Discrete Applied Mathematics 36 (1992) 293-298 293
North-Holland

The maximum number of
complementary facets of a
simplicial polytope

Walter D. Morris Jr

Departiment of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA

Received 2 January 1990
Revised 7 August 1990

Abstract

Morris Jr, W.D., The maximum number of complementary facets of a simplicial polytope,
Discrete Applied Mathematics 36 (1992) 293-298.

Let P be an (n— 1)-dimensional simplicial polytope with 2n vertices labelled sy, ..., 8., fi,.-5 -
Call a face of P complementary if the vertices it contains all have different subscripts. We study
the maximum number of complementary faces that P can have. This problem arose in the deter-
mination of the maximum possible degree of an LCP mapping. We give examples of polytopes
achieving a conjectured bound, and give some results supporting the conjecture.

1. Introduction

Let P be an (n—1)-dimensional simplicial polytope with 2n vertices labelled
SpyeerSps 11y --esl,. Call a face of P complementary if the vertices it contains all
have different subscripts. How many complementary facets can P have? In [6] it was
shown that the determination of this number gives a bound on the degree of a map-
ping arising from the linear complementarity problem. The degree of this mapping
gives information about the solutions to the linear complementarity problem.

In [6], a bound was conjectured on the maximum number of complementary
facets. Examples of polytopes achieving this conjectured bound are given in Sec-
tion 2. These polytopes are dual to certain sections of the n-cube. Rather than just
counting the numbers of vertices of these polytopes, we calculate their A-vectors,
which are interesting in their own right. For definitions of polytope concepts used
in this paper, see [2,4].

It then remains to show that one cannot find polytopes with more complementary
facets than the conjectured bound. In Section 3, this is proved for two classes of
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simplicial polytopes: (a) polytopes for which every face is complementary, and (b)
polytopes that have exactly one edge with vertices of the same subscript. The tech-
niques used are those used by Stanley [7] to prove the upper bound theorem for
spheres. This involves showing that the dimensions of parts of a certain ring are
bounded by the components of the A-vector found in Section 2.

2. Polytopes achieving the bound

For nonnegative integers k, n, k<n—1, define P(k, n) to be the polytope {xe R":
O0<x;<l,i=1,...,n, ¥1_ | x;=k++}. Then P(k,n) is an (n - 1)-dimensional section
of the n-cube. P(k, n) is a simple polytope because it misses all of the vertices of the
cube. P(0,n) and P(n—1,n) are simplices. The symmetry of the cube implies that
P(k,n) and P(n—k—1,n) are isomorphic. It is also clear that for i=1,...,n and
k=1, the facet {xe P(k,n): x;=1} of P(k,n) is of the same combinatorial type as
P(k—1,n-1), whereas for i=1,...,n, k=n—2, the facet {xeP(k,n): x;=0} of
P(k,n) is of the same combinatorial type as P(k,n—1). Finally, note that for
k=0,1,...,n—1, P(k,n) has n(",:l) vertices.

Let P*(k,n) be a dual polytope to P(k, n) for all k, n. For i=1,...,n let s; be the
vertex of P*(k, n) that is the image of the facet {xe P(k,n): x; = 1} of P(k, n) under
the duality map, and let #; be the vertex that is the image of the facet {xe Pk, n):
x;=0}. The next lemmas are devoted to determining the A-vector of P*(k,n). The
h-vector of a d-dimensional polytope P is given by f;(P)= Z{:é (da,l;i,-)h,-(P), for
i=0,...,d, j=—1,...,d—1, where f;(P) is the number of j-dimensional faces of P.
This correspondence is invertible, and since the coefficients of the h; above are
nonnegative, bounds on the &;(P) imply corresponding bounds on the f;(P).

Lemma 2.1. Subject to the boundary conditions h_{(P*(k, n)) = h,(P*(k,n)) = 0 for
all k, n, and h;(P*(n,n))=h;(P*(-=1,n) =0, for all i, n, the h-vectors of the poly-
topes P*(k,n) satisfy:

(P m)) = hy(P*(k,n— D)+ hy(P*(k—1,n— 1))
o™ i
( ,l)< « > (n

Proof. Here 5(k,i)=1if k=i, §(k, i) =0 otherwise. The h-vector of P*(k, n) can be
calculated using the straight-line shelling of [3]. This is easier to visualize in its dual
version. Orient the edges of P(k, n) so that the edge connecting vertices x and y is
directed from x to y iff ¥7_, e'x;> Y7 | &'y;, where 0<e<1/n is small enough so
that there are no ties. Then h,(P*(k, n)) counts the number of vertices of indegree
i. The vertices of P(k, n) can be divided into three sets. Let A = {vertices x of P(k,n)
with x; =0}, B= {vertices y of P(k,n) with y;=1}, and C= {vertices z of P(k,n)
with z,=1}. For xe A, ye B, ze C, we have ¥/, ¢'x,< L] ¢'y;<Y], ¢'z;. Each
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vertex y € B will have indegree k, and there are (",:l) of these vertices. In A there
will be h;_,(P*(k,n — 1)) vertices of indegree /, because the facet {x e P(k,n): x;=0}
is of the same combinatorial type as P(k,n~1). (It is empty if k=n-1.) In B there
will be h;(P*(k —1,n—1)) vertices of indegree /, since the facet {xe€ P(k,n): x,=1}
is of the same combinatorial type as P(k —1,n—1). (It is empty if k=0.) This gives
the lemma. [J

Lemma 2.2. For 0<ik=<|+(n-1)],

min(i, k) n
h(PH ) = Y < > @

j=0 J

Proof. The proof is by induction on n. For n=1, ho(P*(0,1))=46(0, ())(8). Next, as-
sume that for 0<i,k=<|t(n-2)], that h(P*(k,n—1))= z;‘j‘;)""“ ("7"). The Dehn-
Somerville equations imply that h(P*(k,n—1)=h,_,_;(P*(k,n—1)) for any k,
and the symmetry of the cube implies that P*(k,n—1) and P*(n—k—2,n—1) have
the same A-vector. Therefore, the inductive hypothesis determines 7;(P*(k,n — 1))
for all i and k. For 0<i, k=|+(n—2)], the inductive hypothesis and (1) give

min(i, k —1) _ min(i -1, k) _ _
nP*kn) = ¥ <"j1>+ Y <nj1>+6(i,k)<n 1)

j=0 j=o k

min(i k)
-y <”> 3)
iZo \J

Ifnisoddandi=| +(n— 1) |, then the term A;(P*(k —1,n—1)) of equation (1) can be
replaced by h,_(P*(k—1,n—1)) by the Dehn-Somerville equations. Note then that
min(i— 1, k — 1) =min(, k — 1) for k=[+(n—1)], so (3) is still valid. If n is odd and
k=|{@mn- l)J, then the term h,_,(P*(k,n—1)) of equation (1) can be replaced by
h;_|(P*(k—1,n—1)) by the symmetry of the cube. As before, here min((/ —1,k—1)=
min(i — 1, k) for i< | 4(n—1) ], so that (3) holds. Thus (3) holds for 0<i, k=< [+(rn-1],
and the lemma is proved. U

For i=1,...,n, the facets {x € P(k,n): x;=0} and {xe P(k,n): x; = 1} never meet.
This implies that every face of the simplicial polytope P*(k,n) is complementary,
for all k, n. In particular, for k=|4(n—1)J, the number of facets of P*(k, n)
is ”(L"("nill)J)’ which is the conjectured bound on the number of complementary
facets.

3. Proof of the bound for special cases

We start by proving that the conjectured bound holds for two classes of simplicial
polytopes: (a) polytopes for which every face is complementary, and (b) polytopes
that have exactly one edge with vertices of the same subscript.
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Theorem 3.1. Let P be a simplicial polytope of dimension n—1, with 2n verfices
labelled sy, ...,5,, tiy...,1,, and suppose that every face of P is complementary.
Then h(PY<h(P*(|+(n—1)],n)), i=0,1,...,n—1.

Proof. The proof is a direct application of the techniques used by Stanley [7] to
prove the upper bound theorem for spheres. The notation used will be as in the
survey article by Billera [2].

Let k[P] be the Stanley-Reisner ring of the (n — 2)-dimensional simplicial complex
determined by the faces of P, with &k an infinite field. Define 4,,...,0,_, by 6,=

$;+s,+1;+1t,. Then 8,,...,0,_, is a homogeneous system of parameters for k[P].
This is because [8] the # — 1 by 27 matrix of the transformation defining 6, ...,8, _,
has the property that a subset of the columns is linearly independent iff it corre-
sponds to a subset of {5y, ..., f}, ..., f,; with distinct subscripts, and has less than
n columns.

Define the lexicographic ordering on monomials in the variables sy, ..., s,, t},..., 7,

by m < m’if deg m < deg m’ or if deg m = deg m’ and m comes before m’ lexicograph-
ically with the ordering s, <s,< -+ <s,<t,<---<t,. Define a collection #,, 7, ..., 7,,
of monomials in k[P] by n,=1, and for r=1 let #,,, be the first monomial in
k[P] (in the ordering defined above) that cannot be expressed as a polynomial
Z;:l n;p;j(0y,...,0,_1). Then for i=0,1,...,n—1, the number of 7, of degree i is
equal to A,(P).

Lemma 3.2. The monomials n,,13,...,1,, are of the form tlk or of the form
Sisj Sy <y <o <.

Proof. It is sufficient to show that the monomials ¢;, j>1, 5,7, i=1,...,n, and
s,lsi, 1<i;<i,<n are not in the collection, because if we exclude all of the mono-
mials containing these, we are left with the ones given by the lemma.

The expression 8, =s,+s,+1,+1, expresses ¢, as a combination of monomials
no greater than r,. Also, 0, —0;=s,—s,+t —1I; expresses f; as a combination of
monomials less than or equal to ¢, for i=2,...,n—1. Next, note that s/, is not in
k[P], since it contains two variables with the same subscript. Thus s, is not an #;.
For i=2,...,n—1, we have 8,—8,=s,—s;+ 1 —t;, which implies that s;(8,-6;)=
5;5, —sf+s,-t] —s;t;. Now s;¢; is not in k[P], so sitlzsi(ﬁl—(),-)~s,sl+s;2 expresses
s;1, as a combination of monomials no greater than s,-2<s,- {,. Also, Oy =s+s,+1,+1,=
5,0, =58,5+S24 S,0,+Spt, =5, 1, =S5, 6, —s,5; —s2, expressing s,7, as a combination
of monomials at most equal to s3<s, 1.

Finally, we need to exclude monomials s,-ls,-zz, l<ii<ib=n. O;=s;+8,+1;+1,=
5;5,0;,= s,-zsn + s,-s,f +5,1;8,+8:5,1,= s,-zsn +5;58;,, SO s,-s,z, =s,5,0,—s;s,, expressing s,sﬁ
as a combination of monomials no greater than sis,<s;s;. Also, for 1<ij<i,<
nz— 1, we ?ave 69 ~0i,=5;—s,+1,—1,=5;5.(0; — 9,-2)23,-215,2 - s,‘ +8; St =SSt =

2 . 2 . .
838y~ Si,SH= 8i,5, =538, — $ii S (0;, — 0;,), expressing s; s, as a combination of mono-

mials less than or equal to S,-zls,-z. Thus the lemma is proved. [J
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Proof of Theorem 3.1 (continued). We now count the monomials of degree i given
in the statement of the lemma. There is one (= (g)) of the form t{. For r=1,...,1,
there are (7) of the form s,("'”’”)s,-z---s,-/. Thus there are Z;:O (7) monomials of de-
gree i not excluded by the lemma. Therefore, 7, (P)<Y;_, (). For i< Lt(n-1)],
i=min(, | +(n—1)]), so h(P)<h,(P*(L+(n—1)],n). The Dehn-Somerville equa-

tions then imply this inequality for the remaining /. LJ

Theorem 3.3. Let P be a simplicial polytope of dimension n—1, with 2n vertices
labelled s, ..., Sy, Ly ..., t,, and suppose that P has exactly one edge with both ver-
tices of the same subscript. Let A be the simplicial complex obtained from the
simplicial complex of the faces of P by deleting all faces that contain this edge. Then
h(M)<h(P*(| +(n—-1)],n), i=0,...,n~1.

Proof. Assume that the edge with both vertices of the same subscript is the edge
s5,1,. The union of the faces of P that do not contain edge s, ¢, is homeomorphic to
an (n — 2)-dimensional ball. Therefore, by Reisner’s characterization of the Cohen-
Macaulay complexes (see [2]), the arguments of the preceding proof apply and imply
that h(4)<h;(P*(| 3(n—1)],n)), fori=0, ..., $(n— 1) |. Now, however, the Dehn-
Somerville equations do not apply. In this case, [1] shows that the relationship
h(A)=h,_,_(A) holds. Thus the theorem is true. 0

If P has more than one edge with both vertices of the same subscript, then it is
not obvious how to apply these methods to the simplicial complex of complemen-
tary faces of P. The following property of the polytopes P*(| $(n—1)],n) is remi-
niscent of the properties of polytopes that achieve the bound of the upper bound
theorem for polytopes.

Proposition. Let S be any complementary set of vertices of P*(| $(n— 1) |,n) with
S|=|4+(n—1)]. Then the convex hull of S is a face of P*(|$(n— 1], n).

Proof. We need to show that the intersection of the facets {xe P(L(n—1)],n):
x; =0} of P(|+(n—1)],n) for 1;€ S and {xeP([4(n-1)],n): x;=1} for s;eSis a
face of P(| +(n—1)},n). This is clear from the definition of P(t(n-1)],n). O

Finally, recall that the upper bound theorem for polytopes was originally proved
by McMullen [5] using shelling. It would be interesting to know if Theorems 3.1 and
3.3 could be proved by such a method.
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