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Abstract

The classes of P-, Py-, Rp-, semimonotone, strictly semimonotone, col-
umn sufficient, and nondegenerate matrices play important roles in studying
solution properties of equations and complementarity problems and conver-
gence/complexity analysis of methods for solving these problems. It is known
that the problem of deciding whether a square matrix with integer/rational en-
tries is a P- (or nondegenerate) matrix is co-NP-complete. We show, through
a unified analysis, that analogous decision problems for the other matrix classes
are also co-NP-complete.
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1 Introduction

There is a number of matrix classes, in addition to the classes of positive defi-
nite and positive semidefinite matrices, that play important roles in studying solution
properties of equations and complementarity problems (CP) and convergence /complexity
analysis of methods for solving these problems. For example, the two classes of P-
and Py-matrices, introduced by Fiedler and Ptdk, play important roles in the sta-
bility analysis of solutions to complementarity problems (CP) [5, 7, 15], derivation
of error bounds [13, p. 320], and the convergence/complexity analysis of algorithms,
e.g., Lemke’s method, interior-point methods, non-interior methods, for solving these
problems (see [3, 4, 5, 8, 10, 11] and references therein). In particular, a CP has
certain stability property and admits reformulation as a stationary-point problem if
the Jacobian of the mapping is a Py-matrix [7, 8, 15]. And, for a linear CP (LCP),
existence of central path can be shown if the matrix is a Pp-matrix, in addition to
some nonempty interior and boundedness assumptions {10, Lem. 4.3]. Moreover, an
LCP with a Py-matrix is NP-complete [10, p. 33].

An interesting question concerns the computational complexity (in the Turing
machine model of computation [9]) of deciding whether a given square matrix M with
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integer entries belongs to a specific matrix class.! For the classes of positive definite
and positive semidefinite matrices, this decision problem is solvable in polynomial time
(via eigenvalue computation). The same can be shown for, say, the classes of S-, So-,
H-matrices (via linear programming) [5, 11]. For the classes of P-, nondegenerate, and
copositive matrices, this problem was shown to be co-NP-complete by, respectively,
Coxson [6], Chandrasekaran et al. [2], [11, p. 462], and Murty and Kabadi [12]. This
still leaves a number of important matrix classes, described in the books [5, 10, 11],
for which complexity of the corresponding decision problems is unknown.

In this paper, we study the complexity of decision problems for the classes of
P,-, Ro-, semimonotone, strictly semimonotone, and column sufficient matrices (see
[5, §3.13] for a history of these matrix classes). In particular, we show that these
problems are all co-NP-complete. A key part of our proof is a reduction from the
NP-complete problem of 1-norm maximization over a parallelotope [1, Thm. 15] to
the decision problems for P-, strictly semimonotone, and column sufficient matrices
(see Thm. 1). This reveals an interesting relation among these problems and yields,
as a byproduct, Coxson’s result for P-matrices. This reduction is analogous to a
reduction from the NP-complete knapsack problem to the decision problems for Ro-
and nondegenerate matrices (see Thm. 3 and [11, p. 462]). Our arguments differ
from those of Coxson and Chandrasekaran et al. in that they do not involve principal
minors and, as such, can more readily be extended to other matrix classes.

In our notation, R" denotes the space of n-dimensional real column vectors and
T denotes transpose. For any x € R", we denote by z; the ith component of z and
by llzll1, ||zl the 1-norm and oco-norm of z. For z,y € R", we denote z oy :=
[21y1 - @nyn]T. For any J C {1,...,n}, |J| denotes the cardinality of J and, for any
n x n matrix N, Nys denotes the principal submatrix obtained by removing from N
all rows and columns not indexed by J.

2 P-, Strictly Semimonotone, Column Sufficient
Matrices

It is known that an m X m matrix M is not a P-matrix if and only if there exists
a nonzero u € R™ satisfying u o Mu < 0 [5, 10, 11]. Also, by definition, M is not
column sufficient if and only if there exists a nonzero u € R satisfying uoMu < 0 and
woMu # 0[5, p. 157]. By definition, M is not in the class E of strictly semimonotone
matrices if and only if there exists a nonzero u € R™ satisfying v > 0 and, for each
i € {1,...,m} either u; = 0 or [Mu]; <0 [5, p. 188], [11, p. 227]. This condition can
be written as u > 0 and v o Mu < 0. We formally state the corresponding decision
problems below.

1The case of M with rational entries is reducible to this case by multiplying M with the lowest
common denominator of its entries.



NOT-PMAT
Instance: Positive integer m and an m X m matrix M with integer entries.
Question: Does there exist nonzero u € R™ satisfying u o Mu < 07

NOT-CSMAT
Instance: Positive integer m and an m X m matrix M with integer entries.
Question: Does there exist nonzero u € R™ satisfying u o Mu < 0 and u o Mu # 07

NOT-EMAT
Instance: Positive integer m and an m x m matrix M with integer entries.
Question: Does there exist nonzero u € R™ satisfying u o Mu < 0 and u > 07

Our reduction is from the following decision version of the problem of 1-norm
maximization over a parallelotope, shown by Bodlaender et al. [1, p. 213 and Thm.
15] to be NP-complete.

[0,]]PARMAX,

Instance: Positive integers n and ; n linearly independent integer vectors ay, ..., a,
in R".

Question: Does there exist y € 3.0, a;] satisfying ||y|l: > ~?

Theorem 1 Consider positive integers n and 7y, and n linearly independent integer

vectors ai, ..., a, in R". Let A:=[a; - an] and
I 0 0 —e I 0 0 —e
. 1A I 0 0 s A 1 0 0
m:=3n+1, M:= A 0 7 0 , M := 4 0 I E
0 27 2eT 2y -1 0 —eT —eT 4
(1)
where € :=[1 --- 1]T. The following statements are equivalent:

(a) The answer to [0,]]PARMAX, with instance n,v, a1, ..., an is yes.
(b) The answer to NOT-PMAT with instance m, M is yes.

(¢) The answer to NOT-CSMAT with instance m, M is yes.

(d) The answer to NOT-EMAT with instance m, M’ is yes.

Proof. By using the nonsingularity of A to make the substitution y = Az, we see
that there exists y € 3-,[0, a;] satisfying ||y||1 > v if and only if there exists z € R"
satisfying

(a) = (c). Since the answer to [0,]]JPARMAXj is yes, there exists ¢ € R" satisfying
(2). Let wy := —max{0, Az}, w_ := —max{0, —Az}, z := 1. Then, for
T
— | Wt
w=| T (3)
z



we have from (1) that

rT—e
Aw+w+
—Ax 4+ w_
T T _
2¢et wy +2e"w_ + 2y —1

Mu = (4)

By (2), zo(z —e) < 0. Also, for any v € R we have vy (v + vy) = 0, where
vy = —max{0,v}. Thus, w; o (Az + wy) =0 and w_ o (—Az + w_) = 0. Finally,

eTwy + eTw_ +~v = —e’ max{0, Az} — e’ max{0, —Az} +~v = —||Az|: + v <0,

implying 2eTw, + 2¢Tw_ + 2y — 1 < 0. Hence, by (4), uo Mu < 0, and, by z = 1,
u o Mu # 0. Thus the answer to NOT-CSMAT is yes.

(a) = (d). Since the answer to [0,]]PARMAX, is yes, there exists z € R" satisfying
(2). Let wy := max{0,—Az},w_ := max{0, Az}, z := 1. Then, for u given by (3),
we have from (1) that

T—e
Ax 4+ wy
Azt > (5)

—eTw+ —eTw_+ ¥

My =

Similar to the proof of (a) = (c), we obtain z o (z —€) <0, wy o (Az +wy) =0 and
w_ o (—Az + w_) = 0. Finally,

—eTw, — eTw_ + v = —e¥ max{0, —Az} — e’ max{0, Az} + v = —[|Az|l; + v < 0.

Hence, by (5), uo M'u < 0. Also, (2) implies z > 0 and, by construction, w; 2
0,w_ >0,z >0, s0 u>0. Thus the answer to NOT-EMAT is yes.

(c) = (b). Obvious.

(b) = (a). Since the answer to NOT-PMAT is yes, there exist € ", wy €
R w_ € R" and z € R such that u given by (3) is nonzero and satisfies uo Mu < 0.
Then, (1) yields

zo(z—ze) <0, wyo(Az+ws) <0, w_o(—~Az+w-) <0, z(2eTwy +2ew_+(2y—1)z) < 0.
(6)

If z = 0, then (6) would imply zoz <0soz =0 and wy owy <0,w-ow_ <0,s0

wy = w_ = 0, contradicting u # 0. Thus z # 0. Then, dividing the inequalities in

(6) by z? and denoting ¢’ := z/z, W), = wy [z, w_ = w_/z, we obtain

z'o(z'—e) <0, wo(Az'+w]) <0, w o(—Az'+w ) <0, 2eTw!, +2e"w +2y—1 < 0.

)
For each i € {1,...,n} with [Az]; <0, [w]i([Az']; 4+ [w]];) < 0 implies 0 < [wh]i <
—[Az'); and [w’)i(—[A2]; + [w’];) < 0 implies [Az]; < [w]; < 0. Thus,

—|[Aa);| = [A2'); < [w}]i + [wl]:. (8)
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Similarly, for each i € {1,...,n} with —[Az]; <0, [w/];([A2]; + [w]];)) < 0 implies
—[Az'); < [w)]; <0 and [wl]i(—[Az]; + [wl];) < 0 implies 0 < [w”]; < [Az];. Thus,

—|[A2")i| = ~[A2; < [w) ] + [wl]s. (9)
Then, (8), (9) and the last inequality of (7) yield

—||AZ'|l; = —i: [[Az"]);| < zn:[w;]z + W ] = eTw'+ +elw < —y+1/2.

Thus, ||Az’||1 > v—1/2, implying a := maxyefo,1]» |Ayl||1 > v—1/2. Since y ||AyH1
is a convex function, its maximum value is attained at a vertex of [0,1]", so c is an
integer. Then it must be that a > 7, so there exists z € R" satisfying (2). Thus the
answer to [0,]]PARMAX, is yes.

(d) = (a). Since the answer to NOT-EMAT is yes, there exist z € R* wy €
R, w_ € R™ and z € R such that u given by (3) is nonzero and satisfies u o Mu <0
and u > 0. Then, as in the proof of (b) = (a), we obtain that z > 0 and 2’ := z/z,
w', 1= wy/z, w = w_/z are nonnegative and satisfy

r'o(z'—e) <0, who(Az'+wl) <0, wlo(—Az'+w’) <0, —eTw!, —eTw’ +v <0,
)

(10

For each i € {1,...,n} with [Az]; <0, [w}]:{([Az']; + [w}]:) <0 implies 0 < [w}]; <
~[Az]; and [w’]; ( [Az'); + [w’_];) < 0 implies [Az]; < [w!]; < 0. Since [w]; > 0,
the latter implies [w’ ]; = 0. Thus,

—|[Aa"]i] = [A]; < —[w]i = —[w]]; — [wl]i. (11)
Similarly, for each ¢ € {1,...,n} with —[Aa:] <0, [w!]i([Az"]; + [w]];) < 0 implies
—[A2]; < [wh])i <0 and [w’_]i(—[Az"]; + [wl];) <0 implies 0 < [w”]; < [Az'];. Since
[w!,]; > 0, the former implies [w)]; = 0. Thus,

—[Aei] = —[Aa')i < —[w_]i = —[w}]i - [wl]i (12)
Then, (11), (12) and the last inequality of (10) imply

—|AZ’||; = Z] [Az'); Z — [w"];) = —eTw!, — eTw. < —7.

Thus, ||Az']|; > 7. Also, the first inequality in (10) implies 0 < 2’ < e. Thus, z’
satisfies (2), so the answer to [0,1]]JPARMAX, is yes. =

Corollary 1 The problems NOT-PMAT, NOT-CSMAT, NOT-EMAT are NP-complete.

Proof. Suppose the answer to NOT-EMAT with instance m, M 1s yes. Then there
exists nonzero u € R™ satisfying v o Mu < 0 and u > 0. Thus, there exist [ €
{1,...,m}and J C {1,...,m} such that the linear system

’U,2>0, . ’U,i:O, .
. >
w=1, {[Mu]igo,} vied, {[Mu],-zo,} vigJ,
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has a solution. Any vertex solution u* has size polynomially bounded by the size of
M (e.g., [14, p. 30]) and satisfies u™ o Mu* < 0 and 0 # u* > 0, so u™ is a certificate
for the yes answer. Thus NOT-EMAT is in NP. Similar arguments show that NOT-
PMAT, and NOT-CSMAT are also in NP. [For NOT-PMAT, we can alternatively
check that a given principal submatrix of M has nonpositive determinant, which is
computable in polynomial time, e.g., [14, §3], [6].]

Since the size (number of bits in the binary representation) of m, M, M’ given
by (1) is a polynomial in the size of n,¥, A, it then follows from Thm. 1 and NP-
completeness of [0,1]PARMAX; that NOT-PMAT, NOT-CSMAT, NOT-EMAT are
NP-complete. =

3 P,;- and Semimonotone Matrices

We formally state below the decision problems for Py-matrices [5, 10, 11] and
for the class Ey of semimonotone matrices [5, p. 184], [11, p. 227]. We show these
two problems are NP-complete by reduction from, respectively, NOT-PMAT and
NOT-EMAT.

NOT-POMAT
Instance: Positive integer m and an m x m matrix N with integer entries.
Question: Does there exist a principal submatrix of N whose determinant is negative?

NOT-EOMAT

Instance: Positive integer m and an m x m matrix N with integer entries.
Question: Does there exist nonzero u € R™ satisfying u > 0 and, for each i €
{1,...,m}, either v; = 0 or [Nu}; < 07

Theorem 2 Consider positive integer m and an mxm matriz M with integer entries.
Let 11 be the mazimum absolute value of the entries of M. Let

N:=vM -1, vi=m2" A, A = (mp)™, (13)
N :=vM-1, V:i=(m(p+1)™.

Then the following statements (a) and (b) are equivalent, and the following statements
(¢) and (d) are equivalent:

(a) The answer to NOT-PMAT with instance m, M is no.

(b) The answer to NOT-POMAT with instance m, N is no.

(¢c) The answer to NOT-EMAT with instance m, M is no.

(d) The answer to NOT-EOMAT with instance m, N' is no.

Proof. (a) = (b). Since the answer to NOT-POMAT is no, then N is a Py-matrix
and, by (13) and its property (e.g., [5, Thm. 3.4.2]), M is a P-matrix. Thus, the
answer to NOT-PMAT is no.



(b) = (a). Since the answer to NOT-PMAT is no, then M is a P-matrix, i.e., for
each nonempty J C {1,...,m}, we have det[My;] > 0. Since M, has integer entries,
this implies det|My;] > 1. Also, A is an upper bound on the absolute value of the
principal minors of M [14, p. 195]. This together with (13) and (2.2.1) in [5] imply

det[Ny] = detfvMyy; — 1]
= Y det[vMgx]det[—1]

KCJ
= ZI/IKldet[MKK](—l)UHKI
KCJ
= I/IJIdet[MJJ] + Z I/IKIdet[MKK](—1)|J|—|K|
KcJ
> oV 3 KA
KcJ
JJ]-1 J
14 14
k=0 k

AV

17]-1 .
M1 Z (IJI 1)VkA
k=0 k

= M)+ )MA
> v T2 A
= M — |2V A).

Since |J| < m, (13) implies the right-hand side is nonnegative. Thus, all principal
minors of N are nonnegative, so the answer to NOT-POMAT is no.

(¢c) = (d). Since the answer to NOT-EOMAT is no, then N’ is in Fy. So, for
each nonzero u € ™ with u > 0, there exists k € {1,...,m} such that u; > 0 and
[N'u]x > 0, implying from (13) that

[Mu]k = ([N'u];c + uk)/z/' > 0.

Hence M is in E. Thus, the answer to NOT-EMAT is no.

(d) = (c). Since the answer to NOT-EMAT is no, then M is in E. So, for
cach nonzero u € $™ with u > 0, there exists & € {1,...,m} such that u; > 0 and
[Mu];, > 0, implying that the minimum value é of

flu) = _max min{u;, [Mul;},

=1,

subject to u > 0 and |ju|| = 1, is positive. For each u € R™, there exists [ €
{1,...,m}and J C {1,...,m} such that either (i) f(u) = w and
u > U ) w > [Mul; ,
<[M Ty vied Y NVIEd 14
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or (i) f(u) = [Mu]; and

(M), < w, {[[M“]l 3 “J’} vieJ, {[M“]’ < [M“L} vigJ o (15)

Mul;j 2 u; uj > [Mul;
Thus,
5 = min U

220, [|uljeo=1 St

=i )

min U min [Mu],

= min mingst. 0<u<e ,st. O0<u<e . (16)

JELL o m) ur = 1,(14) ur = 1, (15)

For each k,[, J, each of the two minimizations inside the braces is a linear program
with constraint matrix entries of maximum absolute value p+1. Let u* be an optimal
basic solution of either linear program. Then, by Cramer’s rule, each entry of u* is
of the form p/q, where p is an integer, and ¢ is the determinant of a nonsingular
submatrix of the constraint matrix of the linear program. Since ¢/ is an upper bound
on the determinant of any k x k (k < m) submatrix with integer entries of maximum
absolute value p + 1 [14, p. 195], then ¢ < v/, implying u} > 1/v/ and [Mu*]; > 1/v/'.
By (16), § > 1/v/. Thus, for each nonzero v € ®™ with u > 0, there exists | €
{1,...,m} such that u; > ||u|le/v' and [Mu]; > ||ul|e/¥’, implying from (13) that

[N’u][ = l/,[Mu]l — U Z HUHOO — U Z 0.
Hence N’ is in Eg. Thus, the answer to NOT-EOMAT isno. =

Corollary 2 The problems NOT-POMAT and NOT-EOMAT are NP-complete.

Proof. By similar arguments as in the proof of Cor. 1, we have that NOT-POMAT
and NOT-EOMAT are in NP. Also, the size of N, N’ given by (13) is a polynomial
in the size of m, M. It then follows from Thm. 2 and Cor. 1 that NOT-POMAT and
NOT-EOMAT are NP-complete. =

4 Ry- and Nondegenerate Matrices

By definition, an m x m real matrix M is degenerate if and only if there exists
nonempty J C {1,...,m} such that My, is singular [5, 11]. Since M;; is singular if
and only if there exists nonzero u € R™ satisfying Myju; = 0 and u; = 0for all ¢ & J,
this is equivalent to the existence of a nonzero u € R™ satisfying u o Mu = 0. Also,
by definition, M is not an Ry-matrix if and only if there exists a nonzero u € R™
satisfying v > 0, Mu > 0, and v o Mu = 0 [5, p. 180], [11, p. 229]. We formally state
the corresponding decision problems below.
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NOT-ROMAT
Instance: Positive integer m and an m x m matrix M with integer entries.
Question: Does there exist nonzero u € R™ satisfying uo Mu =0, u > 0, Mu > 07

DEGMAT
Instance: Positive integer m and an m x m matrix M with integer entries.
Question: Does there exist nonzero u € R™ satisfying u o Mu = 07

The reduction, similar to one used by Chandrasekaran et al., is from the following
integer knapsack problem, known to be NP-complete [9, p. 247].

KNAPSACK
Instance: Positive integers n and b; an integer vector a in R".
Question: Does there exist z € {0,1}" satisfying a”z = b?

Theorem 3 Consider positive integers n and b, and integer vector a in R". Let

-1 e
m:=n-+1, M = [—aT b] , (17)
where e := [1 --- 1]T. The following statements are equivalent:

(a) The answer to KNAPSACK with instance n,b,a is yes.
(b) The answer to NOT-ROMAT with instance m, M is yes.
(c) The answer to DEGMAT with instance m, M is yes.

Proof.
(a) = (b). Since the answer to KNAPSACK is yes, there exists z € {0,1}"

T
1

wo Mu = 0. Also, by construction, u > 0 and Mu = [eax] > 0. Thus the answer to
NOT-ROMAT is yes.

(b) = (c¢). Obvious.

(¢) = (a). Since the answer to DEGMAT is yes, there exist + € R" and z € R
such that u := [f} is nonzero and satisfies u o0 Mu = 0. Using (17), this can be
rewritten as

satisfying a’z = b. Then, z o (z —¢) = 0, so u := [ ] is nonzero and satisfies

zo(ze—2z)=0, 2(zb—ada’z)=0. (18)

If z = 0, then (18) would imply zoz = 0, so ¢ = 0, contradicting u # 0. Thus z # 0.
Then, dividing the inequalities in (18) by z* and letting =’ := 2 /2, we obtain

go(e—z)=0 b-—alz'=0.
The first equation implies 2’ € {0,1}". Thus, the answer to KNAPSACK is yes. =

Corollary 3 The problems NOT-ROMAT, DEGMAT are NP-complete.



Proof. By a similar argument as in the proof of Cor. 1, we have that NOT-ROMAT
and DEGMAT are in NP.

Since the size of m, M given by (17) is a polynomial in the size of n,b,a, it then
follows from Thm. 3 and the NP-completeness of KNAPSACK that NOT-ROMAT
and DEGMAT are NP-complete. =

5 Further Questions

There remains a number of matrix classes, described in [5, 10, 11], for which
complexity of the corresponding decision problem is unknown. Two good examples
are the classes of (- and (Jo-matrices.

Acknowledgement. The author thanks Victor Klee for suggesting the reference [1].
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Since y = ||Ay||1 is a convex function so its maximum value is attained at a vertex
of [0,1]", we can without loss of generality assume that = € {0,1}". Let q := Mu.
We claim that SOL(q, M) = (. Suppose the contrary, so there exists v’ € SOL(q, M).
Then, (1) and (4) imply that

x’ ¥ —ed+zx—e
A b Az’ +wl + Az +wy
T 2 0, Mu+q= —Az' 4w — Az +w_
4 2eTw!, + 2eTw’ + 2eTwy + 2eTw_ + (27 — 1)(2' + 1)

(19)
as well as u' o (Mu’ 4+ ¢q) = 0. Consider the case z’ > 0. The first row of (19) yields
' —e +z—e>0,s50 2" > ez —x+e Since z < e, this implies 2’ > 0 and hence
z' — ez’ + 1 — e = 0. Using this to substitute for z’ in rows 2 and 3 of (19) yields

Aez' + Ae +wl, +wy >0, —Aez' — Ae+w’ +w_ > 0.

Summing the above two inequalities gives w/, +w; +w’ +w_ > 0 so the last row of

(19) yields
26Tw'+ +2eTw’ + 26Tw+ +2eTw_ + 2y -1DE'+1) > 2y -1+ 1)>0.

Since z' > 0, this contradicts u’ o (Mu’ + q) = 0. Now, consider the case 2/ = 0. The
first row of (19) yields 2’ > 0, 2’ > e — z, as well as ' o (' + 2 — ¢) = 0. Thus,
for each ¢ € {1,...,n}, if 2; = 0, then 0 > 1 — z; and hence z; = 1; if ! > 0, then
z; = 1—z; > 0 and hence (using z € {0,1}") z; = 0, 2} = 1. Thus, 2’ = e —z. Using
this to substitute for 2’ in rows 2 and 3 of (19) yields

Ae+w;+w+20, —Ae+w +w_>0.

Summing the above two inequalities gives w', + wy +w” +w_ > 0 so the last row of
(19) yields

26Tw'+ + 2w’ + QeTw+ + 2 w_ + 2y-DE'+1)>2y-1)("+1) >0.

Thus the answer to NOT-QMAT is yes.
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