAG'R)

has the same sign as det(A,) + 0 for each J€ I'. Since for each J this is the determinant of
the unique vertex matrix associated with J, it follows that every vertex matrix has a deter-
minant with the same sign as that of A,. In particular, this implies that the determinant of
the matrix polytope A(p) over Q,, a multiaffine function of p, cannot change sign or vanish
as p varies along any edge of Q,.

Any multiaffine function has the property that over a hyperrectangular domain any
extreme value attained at an interior point of the domain must also be attained at a vertex.
Since over vertices of O, the determinant of A (p) never changes sign or vanishes, the upper
and lower bounds over O, of the determinant have the same sign and it follows that A(Q,)
is regular.

(=). Assume that I, + STA; 'R is not a P-matrix. Then one of its principal minors is
nonpositive. Equivalently, by the above discussion, there must exist some vertex p,; of O,
such that

o =
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det(1,+Ag 'RD(p,)ST) <0.
However, when p,=0, or when J=0C1,
det(I, + Ay 'RD(p,)ST) =det(l,) =1>0,

so the determinant function is positive at one vertex and nonpositive at another. In traversing
aray from the first vertex to the second, this determinant must pass through zero. It follows
that A(Q,) is singular. ]

Suppose that the P-matrix problem is formulated as a decision problem:

Decision Problem: P-Matrix (PMAT).
Instance: M € R"*",
Question: Are all of the principal minors of M positive?

and that the complement of the decision problem is defined as well:

Decision Problem: Not a P-Matrix (NOT-PMAT).
Instance: M€ R"*".
Question: Does M possess a nonpositive principal minor?

Then we have the following corollary.
Corollary 1. NOT-PMAT is NP-Complete.

Proof. Consider a nondeterministic machine which guesses a set of row indices element by
element and then checks whether the principal minor of M determined by the set of indices
is nionpositive. Such a machine would solve NOT-PMAT nondeterministically in no_v&o-
mial time, and therefore NOT-PMAT belongs to NP.

It remains to provide an NP-complete problem which reduces to NOT-PMAT in poly-
nomial-time. Such a problem is the decision problem SING-INT-RKIR defined earlier in
the paper. Since instances of SING-INT-RKIR are interval matrices with rank-one radius
matrices, and interval matrices are rank-one matrix polytopes, Theorem 1 provides a poly-
ny instance of SING-INT-RKIR as an instance of NOT-

nomial-time reformulation of a

OO0 IO 0L

PMAT. O

Finally, Corollary 1 can be restated as a complexity classification of the problem PMAT
using the complementarity of PMAT and NOT-PMAT.

Corollary 2. PMAT is co-NP-Complete.
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4, Conclusion

In this paper we have shown that the problem of testing whether a given matrix is not a
P-matrix, formulated as a decision problem, is NP-complete. This result settles an open
problem in the theory of the Linear Complementarity Problem. In the process, we have
shown that testing regularity of any rank-one matrix polytope is equivalent to testing whether
a certain matrix is a P-matrix.
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Nonlinear intertemporal general equilibrium models are hard to solve because of the dimensionality
of the optimization problem involved. The computation of intertemporal general
equilibria therefore calls for time-aggregation assumptions. A question then immediately arises: what
criterion should one use to choose a sequence of possibly unequal time intervals in order to reduce
the dimensionality of the optimization problem, yet keep under control the errors resulting from the
numerical approximation of a continuous time process by a discrete time process? We propose one
such criterion based on the current value of capital, which exploits near steady-state optimal dynamics.
We show, using a parameterized version of the standard Ramsey—Koopmans—Cass model of optimal
growth, that it outperforms alternative criterions used in the literature.

Keywords: Dynamic aggregation; Intertemporal dynamics; Optimal growth; General equilibrium

1. Introduction

Nonlinear, continuous-time, intertemporal general equilibrium models are hard to solve
because of the dimensionality of the optimization problem involved.! Although some meth-
ods—known as two-point boundary value techniques—have proved to be well adapted for
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For a broad introduction to the formulation and solution of general equilibrium models, see Manne (1985).
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