Counterexamples to Q-Matrix Conjectures

Walter D. Morris, Jr.

Department of Math Sciences
George Mason University
Fairfax, Virginia 22030

Submitted by Richard W. Cottle

ABSTRACT

A matrix M € R"*" is in the class Q if for all g € R" there exist w, z €R" such
that w — Mz = g, w'z = 0. It has been conjectured that it is possible to tell if a matrix
M is in Q solely by considering the signs of subdeterminants of M. We present two
matrices that have the same signs of corresponding subdeterminants, but are such that
one is in Q and the other is not. The second of these two matrices has the property
that every column of the matrix [I, — M] is in the interior of the union of the
complementary cones associated with [I, — M].

1. INTRODUCTION

Given a matrix M € R"*" and a vector g €R", the linear complementar-
ity problem, denoted by LCP(g, M), is to find w, z €R" such that w — Mz
=g, w2 =0. A matrix M is in the class Q (is a Q-matrix) if the LCP(q, M)
has a solution for all q. The only known finite test for determining if a matrix
is in Q is due to Gale (see [1]). It involves in the worst case determining the
feasibility of n?" linear programs, each with 2" constraints. Much work has
gone into attempting to find a more efficient characterization of the class Q,
as it is hoped that a better understanding of the class 0 would motivate
better algorithms for the LCP.

Some of the best known subclasses of Q can be characterized by signs of
certain subdeterminants of M or, equivalently, in terms of sign patterns of
vectors in the nullspace of the matrix (I, — M). Along these are the classes P
(matrices with positive principal minors) and @ (matrices M such that for all
0 # x > 0 there is an i such that x,(Mx), > 0; see [2].) It was conjectured in
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[3] that the class Q has such a characterization in terms of signs of
subdeterminants. It was shown in [8] that such a characterization would have
to involve more than just the signs of the principal minors of M. Such a
characterization would have an analog in the more general setting of oriented
matroids, and it was in an attempt to prove such an analog (see [7]) that the
counterexamples of this paper were found.

Kelly and Watson proved in [6] that the set of matrices in Q is neither
open nor closed in R"*". Their proof produced matrices M, D € R"*" such
that M is in Q but M + €D is not in Q for all sufficiently small € > 0. Their
matrix M has a zero subdeterminant for which the corresponding subde-
terminant of M + €D is nonzero. The authors of [3] refer to an unpublished
claim by Kelly and Watson that M can be perturbed to be in ) and have all
nonzero minors while still admitting a matrix D such that M + €D is not in Q
for all sufficiently small ¢ > 0, and they point out that if this were correct, it
would give a counterexample to their conjecture. This paper verifies Kelly
and Watson’s claim.

Our perturbed matrix M not in Q will also have the property that each of
the columns of [I, — M] is in the interior of the set of vectors in g in R"™ for
which the LCP(q, M) has a solution, which disproves a conjecture of [4].

2. COMPLEMENTARY MATRICES AND VISIBILITY SETS

Let R be a matrix in R"*2", with columns (Spreeer 8y tyy.-nsty). Call an
n X n submatrix C of R complementary if it contains exactly one of the
columns s; and ¢, for i=1,...,n. If R=[I, — M), with (s,,...,s,) the
columns of I and (¢,,...,¢,) the columns of — M, then the LCP(gq, M) for a
vector ¢ € R™ has a solution iff g is in the convex cone of the columns of a
complementary submatrix of [I, — M]. Call R a Q-arrangement if for all
g €ER" there is a complementary submatrix C of R with x > 0 such that
q = Cx. Then M is a Q-matrix iff [I, — M] is a Q-arrangement. Assume in the
following that all of the complementary submatrices of R are nonsingular.

DEFINITION.  An element g of R" is visible from —¢; € {s,,¢,} if the
line segment {x ER": A(—¢;)+(1 —A)g, 0 < A <1} does not intersect any
of the cones cone({c,,...,¢;_1,¢;,1,..., ¢, }) for complementary submatrices
C containing c;.

Clearly, A(—¢;))+(1—A)g€cone({cy,...,C;_1,Cirpoe+5C,}) for some
0<A<1iff g&cone({c,,...,c,}). An element g of R" is therefore visible
from — ¢, if there is no complementary submatrix C containing ¢; with x > 0
such that Cx = q. Let Vis( — ¢;) be the set of points visible from — c;.
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Tueorem 1 [6, Theorem 3]. Assume that all of the complementary
submatrices of R are nonsingular. R is a Q-arrangement iff Vis(—s;)N
Vis( —t,) =@ for somei=1,...,n.

Finally, note that if R’ is obtained from R by premultiplying R by a
nonsingular matrix in R"*", followed by positive rescaling of the columns,
then R’ is a Q-arrangement iff R is, and any n X n submatrix of R’ is
nonsingular iff the corresponding submatrix of R is.

3. KELLY AND WATSON’S EXAMPLE

The counterexample presented in this paper is a perturbation of Kelly and
Watson’s example from [6], which shows that the set of Q-matrices is neither
open nor closed in R"*", The features of Kelly and Watson’s arrangement
that are crucial to our argument are pointed out in this section. For a more
detailed discussion, see [6].

Consider the matrix

21 25 —-27 -36
7 3 -9 36
M= 12 12 -2 ol

4 4 -4 -8

The matrix [I, — M] can be transformed by premultiplication by a nonsingu-
lar matrix followed by positive scaling of the columns into the matrix

2 - o -% 1 -1 0 3
R |2 -2 -1 -2 -2 2 -!
0 2 -+ 0o 0 2 -!
1 1 1 -1 1 11 -1

Denote the columns of this matrix by (s, g, S5, S4, £}, €o, I3, 4). The
points s, §5, §5, — 84, L1, by, By, — £, all lie in the affine space F={x€&
R*:x,=1). We identify this space with R The points in F corresponding
to s, Sg, S5, — Sy by, by, 5, — ¢, are shown in Figure 1. The cones associated
with complementary submatrices of R are represented by convex hulls in F.
A triangle Ac cycy in F, where c; € {s,,¢;} for i =1,2,3 is the intersection of
F with the convex cone of {c}, ¢y, c;} in R* Kelly and Watson observe that
if the visibility sets of —s, and —¢, in F are bounded, then R is a
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qu

Fic. 1. Kelly and Watson’s configuration.

Q-arrangement iff these visibility sets do not intersect. The idea, then, is to
enclose the points — s, and — ¢, in“boxes” with sides formed by triangles of
the form ac cyc;, where ¢, € {s,,t;} for i =1,2,3.

The coordinates of the points J, K, L, S, T in Figure 1 are

1o =

S
li
— U GO
=
Il
|
— o It ~lio
I~
I
—_— O Wi O
5]
il
— U IR0 LT
~
I
—_ - O



Q-MATRIX CONJECTURES 139

sy 3 1

x4

Fic. 2. Projection of K-W configuration onto x,x, plane.

The points K’,S’,T’ are obtained from K,S,T by multiplying the first
coordinate by — 1.

First, consider the point —s,=2J+ K + ;L + ;5. It is contained in
the interior of the tetrahedron tet JKLs, = conv({], K, L, 5, }). The triangle
AKLs, is contained in the triangle astys5, AJLs, is contained in Astyt;,
and A JKs, is contained in As;s,s;. The remaining face A JKL is the union of
conv({ JLST }), which is contained in At;s,t;, and the triangle AKST, which
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is in no triangle Ac,cyc;. The interior of AKST is thus a “window” for — s,
to see through. The visibility set of — s, is further constrained by the triangle
As;Lsg, which is in Ast,s,, and the triangle As,Js;, which is in As,s,s,.
Also, —s, is coplanar with the points S, T, and s,. This gives us the
visibility set of s,: Vis(—s,) = inttet JKLs, Uinttet KSTs, Urelint o KST,
where inttet JKLs, is the interior of tet JKLs,, and relintAKST is the
relative interior of AKST in the plane containing {K, S,T}. The situation
for — t, is symmetric: Vis(— t,) = inttet JK'Ls, U int tet K'S'T"s; U
relintAK’S’T’. The sets Vis( —s,) and Vis( —¢t,) are disjoint (see [5] for
details), and thus R is a Q-arrangement.

Kelly and Watson use this example to show that the set of Q-matrices is
not open. A slight perturbation of the point ~ ¢, will make Vis( —¢t,) and
Vis( — s,) intersect. If — ¢, is moved off of the plane defined by S’, T’, and
s to the same side as s,, the perturbed point —¢; will be able to “see”
through the relative interiors of the triangles AS'T's; and ASTs; into the
interior of tet STKs,, which is in Vis( — s,).

4. THE CLASS Q CANNOT BE CHARACTERIZED BY SIGNS
OF SUBDETERMINANTS

Unfortunately, Kelly and Watson’s peturbation of ¢, forces the point ¢,
off of the plane defined by ¢,, ¢;, and s,, so that the subdeterminant of M
corresponding to rows 1, 2, and 4 and columns 2, 3, and 4 is no longer zero in
the perturbed matrix. Thus this example does not show that Q cannot be
characterized by signs of subdeterminants, as pointed out in [3]. In fact, it
might seem that the coplanarity of the points ¢,, t,, t,, and s, is crucial to
the example. We will now show that it is possible to perturb M so that it has
all nonzero subdeterminants, while still staying on the boundary of the set of
(-matrices.

In the matrix R, make the following changes:

-1 -3 2te

Ll —2+26 c_ | Se—3 e | 3e—3
ty = , 8= s =

el a -t -4

1+e -1 -1

For €>0, replace t, by t5, —s, by —s§, and —¢t, by —t¢; Call the
resulting matrix R‘. Note that t5 =[1/(1+ €)](¢, + €t;). Let X be the point
[1/(1+ €)](s3 + €s,). The perturbations from — s, to —s§and —¢t, to — ¢
are made so that the sets of points { X, S, T’, — ti} and {X,S,T, —si} will
be coplanar.
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LemMma 1. For sufficiently small € > 0, every set of four columns of R*
is independent.

Proof. For e =0, we have R = R. For sufficiently small € > 0, every set
of four independent columns of R will give a corresponding set of four
independent columns of R¢. There are five sets of four dependent columns of
R. These are {t,,t,, $1, o}, {1, 3, 53, 84 }> {S1> S0, S4 t4}> {83, 8, 85, 84}, and
{1, ts, t4> 54} It can be checked that for small € > 0, each of the correspond-
ing sets of four columns of R* is independent. [ ]

Lemma 2. Vis(—t,)NVis( — s,) =@ when t, is changed to t;.

Proof. Let LS be the point where the line from s, to ¢; hits the triangle
At;sots, and let L be the point where it hits At s,s,. Since t; is on the line
segment from ¢, to f;, the point L will be on the segment from L to J (see
Figure 3). Let S¢ be the point where the line from L to K hits the segment
ST. The visibility set of — s, then becomes inttet JKL{s, Uinttet S*TKs; U

to s

to t

Fic. 3. The new hole in Vis( — ¢,).
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relint AKS*T, which is contained in the original visibility set of —s,. The
visibility set of — ¢, stays the same, except that a second “hole” in the face
of AJK’L of the tetrahedron tet JK'Ls, is given by relint A L{L$ L. This hole
does not let the visibility set of — ¢, intersect that of — s,, however, since
lines from — ¢, through the hole are blocked from Vis( — s,) by the triangles
At Sty and At;s,8,.

Thus Vis( — s,) is strictly contained in what it was before, and the new
“hole” inttet JK'Ls, does not allow — ¢, to see into Vis( — s,), so Vis( — t,)
NVis(—s,)=2. n

Lemma 3. Assume that t, has been replaced by t5. Then Vis( —t{)N
Vis( — s5) =& when t, and s, are changed to t{ and s¢.

Proof. (See Figure 4). When s, is changed to s, the visibility set of
— sy is that of —s,, except that the part in inttet KS‘Ts; becomes

K’ K

g’

(%]

F1c. 4. Change in meeting point of Vis( — s,) and Vis( — t,).
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inttet KS¢TX, since X is on the plane containing S, T, and — s§. Similarly,
the set intconv({S’,T’, X, s5,Y })UrelintaS'T’s; is added to the visibility
set of —t,, where Y is the intersection of the plane containing X, §’, T/, and
the line segment from L5 to s;. Some modifications to Vis( —¢,) are made
* around the hole relinta L{LSL, but, as before, lines from — ¢{ through the
hole are blocked from Vis( — s§) by at,s,t; and At,5,53. |

TuroreMm 2. The class Q cannot be characterized in terms of signs of
subdeterminants.

Proof. Note that the point X is on the boundary of both Vis( — s%) and
Vis( — ££), so that in this regard it plays the role of the point s; of Kelly and
Watson’s example. Now we can perturb t{ to t*%, so that —¢{*® moves off
of the plane containing AS'T’X to the same side as s,. Then —¢; *% can see
into Vis( — s3).

Pivot on the columns s;, s, S5, 5§ of the matrix R® to get a matrix
[I, — M*]. The perturbation of — t in the matrix R* will yield a new matrix
R<%. Pivot on the columns s,, s5, 53, 85 of R%% to get a matrix [I, — M%),
The signs of all of the subdeterminants of M* are nonzero by Lemma 1. Thus
for small enough 8, the signs of the corresponding subdeterminants of M¢
and M<? will agree. But M€ is in Q, while M*? is not. (]

For € = L, the matrix M® becomes

1561 278921 __ 2029 _ 5l0lL _ 2497 8
624 94224 624 140400 1872
523 30971 _ 679 53407 _ 211 §
624 94224 624 140400 ~ 1872
223 33071 .39 301 _ 223
156 23556 156 35100 468
5 11175 _1s 38 _ 25
13 1963 13 39 13

If 8 = ;. then the point

10
1411
1400
1411

—

1411

is not in any of the complementary cones.
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Remark. To construct M“® and M¢ from R so that M is in Q but
M*<? is not, it is not necessary to perturb the element t,. This was only done
to make the matrix M¢ totally nondegenerate, in the sense of [3].

THEOREM 3.  The property that all of the columns of [I, — M] are in the
interior of the union of the complementary cones associated with M is not a
sufficient condition for M to be in Q.

Proof. The sufficiency of this condition for totally nondegenerate M €
R3*3 was shown in [4]. Kelly and Watson’s perturbed example has the
column I; on the boundary of the union of the complementary cones
associated with M + eD. Consider the perturbed configuration R%%. The set
of uncovered points (not in the union of the complementary cones) in F is
contained in an arbitrarily small neighborhood of the point X, for a given
€ > 0. Thus the point s, is in the interior of the union of the complementary
cones. However, each of the columns of R%? is in the interior of the union of
the complementary cones. This disproves a conjecture of [4]. [ ]

5. CONCLUSIONS

Any characterization of the class 0 must make use of more information
than that which is in the signs of subdeterminants of matrices in Q. The
example in this article also casts doubt on the possibility that a matrix M can
be shown to be in Q by solving LCP(q, M)’s for a relatively small “test set”
(based on M) of vectors q. This is possible for M € R3*3, due to [5]. The set
of points g in the affine space F for which the LCP(q, — M*?%) has no
solution is an arbitrarily small set in a neighborhood of the point X. The point
X can be placed at various points on the line segment between s; and s, for
various values of e. It seems unlikely that any relatively small test set would
include a point in this region of points that have no solution, for all choices of
€ and 4.
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